JP2008216498A - 投影光学系、露光装置及びデバイス製造方法 - Google Patents

投影光学系、露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP2008216498A
JP2008216498A JP2007051936A JP2007051936A JP2008216498A JP 2008216498 A JP2008216498 A JP 2008216498A JP 2007051936 A JP2007051936 A JP 2007051936A JP 2007051936 A JP2007051936 A JP 2007051936A JP 2008216498 A JP2008216498 A JP 2008216498A
Authority
JP
Japan
Prior art keywords
optical
optical system
projection optical
crystal
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007051936A
Other languages
English (en)
Inventor
Akihiro Yamada
顕宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007051936A priority Critical patent/JP2008216498A/ja
Priority to US12/038,026 priority patent/US7474380B2/en
Priority to KR1020080018156A priority patent/KR20080080436A/ko
Priority to EP08152056A priority patent/EP1965228A1/en
Priority to TW097107112A priority patent/TW200907585A/zh
Publication of JP2008216498A publication Critical patent/JP2008216498A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7025Size or form of projection system aperture, e.g. aperture stops, diaphragms or pupil obscuration; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】コストの増大を防止すると共に、結晶構造起因の複屈折の影響を低減して優れた結像性能を実現する投影光学系を提供する。
【解決手段】第1の物体面の像を第2の物体面に投影する投影光学系であって、前記第2の物体面から順に配置された複数の光学部材を有し、前記複数の光学部材は、等方結晶で構成され、<1 1 1>の結晶軸を光軸方向に配向させた第1の光学部材及び第2の光学部材と、<1 0 0>の結晶軸を光軸方向に配向させた第3の光学部材とを含み、前記第1の光学部材、前記第2の光学部材及び前記第3の光学部材の各々を通過する光線と光軸とのなす角の最大角度θ1、θ2、θ3が、|θi−θj| < 5° (i、j=1、2、3)を満足することを特徴とする投影光学系を提供する。
【選択図】図1

Description

本発明は、レチクルのパターンの像を基板に投影する投影光学系に関する。
フォトリソグラフィー(焼き付け)技術を用いて半導体メモリや論理回路などの微細な半導体デバイスを製造する際に、投影露光装置が従来から使用されている。投影露光装置は、レチクル(マスク)に描画された回路パターンを投影光学系によってウエハ等に投影して回路パターンを転写する。
投影露光装置で転写できる最小の寸法(解像度)は、露光光の波長に比例し、投影光学系の開口数(NA)に反比例する。従って、近年の半導体デバイスの微細化への要求に伴い露光光の短波長化及び投影光学系の高NA化が進んでいる。例えば、露光光の短波長化については、従来はKrFエキシマレーザー(波長約248nm)を露光光として用いていたが、近年ではArFエキシマレーザー(波長約193nm)を露光光として用いている。また、投影光学系の高NA化については、開口数0.9を超える投影光学系が開発されており、近年では、液浸露光技術を用いた開口数1.0を超える投影光学系(液浸投影光学系)が提案されている。ここで、液浸露光技術とは、投影光学系の最終レンズ(最終面)とウエハとの間を液体で満たすことによって、投影光学系の高NA化を更に進めるものである。
液浸投影光学系においては、一般的に、最終レンズとウエハとの間を満たす液体として純水が用いられ、最終レンズの硝材として石英が用いられており、開口数1.35程度が構成上の限界値となっている。そこで、純水の屈折率よりも高い屈折率を有する液体と、石英の屈折率よりも高い屈折率を有する硝材とを用いることで、開口数を1.5又は1.65以上まで大きくしようとする提案がなされている。
現在では、波長193nmの光を透過し、石英の屈折率よりも高い屈折率を有する硝材として、LuAG(LuAl12)が注目されている。但し、LuAGは結晶硝材であるため、結晶構造起因の複屈折を含んでいる。また、屈折率が大きくなるにつれて、結晶構造起因の複屈折は大きくなる傾向がある。例えば、CaF(フッ化カルシウム)においては、波長193nmの光に対する屈折率は1.506であり、結晶構造起因の複屈折が最大で3.4nm/cmとなる。一方、LuAGにおいては、波長193nmの光に対する屈折率は2.14であり、結晶構造起因の複屈折が最大で30nm/cmとなる。
