JP2008216759A - プラズマディスプレイパネルの駆動方法 - Google Patents

プラズマディスプレイパネルの駆動方法 Download PDF

Info

Publication number
JP2008216759A
JP2008216759A JP2007055557A JP2007055557A JP2008216759A JP 2008216759 A JP2008216759 A JP 2008216759A JP 2007055557 A JP2007055557 A JP 2007055557A JP 2007055557 A JP2007055557 A JP 2007055557A JP 2008216759 A JP2008216759 A JP 2008216759A
Authority
JP
Japan
Prior art keywords
discharge
pulse
reset
electrode
subfield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007055557A
Other languages
English (en)
Inventor
Shunsuke Itakura
俊輔 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2007055557A priority Critical patent/JP2008216759A/ja
Priority to EP08003932A priority patent/EP1968036A3/en
Priority to US12/042,909 priority patent/US20080252563A1/en
Priority to KR1020080020953A priority patent/KR100949749B1/ko
Publication of JP2008216759A publication Critical patent/JP2008216759A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

【課題】誤放電を防止しつつも暗コントラストの向上を図ることができるプラズマディスプレイパネルの駆動方法を提供する。
【解決手段】単位表示期間内の1のサブフィールドでは以下のリセット行程Rと、アドレス行程Wwとを実行する。リセット行程Rでは、プラズマディスプレイパネルの行電極対の一方の行電極Y1〜Ynを陽極側、列電極D1〜Dmを陰極側とした電圧を両電極間に印加することにより各放電セル内で第1のリセット放電を生起させ、引き続き、一方の行電極Y1〜Ynに負極性の電位を印加しつつ他方の行電極X1〜Xnに正極性のピーク電位VB1を有する第1ベースパルスBP1+を印加することにより第2のリセット放電を生起させる。アドレス行程では、入力映像信号に応じて各放電セルを選択的にアドレス放電させることによりこれを点灯モードの状態に設定させる。
【選択図】図8