開口数1.0を超えるような液浸投影光学系の場合、最終レンズとウエハとの間の液体を安定して制御するために、一般的には、最終レンズのウエハ側の面(ウエハ直上の面)が平面となっている。従って、投影光学系の開口数NA及び最終レンズの屈折率nFLが決まると、最終レンズを通過する光線と投影光学系の光軸とのなす角の最大角度θMXは、以下の数式1で定義される。
(数1)
θMX > arcsin(NA/nFL)×180/π [°]
最終レンズの硝材をLuAG(屈折率:2.14)とした場合において、最終レンズを通過する光線と投影光学系の光軸とのなす角度θFLの開口数依存性を図13に示す。図13では、縦軸に角度θFLを、縦軸に投影光学系の開口数を採用する。図13を参照するに、開口数が1.5のときの角度θFLは44.5°となり、開口数が1.65のときの角度θFLは50°となる。
等方結晶硝材(平板形状)の結晶構造起因の複屈折分布を図14に示す。図14(a)は、<1 1 1>の結晶軸(結晶方位)周りの複屈折分布を示し、図14(b)は、<1 0 0>の結晶軸(結晶方位)周りの複屈折分布を示している。図14において、径方向の位置は光線の通過角度を示し、同径方向は光線の通過方位角を示している。また、短線の長さは相対複屈折量を示し、短線の向きは複屈折の進相軸方位を示している。
図14を参照するに、等方結晶硝材の結晶構造起因の複屈折は、<1 0 0>の結晶軸方位及び<1 1 1>の結晶軸方位で0となり、<1 1 0>の結晶軸方位で最大となる。従って、<1 0 0>及び<1 1 1>の結晶軸を投影光学系の光軸に配向させた場合、開口数を大きくしていくと通過光線角度が大きくなり、結晶構造起因の複屈折が大きくなってしまう。
そこで、結晶構造起因の複屈折を補正するために、最終レンズと同じ結晶硝材又は最終レンズと同程度の複屈折を有する結晶硝材を投影光学系を構成する他のレンズに用いると共に、かかる結晶硝材の光軸周りの組み込み角度を制御する技術が提案されている。また、結晶構造起因の複屈折を補正する他の技術も従来から提案されている(特許文献1及び2参照)。
特開2004−45692号公報 特開2006−113533号公報
しかしながら、投影光学系の最終レンズに使用されるLuAGは非常に高価であり、投影光学系を構成する他のレンズに用いることは極力避けたい。更に、LuAGは、透過率が低く(光吸収が大きく)、且つ、温度変化に対する屈折率の変化が大きいため、露光時の収差変動の点からも多用を避けたい。
また、特許文献1は、通過光線と投影光学系の光軸とのなす角の最大角度が30°以上の結晶硝材に関して、<1 0 0>の結晶軸を投影光学系の光軸に配向させて結晶構造起因の複屈折を効率よく補正する技術を開示している。しかしながら、特許文献1は、結晶構造起因の複屈折が非常に大きい(例えば、複屈折が20nm/cmを超える)高屈折率結晶材料について考慮していない。このような高屈折率結晶硝材の場合には、<1 0 0>の結晶軸を投影光学系の光軸に配向させた結晶硝材だけではなく、<1 1 1>の結晶軸を投影光学系の光軸に配向させた結晶硝材の条件も規定しなければ、結晶構造起因の複屈折の補正は困難である。
特許文献2は、最終レンズと最終レンズに隣接するレンズに、結晶構造起因の複屈折の符号が互いに反対となるMgO(酸化マグネシウム)とCaO(酸化カルシウム)を用いることで、高屈折率結晶硝材の結晶構造起因の複屈折を補正する技術を開示している。しかしながら、特許文献2では、MgO及びCaOについて、結晶構造起因の複屈折が低減するような結晶軸配置とだけ記載されており、具体的な結晶軸配置が規定されていない。更に、実際には、露光装置に用いることができるような高品質のMgOやCaOは存在せず、開発も行われていない。
そこで、本発明は、コストの増大を防止すると共に、結晶構造起因の複屈折の影響を低減して優れた結像性能を実現する投影光学系を提供することを例示的目的とする。
上記目的を達成するために、本発明の一側面としての投影光学系は、第1の物体面の像を第2の物体面に投影する投影光学系であって、前記第2の物体面から順に配置された複数の光学部材を有し、前記複数の光学部材は、等方結晶で構成され、<1 1 1>の結晶軸を光軸方向に配向させた第1の光学部材及び第2の光学部材と、<1 0 0>の結晶軸を光軸方向に配向させた第3の光学部材とを含み、前記第1の光学部材、前記第2の光学部材及び前記第3の光学部材の各々を通過する光線と光軸とのなす角の最大角度θ1、θ2、θ3が、|θi−θj| < 5° (i、j=1、2、3)を満足することを特徴とする。
本発明の更なる目的又はその他の特徴は、以下、添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。
本発明によれば、例えば、コストの増大を防止すると共に、結晶構造起因の複屈折の影響を低減して優れた結像性能を実現する投影光学系を提供することができる。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
図1は、本発明の一側面としての投影光学系100の構成を示す概略断面図であり、投影光学系100を構成する光学部材(レンズ)のうちウエハ近傍の光学部材(レンズ)を示す。図1において、AXは投影光学系100の光軸を示し、IMGはウエハ面に相当する第2の物体面を示す。
投影光学系100は、第1の物体面(レチクルのパターン)の像を第2の物体面IMGに投影する光学系であり、図1に示すように、第2の物体面IMGから順に配置された複数の光学部材(本実施形態では、光学部材LE01、LE02及びLE03)を有する。また、投影光学系100は、投影光学系100の光学部材LE01と第2の物体面IMGとの間の空間が高屈折率を有する液体で満たされた液浸投影光学系である。
光学部材LE01乃至LE03は、高屈折率を有する等方結晶で構成され、例えば、LuAGで構成される。光学部材LE01乃至LE03のうち、2つの光学部材に関しては、<1 1 1>の結晶軸が光軸AXに配向しており、残りの1つの光学部材に関しては、<1 0 0>の結晶軸が光軸AXに配向している。2つの<1 1 1>の結晶軸部材を光軸周りに異なる相対角度で組み込むことによって、瞳内複屈折分布の非対称成分を打ち消し合い小さくすることが可能となる。更に、<1 0 0>の結晶軸部材を組み込むことによって、2つの<1 1 1>結晶軸部材で強め合う瞳内複屈折分布の回転対称成分を打ち消して小さくすることが可能となる。このように、<1 1 1>の結晶軸が光軸AXに配向された光学部材を少なくとも2つ、<1 0 0>の結晶軸が光軸AXに配向している光学部材を少なくても1つ用いることで、かかる光学部材の各々で発生する複屈折を打ち消すことが可能となる。
図1には、光学部材LE01乃至LE03を通過する光線(通過光線)のうち光軸AXとなす角の角度が最大となる光線を含む最大像高の光束LAが示されている。また、光学部材LE01における通過光線L1と光軸AXとのなす角の最大角度θ1を図2に示す。同様に、光学部材LE02における通過光線L2と光軸AXとのなす角の最大角度θ2を図3に示し、光学部材LE03における通過光線L3と光軸AXとのなす角の最大角度θ3を図4に示す。
投影光学系100において、光学部材LE01における最大角度θ1、光学部材LE02における最大角度θ2及び光学部材LE03における最大角度θ3は、以下の数式2を満足する。
(数2)
|θi−θj| < 5° (i、j=1、2、3)
投影光学系100は、上述した光学部材LE01乃至LE03に関する条件を満たすことによって、20nm/cmを超える結晶構造起因の複屈折が光学部材LE01乃至LE03に含まれていても互いに打ち消すことができる。換言すれば、投影光学系100は、3つの光学部材LE01乃至LE03で生じる結晶構造起因の複屈折を小さくすることができる。
また、投影光学系100は、光学部材LE03の直上の光学部材を等方結晶で構成することによって、結晶構造起因の複屈折を良好に補正することができる。この場合、光学部材LE01乃至LE03における最大角度θ1乃至θ3のうち最大の角度θmax及び光学部材LE03の直上の光学部材における通過光線と光軸AXとのなす角の最大角度θ4が、以下の数式3を満足することが好ましい。これにより、結晶構造起因の複屈折を更に良好に補正することができる。
(数3)
|θmax−θ4| < 10°
以下、本発明に係る投影光学系100について具体的に説明する。
図5は、実施例1の投影光学系100の構成を示す概略断面図であり、投影光学系100を構成するレンズのうち第2の物体面(ウエハ面)近傍のレンズを示す。実施例1の投影光学系100は、1.55の開口数(NA)を有し、複数のレンズと、少なくとも1つの反射部材とを含む反射屈折型の光学系である。実施例1の投影光学系100は、第2の物体面IMGから順に、平行平板L111、平行平板L112及び平凸レンズL113で構成される最終レンズ(レンズ群)L110と、非球面レンズL120とを有する。平行平板L111、平行平板L112及び平凸レンズL113は、LuAGで構成され、非球面レンズL120は、CaFで構成される。実施例1の投影光学系100を構成する図示しない他のレンズは、石英で構成される。
実施例1の投影光学系100において、像高は12.5mm乃至66.5mmまで使用可能であり、26×7mmのスリット有効領域を確保している。実施例1の投影光学系100の数値諸元表を以下の表1に示す。表1において、第1列は第2の物体面IMGから光の進行方向と逆の方向に沿った面番号、第2列は面番号に対応した各面の曲率半径(mm)、第3列は各面の軸上間隔(mm)、第4列は硝材を示す。第2列に示す曲率は、第1の物体面側の凸を正としている。
(表1)
NA=1.55
最大物高=66.5mm
面番号 曲率半径 軸上間隔 硝材
1 第2の物体面 1.000000
2 平面 14.042980 LuAG L111
3 平面 0.000000
4 平面 16.589870 LuAG L112
5 平面 0.000000
6 平面 26.367150 LuAG L113
7 87.00000 1.00000
8 196.24806(非球面) 42.366835 CaF2 L120
9 104.60882
また、面番号8の非球面の形状を以下の表2に示す。非球面の形状は、X=(H/4)/(1+((1−(1+k)・(H/r)))1/2)+AH+BH+CH+DH10+EH12で与えられるものとする。ここで、Xはレンズ頂点から光軸方向への変位量、Hは光軸からの距離、kは円錐定数、A、B、C、D及びEは非球面係数である。
(表2)
(非球面データ)
面番号8
K=1.198546261720e+000
A=1.317885777050e−008
B=1.203775426570e−011
C=−8.534206855010e−016
D=1.342134448950e−019
E=−1.049423473350e−023
実施例1の投影光学系100において、最終レンズL110(平行平板L111)と第2の物体面IMGとの間の空間には、1.85の屈折率を有する液体が満たされている。
最終レンズL110は、上述したように、2つの平行平板L111及びL112と、正の焦点距離を有する平凸レンズL113とを含み、全体として正の焦点距離を有するレンズ群である。平行平板L111と平行平板L112との間、及び、平行平板L112と平凸レンズL113との間には、レンズの開口数以上の屈折率を有する液層を形成してもよいが、多層の液層を構成した場合には、液層の制御が困難である。また、平行平板L111と、平行平板L112と、平凸レンズL113とを接着材を用いて接着してもよいが、エキシマレーザーに対する接着材の耐久性や接着材起因の収差変化が問題となる。そこで、実施例1の投影光学系100では、オプティカルコンタクトによって平行平板L111と、平行平板L112と、平凸レンズL113とを結合(接着)させている。これにより、平行平板L111、平行板L112及び平凸レンズL113(即ち、最終レンズL110)を保持するレンズ保持機構の構成を簡易にすることができるという利点もある。ここで、オプティカルコンタクトとは、平行平板L111、平行平板L112及び平凸レンズL113の各面を高度に平滑化し、分子間力を利用して平行平板L111と、平行平板L112と、平凸レンズL113とを結合させる技術である。