Description

本発明は、プラズマディスプレイパネルを駆動する駆動方法に関する。
現在、薄型表示装置として、AC型(交流放電型)のプラズマディスプレイパネルが製品化されている。プラズマディスプレイパネル内には、2枚の基板、すなわち前面ガラス基板及び背面ガラス基板が所定間隙を介して対向配置されている。表示面としての上記前面ガラス基板の内面(背面ガラス基板と対向する面)には、互いに対をなして平行に伸長する行電極対の複数がサスティン電極対として形成されている。背面ガラス基板には、行電極対と交差するように複数の列電極がアドレス電極として伸長形成され、さらに蛍光体が塗布されている。上記表示面側から見た場合、行電極対と列電極との交叉部に、画素に対応した表示セルが形成されている。このようなプラズマディスプレイパネルに対して、入力映像信号に対応した中間調の表示輝度を得るべく、サブフィールド法を用いた階調駆動を実施する。
サブフィールド法に基づく階調駆動では、発光を実施すべき回数(又は期間)が夫々に割り当てられている複数のサブフィールド各々にて、1フィールド分の映像信号に対する表示駆動を実施する。各サブフィールドでは、アドレス行程と、サスティン行程とを順次実行する。アドレス行程では、入力映像信号に応じて、選択的に各表示セル内の行電極及び列電極間で選択放電を生起させて所定量の壁電荷を形成(又は消去)させる。サスティン行程では、所定量の壁電荷が形成されている表示セルのみを繰り返し放電させてその放電に伴う発光状態を維持する。更に、少なくとも先頭のサブフィールドにおいて上記アドレス行程に先立ち、初期化行程を実行する。かかる初期化行程では、全ての表示セル内において、対を為す行電極間にリセット放電を生起させることにより全表示セル内に残留する壁電荷の量を初期化する初期化行程を実行する。
ここで、上記リセット放電は比較的強い放電であり、且つ表示すべき画像の内容には何ら関与しないものである為、この放電に伴う発光が画像のコントラストを低下させてしまうという問題があった。
そこで、各表示セル内に、電子線の照射によって励起されて波長200〜300nm内にピークを有するカソードルミネッセンス発光を行う酸化マグネシウム結晶体を含む酸化マグネシウム層を設けるようにしたプラズマディスプレイパネルを備えたプラズマディスプレイ装置が提案された(例えば特許文献1参照)。かかるプラズマディスプレイパネルによれば、表示セル内で生起される放電の遅れ時間が短縮されるので、比較的ピーク電位が低いリセットパルスを印加した際にも確実にリセット放電を生起させることが可能となる。そこで、このプラズマディスプレイ装置では、各表示セルに対して比較的ピーク電位が低いリセットパルスを印加することにより、放電強度の弱いリセット放電を生起させるようにしている。これにより、リセット放電に伴う発光輝度が低下するので、表示画像の輝度コントラストを高めることが可能となる。
しかしながら、放電の遅れ時間が短縮されて放電が生起されやすくなった分だけ、リセット放電の直後に実施されるアドレス行程において誤った放電が生起されてしまうという問題が生じた。
特開2006−54160号公報
本発明は、かかる問題を解決すべく為されたものであり、誤放電を防止しつつも暗コントラストの向上を図ることができるプラズマディスプレイパネルの駆動方法を提供することを目的とする。
請求項1記載によるプラズマディスプレイパネルの駆動方法は、放電ガスが封入された放電空間を挟んで前面基板及び背面基板が対向配置されており、前記前面基板に形成されている複数の行電極対と前記背面基板に形成されている複数の列電極との各交叉部に画素を担う放電セルが形成されているプラズマディスプレイパネルを、入力映像信号における単位表示期間毎に複数のサブフィールドによって階調駆動するプラズマディスプレイパネルの駆動方法であって、前記放電セル内の前記背面基板上には蛍光体材料及び二次電子放出材料が含まれる蛍光体層が設けられており、前記単位表示期間内の1のサブフィールドでは、前記放電セルを消灯モードの状態に初期化するリセット行程と、前記入力映像信号に応じて前記放電セルを選択的にアドレス放電させることにより前記放電セルを点灯モードの状態に遷移させるアドレス行程と、を実行し、前記リセット行程では、前記行電極対の一方の行電極を陽極側、前記列電極を陰極側とした電圧を前記一方の行電極及び前記列電極間に印加することにより前記一方の行電極及び前記列電極間において第1のリセット放電を生起させた後、引き続き前記一方の行電極に負極性の電位を印加しつつ前記行電極対の他方の行電極に正極性のピーク電位を有する第1ベースパルスを印加することにより第2のリセット放電を生起させ、前記アドレス行程の実行期間中に亘り、前記一方の行電極に負極性の電位を印加しつつ前記他方の行電極に前記第1ベースパルスとは異なる正極性のピーク電位を有する第2ベースパルスを印加する。
プラズマディスプレイパネル(以下、PDPと称する)の各放電セル内の蛍光体層に二次電子放出材料を含ませることにより、弱いリセット放電を確実に生起させることを可能とし、このリセット放電の微弱化によって暗コントラストの向上を図る。
更に、かかるPDPを単位表示期間毎に複数のサブフィールドにて階調駆動するにあたり、単位表示期間内の1のサブフィールドでは以下のリセット行程と、アドレス行程とを実行する。先ず、リセット行程では、PDPの行電極対の一方の行電極を陽極側、列電極を陰極側とした電圧を両電極間に印加することにより各放電セル内で第1のリセット放電を生起させ、引き続き、一方の行電極に負極性の電位を印加しつつ他方の行電極に正極性のピーク電位を有する第1ベースパルスを印加することにより第2のリセット放電を生起させる。次に、アドレス行程では、入力映像信号に応じて各放電セルを選択的にアドレス放電させることによりこれを点灯モードの状態に設定させる。尚、このアドレス行程の実行期間中に亘り、上記一方の行電極に負極性の電位を印加しつつ他方の行電極に第1ベースパルスとは異なる正極性ピーク電位を有する第2ベースパルスを印加する。
この際、第1ベースパルスのピーク電位を第2ベースパルスよりも高電位に設定すれば、第2のリセット放電が強い放電となるので、壁電荷の消去が為されるものの、各放電セル内の一方の行電極近傍には微量な正極性の壁電荷、他方の行電極近傍には微量な負極性の壁電荷が残留する。これにより、アドレス行程において一方の行電極に負極性の電位、他方の行電極に第2ベースパルスが印加されている状態では、行電極間での放電が生起されにくくなり、誤った放電が防止されるようになる。
一方、第2ベースパルスのピーク電位を第1ベースパルスよりも高電位に設定すれば、製造上における各放電セル毎の放電強度のバラツキによりアドレス放電が弱い放電となってしまう放電セルが存在しても、この放電セルを確実に点灯モード状態に設定することが可能となる。
図1は、本発明の第1の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。
図1に示す如く、かかるプラズマディスプレイ装置は、プラズマディスプレイパネルとしてのPDP50、X電極ドライバ51、Y電極ドライバ53、アドレスドライバ55、及び駆動制御回路56から構成される。
PDP50には、2次元表示画面の縦方向(垂直方向)に夫々伸張して配列された列電極D〜D、横方向(水平方向)に夫々伸張して配列された行電極X〜X及び行電極Y〜Yが形成されている。この際、互いに隣接するもの同士で対を為す行電極対(Y,X)、(Y,X)、(Y,X)、・・・、(Y,X)が夫々、PDP50における第1表示ライン〜第n表示ラインを担う。各表示ラインと列電極D〜D各々との各交叉部(図1中の一点鎖線にて囲まれた領域)には、画素を担う放電セル(表示セル)PCが形成されている。すなわち、PDP50には、第1表示ラインに属する放電セルPC1,1〜PC1,m、第2表示ラインに属する放電セルPC2,1〜PC2,m、・・・・、第n表示ラインに属する放電セルPCn,1〜PCn,mの各々がマトリクス状に配列されているのである。
図2は、表示面側から眺めたPDP50の内部構造を模式的に示す正面図である。尚、図2においては、夫々隣接する3つの列電極Dと、互いに隣接する2つの表示ラインとの各交叉部を抜粋して示すものである。又、図3は、図2のV−V線におけるPDP50の断面を示す図であり、図4は、図2のW−W線におけるPDP50の断面を示す図である。
図2に示すように、各行電極Xは、2次元表示画面の水平方向に伸張するバス電極Xbと、かかるバス電極Xb上の各放電セルPCに対応した位置に夫々接触して設けられたT字形状の透明電極Xaと、から構成される。各行電極Yは、2次元表示画面の水平方向に伸張するバス電極Ybと、かかるバス電極Yb上の各放電セルPCに対応した位置に夫々接触して設けられたT字形状の透明電極Yaと、から構成される。透明電極Xa及びYaは例えばITO等の透明導電膜からなり、バス電極Xb及びYbは例えば金属膜からなる。透明電極Xa及バス電極Xbからなる行電極X、並びに透明電極Ya及バス電極Ybからなる行電極Yは、図3に示す如く、その前面側がPDP50の表示面となる前面透明基板10の背面側に形成されている。この際、各行電極対(X、Y)における透明電極Xa及びYaは、互いに対となる相手の行電極側に伸張しており、その幅広部の頂辺同士が所定幅の放電ギャップg1を介して互いに対向している。又、前面透明基板10の背面側には、行電極対(X、Y)とこの行電極対に隣接する行電極対(X、Y)との間に、2次元表示画面の水平方向に伸張する黒色または暗色の光吸収層(遮光層)11が形成されている。さらに、前面透明基板10の背面側には、行電極対(X,Y)を被覆するように誘電体層12が形成されている。この誘電体層12の背面側(行電極対が接触する面とは反対側の面)には、図3に示す如く、光吸収層11とこの光吸収層11に隣接するバス電極Xb及びYbとが形成されている領域に対応した部分に、嵩上げ誘電体層12Aが形成されている。
誘電体層12及び嵩上げ誘電体層12Aの表面上には、酸化マグネシウム層13が形成されている。尚、酸化マグネシウム層13は、電子線の照射によって励起されて波長200〜300nm内、特に、230〜250nm内にピークを有するCL(カソードルミネッセンス)発光を行う二次電子放出材としての酸化マグネシウム結晶体(以下、CL発光MgO結晶体と称する)を含むものである。このCL発光MgO結晶体は、マグネシウムを加熱して発生するマグネシウム蒸気を気相酸化して得られるものであり、例えば立方体の結晶体が互いに嵌り込んだ多重結晶構造、あるいは立方体の単結晶構造を有する。CL発光MgO結晶体の平均粒径は、2000オングストローム以上(BET法による測定結果)である。
平均粒径が2000オングストローム以上の大きな粒径の気相法酸化マグネシウム単結晶体を形成しようとする場合には、マグネシウム蒸気を発生させる際の加熱温度を高くする必要がある。このため、マグネシウムと酸素が反応する火炎の長さが長くなり、この火炎と周囲との温度差が大きくなることによって、粒径の大きい気相法酸化マグネシウム単結晶体ほど、上述した如きCL発光のピーク波長(例えば、235nm付近、230〜250nm内)に対応したエネルギー準位を有するものが多く形成されることになる。
また、一般的な気相酸化法に比べ、単位時間当たりに蒸発させるマグネシウムの量を増加させてマグネシウムと酸素との反応領域をより増大させ、より多くの酸素と反応することによって生成された気相法酸化マグネシウム単結晶体は、上述したCL発光のピーク波長に対応したエネルギー準位を有するものとなる。
このようなCL発光MgO結晶体を、スプレー法や静電塗布法等によって、誘電体層12の表面に付着させることにより酸化マグネシウム層13が形成されている。尚、誘電体層12の表面に蒸着又はスパッタ法により薄膜酸化マグネシウム層を形成し、その上にCL発光MgO結晶体を付着させて酸化マグネシウム層13を形成するようにしても良い。
一方、前面透明基板10と平行に配置された背面基板14上には、各行電極対(X,Y)における透明電極Xa及びYaに対向する位置において、列電極Dの各々が行電極対(X,Y)と直交する方向に伸張して形成されている。背面基板14上には、更に列電極Dを被覆する白色の列電極保護層15が形成されている。この列電極保護層15上には隔壁16が形成されている。隔壁16は、各行電極対(X,Y)のバス電極Xb及びYbに対応した位置において夫々2次元表示画面の横方向に伸張している横壁16Aと、互いに隣接する列電極D間の各中間位置において2次元表示画面の縦方向に伸張している縦壁16Bとによって梯子形状に形成されている。更に、図2に示す如き梯子形状の隔壁16がPDP50の各表示ライン毎に形成されている。互いに隣接する隔壁16の間には、図2に示す如き隙間SLが存在する。又、梯子状の隔壁16により、夫々独立した放電空間S、透明電極Xa及びYaを含む放電セルPCが区画されている。放電空間S内には、キセノンガスを含む放電ガスが封入されている。各放電セルPC内における横壁16Aの側面、縦壁16Bの側面、及び列電極保護層15の表面には、これらの面を全て覆うように蛍光体層17が形成されている。この蛍光体層17は、実際には、赤色発光を為す蛍光体、緑色発光を為す蛍光体、及び青色発光を為す蛍光体の3種類からなる。
尚、蛍光体層17内には、例えば図5に示す如き形態にて、二次電子放出材としてのMgO結晶体(CL発光MgO結晶体を含む)が含まれている。この際、 蛍光体層17の表面上における放電空間Sを覆う面上、つまり放電空間Sと接する面上には、放電ガスと接触するようにMgO結晶体が蛍光体層17から露出している。
ここで、各放電セルPCの放電空間Sと隙間SLとの間は、図3に示す如く酸化マグネシウム層13が横壁16Aに当接されることによって互いに閉じられている。又、図4に示す如く、縦壁16Bは酸化マグネシウム層13に当接されていないので、その間に隙間rが存在する。すなわち、2次元表示画面の横方向において互いに隣接する放電セルPC各々の放電空間Sは、この隙間rを介して互いに連通しているのである。
駆動制御回路56は、先ず、入力映像信号を各画素毎にその全ての輝度レベルを256階調にて表現する8ビットの画素データに変換し、この画素データに対して誤差拡散処理及びディザ処理からなる多階調化処理を施す。すなわち、先ず、誤差拡散処理では、上記画素データの上位6ビット分を表示データ、残りの下位2ビット分を誤差データとし、周辺画素各々に対応した画素データにおける誤差データを重み付け加算したものを、上記表示データに反映させることにより6ビットの誤差拡散処理画素データを得る。かかる誤差拡散処理によれば、原画素における下位2ビット分の輝度が周辺画素によって擬似的に表現され、それ故に8ビットよりも少ない6ビット分の表示データにて、上記8ビット分の画素データと同等の輝度階調表現が可能になる。次に、駆動制御回路56は、この誤差拡散処理によって得られた6ビットの誤差拡散処理画素データに対してディザ処理を施す。ディザ処理では、互いに隣接する複数の画素を1画素単位とし、この1画素単位内の各画素に対応した上記誤差拡散処理画素データに夫々、互いに異なる係数値からなるディザ係数を夫々割り当てて加算することによりディザ加算画素データを得る。かかるディザ係数の加算によれば、上記の如き画素単位で眺めた場合には、ディザ加算画素データの上位4ビット分だけでも8ビットに相当する輝度を表現することが可能となる。そこで、駆動制御回路56は、上記ディザ加算画素データの上位4ビット分を、図6に示す如き、全輝度レベルを15階調にて表す4ビットの多階調化画素データPDに変換する。そして、駆動制御回路56は、多階調化画素データPDを図6に示す如きデータ変換テーブルに従って14ビットの画素駆動データGDに変換する。駆動制御回路56は、かかる画素駆動データGDにおける第1〜第14ビットを夫々サブフィールドSF1〜SF14(後述する)の各々に対応させ、そのサブフィールドSFに対応したビット桁を画素駆動データビットとして1表示ライン分(m個)ずつアドレスドライバ55に供給する。
更に、駆動制御回路56は、図7に示す如き発光駆動シーケンスに従って上記構造を有するPDP50を駆動させるべき各種制御信号を、X電極ドライバ51、Y電極ドライバ53及びアドレスドライバ55からなるパネルドライバに供給する。すなわち、駆動制御回路56は、図7に示す如き1フィールド(1フレーム)表示期間内の先頭のサブフィールドSF1では、リセット行程R、選択書込アドレス行程W及びサスティン行程I各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。又、サブフィールドSF2〜SF14各々では、選択消去アドレス行程W及びサスティン行程I各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。尚、1フィールド表示期間内の最後尾のサブフィールドSF14に限り、サスティン行程Iの実行後、駆動制御回路56は、消去行程Eに従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。
パネルドライバ、すなわち、X電極ドライバ51、Y電極ドライバ53及びアドレスドライバ55は、駆動制御回路56から供給された各種制御信号に応じて、図8に示す如き各種駆動パルスを生成してPDP50の列電極D、行電極X及びYに供給する。
図8においては、図7に示されるサブフィールドSF1〜SF14の内の、先頭のサブフィールドSF1と、それに続くサブフィールドSF2、並びに最後尾のサブフィールドSF14での動作のみを抜粋して示すものである。
先ず、サブフィールドSF1のリセット行程Rの前半部では、Y電極ドライバ53が、後述するサスティンパルスに比して時間経過に伴う前縁部での電位推移が緩やかな波形を有する正極性のリセットパルスRPY1を全ての行電極Y〜Yに印加する。尚、リセットパルスRPY1のピーク電位は、上記サスティンパルスのピーク電位よりも高電位である。又、この間、アドレスドライバ55は、列電極D〜Dを接地電位(0ボルト)の状態に設定する。上記リセットパルスRPY1の印加に応じて、全ての放電セルPC各々内の行電極Y及び列電極D間において第1リセット放電が生起される。すなわち、リセット行程Rの前半部では、行電極Yが陽極側、列電極Dが陰極側となるように両電極間に電圧を印加することにより、行電極Yから列電極Dに向けて電流が流れる放電(以下、列側陰極放電と称する)を上記第1リセット放電として生起させるのである。かかる第1リセット放電に応じて、全ての放電セルPC内の行電極Y近傍には負極性の壁電荷、列電極D近傍には正極性の壁電荷が形成される。更に、リセット行程Rの前半部では、X電極ドライバ51が、かかるリセットパルスRPY1と同一極性であり、且つ、上記リセットパルスRPY1の印加に伴う行電極X及びY間での面放電を防止し得るピーク電位を有するリセットパルスRPを全ての行電極X〜X各々に印加する。
次に、サブフィールドSF1のリセット行程Rの後半部では、Y電極ドライバ53が、時間経過に伴う前縁部での電位推移が緩やかな負極性のリセットパルスRPY2を発生し、これを全ての行電極Y〜Yに印加する。又、リセット行程Rの後半部では、X電極ドライバ51が、上記リセットパルスRPY2が行電極Yに印加されている間に亘り、正極性のピーク電位として第1ベース電位VB1を有する第1ベースパルスBP1を行電極X〜X各々に印加する。すなわち、X電極ドライバ51は、パルスの最高電位が図8に示す如き第1ベース電位VB1となる第1ベースパルスBP1を全行電極Xに印加するのである。これら負極性のリセットパルスRPY2及び正極性の第1ベースパルスBP1の印加に応じて、全ての放電セルPC内の行電極X及びY間において第2リセット放電が生起される。かかる第2リセット放電により、全放電セルPC内の行電極X及びY各々の近傍に形成されていた壁電荷の大半が消去される。これにより全放電セルPCは、行電極X近傍には微量な負極性の壁電荷、行電極Y近傍には微量な正極性の壁電荷が夫々残留した状態、つまり消灯モードに初期化される。更に、上記リセットパルスRPY2の印加に応じて、全放電セルPC内の行電極Y及び列電極D間においても微弱な放電が生起され、列電極D近傍に形成されていた正極性の壁電荷の一部が消去される。これにより、全放電セルPCの列電極D近傍に残留する壁電荷量が、後述する選択書込アドレス行程Wにおいて正しく選択書込アドレス放電を生起させることが可能な量に調整される。
尚、リセットパルスRPY2及び第1ベースパルスBP1によって行電極X及びY間に印加される電圧は、上記第1リセット放電に応じて行電極X及びY各々の近傍に形成された壁電荷を考慮した上で、行電極X及びY間で確実に上記第2リセット放電を生起させることができる電圧である。又、リセットパルスRPY2における負のピーク電位は、後述する負極性の書込走査パルスSPのピーク電位よりも高い電位、つまり0ボルトに近い電位に設定されている。すなわち、リセットパルスRPY2のピーク電位を書込走査パルスSPのピーク電位よりも低くしてしまうと、行電極Y及び列電極D間において強い放電が生起され、列電極D近傍に形成されていた壁電荷が大幅に消去されてしまい、選択書込アドレス行程Wでのアドレス放電が不安定となるからである。一方、第1ベースパルスBP1のピーク電位(VB1)は、後述する第2ベースパルスBP2のピーク電位(VB2)よりも高電位である。
次に、サブフィールドSF1の選択書込アドレス行程Wでは、Y電極ドライバ53が、図8に示す如き負極性のピーク電位有するベースパルスBPを行電極Y〜Yに同時に印加しつつ、負極性のピーク電位を有する書込走査パルスSPを行電極Y〜Y各々に順次択一的に印加して行く。X電極ドライバ51は、この間、正極性のピーク電位として第2ベース電位VB2を有する第2ベースパルスBP2を行電極X〜Xに印加し続ける。すなわち、X電極ドライバ51は、パルスの最高電位が図8に示す如き第2ベース電位VB2となる第2ベースパルスBP2を全行電極Xに印加するのである。この際、第2ベースパルスBP2のピーク電位(VB2)は、上記第1ベースパルスBP1のピーク電位(VB1)よりも低電位である。又、第2ベースパルスBP2及びベースパルスBPによって行電極X及びY間に印加される電圧は、放電セルPCの放電開始電圧よりも低い。