実施例1の投影光学系100において、平行平板L111、平行平板L112及び平凸レンズL113は、上述したように、波長193nmの光に対して2.14の屈折率を有するLuAGで構成される。
平行平板L111を通過する光線と光軸AXとのなす角の最大角度(θ1)、平行平板L112を通過する光線と光軸AXとのなす角の最大角度(θ2)及び平凸レンズL113を通過する光線と光軸AXとのなす角の最大角度(θ3)は、全て46.4°である。従って、実施例1の投影光学系100は、数式2の条件を満たしている。
平行平板L111は、<1 0 0>の結晶軸を光軸AX(光軸方向)に配向させており、<0 1 0>の結晶軸をY軸方向に配向させている。図5では、紙面に対して垂直な方向をX軸(紙面の裏側から表側に向かう方向をプラス方向)とし、右手系の座標系を定義している。
平行平板L112は、<1 1 1>の結晶軸を光軸AX(光軸方向)に配向させている。また、平行平板L111の<0 1 0>の結晶軸と平行平板L112の<1 0 0>の結晶軸の光軸垂直面への射影像とのなす光軸周りの相対角度が45°となるように、平行平板L111及び平行平板L112が配置されている。
平凸レンズL113は、<1 1 1>の結晶軸を光軸AX(光軸方向)に配向させている。また、平行平板L112の<1 0 0>の結晶軸の光軸垂直面への射影像と平凸レンズL113の<1 0 0>の結晶軸の光軸垂直面への射影像とのなす光軸周りの相対角度が60°となるように、平行平板L112及び平凸レンズL113が配置されている。
実施例1の投影光学系100は、上述した構成を有することで、最終レンズL110で発生する結晶構造起因複屈折を低減させることが可能となる。
実施例1の投影光学系は、数式2の条件を満たすことで、平行平板L111、平行平板L112及び平凸レンズL113の各々を通過する光線と光軸AXとのなす角の角度差を小さくすることができる。図14に示したように、等方結晶の場合、通過光線角度によって発生する結晶構造起因の複屈折量は異なる。従って、<1 1 1>又は<1 0 0>の結晶軸を光軸方向に配向させた場合、通過光線角度が大きくなるにつれて発生する複屈折量が大きくなる。このとき、数式2の条件を満たさず、平行平板L111、平行平板L112及び平凸レンズL113の各々を通過する光線と光軸AXとのなす角の角度差が大きくなると、各光学部材で発生する各像点に相当する光束の瞳内複屈折量が大きく異なってしまう。これにより、平行平板L111、平行平板L112及び平凸レンズL113の結晶軸(結晶方位)や組み込み角度を規定して最終レンズL110で発生する複屈折を補正する効果が低減し、複屈折を良好に打ち消すことが困難となってしまう。従って、最終レンズL110で発生する結晶構造起因の複屈折量が大きくなり、投影光学系100を構成する他の光学部材(レンズ)に高屈折率結晶硝材を多用しなければ、投影光学系100の全系での複屈折量を低減することができなくなってしまう。一方、実施例1の投影光学系100は数式2の条件を満たすため、平行平板L111、平行平板L112及び平凸レンズL113における通過光線角度が略等しくなり、最終レンズL110で発生する結晶構造起因の複屈折を効率よく補正することができる。
また、平行平板L111、平行平板L112及び平凸レンズL113の光軸AXに配向させる結晶軸の方向は、例えば、製造誤差等でばらついてしまう。従って、平行平板L111、平行平板L112及び平凸レンズL113の光軸AXに配向させる結晶軸と光軸AXとのなす角(即ち、結晶軸と光軸AXとのずれ)の角度αは、以下の数式4を満たすことが好ましい。角度αが数式4の条件を満たさない場合には、最終レンズL110で発生する結晶構造起因の複屈折の良好な補正効果が得られなくなってしまう。
(数4)
|α| < 2.0°
最終レンズL110の結晶構造起因の複屈折による瞳内リターダンス分布を図6に示す。図6(a)は、最終レンズL110を構成する平行平板L111、平行平板L112及び平凸レンズL113の<1 0 0>の結晶軸を光軸AXに配向させた場合の瞳内リターダンス分布を示している。図6(b)は、実施例1の投影光学系100の構成の場合の瞳内リターダンス分布を示している。評価像高は、スリット中心に相当する図5に示す第2の物体面IMGのY=7.5mm、X=0.0mmである。
最終レンズL110が1つの<1 0 0>結晶硝材からなるとした場合、即ち、平行平板L111、平行平板L112及び平凸レンズL113の<1 0 0>の結晶軸を光軸AXに配向させ、光軸周りにすべて同じ組み込み角度に設定した場合を考える。この場合、図6(a)に示すように、リターダンスの瞳内平均値周りのRMSで0.26λと非常に大きなリターダンス分布が発生している。このように大きなリターダンスを補正するためには、最終レンズL110以外の光学部材にもLuAGを多用しなければならない。しかし、LuAGは、波長193nmの光に対する透過率が低く、また、研磨によって所望の面精度を得ることが難しいため、LuAGの多用は避けたい。
一方、実施例1の投影光学系100では、上述したように、最終レンズL110が結晶軸の異なる複数のLuAGで構成され、また、光軸周りの組み込み角度も規定されている。これにより、最終レンズL110の全体のリターダンスは、図6(b)に示すように、リターダンスの瞳内平均値周りのRMSで0.046λとなり、図6(a)と比較して、1/5以下の値となっている。そこで、最終レンズL110以外の光学部材に、結晶構造起因の複屈折が最大で3.4nm/cmであるCaFやCaFの特性に似た特性を有する結晶構造起因の複屈折が最大で25nm/cmであるBaLiF等を用いる。これにより、最終レンズL110の結晶構造起因の複屈折を補正することができる。また、反射防止用にレンズの表面に形成される薄膜(反射防止膜)に起因する複屈折や硝材の残留応力複屈折によって、最終レンズL110の結晶構造起因の複屈折を補正することも可能となる。
非球面レンズL120は、本実施形態では、CaFで構成され、<1 1 1>の結晶軸を光軸AX(光軸方向)に配向させている。非球面レンズL120の<1 0 0>の結晶軸の光軸垂直面への射影像と平凸レンズL113の<1 0 0>の結晶軸の光軸垂直面への射影像とのなす光軸周りの相対角度が0°となるように、非球面レンズL120及び平凸レンズL113が配置されている。
非球面レンズL120を通過する光線と光軸AXとのなす角の最大角度(θ4)と、平行平板L111、平行平板L112及び平凸レンズL113の各々を通過する光線と光軸AXとのなす角の最大角度との角度差は数度であり、数式3の条件を満たしている。
実施例1の投影光学系100は、数式3の条件を満たすことで、数式2の条件と同様に、最終レンズL110及び非球面レンズL120の各々を通過する光線と光軸AXとのなす角の角度差を小さくすることができる。実施例1では、非球面レンズL120は、<1 1 1>の結晶軸を光軸AXに配向させており、最終レンズL110を分割しても補正できないリターダンス成分のうち、<1 1 1>の結晶軸に起因するリターダンス分布を補助的に補正する。このとき、数式3の条件を満たさず、最終レンズL110及び非球面レンズL120の各々を通過する光線と光軸AXとのなす角の角度の差が大きくなる場合を考える。この場合、各像点に相当する光束の瞳内リターダンス分布において、最終レンズL110を構成する<1 1 1>の結晶軸を光軸AXに配向させた光学部材のリターダンス分布と非球面レンズL120のリターダンス分布が大きく異なってしまう。これにより、非球面レンズL120の結晶軸(結晶方位)や組み込み角度を規定して最終レンズL110で発生する複屈折を補助的に補正する効果が低減し、複屈折を良好に打ち消すことが困難となってしまう。一方、実施例1の投影光学系100は数式3の条件を満たすため、最終レンズL110及び非球面レンズL120における通過光線角度が略等しくなり、最終レンズL110で発生する結晶構造起因の複屈折を効率よく補正することができる
実施例1の投影光学系100における結晶構造起因の複屈折による瞳内リターダンス分布を図7に示す。図7(a)は、図5に示す第2の物体面IMG上のY=7.5mm、X=0.0(スリット中心相当)の像高の瞳内リターダンス分布を示している。図7(b)は、図5に示す第2の物体面IMG上のY=7.5mm、X=13mm(スリットエッジ相当)の像高の瞳内リターダンス分布を示している。図7を参照するに、リターダンスの瞳内平均値周りのRMSは、スリット中心で42.5mλ、スリットエッジで43.6mλに補正されている。
このように、実施例1の投影光学系100は、コストの増大を防止すると共に、結晶構造起因の複屈折の影響を低減して優れた結像性能を実現することができる。但し、最終レンズL110を構成する平行平板L111、平行平板L112及び平凸レンズL113は、実施例1に示した配置に限定するものではない。例えば、最終レンズL110を構成する2つの光学部材が<1 1 1>の結晶軸を光軸AXに配向し、残りの1つの光学部材が<1 0 0>の結晶軸を光軸AXに配向していればよい。また、各光学部材の組み込み角度は、必要に応じて、最適な組み込み角度を設定すればよい。更に、最終レンズL110を構成する光学部材の結晶軸、硝材、曲率や厚さなども適宜設定すればよい。また、最終レンズL110を構成する光学部材は、平行平板L111、平行平板L112及び平凸レンズL113の3つに限定するものではなく、等方結晶で構成される光学部材を追加して4つの光学部材で最終レンズL110を構成してもよい。
図8は、実施例2の投影光学系100の構成を示す概略断面図であり、投影光学系100を構成するレンズのうち第2の物体面(ウエハ面)近傍のレンズを示す。実施例2の投影光学系100は、1.70の開口数(NA)を有し、複数のレンズと、少なくとも1つの反射部材とを含む反射屈折型の光学系である。実施例2の投影光学系100は、第2の物体面IMGから順に、凸レンズL151、凸レンズL152、凸レンズL153、凸レンズL154で構成される最終レンズ(レンズ群)L150を有する。凸レンズL151、凸レンズL152、凸レンズL153及び凸レンズL154は、LuAGで構成される。実施例2の投影光学系100を構成する図示しない他のレンズは、石英で構成される。
実施例2の投影光学系100において、像高は12.5mm乃至66.0mmまで使用可能であり、26×7mmのスリット有効領域を確保している。実施例2の投影光学系100の数値諸元表を以下の表3に示す。表3において、第1列は第2の物体面IMGから光の進行方向と逆の方向に沿った面番号、第2列は面番号に対応した各面の曲率半径(mm)、第3列は各面の軸上間隔(mm)、第4列は硝材を示す。
(表3)
NA=1.70
最大物高=66.0mm
面番号 曲率半径 軸上間隔 硝材
1 第2の物体面 0.50000
2 平面 16.500000 LuAG L151
3 500.00000 0.000000
4 500.00000 16.500000 LuAG L152
5 400.00000 0.000000
6 400.00000 16.000000 LuAG L153
7 150.00000 0.000000
8 150.00000 21.000000 LuAG L154
9 84.86056 1.000000
実施例2の投影光学系100において、最終レンズL150(凸レンズL151)と第2の物体面IMGとの間の空間には、1.80の屈折率を有する液体が満たされている。