更に、この選択書込アドレス行程Wでは、アドレスドライバ55が、先ず、サブフィールドSF1に対応した画素駆動データビットをその論理レベルに応じたパルス電圧を有する画素データパルスDPに変換する。例えば、アドレスドライバ55は、放電セルPCを点灯モードに設定させるべき論理レベル1の画素駆動データビットが供給された場合にはこれを正極性のピーク電位を有する画素データパルスDPに変換する。一方、放電セルPCを消灯モードに設定させるべき論理レベル0の画素駆動データビットに対してはこれを低電圧(0ボルト)の画素データパルスDPに変換する。そして、アドレスドライバ55は、かかる画素データパルスDPを1表示ライン分(m個)ずつ、各書込走査パルスSPの印加タイミングに同期して列電極D〜Dに印加して行く。この際、上記書込走査パルスSPと同時に、点灯モードに設定させるべき高電圧の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には選択書込アドレス放電が生起される。更に、かかる選択書込アドレス放電の直後、この放電セルPC内の行電極X及びY間にも微弱な放電が生起される。つまり、書込走査パルスSPが印加された後、行電極X及びY間には上記ベースパルスBP及び第2ベースパルスBP2に応じた電圧が印加されるが、この電圧は各放電セルPCの放電開始電圧よりも低い電圧に設定されている為、かかる電圧の印加だけでは放電セルPC内で放電が生起されることはない。ところが、上記選択書込アドレス放電が生起されると、この選択書込アドレス放電に誘発されて、ベースパルスBP及び第2ベースパルスBP2による電圧印加だけで、行電極X及びY間に放電が生起されるのである。かかる放電並びに上記選択書込アドレス放電により、この放電セルPCは、その行電極Y近傍に正極性の壁電荷、行電極X近傍に負極性の壁電荷、列電極D近傍に負極性の壁電荷が夫々形成された状態、すなわち、点灯モードに設定される。一方、上記書込走査パルスSPと同時に、消灯モードに設定させるべき低電圧(0ボルト)の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には上述した如き選択書込アドレス放電は生起されず、それ故に行電極X及びY間にでの放電も生じることはない。よって、この放電セルPCは、その直前までの状態、すなわち、リセット行程Rにおいて初期化された消灯モードの状態を維持する。
次に、サブフィールドSF1のサスティン行程Iでは、Y電極ドライバ53が、正極性のピーク電位を有するサスティンパルスIPを1パルス分だけ発生しこれを行電極Y〜Y各々に同時に印加する。この間、X電極ドライバ51は、行電極X〜Xを接地電位(0ボルト)の状態に設定し、アドレスドライバ55は、列電極D〜Dを接地電位(0ボルト)の状態に設定する。上記サスティンパルスIPの印加に応じて、上述した如き点灯モードに設定されている放電セルPC内の行電極X及びY間においてサスティン放電が生起される。かかるサスティン放電に伴って蛍光体層17から照射される光が前面透明基板10を介して外部に照射されることにより、このサブフィールドSF1の輝度重みに対応した1回分の表示発光が為される。又、かかるサスティンパルスIPの印加に応じて、点灯モードに設定されている放電セルPC内の行電極Y及び列電極D間においても放電が生起される。かかる放電並びに上記サスティン放電により、放電セルPC内の行電極Y近傍には負極性の壁電荷、行電極X及び列電極D各々の近傍には夫々正極性の壁電荷が形成される。そして、かかるサスティンパルスIPの印加後、Y電極ドライバ53は、図8に示す如く時間経過に伴う前縁部での電位推移が緩やかな負極性のピーク電位を有する壁電荷調整パルスCPを行電極Y〜Yに印加する。かかる壁電荷調整パルスCPの印加に応じて、上記の如きサスティン放電の生起された放電セルPC内で微弱な消去放電が生起され、その内部に形成されていた壁電荷の一部が消去される。これにより、放電セルPC内の壁電荷の量が、次の選択消去アドレス行程Wにおいて正しく選択消去アドレス放電を生起させ得る量に調整される。
次に、サブフィールドSF2〜SF14各々の選択消去アドレス行程WOでは、Y電極ドライバ53が、正極性の所定のピーク電位を有するベースパルスBPを行電極Y〜Y各々に印加しつつ、図8に示す如き負極性のピーク電位を有する消去走査パルスSPを行電極Y〜Y各々に順次択一的に印加して行く。尚、ベースパルスBPの電位は、この選択消去アドレス行程WOの実行期間中に亘り、行電極X及びY間での誤った放電を防止し得る電位に設定されている。又、選択消去アドレス行程WOの実行期間中に亘り、X電極ドライバ51は、行電極X〜X各々を接地電位(0ボルト)に設定する。又、この選択消去アドレス行程Wにおいて、アドレスドライバ55は、先ず、そのサブフィールドSFに対応した画素駆動データビットをその論理レベルに応じたパルス電圧を有する画素データパルスDPに変換する。例えば、アドレスドライバ55は、放電セルPCを点灯モードから消灯モードに遷移させるべき論理レベル1の画素駆動データビットが供給された場合にはこれを正極性のピーク電位を有する画素データパルスDPに変換する。一方、放電セルPCの現状態を維持させるべき論理レベル0の画素駆動データビットが供給された場合にはこれを低電圧(0ボルト)の画素データパルスDPに変換する。そして、アドレスドライバ55は、かかる画素データパルスDPを1表示ライン分(m個)ずつ、各消去走査パルスSPの印加タイミングに同期して列電極D〜Dに印加して行く。この際、上記消去走査パルスSPと同時に、高電圧で正極性の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間に選択消去アドレス放電が生起される。かかる選択消去アドレス放電により、この放電セルPCは、その行電極Y及びX各々の近傍に正極性の壁電荷、列電極D近傍に負極性の壁電荷が夫々形成された状態、すなわち、消灯モードに設定される。一方、上記消去走査パルスSPと同時に、低電圧(0ボルト)の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には上述した如き選択消去アドレス放電は生起されない。よって、この放電セルPCは、その直前までの状態(点灯モード、消灯モード)を維持する。
次に、サブフィールドSF2〜SF14各々のサスティン行程Iでは、X電極ドライバ51及びY電極ドライバ53が、図8に示す如く、行電極X及びY交互に、そのサブフィールドの輝度重みに対応した回数(偶数回数)分だけ繰り返し、正極性のピーク電位を有するサスティンパルスIPを行電極X〜X及びY〜Y各々に印加する。かかるサスティンパルスIPが印加される度に、点灯モードに設定されている放電セルPC内の行電極X及びY間においてサスティン放電が生起される。かかるサスティン放電に伴って蛍光体層17から照射される光が前面透明基板10を介して外部に照射されることにより、そのサブフィールドSFの輝度重みに対応した回数分の表示発光が為される。この際、サブフィールドSF2〜SF14各々のサスティン行程Iにおいて最終に印加されるサスティンパルスIPに応じてサスティン放電が生起された放電セルPC内の行電極Y近傍には負極性の壁電荷、行電極X及び列電極D各々の近傍には正極性の壁電荷が形成される。そして、かかる最終サスティンパルスIPの印加後、Y電極ドライバ53は、図8に示す如く時間経過に伴う前縁部での電位推移が緩やかな負極性のピーク電位を有する壁電荷調整パルスCPを行電極Y〜Yに印加する。かかる壁電荷調整パルスCPの印加に応じて、上記の如きサスティン放電の生起された放電セルPC内で微弱な消去放電が生起され、その内部に形成されていた壁電荷の一部が消去される。これにより、放電セルPC内の壁電荷の量が、次の選択消去アドレス行程Wにおいて正しく選択消去アドレス放電を生起させ得る量に調整される。
そして、最終のサブフィールドSF14の最後尾において、Y電極ドライバ53は、負極性のピーク電位を有する消去パルスEPを全ての行電極Y〜Yに印加する。かかる消去パルスEPの印加に応じて、点灯モード状態にある放電セルPCのみに消去放電が生起される。かかる消去放電によって点灯モード状態にあった放電セルPCは消灯モードの状態に遷移する。
以上の如き駆動を、図6に示す如き15通りの画素駆動データGDに基づいて実行する。かかる駆動によると、図6に示すように、輝度レベル0を表現する場合(第1階調)を除き、先ず、先頭のサブフィールドSF1において各放電セルPC内で書込アドレス放電が生起され(二重丸にて示す)、この放電セルPCは点灯モードに設定される。その後、サブフィールドSF2〜SF14各々の内の1のサブフィールドの選択消去アドレス行程WOのみで選択消去アドレス放電が生起され(黒丸にて示す)、その後、放電セルPCは消灯モードに設定される。つまり、各放電セルPCは、表現すべき中間輝度に対応した分だけ連続したサブフィールド各々で点灯モードに設定され、これらサブフィールドの各々に割り当てられている回数分だけサスティン放電に伴う発光を繰り返し生起する(白丸にて示す)。この際、1フィールド(又は1フレーム)表示期間内において生起されたサスティン放電の総数に対応した輝度が視覚される。よって、図6に示す如き第1〜第15階調駆動による15種類の発光パターンによれば、白丸にて示すサブフィールド各々で生起されたサスティン放電の合計回数に対応した15階調分の中間輝度が表現される。かかる駆動によれば、1フィールド表示期間内において、その発光パターン(点灯状態、消灯状態)が互いに反転する領域が1画面内に混在することは無いので、このような状態で生じる疑似輪郭が防止される。
又、図8に示す如き駆動では、サブフィールドSF2〜SF14各々のサスティン行程Iにおいて印加すべきサスティンパルスIPの回数を偶数としている。よって、各サスティン行程Iの終了直後は、行電極Y近傍に負極性の壁電荷、列電極D近傍には正極性の壁電荷が形成された状態となるので、各サスティン行程Iに引き続き実施される選択消去アドレス行程Wでは、列側陽極放電が可能となる。従って、列電極Dに対しては正極性のパルスが印加されるだけとなり、アドレスドライバ55の高コスト化を防げる。
ここで、図7及び図8に示される駆動では、先頭のサブフィールドSF1において各放電セルPCを点灯モードに設定した後、後続するサブフィールドSF2〜SF14各々の内の1のサブフィールドのみで各放電セルPCを消灯モードに遷移させるという、いわゆる選択消去アドレス法を採用している。
しかしながら、PDP50を駆動するにあたり、図7に示す如き選択消去アドレス法に代わり、図9に示す如き選択書込アドレス法に基づく発光駆動シーケンスを採用しても良い。
この際、駆動制御回路56は、図9に示す如きサブフィールドSF1〜SF14各々において、選択書込アドレス行程W、サスティン行程I及び消去行程E各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。尚、駆動制御回路56は、先頭のサブフィールドSF1に限り、選択書込アドレス行程Wに先立ち、リセット行程Rに従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。
パネルドライバ(X電極ドライバ51、Y電極ドライバ53及びアドレスドライバ55)は、駆動制御回路56から供給された各種制御信号に応じて、図10に示す如き各種駆動パルスを生成してPDP50の列電極D、行電極X及びYに供給する。
尚、図10においては、図9に示されるサブフィールドSF1〜SF14の内の、先頭のサブフィールドSF1と、それに続くサブフィールドSF2、並びに最後尾のサブフィールドSF14での動作のみを抜粋して示すものである。又、図10において、サブフィールドSF1のリセット行程R及び選択書込アドレス行程W各々での動作は図8に示されるものと同一であるのでその説明は省略する。
先ず、先頭のサブフィールドSF1のサスティン行程Iでは、Y電極ドライバ53が、正極性のピーク電位を有するサスティンパルスIPを1パルス分だけ発生しこれを行電極Y〜Y各々に同時に印加する。この間、X電極ドライバ51は、行電極X〜Xを接地電位(0ボルト)の状態に設定し、アドレスドライバ55は、列電極D〜Dを接地電位(0ボルト)の状態に設定する。上記サスティンパルスIPの印加に応じて、点灯モードに設定されている放電セルPC内の行電極X及びY間においてサスティン放電が生起される。かかるサスティン放電に伴って蛍光体層17から照射される光が前面透明基板10を介して外部に照射されることにより、このサブフィールドSF1の輝度重みに対応した1回分の表示発光が為される。又、かかるサスティンパルスIPの印加に応じて、点灯モードに設定されている放電セルPC内の行電極Y及び列電極D間においても放電が生起される。かかる放電並びに上記サスティン放電により、放電セルPC内の行電極Y近傍には負極性の壁電荷、行電極X及び列電極D各々の近傍には夫々正極性の壁電荷が形成される。
次に、サブフィールドSF1〜SF14各々の消去行程Eでは、Y電極ドライバ53は、リセット行程Rの後半部において印加したリセットパルスRPY2と同一波形を有する負極性の消去パルスEPを行電極Y〜Yに印加する。この間、X電極ドライバ51は、リセット行程Rの後半部と同様に、正極性の所定のピーク電位を有するベースパルスBPを全ての行電極X〜X各々に印加する。かかる消去パルスEP及びベースパルスBPに応じて、上記の如きサスティン放電の生起された放電セルPC内で微弱な消去放電が生起される。かかる消去放電により、放電セルPC内に形成されていた壁電荷の一部が消去され、この放電セルPCは消灯モード状態に遷移する。更に、消去パルスEPの印加に応じて、放電セルPC内の列電極D及び行電極Y間でも微弱な放電が生起される。かかる放電により、列電極D近傍に形成されている正極性の壁電荷は、次の選択書込アドレス行程Wにおいて正しく選択書込アドレス放電を生起させ得る量に調整される。
次に、サブフィールドSF2〜SF14各々のサスティン行程Iでは、X電極ドライバ51及びY電極ドライバ53が、図10に示す如く、行電極Y及びX交互に、そのサブフィールドの輝度重みに対応した回数分だけ繰り返し、正極性のピーク電位Vsus及びパルス幅Wbを有するサスティンパルスIPを行電極Y〜Y及びX〜Xに印加する。かかるサスティンパルスIPが印加される度に、点灯モードに設定されている放電セルPC内の行電極X及びY間においてサスティン放電が生起される。かかるサスティン放電に伴って蛍光体層17から照射される光が前面透明基板10を介して外部に照射されることにより、そのサブフィールドSFの輝度重みに対応した回数分の表示発光が為される。尚、各サスティン行程I内において印加されるサスティンパルスIPの総数は奇数である。すなわち、各サスティン行程I内において、先頭のサスティンパルスIP及び最終のサスティンパルスIPは共に、行電極Yに印加されることになる。よって、各サスティン行程Iの終了直後、サスティン放電の生起された放電セルPC内の行電極Y近傍には負極性の壁電荷、行電極X及び列電極D各々の近傍には夫々正極性の壁電荷が形成される。これにより、各放電セルPC内の壁電荷形成状態は、リセット行程Rでの第1リセット放電終了直後と同一となる。従って、その直後に実施される消去行程Eにおいて、リセット行程Rの後半部において印加されるリセットパルスRPY2と同一波形を有する消去パルスEPを行電極Yに印加することにより、全ての放電セルPCの状態を消灯モードの状態に遷移させることができるのである。
そして、先頭から連続したサブフィールド各々の選択書込アドレス行程Wにおいて選択書込アドレス放電を生起させることにより、図7に示される駆動と同様に(N+1)階調分(N:1フィールド表示期間内のサブフィールド数)の中間輝度表示を行う。すなわち、14個のサブフィールドSF1〜SF14により図6に示されるものと同様に15階調分の中間輝度表示が為されるのである。
尚、図9及び図10に示す如き選択書込アドレス法に基づく駆動によれば、1フィールド表示期間内の全サブフィールドの内で、選択書込アドレス放電を生起させるサブフィールドの組み合わせ方により、2階調分(N:1フィールド表示期間内のサブフィールド数)の中間輝度を表現することができる。すなわち、14個のサブフィールドSF1〜SF14において、選択書込アドレス放電を生起させるサブフィールドの組み合わせパターンは、214通り存在するので16384階調分の中間輝度表示が可能となる。
又、図10に示す駆動によれば、リセット行程Rにおいて行電極Yに印加されるリセットパルスRPY2と、消去行程Eにおいて行電極Yに印加される消去パルスEPとが同一波形であるので、両者を共通の回路で生成することが可能となる。更に、サブフィールドSF1〜SF14各々では一貫して選択書込アドレス行程Wが実施されるので、走査パルスを生成する回路は1系統だけで済み、且つ各選択書込アドレス行程Wでは、列電極側を陽極とした一般的な列側陽極放電を生起させるものであれば良い。
よって、PDP50を駆動するにあたり、図9及び図10に示す如き選択書込アドレス法に基づく駆動を採用した場合には、図7及び図8に示される選択消去アドレス法に基づく駆動を採用した場合に比して、各種駆動パルスを生成する為のパネルドライバを安価に構築することが可能となる。
尚、図7及び図8、又は図9及び図10に示す駆動では、先頭サブフィールドSF1にて、先ず全放電セルPCをリセット放電させることにより消灯モードに初期化し、黒表示(輝度レベル0)を行う場合を除き、各放電セルPCに対して書込アドレス放電を生起させてこれを点灯モードに遷移させるようにしている。 この際、かかる駆動によって黒表示を行う場合、1フィールド表示期間を通して生起される放電は、先頭サブフィールドSF1でのリセット放電だけとなる。よって、全放電セルをリセット放電させて点灯モードの状態に初期化してから、これを消灯モード状態に遷移させるべき選択消去アドレス放電を生起させる駆動を採用する場合に比して、1フィールド表示期間内で生起される放電回数が少なくなる。従って、かかる駆動によれば、暗い画像を表示する際のコントラスト、いわゆる暗コントラストを向上させることが可能となる。
又、図7及び図8、又は図9及び図10に示す駆動では、先頭のサブフィールドSF1のリセット行程Rにて列電極Dを陰極側、行電極Yを陽極側とした電圧を両電極間に印加することにより、行電極Yから列電極Dに向けて電流が流れる列側陰極放電を第1リセット放電として生起させるようにしている。よって、かかる第1リセット放電時には、放電ガス内の陽イオンが列電極Dへ向かう際に、図5に示す如き蛍光体層17内に含まれている二次電子放出材料としてのMgO結晶体に衝突して、このMgO結晶体から二次電子を放出させる。特に、図1に示されるプラズマディスプレイ装置のPDP50では、MgO結晶体を図5に示す如く放電空間に露出させることにより、陽イオンとの衝突の確率を高め、二次電子を効率よく放電空間に放出させるようにしている。すると、かかる二次電子によるプライミング作用により放電セルPCの放電開始電圧が低くなるので、比較的弱いリセット放電を生起させることが可能となる。よって、リセット放電の微弱化によりその放電に伴う発光輝度が低下するので、暗コントラストを向上させた表示が可能となる。
又、図8または図10に示される駆動では、上記第1リセット放電を、図3に示す如き前面透明基板10側に形成されている行電極Y、及び背面基板14側に形成されている列電極D間で生起させるようにしている。よって、共に前面透明基板10側に形成されている行電極X及びY間でリセット放電を生起させる場合に比して、前面透明基板10側から外部に放出される放電光が少なくなるので、更なる暗コントラストの向上を図ることができる。
更に、図8又は図10に示される駆動では、上記第1リセット放電に引き続き、全行電極YにリセットパルスRPY2を印加しつつ全行電極Xに第1ベースパルスBP1を印加することにより、各放電セルPC内で壁電荷を消去する為の第2リセット放電を生起させ、全放電セルPCを消灯モード状態に初期化している。この際、かかる第2リセット放電を生起させるべく行電極Xに印加される第1ベースパルスBP1のピーク電位(VB1)は、このリセット行程Rの直後の選択書込アドレス行程Wで行電極Xに印加される第2ベースパルスBP2のピーク電位(VB2)よりも高電位である。つまり、第1ベースパルスBP1及びリセットパルスRPY2によって行電極X及びY間に印加される電圧は比較的高い電圧となり、第2リセット放電の放電強度は大となる。従って、これら第1ベースパルスBP1及びリセットパルスRPY2の印加に応じて、壁電荷を消去する為の放電として第2リセット放電が生起されるものの、全放電セルPC内の行電極X近傍には微量な負極性の壁電荷、行電極Y近傍には微量な正極性の壁電荷が残留することになる。
よって、リセット行程Rの直後の選択書込アドレス行程Wにおいて、図8又は図10に示す如く、正極性の第2ベースパルスBP2が行電極Xに印加され、且つ負極性のベースパルスBPが行電極Yに印加された状態では、行電極X及びY間で放電が生起されにくくなる。これにより、選択書込アドレス行程Wにて放電セルPCを消灯モードに設定させるべく、負極性の書込走査パルスSPを行電極Yに印加しつつ0ボルトの画素データパルスDPを列電極Dに印加した際における、行電極X及びY間での誤った放電が防止されるのである。
又、図8又は図10に示される駆動では、輝度重みが最も小なるサブフィールドSF1のサスティン行程Iでは、サスティンパルスIPを1回だけ印加することにより、サスティン放電の回数を1回だけにして、低輝度画像に対する表示再現性を高めている。尚、この1回分のサスティンパルスIPに応じて生起されたサスティン放電の終息後、行電極Y近傍には負極性の壁電荷、列電極D近傍には正極性の壁電荷が夫々形成された状態となる。これにより、図8に示される駆動を実施する際には、サブフィールドSF2の選択消去アドレス行程Wにおいて、列電極D及び行電極Y間において列電極Dを陽極側とした放電(以降、列側陽極放電と称する)を選択消去アドレス放電として生起させることが可能となる。
又、図1に示されるPDP50においては、各放電セルPC内の前面透明基板10側に形成されている酸化マグネシウム層13内のみならず、背面基板14側に形成されている蛍光体層17内にも、二次電子放出材料としてのCL発光MgO結晶体を含ませるようにしている。
以下に、かかる構成を採用したことによる作用効果について図11及び図12を参照しつつ説明する。
尚、図11は、上述した如き酸化マグネシウム層13及び蛍光体層17各々の内の酸化マグネシウム層13のみにCL発光MgO結晶体を含ませた、いわゆる従来のPDPに図8に示す如きリセットパルスRPY1を印加した際に生起される列側陰極放電における放電強度の推移を表す図である。
一方、図12は、酸化マグネシウム層13及び蛍光体層17の双方にCL発光MgO結晶体を含ませた、本発明によるPDP50に対して、リセットパルスRPY1を印加した際に生起される列側陰極放電における放電強度の推移を表す図である。
図11に示されるように、従来のPDPによると、リセットパルスRPY1の印加に応じて比較的強い列側陰極放電が1[ms]以上に亘って継続してしまうが、本発明によるPDP50によると、図12に示す如く列側陰極放電が約0.04[ms]以内に終息する。すなわち、従来のPDPに比して列側陰極放電における放電遅れ時間を大幅に短縮できるのである。
従って、図8に示す如き、立ち上がり区間での電位推移が緩やかな波形を有するリセットパルスRPY1をPDP50の行電極Yに印加することによって列側陰極放電を生起させると、リセットパルスRPY1の電位がピーク電位に到る前にその放電が終息する。よって、行電極及び列電極間に印加される電圧が低い段階で、列側陰極放電が終息することになるので、図12に示す如く、その放電強度も図9の場合よりも大幅に低下する。
すなわち、立ち上がり時の電位推移が緩やかな波形を有する例えば図8に示す如きリセットパルスRPY1を、酸化マグネシウム層13のみならず蛍光体層17にもCL発光MgO結晶体が含まれているPDP50に印加することにより、更に放電強度を弱めた列側陰極放電を生起させるようにしたのである。従って、このように放電強度が極めて弱い列側陰極放電をリセット放電として生起させることができるので、画像のコントラスト、特に暗い画像を表示する際の暗コントラストを高めることが可能となる。
尚、リセットパルスRPY1における立ち上がり時の波形としては、図8に示されるが如き一定傾きのものに限定されるものではなく、例えば図13に示す如き、時間経過に伴い徐々に傾きが変化するものであっても良い。
又、図8又は図10に示されるリセット行程Rでは、全ての画素セルに対して一斉にリセット放電を生起させるようにしているが、夫々が複数の画素セルからなる画素セルブロック毎に、リセット放電を時間的に分散させて実施するようにしても良い。
又、図5に示す実施例においては、PDP50の背面基板14側に設けられている蛍光体層17内にMgO結晶体を含ませるようにしているが、図14に示す如く、蛍光体粒子からなる蛍光体粒子層17aと、二次電子放出材からなる二次電子放出層18とを積層したもので蛍光体層17を形成するようにしても良い。この際、二次電子放出層18としては、蛍光体粒子層17aの表面上に、二次電子放出材からなる結晶(例えば、CL発光MgO結晶体を含んだMgO結晶)を敷き詰めて形成するようにしてもよく、或いは二次電子放出材を薄膜成膜して形成させるようにしても良い。
図15は、本発明の第2の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。
尚、図15に示されるプラズマディスプレイ装置のPDP50は、図1に示されるプラズマディスプレイ装置のPDP50と同一、つまり図2〜図5、図14に示す如き構造を有するものである。更に、図15に示されるプラズマディスプレイ装置のX電極ドライバ51、Y電極ドライバ53、アドレスドライバ55各々も、図1に示されるものと同一動作を為すものである。ただし、図15に示されるプラズマディスプレイ装置では、駆動制御回路560によって為されるPDP50の駆動方法が図1に示されるものとは異なる。
すなわち、図15に示される駆動制御回路560は、各画素毎の8ビットの画素データに対して前述した如き誤差拡散処理及びディザ処理を施して得られた4ビットの多階調化画素データPDを、図16に示す如きデータ変換テーブルに従って14ビットの画素駆動データGDに変換する。駆動制御回路560は、かかる画素駆動データGDにおける第1〜第14ビットを夫々サブフィールドSF1〜SF14各々に対応させ、そのサブフィールドSFに対応したビット桁を画素駆動データビットとして1表示ライン分(m個)ずつアドレスドライバ55に供給する。
更に、駆動制御回路560は、上記構造を有するPDP50を図17に示す如き発光駆動シーケンスに従って駆動させるべき各種制御信号を、X電極ドライバ51、Y電極ドライバ53、及びアドレスドライバ55の各々に供給する。すなわち、駆動制御回路560は、1フィールド(1フレーム)表示期間内の先頭のサブフィールドSF1では、第1リセット行程R1、第1選択書込アドレス行程W1及び微小発光行程LL各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。かかるサブフィールドSF1に後続するSF2では、第2リセット行程R2、第2選択書込アドレス行程W2及びサスティン行程I各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。又、サブフィールドSF3〜SF14各々では、選択消去アドレス行程W及びサスティン行程I各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。尚、1フィールド表示期間内の最後尾のサブフィールドSF14に限り、サスティン行程Iの実行後、駆動制御回路560は、消去行程Eに従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。
パネルドライバ、すなわち、X電極ドライバ51、Y電極ドライバ53及びアドレスドライバ55は、駆動制御回路56から供給された各種制御信号に応じて、図18に示す如き各種駆動パルスを生成してPDP50の列電極D、行電極X及びYに供給する。
尚、図18においては、図17に示されるサブフィールドSF1〜SF14の内のSF1〜SF3、並びに最後尾のサブフィールドSF14での動作のみを抜粋して示すものである。
先ず、サブフィールドSF1の第1リセット行程R1の前半部では、Y電極ドライバ53が、サスティンパルスに比して時間経過に伴う前縁部での電位推移が緩やかな波形を有する正極性のリセットパルスRP1Y1を全ての行電極Y〜Yに印加する。尚、図18に示す如く、リセットパルスRP1Y1におけるピーク電位は、サスティンパルスのピーク電位よりも高い。又、この間、アドレスドライバ55は、列電極D〜Dを接地電位(0ボルト)の状態に設定する。上記リセットパルスRP1Y1の印加に応じて、全ての放電セルPC各々内の行電極Y及び列電極D間において第1リセット放電が生起される。すなわち、第1リセット行程R1の前半部では、行電極Yが陽極側、列電極Dが陰極側となるように両電極間に電圧を印加することにより、行電極Yから列電極Dに向けて電流が流れる放電(以下、列側陰極放電と称する)を上記第1リセット放電として生起させるのである。かかる第1リセット放電に応じて、全ての放電セルPC内の行電極Y近傍には負極性の壁電荷、列電極D近傍には正極性の壁電荷が形成される。
又、第1リセット行程R1の前半部では、X電極ドライバ51が、かかるリセットパルスRP1Y1と同一極性であり、且つ、このリセットパルスRP1Y1の印加に伴う行電極X及びY間での面放電を防止し得るピーク電位を有するリセットパルスRPを全ての行電極X〜X各々に印加する。
そして、サブフィールドSF1の第1リセット行程R1の後半部では、Y電極ドライバ53が、図18に示す如く時間経過に伴い緩やかに電位が下降して負極性のピーク電位に到るパルス波形を有するリセットパルスRP1Y2を発生し、これを全ての行電極Y〜Yに印加する。この際、かかるリセットパルスRP1Y2の印加に応じて、全ての放電セルPC内の行電極X及びY間において第2リセット放電が生起される。尚、リセットパルスRP1Y2のピーク電位は、上記第1リセット放電に応じて行電極X及びY各々の近傍に形成された壁電荷を考慮した上で、行電極X及びY間において確実に上記第2リセット放電を生起させることができる最低の電位である。又、リセットパルスRP1Y2のピーク電位は、後述する負極性の書込走査パルスSPのピーク電位よりも高い電位、つまり0ボルトに近い電位に設定されている。すなわち、リセットパルスRP1Y2のピーク電位を書込走査パルスSPのピーク電位よりも低くしてしまうと、行電極Y及び列電極D間において強い放電が生起され、列電極D近傍に形成されていた壁電荷が大幅に消去されてしまい、後述する第1選択書込アドレス行程W1でのアドレス放電が不安定となるからである。第1リセット行程R1の後半部において生起された第2リセット放電により、各放電セルPC内の行電極X及びY各々の近傍に形成されていた壁電荷が消去され、全ての放電セルPCが消灯モードに初期化される。更に、上記リセットパルスRP1Y2の印加に応じて、全ての放電セルPC内の行電極Y及び列電極D間においても微弱な放電が生起され、かかる放電により、列電極D近傍に形成されていた正極性の壁電荷の一部が消去され、第1選択書込アドレス行程W1において正しく選択書込アドレス放電を生起させ得る量に調整される。
次に、サブフィールドSF1の第1選択書込アドレス行程W1では、Y電極ドライバ53が、図18に示す如き負極性の所定のピーク電位を有するベースパルスBPを行電極Y〜Yに同時に印加しつつ、負極性のピーク電位を有する書込走査パルスSPを行電極Y〜Y各々に順次択一的に印加して行く。この間、X電極ドライバ51は、0ボルトの電圧を行電極X〜X各々に印加する。更に、第1選択書込アドレス行程W1では、アドレスドライバ55が、先ず、サブフィールドSF1に対応した画素駆動データビットの論理レベルに応じた画素データパルスDPを生成する。例えば、アドレスドライバ55は、放電セルPCを点灯モードに設定させるべき論理レベル1の画素駆動データビットが供給された場合には正極性のピーク電位を有する画素データパルスDPを生成する。一方、放電セルPCを消灯モードに設定させるべき論理レベル0の画素駆動データビットに応じて、低電圧(0ボルト)の画素データパルスDPを生成する。そして、アドレスドライバ55は、かかる画素データパルスDPを1表示ライン分(m個)ずつ、各書込走査パルスSPの印加タイミングに同期して列電極D〜Dに印加して行く。この際、上記書込走査パルスSPと同時に、点灯モードに設定させるべき高電圧の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には選択書込アドレス放電が生起される。更に、かかる選択書込アドレス放電の直後、この放電セルPC内の行電極X及びY間にも微弱な放電が生起される。つまり、書込走査パルスSPが印加された後、行電極X及びY間にはベースパルスBPに応じた電圧が印加されるが、この電圧は各放電セルPCの放電開始電圧よりも低い電圧に設定されている為、かかる電圧の印加だけでは放電セルPC内で放電が生起されることはない。ところが、上記選択書込アドレス放電が生起されると、この選択書込アドレス放電に誘発されて、ベースパルスBPによる電圧印加だけで、行電極X及びY間に放電が生起されるのである。かかる放電並びに上記選択書込アドレス放電により、この放電セルPCは、その行電極Y近傍に正極性の壁電荷、行電極X近傍に負極性の壁電荷、列電極D近傍に負極性の壁電荷が夫々形成された状態、すなわち、点灯モードに設定される。一方、上記書込走査パルスSPと同時に、消灯モードに設定させるべき低電圧(0ボルト)の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には上述した如き選択書込アドレス放電は生起されず、それ故に行電極X及びY間にも放電が生じることはない。よって、この放電セルPCは、その直前までの状態、すなわち、リセット行程Rにおいて初期化された消灯モードの状態を維持する。
次に、サブフィールドSF1の微小発光行程LLでは、Y電極ドライバ53が、図18に示す如き正極性の所定のピーク電位を有する微小発光パルスLPを行電極Y〜Yに同時に印加する。かかる微小発光パルスLPの印加に応じて、点灯モードに設定されている放電セルPC内の列電極D及び行電極Y間において放電(以下、微小発光放電と称する)が生起される。つまり、微小発光行程LLでは、放電セルPC内の行電極Y及び列電極D間では放電が生起されるものの、行電極X及びY間には放電が生起させることのない電位を行電極Yに印加することにより、点灯モードに設定されている放電セルPC内の列電極D及び行電極Y間のみで微小発光放電を生起させるのである。この際、微小発光パルスLPのピーク電位は、後述するサブフィールドSF2以降のサスティン行程Iにて印加するサスティンパルスIPのピーク電位よりも低い電位であり、例えば、後述する選択消去アドレス行程Wにおいて行電極Yに印加される電位と同一である。又、図18に示す如く、微小発光パルスLPにおける電位の立ち上がり区間での時間経過に伴う変化率は、リセットパルス(RP1Y1,RP2Y1)における立ち上がり区間での変化率よりも高い。つまり、微小発光パルスLPの前縁部における電位推移をリセットパルスの前縁部における電位推移よりも急峻にすることにより、第1リセット行程R1で生起される第1リセット放電よりも強い放電を生起させるのである。ここで、かかる放電は、前述した如き列側陰極放電であり且つ、サスティンパルスIPよりもそのピーク電位が低い微小発光パルスLPによって生起された放電である為、行電極X及びY間で生起されるサスティン放電(後述する)よりもその放電に伴う発光輝度が低い。すなわち、微小発光行程LLでは、第1リセット放電よりも高い輝度レベルの発光を伴う放電であるものの、サスティン放電よりもその放電に伴う輝度レベルが低い放電、つまり表示用に利用できる程度の微小な発光を伴う放電を微小発光放電として生起させるのである。この際、微小発光行程LLの直前において実施される第1選択書込アドレス行程W1では、放電セルPC内の列電極D及び行電極Y間で選択書込アドレス放電が生起される。よって、サブフィールドSF1では、かかる選択書込アドレス放電に伴う発光と上記微小発光放電に伴う発光とによって、輝度レベル0よりも1段階だけ高輝度な階調に対応した輝度が表現されるのである。
尚、上記微小発光放電後、行電極Y近傍には負極性の壁電荷、列電極D近傍には正極性の壁電荷が夫々形成される。
次に、サブフィールドSF2の第2リセット行程R2の前半部では、Y電極ドライバ53が、後述するサスティンパルスに比して時間経過に伴う前縁部での電位推移が緩やかな波形を有する正極性のリセットパルスRP2Y1を全ての行電極Y〜Yに印加する。尚、図18に示す如く、リセットパルスRP2Y1のピーク電位は、リセットパルスRP1Y1のピーク電位よりも高い。又、この間、アドレスドライバ55は、列電極D〜Dを接地電位(0ボルト)の状態に設定し、X電極ドライバ51は、上記リセットパルスRP2Y1の印加に伴う行電極X及びY間での面放電を防止し得るピーク電位を有する正極性のリセットパルスRP2を全ての行電極X〜X各々に印加する。尚、行電極X及びY間で面放電が生じないのであれば、X電極ドライバ51は、上記リセットパルスRP2を印加する代わりに、全ての行電極X〜Xを接地電位(0ボルト)に設定するようにしても良い。上記リセットパルスRP2Y1の印加に応じて、放電セルPC各々の内で上記微小発光行程LLにて列側陰極放電が生起されなかった放電セルPC内の行電極Y及び列電極D間において、かかる微小発光行程LLでの列側陰極放電よりも弱い第1リセット放電が生起される。すなわち、第2リセット行程R2の前半部では、行電極Yが陽極側、列電極Dが陰極側となるように両電極間に電圧を印加することにより、行電極Yから列電極Dに向けて電流が流れる列側陰極放電を上記第1リセット放電として生起させるのである。一方、上記微小発光行程LLにおいて既に微小発光放電が生起された放電セルPC内では、上記リセットパルスRP2Y1の印加が為されても放電は生起されない。従って、第2リセット行程R2の前半部の終了直後、全ての放電セルPC内の行電極Y近傍には負極性の壁電荷、列電極D近傍には正極性の壁電荷が形成された状態となる。
そして、サブフィールドSF2の第2リセット行程R2の後半部では、Y電極ドライバ53が、図18に示す如く時間経過に伴い緩やかに電位が下降して負極性のピーク電位に到るパルス波形を有するリセットパルスRP2Y2を行電極Y〜Yに印加する。更に、第2リセット行程R2の後半部では、X電極ドライバ51が、上記リセットパルスRP2Y2が行電極Yに印加されている間に亘り、正極性のピーク電位として第1ベース電位VB1を有する第1ベースパルスBP1を行電極X〜X各々に印加する。すなわち、X電極ドライバ51は、パルスの最高電位が図18に示す如き第1ベース電位VB1となる第1ベースパルスBP1を全行電極Xに印加するのである。これら負極性のリセットパルスRP2Y2及び正極性の第1ベースパルスBP1の印加に応じて、全ての放電セルPC内の行電極X及びY間において第2リセット放電が生起される。かかる第2リセット放電により、全放電セルPC内の行電極X及びY各々の近傍に形成されていた壁電荷の大半が消去される。これにより全放電セルPCは、行電極X近傍には微量な負極性の壁電荷、行電極Y近傍には微量な正極性の壁電荷が夫々残留した状態、つまり消灯モードに初期化される。更に、上記リセットパルスRP2Y2の印加に応じて、全放電セルPC内の行電極Y及び列電極D間においても微弱な放電が生起され、列電極D近傍に形成されていた正極性の壁電荷の一部が消去される。これにより、全放電セルPCの列電極D近傍に残留する壁電荷量が、第2選択書込アドレス行程W2において正しく選択書込アドレス放電を生起させることが可能な量に調整される。
尚、リセットパルスRP2Y2及び第1ベースパルスBP1によって行電極X及びY間に印加される電圧は、上記第1リセット放電に応じて行電極X及びY各々の近傍に形成された壁電荷を考慮した上で、行電極X及びY間で確実に上記第2リセット放電を生起させることができる電圧である。又、リセットパルスRP2Y2における負のピーク電位は、後述する負極性の書込走査パルスSPのピーク電位よりも高い電位、つまり0ボルトに近い電位に設定されている。すなわち、リセットパルスRP2Y2のピーク電位を書込走査パルスSPのピーク電位よりも低くしてしまうと、行電極Y及び列電極D間において強い放電が生起され、列電極D近傍に形成されていた壁電荷が大幅に消去されてしまい、第2選択書込アドレス行程W2でのアドレス放電が不安定となるからである。尚、第1ベースパルスBP1のピーク電位(VB1)は、後述する第2ベースパルスBP2のピーク電位(VB2)よりも高電位である。
次に、サブフィールドSF2の第2選択書込アドレス行程W2では、Y電極ドライバ53が、図18に示す如き負極性の所定のピーク電位を有するベースパルスBPを行電極Y〜Yに同時に印加しつつ、負極性のピーク電位を有する書込走査パルスSPを行電極Y〜Y各々に順次択一的に印加して行く。この間、X電極ドライバ51は、正極性のピーク電位として第2ベース電位VB2を有する第2ベースパルスBP2を行電極X〜Xに印加し続ける。すなわち、X電極ドライバ51は、パルスの最高電位が図18に示す如き第2ベース電位VB2となる第2ベースパルスBP2を全行電極Xに印加するのである。尚、第2ベースパルスBP2のピーク電位(VB2)は上記第1ベースパルスBP1のピーク電位(VB1)よりも低電位である。又、第2ベースパルスBP2及びベースパルスBPによって行電極X及びY間に印加される電圧は、放電セルPCの放電開始電圧よりも低い。更に、第2選択書込アドレス行程W2では、アドレスドライバ55が、先ず、サブフィールドSF2に対応した画素駆動データビットの論理レベルに応じたピーク電位を有する画素データパルスDPを生成する。例えば、アドレスドライバ55は、放電セルPCを点灯モードに設定させるべき論理レベル1の画素駆動データビットが供給された場合には正極性のピーク電位を有する画素データパルスDPを生成する。一方、放電セルPCを消灯モードに設定させるべき論理レベル0の画素駆動データビットに応じて、低電圧(0ボルト)の画素データパルスDPを生成する。そして、アドレスドライバ55は、かかる画素データパルスDPを1表示ライン分(m個)ずつ、各書込走査パルスSPの印加タイミングに同期して列電極D〜Dに印加して行く。この際、上記書込走査パルスSPと同時に、点灯モードに設定させるべき高電圧の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には選択書込アドレス放電が生起される。更に、かかる選択書込アドレス放電の直後、この放電セルPC内の行電極X及びY間にも微弱な放電が生起される。つまり、書込走査パルスSPが印加された後、行電極X及びY間には上記ベースパルスBP及び第2ベースパルスBP2に応じた電圧が印加されるが、この電圧は各放電セルPCの放電開始電圧よりも低い電圧に設定されている為、かかる電圧の印加だけでは放電セルPC内で放電が生起されることはない。ところが、上記選択書込アドレス放電が生起されると、この選択書込アドレス放電に誘発されて、ベースパルスBP及び第2ベースパルスBP2による電圧印加だけで、行電極X及びY間に放電が生起されるのである。かかる放電並びに上記選択書込アドレス放電により、この放電セルPCは、その行電極Y近傍に正極性の壁電荷、行電極X近傍に負極性の壁電荷、列電極D近傍に負極性の壁電荷が夫々形成された状態、すなわち、点灯モードに設定される。一方、上記書込走査パルスSPと同時に、消灯モードに設定させるべき低電圧(0ボルト)の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には上述した如き選択書込アドレス放電は生起されず、それ故に行電極X及びY間にでの放電も生じることはない。よって、この放電セルPCは、その直前までの状態、すなわち、第2リセット行程R2において初期化された消灯モードの状態を維持する。