最終レンズL150は、上述したように、2つの凸レンズL151乃至L154を含み、全体として正の焦点距離を有するレンズ群である。実施例2の投影光学系100では、オプティカルコンタクトによって凸レンズL151と、凸レンズL152と、凸レンズL153と、凸レンズL154とを結合(接着)させている。
実施例1の投影光学系100において、凸レンズL151乃至L154は、上述したように、波長193nmの光に対して2.14の屈折率を有するLuAGで構成される。
凸レンズL151乃至L154の各々を通過する光線と光軸AXとのなす角の最大角度は、全て52.6°である。凸レンズL151における最大角度θ1、凸レンズL152における最大角度θ2及び凸レンズL153における最大角度θ3及び凸レンズL154における最大角度θ4は、以下の数式5を満足する。
(数5)
|θi−θj| < 5° (i、j=1、2、3、4)
凸レンズL151は、<1 1 1>の結晶軸を光軸AX(光軸方向)に配向させており、<1 0 0>の結晶軸を光軸垂直面への射影像を図8のy軸方向に配向させている。図8では、紙面に対して垂直な方向をX軸(紙面の裏側から表側に向かう方向をプラス方向)とし、右手系の座標系を定義している。
凸レンズL152は、<1 1 1>の結晶軸を光軸AX(光軸方向)に配向させている。また、凸レンズL151の<1 0 0>の結晶軸と凸レンズL152の<1 0 0>の結晶軸の光軸垂直面への射影像とのなす光軸周りの相対角度が60°となるように、凸レンズL151及び凸レンズL152が配置されている。
凸レンズL153は、<1 0 0>の結晶軸を光軸AX(光軸方向)に配向させている。また、凸レンズL152の<1 0 0>の結晶軸の光軸垂直面への射影像と凸レンズL153の<0 1 0>の結晶軸の光軸垂直面への射影像とのなす光軸周りの相対角度が0°となるように、凸レンズL152及び凸レンズL153が配置されている。
凸レンズL154は、<1 0 0>の結晶軸を光軸AX(光軸方向)に配向させている。また、凸レンズL153の<0 1 0>の結晶軸と凸レンズL154の<0 1 0>の結晶軸とのなす光軸周りの相対角度が45°となるように、凸レンズL153及び凸レンズL154が配置されている。
実施例2の投影光学系100は、上述した構成を有することで、最終レンズL150で発生する結晶構造起因複屈折を低減させることが可能となる。
実施例2の投影光学系100における結晶構造起因の複屈折による瞳内リターダンス分布を図9に示す。図9(a)は、図8に示す第2の物体面IMG上のY=6.0mm、X=0.0(スリット中心相当)の像高の瞳内リターダンス分布を示している。図9(b)は、図8に示す第2の物体面IMG上のY=6.0mm、X=13mm(スリットエッジ相当)の像高の瞳内リターダンス分布を示している。図9を参照するに、リターダンスの瞳内平均値周りのRMSは、スリット中心で40.6mλ、スリットエッジで43.4mλに補正されている。
このように、実施例2の投影光学系100は、コストの増大を防止すると共に、結晶構造起因の複屈折の影響を低減して優れた結像性能を実現することができる。但し、最終レンズL150を構成する2つの光学部材が<1 1 1>の結晶軸を光軸AXに配向し、残りの2つの光学部材が<1 0 0>の結晶軸を光軸AXに配向していればよく結晶軸の順番を制約するものではない。また、各光学部材の組み込み角度は、必要に応じて、最適な組み込み角度を設定すればよい。更に、最終レンズL150を構成する光学部材の結晶軸、硝材、曲率や厚さなども適宜設定すればよい。
以下、図10を参照して、本発明に係る投影光学系100を適用した露光装置200について説明する。図10は、本発明に係る露光装置200の構成を示す概略断面図である。
露光装置200は、投影光学系100とウエハ240との間に供給される液体LWを介して、レチクル220のパターンをステップ・アンド・スキャン方式でウエハ240に露光する液浸露光装置である。
露光装置200は、図10に示すように、照明装置210と、レチクル220を載置するレチクルステージ225と、投影光学系100と、ウエハ240を載置するウエハステージ245と、測距装置250と、ステージ制御部260を有する。また、露光装置200は、液体供給部270と、液浸制御部280と、液体回収部290と、ノズルユニットNUとを有する。
照明装置210は、光源部212と、照明光学系214とを有する。本実施形態では、光源部212の光源として、波長193nmのArFエキシマレーザーを使用する。
照明光学系214は、光源部212からの光でレチクル220を照明する光学系である。
レチクル220は、図示しないレチクル搬送系によって露光装置200の外部から搬送され、レチクルステージ225に支持及び駆動される。
レチクルステージ225は、図示しないレチクルチャックを介してレチクル220を支持し、ステージ制御部260によって制御される。
投影光学系100は、第1の物体面としてのレチクル220上のパターンの像を第2の物体面としてのウエハ240上に投影する投影光学系である。投影光学系100は、上述した通りのいかなる形態をも適用可能であり、ここでの詳細な説明は省略する。
本実施形態では、基板としてウエハ240を用いる。しかし、ウエハ240の代わりにガラスプレート、その他の基板を使用することもできる。ウエハ240には、フォトレジストが塗布されている。
液体保持部244は、ウエハステージ245に支持されたウエハ240の周囲に配置される。液体保持部244は、ウエハ240の表面と同じ高さの表面を有する板である。また、液体保持部244は、ウエハ240の外周付近のショットを露光する際に、ウエハ240の外側の領域の液体LWを保持する。
測距装置250は、レチクルステージ225の位置及びウエハステージ245の位置を、参照ミラー252及び254、及び、レーザー干渉計256及び258を使用してリアルタイムに計測する。測距装置250による測距結果は、ステージ制御部260に伝達される。