次に、サブフィールドSF2のサスティン行程Iでは、Y電極ドライバ53が、正極性のピーク電位を有するサスティンパルスIPを1パルス分だけ発生しこれを行電極Y〜Y各々に同時に印加する。この間、X電極ドライバ51は、行電極X〜Xを接地電位(0ボルト)の状態に設定し、アドレスドライバ55は、列電極D〜Dを接地電位(0ボルト)の状態に設定する。上記サスティンパルスIPの印加に応じて、点灯モードに設定されている放電セルPC内の行電極X及びY間においてサスティン放電が生起される。かかるサスティン放電に伴って蛍光体層17から照射される光が前面透明基板10を介して外部に照射されることにより、このサブフィールドSF1の輝度重みに対応した1回分の表示発光が為される。又、かかるサスティンパルスIPの印加に応じて、点灯モードに設定されている放電セルPC内の行電極Y及び列電極D間においても放電が生起される。かかる放電並びに上記サスティン放電により、放電セルPC内の行電極Y近傍には負極性の壁電荷、行電極X及び列電極D各々の近傍には夫々正極性の壁電荷が形成される。
次に、サブフィールドSF3〜SF14各々の選択消去アドレス行程WOでは、Y電極ドライバ53が、正極性の所定のピーク電位を有するベースパルスBPを行電極Y〜Y各々に印加しつつ、図18に示す如き負極性のピーク電位を有する消去走査パルスSPを行電極Y〜Y各々に順次択一的に印加して行く。尚、ベースパルスBPのピーク電位は、この選択消去アドレス行程WOの実行期間中に亘り、行電極X及びY間での誤った放電を防止し得る電位に設定されている。又、選択消去アドレス行程WOの実行期間中に亘り、X電極ドライバ51は、行電極X〜X各々を接地電位(0ボルト)に設定する。又、この選択消去アドレス行程Wにおいて、アドレスドライバ55は、先ず、そのサブフィールドSFに対応した画素駆動データビットをその論理レベルに応じたピーク電位を有する画素データパルスDPに変換する。例えば、アドレスドライバ55は、放電セルPCを点灯モードから消灯モードに遷移させるべき論理レベル1の画素駆動データビットが供給された場合にはこれを正極性のピーク電位を有する画素データパルスDPに変換する。一方、放電セルPCの現状態を維持させるべき論理レベル0の画素駆動データビットが供給された場合にはこれを低電圧(0ボルト)の画素データパルスDPに変換する。そして、アドレスドライバ55は、かかる画素データパルスDPを1表示ライン分(m個)ずつ、各消去走査パルスSPの印加タイミングに同期して列電極D〜Dに印加して行く。この際、上記消去走査パルスSPと同時に、高電圧の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間に選択消去アドレス放電が生起される。かかる選択消去アドレス放電により、この放電セルPCは、その行電極Y及びX各々の近傍に正極性の壁電荷、列電極D近傍に負極性の壁電荷が夫々形成された状態、すなわち、消灯モードに設定される。一方、上記消去走査パルスSPと同時に、低電圧(0ボルト)の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には上述した如き選択消去アドレス放電は生起されない。よって、この放電セルPCは、その直前までの状態(点灯モード、消灯モード)を維持する。
又、サブフィールドSF3〜SF14各々のサスティン行程Iでは、X電極ドライバ51及びY電極ドライバ53が、図18に示す如く、行電極Y及びX交互に、そのサブフィールドの輝度重みに対応した回数分だけ繰り返し、正極性のピーク電位を有するサスティンパルスIPを行電極Y〜Y及びX〜Xに印加する。かかるサスティンパルスIPが印加される度に、点灯モードに設定されている放電セルPC内の行電極X及びY間においてサスティン放電が生起される。かかるサスティン放電に伴って蛍光体層17から照射される光が前面透明基板10を介して外部に照射されることにより、そのサブフィールドSFの輝度重みに対応した回数分の表示発光が為される。
そして、最終のサブフィールドSF14のサスティン行程Iの終了後、Y電極ドライバ53は、負極性のピーク電位を有する消去パルスEPを全ての行電極Y〜Yに印加する。かかる消去パルスEPの印加に応じて、点灯モード状態にある放電セルPCのみに消去放電が生起される。かかる消去放電によって点灯モード状態にあった放電セルPCは消灯モードの状態に遷移する。
以上の如き駆動を、図16に示す如き16通りの画素駆動データGDに基づいて実行する。
先ず、黒表示(輝度レベル0)を表現する第1階調よりも1段階だけ高輝度を表す第2階調では、図16に示す如く、サブフィールドSF1〜SF14の内のSF1のみで放電セルPCを点灯モードに設定させる為の選択書込アドレス放電を生起させ、この点灯モードに設定された放電セルPCを微小発光放電させる(□にて示す)。この際、これら選択書込アドレス放電及び微小発光放電に伴う発光時の輝度レベルは、1回分のサスティン放電に伴う発光時の輝度レベルよりも低い。よって、サスティン放電によって視覚される輝度レベルを「1」とした場合、第2階調では、輝度レベル「1」よりも低い輝度レベル「α」に対応した輝度が表現される。
次に、かかる第2階調よりも1段階だけ高輝度を表す第3階調では、サブフィールドSF1〜SF14の内のSF2のみで放電セルPCを点灯モードに設定させる為の選択書込アドレス放電を生起させ(二重丸にて示す)、次のサブフィールドSF3で放電セルPCを消灯モードに遷移させる為の選択消去アドレス放電を生起させる(黒丸にて示す)。よって、第3階調では、サブフィールドSF1〜SF14の内のSF2のサスティン行程Iのみで1回分のサスティン放電に伴う発光が為され、輝度レベル「1」に対応した輝度が表現される。
次に、かかる第3階調よりも1段階だけ高輝度を表す第4階調では、先ず、サブフィールドSF1において、放電セルPCを点灯モードに設定させる為の選択書込アドレス放電を生起させ、この点灯モードに設定された放電セルPCを微小発光放電させる(□にて示す)。更に、かかる第4階調では、サブフィールドSF1〜SF14の内のSF2のみで放電セルPCを点灯モードに設定させる為の選択書込アドレス放電を生起させ(二重丸にて示す)、次のサブフィールドSF3で放電セルPCを消灯モードに遷移させる為の選択消去アドレス放電を生起させる(黒丸にて示す)。よって、第4階調では、サブフィールドSF1にて輝度レベル「α」の発光が為され、SF2にて輝度レベル「1」の発光を伴うサスティン放電が1回分だけ実施されるので、輝度レベル「α」+「1」に対応した輝度が表現される。
又、第5階調〜第16階調各々では、サブフィールドSF1において放電セルPCを点灯モードに設定させる選択書込アドレス放電を生起させ、この点灯モードに設定された放電セルPCを微小発光放電させる(□にて示す)。そして、その階調に対応した1のサブフィールドのみで放電セルPCを消灯モードに遷移させる為の選択消去アドレス放電を生起させる(黒丸にて示す)。よって、第5階調〜第16階調各々では、サブフィールドSF1にて上記微小発光放電が生起され、SF2にて1回分のサスティン放電を生起された後、その階調に対応した数だけ連続したサブフィールド各々(白丸にて示す)でそのサブフィールドに割り当てられている回数分だけサスティン放電が生起される。これにより、第5階調〜第16階調各々では、輝度レベル「α」+「1フィールド(又は1フレーム)表示期間内において生起されたサスティン放電の総数」に対応した輝度が視覚される。従って、図16〜図18に示される駆動によれば、輝度レベル「0」〜「255+α」なる輝度範囲を図16に示す如き16段階にて表すことが可能となるのである。
この際、図16〜図18に示される駆動では、最も輝度重みが小なるサブフィールドSF1において表示画像に寄与する放電として、サスティン放電ではなく微小発光放電を生起させるようにしている。かかる微小発光放電は、列電極D及び行電極Y間で生起される放電である為、行電極X及びY間で生起されるサスティン放電に比べてその放電に伴う発光時の輝度レベルが低い。よって、かかる微小発光放電によって黒表示(輝度レベル0)よりも1段階だけ高輝度を表す(第2階調)場合には、サスティン放電によってこれを表す場合に比して輝度レベル0との輝度差が小となる。従って、低輝度画像を表現する際の階調表現能力が高まる。又、第2階調においては、サブフィールドSF1に後続するSF2の第2リセット行程R2ではリセット放電が生起されないので、このリセット放電に伴う暗コントラストの低下が抑制される。尚、図16に示される駆動では、第4階調以降の各階調においてもサブフィールドSF1において輝度レベルαの発光を伴う微小発光放電を生起させるようにしているが、第3階調以降の階調では、この微小発光放電を生起させないようにしても良い。要するに、微小発光放電に伴う発光は極めて低輝度(輝度レベルα)である為、これよりも高輝度な発光を伴うサスティン放電との併用が為される第4階調以降の階調では、輝度レベルαの輝度増加分を視覚することができなくなる場合があり、この際、微小発光放電を生起させる意義がなくなるからである。
ここで、PDP50を駆動するにあたり、図17に示す如き選択消去アドレス法に代わり図19に示す如き選択書込アドレス法に基づく発光駆動シーケンスを採用しても良い。
この際、駆動制御回路560は、図19に示す如き1フィールド(フレーム)表示期間の先頭のサブフィールドSF1において、第1リセット行程R1、第1選択書込アドレス行程W1、及び微小発光行程LL各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。又、駆動制御回路560は、サブフィールドSF2〜SF14各々において、第2選択書込アドレス行程W2、サスティン行程I及び消去行程E各々に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。又、駆動制御回路560は、サブフィールドSF2において、第2選択書込アドレス行程W2に先立ち、第2リセット行程R2に従った駆動を順次実施させるべき各種制御信号をパネルドライバに供給する。
パネルドライバ、すなわち、X電極ドライバ51、Y電極ドライバ53及びアドレスドライバ55は、駆動制御回路560から供給された各種制御信号に応じて、図20に示す如き各種駆動パルスを生成してPDP50の列電極D、行電極X及びYに供給する。
尚、図20においては、図19に示されるサブフィールドSF1〜SF14の内の、先頭のサブフィールドSF1と、それに続くサブフィールドSF2、並びに最後尾のサブフィールドSF14での動作のみを抜粋して示すものである。又、図20において、サブフィールドSF1の第1リセット行程R1及び第1選択書込アドレス行程W1及び微小発光行程LL各々での動作、並びにSF2の第2リセット行程R2、第2選択書込アドレス行程W2及びサスティン行程Iでの動作は図18に示されるものと同一であるのでその説明は省略する。
サブフィールドSF2〜SF14各々の消去行程Eでは、Y電極ドライバ53は、第1リセット行程R1又は第2リセット行程R2の後半部において印加したリセットパルスRP1Y2又はRP2Y2と同一波形を有する負極性の消去パルスEPを行電極Y〜Yに印加する。この間、X電極ドライバ51は、第2リセット行程R2の後半部と同様に、正極性の所定のピーク電位を有するベースパルスBPを全ての行電極X〜X各々に印加する。かかる消去パルスEP及びベースパルスBPに応じて、上記の如きサスティン放電の生起された画素セルPC内で微弱な消去放電が生起される。かかる消去放電により、画素セルPC内に形成されていた壁電荷の一部が消去され、この画素セルPCは消灯モード状態に遷移する。更に、消去パルスEPの印加に応じて、画素セルPC内の列電極D及び行電極Y間でも微弱な放電が生起される。かかる放電により、列電極D近傍に形成されている正極性の壁電荷は、次の第2選択書込アドレス行程W2において正しく選択書込アドレス放電を生起させ得る量に調整される。尚、サブフィールドSF3〜SF14各々では、選択消去アドレス行程Wに代わり第2選択書込アドレス行程W2が実施される。
図20に示されるサブフィールドSF3〜SF14各々のサスティン行程Iでは、X電極ドライバ51及びY電極ドライバ53が、行電極Y及びX交互に、そのサブフィールドの輝度重みに対応した回数分だけ繰り返し、正極性のピーク電位Vsus及びパルス幅Wbを有するサスティンパルスIPを行電極Y〜Y及びX〜Xに印加する。かかるサスティンパルスIPが印加される度に、点灯モードに設定されている画素セルPC内の行電極X及びY間においてサスティン放電が生起される。かかるサスティン放電に伴って蛍光体層17から照射される光が前面透明基板10を介して外部に照射されることにより、そのサブフィールドSFの輝度重みに対応した回数分の表示発光が為される。尚、各サスティン行程I内において印加されるサスティンパルスIPの総数は奇数である。すなわち、各サスティン行程I内において、先頭のサスティンパルスIP及び最終のサスティンパルスIPは共に、行電極Yに印加されることになる。よって、各サスティン行程Iの終了直後、サスティン放電の生起された画素セルPC内の行電極Y近傍には負極性の壁電荷、行電極X及び列電極D各々の近傍には夫々正極性の壁電荷が形成される。これにより、各画素セルPC内の壁電荷形成状態は、第1リセット行程R1又は第2リセット行程R2での第1リセット放電終了直後と同一となる。従って、その直後に実施される消去行程Eにおいて、第1リセット行程R1又は第2リセット行程R2の後半部において印加されるリセットパルスRP1Y2又はRP2Y2と同一波形を有する消去パルスEPを行電極Yに印加することにより、全ての画素セルPCの状態を消灯モードの状態に遷移させることができるのである。
ここで、図19及び図20に示す駆動により、黒表示(輝度レベル0)を表す第1階調よりも1段階だけ高輝度な第2階調を表す場合には、サブフィールドSF1〜SF14の内のSF1のみで選択書込アドレス放電を生起させる。これによりSF1〜SF14各々の内のSF1のみで表示画像に関与する放電として微小発光放電が生起される。又、かかる第2階調よりも1段階だけ高輝度な第3階調を表す場合には、サブフィールドSF1〜SF14の内のSF2のみで選択書込アドレス放電を生起させる。これによりサブフィールドSF1〜SF14各々の内のSF2のみで表示画像に関与する放電とし1回分のサスティン放電が生起される。そして、第4階調以降では、サブフィールドSF1及びSF2各々で選択書込アドレスを生起させ、更に、その階調に対応した数だけ連続したサブフィールド各々で選択書込アドレスを生起させる。これにより、表示画像に関与する放電として、先ず、サブフィールドSF1にて微小発光放電が生起された後、その階調に対応した数だけ連続したサブフィールド各々でサスティン放電が生起される。かかる駆動によれば、図16と同様な16階調分の中間輝度表示が可能となる。
この際、図19及び図20に示される駆動によれば、第1リセット行程R1又は第2リセット行程R2にて行電極Yに印加されるリセットパルスRP1Y2又はRP2Y2と、消去行程Eにおいて行電極Yに印加される消去パルスEPとが同一波形であるので、両者を共通の回路で生成することが可能となる。更に、サブフィールドSF1〜SF14各々では、画素セルPCの状態(点灯モード、消灯モード)を設定する方法として、選択書込アドレス行程(W1、W2)のみを採用したので、走査パルスを生成する回路は1系統だけで済む。尚、かかる選択書込アドレス行程では、列電極側を陽極とした一般的な列側陽極放電を生起させいる。
よって、PDP50を駆動するにあたり、図19及び図20に示されるが如き選択書込アドレス法を採用した場合には、図17及び図18に示されるが如き選択消去アドレス法を採用した場合に比して、各種駆動パルスを生成する為のパネルドライバを安価に構築することが可能となる。
又、図17又は図19に示される駆動では、先頭のサブフィールドSF1の第1リセット行程R1において、列電極Dを陰極側、行電極Yを陽極側とした電圧を両電極間に印加することにより、行電極Yから列電極Dに向けて電流が流れる列側陰極放電を第1リセット放電として生起させるようにしている。よって、かかる第1リセット放電時には、放電ガス内の陽イオンが列電極Dへ向かう際に、図5に示す如き蛍光体層17内に含まれている二次電子放出材料としてのMgO結晶体に衝突して、このMgO結晶体から二次電子を放出させる。特に、PDP50では、MgO結晶体を図5に示す如く放電空間に露出させることにより、陽イオンとの衝突の確率を高め、二次電子を効率よく放電空間に放出させるようにしている。すると、かかる二次電子によるプライミング作用により放電セルPCの放電開始電圧が低くなるので、比較的弱いリセット放電を生起させることが可能となる。よって、リセット放電の微弱化によりその放電に伴う発光輝度が低下するので、暗コントラストを向上させた表示が可能となる。
更に、図17又は図19に示される駆動では、図3に示す如き前面透明基板10側に形成されている行電極Y、及び背面基板14側に形成されている列電極D間でリセット放電を生起させている。よって、共に前面透明基板10側に形成されている行電極X及びY間でリセット放電を生起させる場合に比して、前面透明基板10側から外部に放出される放電光が少なくなるので、更なる暗コントラストの向上を図ることができる。
又、図15に示されるPDP50においては、各放電セルPC内の前面透明基板10側に形成されている酸化マグネシウム層13内のみならず、背面基板14側に形成されている蛍光体層17内にも、図5又は図14に示すように、二次電子放出材料としてのCL発光MgO結晶体を含ませるようにしている。
よって、酸化マグネシウム層13のみにCL発光MgO結晶体を含ませた放電セルでの列側陰極放電(図11に示す)に比して、弱い放電を短期間内に終息させることが可能となる(図12に示す)。従って、放電強度が極めて弱い列側陰極放電をリセット放電として生起させることができるので、画像のコントラスト、特に暗い画像を表示する際の暗コントラストを高めることが可能となる。
尚、図17及び図18、又は図19及び図20に示す駆動では、先頭サブフィールドSF1にて、先ず全放電セルPCをリセット放電させることにより消灯モードに初期化し、黒表示(輝度レベル0)を行う場合を除き、各放電セルPCに対して書込アドレス放電を生起させてこれを点灯モードに遷移させるようにしている。この際、かかる駆動によって黒表示を行う場合、1フィールド表示期間を通して生起される放電は、先頭サブフィールドSF1でのリセット放電だけとなる。よって、全放電セルをリセット放電させて点灯モードの状態に初期化してから、これを消灯モード状態に遷移させるべき選択消去アドレス放電を生起させる駆動を採用する場合に比して、1フィールド表示期間内で生起される放電回数が少なくなる。従って、かかる駆動によれば、暗い画像を表示する際のコントラスト、いわゆる暗コントラストを向上させることが可能となる。
又、図17及び図18、又は図19及び図20に示す駆動では、先頭のサブフィールドSF1のリセット行程Rにて列電極Dを陰極側、行電極Yを陽極側とした電圧を両電極間に印加することにより、行電極Yから列電極Dに向けて電流が流れる列側陰極放電を第1リセット放電として生起させるようにしている。よって、かかる第1リセット放電時には、放電ガス内の陽イオンが列電極Dへ向かう際に、図5に示す如き蛍光体層17内に含まれている二次電子放出材料としてのMgO結晶体に衝突して、このMgO結晶体から二次電子を放出させる。特に、図15に示されるプラズマディスプレイ装置のPDP50では、MgO結晶体を図5に示す如く放電空間に露出させることにより、陽イオンとの衝突の確率を高め、二次電子を効率よく放電空間に放出させるようにしている。すると、かかる二次電子によるプライミング作用により放電セルPCの放電開始電圧が低くなるので、比較的弱いリセット放電を生起させることが可能となる。よって、リセット放電の微弱化によりその放電に伴う発光輝度が低下するので、暗コントラストを向上させた表示が可能となる。
又、図18または図20に示される駆動では、上記第1リセット放電を、図3に示す如き前面透明基板10側に形成されている行電極Y、及び背面基板14側に形成されている列電極D間で生起させるようにしている。よって、共に前面透明基板10側に形成されている行電極X及びY間でリセット放電を生起させる場合に比して、前面透明基板10側から外部に放出される放電光が少なくなるので、更なる暗コントラストの向上を図ることができる。