ステージ制御部260は、測距装置250の測距結果に基づいて、位置決めや同期制御のために、レチクルステージ225及びウエハステージ245の駆動を制御する。
液体供給部270は、投影光学系100の最終レンズとウエハ240との間の空間又は間隙に液体LWを供給する。液体供給部270は、液体供給配管272を有する。液体供給部270は、投影光学系100の最終レンズの周囲に配置された液体供給配管272を介して液体LWを供給する。これにより、投影光学系100とウエハ240との間の空間には、液体LWの液膜が形成される。
液浸制御部280は、ウエハステージ245の現在位置、速度、加速度などの情報をステージ制御部260から取得し、かかる情報に基づいて、液浸露光に係る制御を行う。
液体回収部290は、液体供給部270によって投影光学系100とウエハ240との間に供給された液体LWを回収する機能を有し、液体回収配管292を有する。液体回収配管292は、液体供給部270によって投影光学系100とウエハ240との間に供給された液体LWをノズルユニットNUに形成された液体回収口を介して回収する。
ノズルユニットNUのウエハ240側には液体供給口と、液体回収口とが形成されている。液体供給口は、液体LWを供給するための供給口であり、液体供給配管272に接続される。液体回収口は、供給した液体LWを回収するための開口であり、液体回収配管292に接続される。
露光において、光源部212から発せられた光束は、照明光学系214によりレチクル220を照明する。レチクル220のパターンは、投影光学系100により、液体WTを介してウエハ240に結像される。露光装置200が用いる投影光学系100は、優れた結像性能を有し、高いスループットで経済性よくデバイス(半導体素子、LCD素子、撮像素子(CCDなど)、薄膜磁気ヘッドなど)を提供することができる。
次に、図11及び図12を参照して、露光装置200を利用したデバイス製造方法の実施例を説明する。図11は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)では、デバイスの回路設計を行う。ステップ2(レチクル製作)では、設計した回路パターンを形成したレチクルを製作する。ステップ3(ウエハ製造)では、シリコンなどの材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は、前工程と呼ばれ、レチクルとウエハを用いてリソグラフィー技術によってウエハ上に実際の回路を形成する。ステップ5(組み立て)は、後工程と呼ばれ、ステップ4によって作成されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
図12は、ステップ4のウエハプロセスの詳細なフローチャートである。ステップ11(酸化)では、ウエハの表面を酸化させる。ステップ12(CVD)では、ウエハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウエハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)では、ウエハにイオンを打ち込む。ステップ15(レジスト処理)では、ウエハに感光剤を塗布する。ステップ16(露光)では、露光装置200によってレチクルの回路パターンをウエハに露光する。ステップ17(現像)では、露光したウエハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウエハ上に多重の回路パターンが形成される。かかるデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。このように、露光装置200を使用するデバイス製造方法、並びに結果物としてのデバイスも本発明の一側面を構成する。
以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本発明の投影光学系は、液浸露光装置でなくても適用することができる
本発明の一側面としての投影光学系の構成を示す概略断面図である。 図1に示す投影光学系を構成する光学部材における通過光線と光軸とのなす角の最大角度を示す図である。 図1に示す投影光学系を構成する光学部材における通過光線と光軸とのなす角の最大角度を示す図である。 図1に示す投影光学系を構成する光学部材における通過光線と光軸とのなす角の最大角度を示す図である。 本発明に係る実施例1の投影光学系の構成を示す概略断面図である。 実施例1の投影光学系における最終レンズの結晶構造起因の複屈折による瞳内リターダンス分布を示す図である。 実施例1の投影光学系における結晶構造起因の複屈折による瞳内リターダンス分布を示す図である。 本発明に係る実施例2の投影光学系の構成を示す概略断面図である。 実施例2の投影光学系における結晶構造起因の複屈折による瞳内リターダンス分布を示す図である。 本発明の一側面としての露光装置の構成を示す概略断面図である。 デバイスの製造を説明するためのフローチャートである。 図11に示すステップ4のウエハプロセスの詳細なフローチャートである。 最終レンズの硝材をLuAG(屈折率:2.14)とした場合において、最終レンズを通過する光線と投影光学系の光軸とのなす角度θFLの開口数依存性を示すグラフである。 等方結晶硝材の結晶構造起因の複屈折分布を示す図である。
符号の説明
100 投影光学系
LE01乃至LE03 光学部材
AX 光軸
IMG 第2の物体面
L110 最終レンズ
L111及びL112 平行平板
L113 平凸レンズ
L120 非球面レンズ
L150 最終レンズ
L151乃至L154 凸レンズ
200 露光装置
210 照明装置
214 照明光学系
240 ウエハ
270 液体供給部
290 液体回収部

Claims (10)

  1. 第1の物体面の像を第2の物体面に投影する投影光学系であって、
    前記第2の物体面から順に配置された複数の光学部材を有し、