更に、図18又は図20に示される駆動では、サブフィールドSF2の第2リセット行程R2において、第1リセット放電の生起後、全行電極YにリセットパルスRP2Y2を印加しつつ全行電極Xに第1ベースパルスBP1を印加することにより、各放電セルPC内で壁電荷を消去する為の第2リセット放電を生起させて全放電セルPCを消灯モード状態に初期化している。この際、かかる第2リセット放電を生起させるべく行電極Xに印加される第1ベースパルスBP1のピーク電位(VB1)は、この第2リセット行程R2の直後の第2選択書込アドレス行程W2で行電極Xに印加される第2ベースパルスBP2のピーク電位(VB2)よりも高電位である。つまり、第1ベースパルスBP1及びリセットパルスRP2Y2によって行電極X及びY間に印加される電圧は比較的高い電圧となり、第2リセット放電の放電強度は大となる。従って、これら第1ベースパルスBP1及びリセットパルスRP2Y2の印加に応じて、壁電荷を消去する為の放電として第2リセット放電が生起されるものの、全放電セルPC内の行電極X近傍には微量な負極性の壁電荷、行電極Y近傍には微量な正極性の壁電荷が残留することになる。
よって、第2選択書込アドレス行程W2にて、図18又は図20に示す如く、正極性の第2ベースパルスBP2が行電極Xに印加され且つ負極性のベースパルスBPが行電極Yに印加された状態では、行電極X及びY間で放電が生起されにくくなる。これにより、第2選択書込アドレス行程W2にて放電セルPCを消灯モードに設定させるべく、負極性の書込走査パルスSPを行電極Yに印加しつつ0ボルトの画素データパルスDPを列電極Dに印加した際における、行電極X及びY間での誤った放電が防止されるのである。
又、図18または図20に示される駆動では、輝度重みが最も小なるサブフィールドSF1のサスティン行程Iでは、サスティンパルスIPを1回だけ印加することにより、サスティン放電の回数を1回だけにして、低輝度画像に対する表示再現性を高めている。尚、この1回分のサスティンパルスIPに応じて生起されたサスティン放電の終息後、行電極Y近傍には負極性の壁電荷、列電極D近傍には正極性の壁電荷が夫々形成された状態となる。これにより、図18に示される駆動を実施する際には、サブフィールドSF2の選択消去アドレス行程Wにおいて、列電極D及び行電極Y間において列電極Dを陽極側とした放電(以降、列側陽極放電と称する)を選択消去アドレス放電として生起させることが可能となる。この際、図18に示される駆動では、サブフィールドSF2〜SF14各々のサスティン行程Iでは、サスティンパルスIPの印加回数を偶数としている。よって、各サスティン行程Iの終了直後は、行電極Y近傍に負極性の壁電荷、列電極D近傍には正極性の壁電荷が形成された状態となるので、各サスティン行程Iに引き続き実施される選択消去アドレス行程Wでは、列側陽極放電が可能となる。従って、列電極Dに対しては正極性のパルスが印加されるだけとなり、アドレスドライバ55の高コスト化を防げる。
図21は、本発明の第3の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。
尚、図21に示されるプラズマディスプレイ装置のPDP50は、図1に示されるプラズマディスプレイ装置のPDP50と同一、つまり図2〜図5、図14に示す如き構造を有するものである。又、図21に示されるプラズマディスプレイ装置におけるY電極ドライバ53、アドレスドライバ55及び駆動制御回路56各々の動作も、図1に示されるものと同一である。つまり、駆動制御回路56は、選択消去アドレス法を採用した場合には図7、選択書込アドレス法を採用した場合には図9に示される発光駆動シーケンスに従って、PDP50を駆動させるべき各種制御信号をパネルドライバ(X電極ドライバ51a、Y電極ドライバ53、アドレスドライバ55)に供給する。
パネルドライバは、選択消去アドレス法が採用された場合には図7に示す発光駆動シーケンスに従って、サブフィールドSF1〜SF14各々毎に図22に示す如き各種駆動パルスを発生し、PDP50の列電極D、行電極X及びYに印加する。一方、選択書込アドレス法が採用された場合には、パネルドライバは、図9に示す発光駆動シーケンスに従って、サブフィールドSF1〜SF14各々毎に図23に示す如き各種駆動パルスを発生し、PDP50の列電極D、行電極X及びYに印加する。
尚、図22において、サブフィールドSF2〜SF14各々での印加動作、並びにサブフィールドSF1のリセット行程Rの前半部及びサスティン行程Iでの印加動作は、図8に示されるものと同一である。又、図23においてサブフィールドSF2〜SF14各々での印加動作、並びにサブフィールドSF1のリセット行程Rの前半部、サスティン行程I及び消去行程E各々での印加動作は、図10に示されるものと同一である。
すなわち、図22(又は図23)においては、サブフィールドSF1のリセット行程Rの後半部で行電極Xに印加される第1ベースパルスBP1a、及びSF1の選択書込アドレス行程Wで行電極Xに印加される第2ベースパルスBP2aを除く他の駆動パルスは、図8(又は図10)に示されるものと同一である。
よって、以下に、図22(又は図23)中から、SF1のリセット行程Rの後半部、及びSF1の選択書込アドレス行程W各々で印加される駆動パルスのみを抜粋して、その印加動作について説明する。
リセット行程Rの後半部において、Y電極ドライバ53は、図22又は図23に示す如く、時間経過に伴う前縁部での電位推移が緩やかな負極性のリセットパルスRPY2を全行電極Yに印加する。この間、X電極ドライバ51aは、パルスの最高電位として正極性のピーク電位を有する第1ベースパルスBP1aを全行電極Xに印加する。これら第1ベースパルスBP1a及びリセットパルスRPY2の印加により、全放電セル内において第2リセット放電が生起される。かかる第2リセット放電により、全放電セルは消灯モードに初期化される。尚、上記リセットパルスRPY2の印加によれば、全放電セルPC内の行電極Y及び列電極D間においても微弱な放電が生起され、列電極D近傍に形成されていた正極性の壁電荷の一部が消去される。これにより、全放電セルPCの列電極D近傍に残留する壁電荷量が、選択書込アドレス行程Wにおいて正しく選択書込アドレス放電を生起させることが可能な量に調整される。
そして、かかるリセット行程Rの直後の選択書込アドレス行程Wの実行期間に亘り、X電極ドライバ51aは、図22又は図23に示す如き、パルスの最高電位として正極性の第1ベースパルスBP1aよりも高い正極性ピーク電位を有する第2ベースパルスBP2aを全行電極Xに印加する。又、かかる選択書込アドレス行程Wにおいて、Y電極ドライバ53は、図22又は図23に示す如き負極性のピーク電位を有するベースパルスBPを行電極Y〜Yに同時に印加しつつ、負極性のピーク電位を有する書込走査パルスSPを行電極Y〜Y各々に順次択一的に印加して行く。この間、アドレスドライバ55は、点灯モードに設定させるべき放電セルPCに対しては正極性で高電圧の画素データパルスDP、消灯モードに設定させるべき放電セルPCに対しては0ボルトの画素データパルスDPを発生し、これを書込走査パルスSPの印加タイミングに同期して1表示ライン分ずつ列電極Dに印加する。この際、上記書込走査パルスSPと同時に、点灯モードに設定させるべき高電圧の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には選択書込アドレス放電が生起される。更に、かかる選択書込アドレス放電の直後、この放電セルPC内の行電極X及びY間にも微弱な放電が生起される。つまり、書込走査パルスSPが印加された後、行電極X及びY間には上記ベースパルスBP及び第2ベースパルスBP2aに応じた電圧が印加されるが、この電圧は各放電セルPCの放電開始電圧よりも低い電圧に設定されている為、かかる電圧の印加だけでは放電セルPC内で放電が生起されることはない。ところが、上記選択書込アドレス放電が生起されると、この選択書込アドレス放電に誘発されて、ベースパルスBP及び第2ベースパルスBP2aによる電圧印加だけで、行電極X及びY間にも微弱な放電が生起されるのである。かかる微弱放電並びに上記選択書込アドレス放電により、この放電セルPCは、その行電極Y近傍に正極性の壁電荷、行電極X近傍に負極性の壁電荷、列電極D近傍に負極性の壁電荷が夫々形成された状態、すなわち、点灯モードに設定される。
ここで、図22又は図23に示される駆動では、選択書込アドレス放電直後に、上述した如き微弱放電を確実に生起させるべく、第1ベースパルスBP1aよりも高いピーク電位を有する第2ベースパルスBP2aを行電極Xに印加するようにしている。
すなわち、高解像度のPDP、つまり1画面内の画素数が多いPDPでは、画素数が少ないPDPに比して各画素間での放電強度のバラツキ、特に、各放電セル内の行電極Y及び列電極D間での対向放電において放電強度のバラツキが大となる。よって、放電セル毎の放電強度のバラツキに伴い、PDP50内には、放電強度の弱い選択書込アドレス放電が生起されてしまう放電セルPCが存在する場合がある。このような放電セルPCでは、選択書込アドレス放電の直後に、前述した如き微弱放電を確実に生起させることが困難となる。
そこで、図22又は図23に示される駆動では、選択書込アドレス行程Wの実行期間中に亘り第1ベースパルスBP1aよりも高電位の第2ベースパルスBP2aを行電極Xに印加することにより、選択書込アドレス放電が弱い放電となってしまう放電セルに対しても、確実に上記微弱放電を生起させるようにしたのである。
図24は、本発明の第4の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。
尚、図24に示されるプラズマディスプレイ装置のPDP50は、図15に示されるプラズマディスプレイ装置のPDP50と同一、つまり図2〜図5、図14に示す如き構造を有するものである。又、図24に示されるプラズマディスプレイ装置におけるY電極ドライバ53、アドレスドライバ55及び駆動制御回路560各々の動作も、図15に示されるものと同一である。つまり、駆動制御回路560は、選択消去アドレス法を採用した場合には図17、選択書込アドレス法を採用した場合には図19に示される発光駆動シーケンスに従って、PDP50を駆動させるべき各種制御信号をパネルドライバ(X電極ドライバ51b、Y電極ドライバ53、アドレスドライバ55)に供給する。
パネルドライバは、選択消去アドレス法が採用された場合には図17に示す発光駆動シーケンスに従って、サブフィールドSF1〜SF14各々毎に図25に示す如き各種駆動パルスを発生し、PDP50の列電極D、行電極X及びYに印加する。一方、選択書込アドレス法が採用された場合には、パネルドライバは、図19に示す発光駆動シーケンスに従って、サブフィールドSF1〜SF14各々毎に図26に示す如き各種駆動パルスを発生し、PDP50の列電極D、行電極X及びYに印加する。
尚、図25において、サブフィールドSF1及びSF3〜SF14各々での印加動作、並びにサブフィールドSF2の第2リセット行程R2の前半部及びサスティン行程Iでの印加動作は、図18に示されるものと同一である。又、図26においてサブフィールドSF1及びSF3〜SF14各々での印加動作、並びにサブフィールドSF2の第2リセット行程R2の前半部、サスティン行程I及び消去行程E各々での印加動作は、図20に示されるものと同一である。
すなわち、図25(又は図26)においては、SF2の第2リセット行程R2の後半部で行電極Xに印加される第1ベースパルスBP1b、及びSF2の第2選択書込アドレス行程W2で行電極Xに印加される第2ベースパルスBP2bを除く他の駆動パルスは、図18(又は図20)に示されるものと同一である。
よって、以下に、図25(又は図26)中から、SF2の第2リセット行程R2の後半部、及びSF2の第2選択書込アドレス行程W2各々で印加される駆動パルスのみを抜粋して、その印加動作について説明する。
サブフィールドSF2の第2リセット行程R2の後半部において、Y電極ドライバ53は、図25又は図26に示す如く、時間経過に伴う前縁部での電位推移が緩やかな負極性のリセットパルスRP2Y2を全行電極Yに印加する。この間、X電極ドライバ51bは、パルスの最高電位として正極性のピーク電位を有する第1ベースパルスBP1bを全行電極Xに印加する。これら第1ベースパルスBP1b及びリセットパルスRP2Y2の印加により、全放電セル内において第2リセット放電が生起される。かかる第2リセット放電により、全放電セルは消灯モードに初期化される。尚、上記リセットパルスRP2Y2の印加によれば、全放電セルPC内の行電極Y及び列電極D間においても微弱な放電が生起され、列電極D近傍に形成されていた正極性の壁電荷の一部が消去される。これにより、全放電セルPCの列電極D近傍に残留する壁電荷量が、第2選択書込アドレス行程W2において正しく選択書込アドレス放電を生起させることが可能な量に調整される。
そして、かかる第2リセット行程R2の直後の第2選択書込アドレス行程W2の実行期間に亘り、X電極ドライバ51bは、上記第1ベースパルスBP1bよりも高いピーク電位を有する、図25又は図26に示す如き、パルスの最高電位として正極性のピーク電位を有する第2ベースパルスBP2bを全行電極Xに印加する。又、第2選択書込アドレス行程W2において、Y電極ドライバ53は、図25又は図26に示す如き負極性のピーク電位を有するベースパルスBPを行電極Y〜Yに同時に印加しつつ、負極性のピーク電位を有する書込走査パルスSPを行電極Y〜Y各々に順次択一的に印加して行く。この間、アドレスドライバ55は、点灯モードに設定させるべき放電セルPCに対しては正極性で高電圧の画素データパルスDP、消灯モードに設定させるべき放電セルPCに対しては0ボルトの画素データパルスDPを発生し、これを書込走査パルスSPの印加タイミングに同期して1表示ライン分ずつ列電極Dに印加する。この際、上記書込走査パルスSPと同時に、点灯モードに設定させるべき高電圧の画素データパルスDPが印加された放電セルPC内の列電極D及び行電極Y間には選択書込アドレス放電が生起される。更に、かかる選択書込アドレス放電の直後、この放電セルPC内の行電極X及びY間にも微弱な放電が生起される。つまり、書込走査パルスSPが印加された後、行電極X及びY間には上記ベースパルスBP及び第2ベースパルスBP2bに応じた電圧が印加されるが、この電圧は各放電セルPCの放電開始電圧よりも低い電圧に設定されている為、かかる電圧の印加だけでは放電セルPC内で放電が生起されることはない。ところが、上記選択書込アドレス放電が生起されると、この選択書込アドレス放電に誘発されて、ベースパルスBP及び第2ベースパルスBP2bによる電圧印加だけで、行電極X及びY間にも微弱な放電が生起されるのである。かかる微弱放電並びに上記選択書込アドレス放電により、この放電セルPCは、その行電極Y近傍に正極性の壁電荷、行電極X近傍に負極性の壁電荷、列電極D近傍に負極性の壁電荷が夫々形成された状態、すなわち、点灯モードに設定される。
ここで、図25又は図26に示される駆動では、第2選択書込アドレス行程W2において、選択書込アドレス放電直後に上述した如き微弱放電を確実に生起させるべく、第1ベースパルスBP1bよりも高いピーク電位を有する第2ベースパルスBP2bを行電極Xに印加するようにしている。
すなわち、高解像度のPDP、つまり1画面内の画素数が多いPDPでは、画素数が少ないPDPに比して各画素間での放電強度のバラツキ、特に、各放電セル内の行電極Y及び列電極D間での対向放電において放電強度のバラツキが大となる。よって、放電セル毎の放電強度のバラツキに伴い、PDP50内には、放電強度の弱い選択書込アドレス放電が生起されてしまう放電セルPCが存在する場合がある。このような放電セルPCでは、選択書込アドレス放電の直後に、前述した如き微弱放電を確実に生起させることが困難となる。
そこで、図25又は図26に示される駆動では、第2選択書込アドレス行程W2の実行期間中に亘り第1ベースパルスBP1bよりも高電位の第2ベースパルスBP2bを行電極Xに印加することにより、選択書込アドレス放電が弱い放電となってしまう放電セルに対しても、確実に上記微弱放電を生起させるようにしたのである。
又、図18、図20、図25及び図26に夫々示される第1リセット行程R1では、その前半部においてリセットパルスRP1Y1を行電極Y〜Yへ印加することにより列側陰極放電としての第1リセット放電を生起させるようにしているが、これを省略しても良い。
例えば、図18、図20、図25及び図26にて夫々示される第1リセット行程R1に代わり、図27に示す如き第1リセット行程R1を採用する。すなわち、図27に示すように、第1リセット行程R1の前半部では行電極Y〜Yを接地電位に固定するのである。つまり、第1リセット行程R1の前半部における、行電極Yから列電極Dへの列側陰極放電の目的は、第1選択書込アドレス行程W1での書込放電を安定化させる為の荷電粒子を放出されることになる。しかしながら、例えば図5や図14に記載の様なCL発光MgO結晶を含むMgO結晶体を蛍光体層内に含ませる構成を採用した場合には、このような構成を採用しない場合に比べて書込放電が安定化する。従って、第1リセット行程R1の前半部では、行電極Y及び列電極D共に接地電位とした、列側陰極放電を生起させない構成を採用することが可能となる。この場合には行電極Xについても図27の如く接地電位レベルとする。なお、この場合にも、第1リセット行程R1の終了後、その直前のフィールドの消去行程Eでの消去パルスEPによる放電及びリセットパルスRP1Y2の印加による放電によって全放電セルは消灯モード状態になる。この際、図18、図20、図25及び図26に夫々示されている第2リセット行程R2の前半部におけるリセットパルスRP2Y1の印加による列側陰極放電に関しては、このリセット放電によって放出される荷電粒子は主に第2選択書込アドレス行程W2での書込放電を安定化させる為に作用する。よって、第2リセット行程R2の前半部においてリセットパルスRP2Y1の印加による列側陰極放電を省略すると、第2選択書込アドレス行程W2で書込ミスが発生した場合には、サブフィールドSF2以降の全サブフィールドにおいてサスティン放電を生起させることができなくなる。そこで、第2リセット行程R2の前半部については、リセットパルスRP2Y1の印加による列側陰極放電を実施する方が好ましい。これについては、図8、図10、図22、及び図23に夫々示されるリセット行程Rの前半部においても同様なことが言える。
本発明の第1の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。 表示面側から眺めたPDP50の内部構造を模式的に示す正面図である。 図2に示されるV−V線上での断面を示す図である。 図2に示されるW−W線上での断面を示す図である。 蛍光体層17内に含まれるMgO結晶体を模式的に表す図である。 図1に示されるプラズマディスプレイ装置における各階調毎の発光パターンの一例を示す図である。 図1に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの一例を示す図である。 図7に示される発光駆動シーケンスに従ってPDP50に印加される各種駆動パルスを示す図である。 図1に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの他の一例を示す図である。 図10に示される発光駆動シーケンスに従ってPDP50に印加される各種駆動パルスを示す図である。 酸化マグネシウム層13のみにCL発光MgO結晶体を含ませた従来のPDPに対してリセットパルスRPY1を印加した際に生起される列側陰極放電における放電強度の推移を表す図である。 酸化マグネシウム層13及び蛍光体層17の双方にCL発光MgO結晶体を含ませたPDP50に対してリセットパルスRPY1を印加した際に生起される列側陰極放電における放電強度の推移を表す図である。 リセットパルスRPY1の他の波形を表す図である。 蛍光体粒子層17aの表面に二次電子放出層18を積層して蛍光体層17を構築させた場合の形態を模式的に表す図である。 本発明の第2の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。 図15に示されるプラズマディスプレイ装置における各階調毎の発光パターンの一例を示す図である。 図15に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの一例を示す図である。 図17に示される発光駆動シーケンスに従ってPDP50に印加される各種駆動パルスを示す図である。 図15に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの他の一例を示す図である。 図19に示される発光駆動シーケンスに従ってPDP50に印加される各種駆動パルスを示す図である。 本発明の第3の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。 図21に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの一例を示す図である。 図21に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの他の一例を示す図である。 本発明の第4の実施例による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。 図24に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの一例を示す図である。 図24に示されるプラズマディスプレイ装置において採用される発光駆動シーケンスの他の一例を示す図である。 第1リセット行程R1でのリセットパルスの他の印加方法を示す図である。
符号の説明
13 酸化マグネシウム層
17 蛍光体層
50 PDP
51 X電極ドライバ
53 Y電極ドライバ
55 アドレスドライバ
56,560 駆動制御回路

Claims (13)

  1. 放電ガスが封入された放電空間を挟んで前面基板及び背面基板が対向配置されており、前記前面基板に形成されている複数の行電極対と前記背面基板に形成されている複数の列電極との各交叉部に画素を担う放電セルが形成されているプラズマディスプレイパネルを、入力映像信号における単位表示期間毎に複数のサブフィールドによって階調駆動するプラズマディスプレイパネルの駆動方法であって、
    前記放電セル内の前記背面基板上には蛍光体材料及び二次電子放出材料が含まれる蛍光体層が設けられており、
    前記単位表示期間内の1のサブフィールドでは、前記放電セルを消灯モードの状態に初期化するリセット行程と、前記入力映像信号に応じて前記放電セルを選択的にアドレス放電させることにより前記放電セルを点灯モードの状態に遷移させるアドレス行程と、を実行し、
    前記リセット行程では、前記行電極対の一方の行電極を陽極側、前記列電極を陰極側とした電圧を前記一方の行電極及び前記列電極間に印加することにより前記一方の行電極及び前記列電極間において第1のリセット放電を生起させた後、引き続き前記一方の行電極に負極性の電位を印加しつつ前記行電極対の他方の行電極に正極性のピーク電位を有する第1ベースパルスを印加することにより第2のリセット放電を生起させ、
    前記アドレス行程の実行期間中に亘り、前記一方の行電極に負極性の電位を印加しつつ前記他方の行電極に前記第1ベースパルスとは異なる正極性のピーク電位を有する第2ベースパルスを印加することを特徴とするプラズマディスプレイパネルの駆動方法。
  2. 前記第1ベースパルスは前記第2ベースパルスよりも高電位であることを特徴とする請求項1記載のプラズマディスプレイパネルの駆動方法。
  3. 前記第1ベースパルスは前記第2ベースパルスよりも低電位であることを特徴とする請求項1記載のプラズマディスプレイパネルの駆動方法。
  4. 前記1のサブフィールドは、前記単位表示期間内の先頭のサブフィールドであり、前記サブフィールド各々の内の前記先頭のサブフィールドのみで前記リセット行程を実行することを特徴とする請求項1記載のプラズマディスプレイパネルの駆動方法。
  5. 前記1のサブフィールドは、前記単位表示期間内の先頭のサブフィールドの直後に設けられたサブフィールドであり、
    前記先頭のサブフィールドでは、前記放電セルを消灯モードの状態に初期化するリセット行程と、前記入力映像信号に応じて前記放電セルを選択的にアドレス放電させることにより前記放電セルを点灯モードの状態に遷移させるアドレス行程と、を実行することを特徴とする請求項1記載のプラズマディスプレイパネルの駆動方法。
  6. 前記リセット行程では、前記行電極対の一方の行電極を陽極側、前記列電極を陰極側とした電圧を前記一方の行電極及び前記列電極間に印加することにより前記放電セル内の前記一方の行電極及び前記列電極間においてリセット放電を生起させることを特徴とする請求項5記載のプラズマディスプレイパネルの駆動方法。
  7. 前記単位表示期間内における前記先頭のサブフィールド及び前記先頭のサブフィールドの直後に設けられた1のサブフィールドのみで前記リセット行程が実行されることを特徴とする請求項5記載のプラズマディスプレイパネルの駆動方法。
  8. 前記先頭のサブフィールドの前記アドレス行程の直後において、前記行電極対の一方の行電極を陽極側、前記列電極を陰極側とした電圧を前記一方の行電極及び前記列電極間に印加することにより前記先頭のサブフィールドの前記アドレス行程にて前記点灯モードに設定された放電セル内の前記列電極及び前記一方の行電極間にて微小発光放電を生起させる微小発光行程を実行することを特徴とする請求項5記載のプラズマディスプレイパネルの駆動方法。
  9. 前記微小発光放電は、輝度レベル0よりも1段階だけ高輝度な階調に対応した発光を伴う放電であることを特徴とする請求項8記載のプラズマディスプレイ装置。
  10. 前記二次電子放出材料は酸化マグネシウムからなることを特徴とする請求項1記載のプラズマディスプレイパネルの駆動方法。
  11. 前記酸化マグネシウムは、電子線によって励起されて波長域200〜300nm内にピークを有するカソード・ルミネッセンス発光を行う酸化マグネシウム結晶体を含むことを特徴とする請求項10記載のプラズマディスプレイパネルの駆動方法。
  12. 前記酸化マグネシウム結晶体が、気相酸化法によって生成された酸化マグネシウム単結晶体であることを特徴とする請求項11記載のプラズマディスプレイパネルの駆動方法。
  13. 前記放電空間内において前記二次電子放出材からなる粒子が前記放電ガスに接触していることを特徴とする請求項1記載のプラズマディスプレイパネルの駆動方法。
JP2007055557A 2007-03-06 2007-03-06 プラズマディスプレイパネルの駆動方法 Withdrawn JP2008216759A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007055557A JP2008216759A (ja) 2007-03-06 2007-03-06 プラズマディスプレイパネルの駆動方法
EP08003932A EP1968036A3 (en) 2007-03-06 2008-03-03 Method of driving plasma display panel
US12/042,909 US20080252563A1 (en) 2007-03-06 2008-03-05 Method of driving plasma display panel
KR1020080020953A KR100949749B1 (ko) 2007-03-06 2008-03-06 플라즈마 디스플레이 패널의 구동 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055557A JP2008216759A (ja) 2007-03-06 2007-03-06 プラズマディスプレイパネルの駆動方法

Publications (1)

Publication Number Publication Date
JP2008216759A true JP2008216759A (ja) 2008-09-18

Family

ID=39836855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055557A Withdrawn JP2008216759A (ja) 2007-03-06 2007-03-06 プラズマディスプレイパネルの駆動方法

Country Status (1)

Country Link
JP (1) JP2008216759A (ja)

Similar Documents

Publication Publication Date Title
KR100888576B1 (ko) 플라즈마 디스플레이 패널 및 그 구동 방법
JP4801914B2 (ja) プラズマディスプレイパネルの駆動方法
JP2006053517A (ja) プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
JP5134264B2 (ja) プラズマディスプレイパネルの駆動方法
JP5355843B2 (ja) プラズマディスプレイ装置
JP2009008806A (ja) プラズマディスプレイパネルの駆動方法
JP4928211B2 (ja) プラズマディスプレイパネルの駆動方法
JP2008281928A (ja) プラズマディスプレイパネルの駆動方法
JP2008070538A (ja) プラズマディスプレイパネルの駆動方法
JP2008203458A (ja) プラズマディスプレイパネルの駆動方法
JP2008107626A (ja) プラズマディスプレイパネルの駆動方法
JP2009210727A (ja) プラズマディスプレイパネルの駆動方法
JP2008216759A (ja) プラズマディスプレイパネルの駆動方法
KR100949749B1 (ko) 플라즈마 디스플레이 패널의 구동 방법
KR100956564B1 (ko) 플라즈마 디스플레이 패널의 구동 방법
JP2008304893A (ja) プラズマディスプレイパネルの駆動方法
JP2008070442A (ja) プラズマディスプレイパネルの駆動方法
JP2008170780A (ja) プラズマディスプレイパネルの駆動方法
JP2008216878A (ja) プラズマディスプレイパネルの駆動方法
JP2009025547A (ja) プラズマディスプレイパネルの駆動方法
JP2008203459A (ja) プラズマディスプレイパネルの駆動方法
JP2008070443A (ja) プラズマディスプレイパネルの駆動方法
JP2010019900A (ja) プラズマディスプレイパネルの駆動方法
JP2008268443A (ja) プラズマディスプレイパネルの駆動方法
JP2008203328A (ja) プラズマディスプレイ装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120127