    前記複数の光学部材は、等方結晶で構成され、<1 1 1>の結晶軸を光軸方向に配向させた第1の光学部材及び第2の光学部材と、<1 0 0>の結晶軸を光軸方向に配向させた第3の光学部材とを含み、
    前記第1の光学部材、前記第2の光学部材及び前記第3の光学部材の各々を通過する光線と光軸とのなす角の最大角度θ1、θ2、θ3が、
    |θi−θj| < 5° (i、j=1、2、3)
    を満足することを特徴とする投影光学系。
  2. 前記複数の光学部材は、オプティカルコンタクトによって結合されていることを特徴とする請求項1記載の投影光学系。
  3. 前記複数の光学部材は、正の焦点距離を有する光学部材と、平行平板からなる光学部材とを含むことを特徴とする請求項1記載の投影光学系。
  4. 前記正の焦点距離を有する光学部材と前記平行平板からなる光学部材とは、同じ等方結晶で構成されることを特徴とする請求項3記載の投影光学系。
  5. 前記等方結晶は、LuAGであることを特徴とする請求項1記載の投影光学系。
  6. 前記複数の光学部材の各々は、凸レンズであることを特徴とする請求項2記載の投影光学系。
  7. 第1の物体面の像を第2の物体面に投影する投影光学系であって、
    前記第2の物体面から順に配置された複数の光学部材を有し、
    前記複数の光学部材は、等方結晶で構成され、<1 1 1>の結晶軸を光軸方向に配向させた第1の光学部材及び第2の光学部材と、<1 0 0>の結晶軸を光軸方向に配向させた第3の光学部材及び第4の光学部材とを含み、
    前記第1の光学部材、前記第2の光学部材、前記第3の光学部材及び前記第4の光学部材の各々を通過する光線と光軸とのなす角の最大角度θ1、θ2、θ3、θ4が、
    |θi−θj| < 5° (i、j=1、2、3、4)
    を満足することを特徴とする投影光学系。
  8. 光源からの光でレチクルを照明する照明光学系と、
    前記レチクルのパターンの像を基板に投影する請求項1乃至7のうちいずれか1項に記載の投影光学系とを有することを特徴とする露光装置。
  9. 前記投影光学系と前記基板との間に液体を供給する液体供給部を更に有することを特徴とする請求項8記載の露光装置。
  10. 請求項8又は9記載の露光装置を用いて基板を露光するステップと、
    露光された前記基板を現像するステップとを有することを特徴とするデバイス製造方法。
JP2007051936A 2007-03-01 2007-03-01 投影光学系、露光装置及びデバイス製造方法 Withdrawn JP2008216498A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007051936A JP2008216498A (ja) 2007-03-01 2007-03-01 投影光学系、露光装置及びデバイス製造方法
US12/038,026 US7474380B2 (en) 2007-03-01 2008-02-27 Projection optical system, exposure apparatus, and device fabrication method
KR1020080018156A KR20080080436A (ko) 2007-03-01 2008-02-28 투영 광학계, 노광장치 및 디바이스 제조방법
EP08152056A EP1965228A1 (en) 2007-03-01 2008-02-28 Projection optical system, exposure apparatus, and device fabrication method
TW097107112A TW200907585A (en) 2007-03-01 2008-02-29 Projection optical system, exposure apparatus, and semiconductor device fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051936A JP2008216498A (ja) 2007-03-01 2007-03-01 投影光学系、露光装置及びデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2008216498A true JP2008216498A (ja) 2008-09-18

Family

ID=39431077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051936A Withdrawn JP2008216498A (ja) 2007-03-01 2007-03-01 投影光学系、露光装置及びデバイス製造方法

Country Status (5)

Country Link
US (1) US7474380B2 (ja)
EP (1) EP1965228A1 (ja)
JP (1) JP2008216498A (ja)
KR (1) KR20080080436A (ja)
TW (1) TW200907585A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031603A (ja) * 2007-07-27 2009-02-12 Canon Inc 投影光学系、露光装置及びデバイス製造方法
JP2009086038A (ja) * 2007-09-27 2009-04-23 Canon Inc 投影光学系、露光装置及びデバイス製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015251A (ko) * 2001-05-15 2004-02-18 칼 짜이스 에스엠티 아게 불화물 결정 렌즈들을 포함하는 렌즈 시스템
JP2004045692A (ja) 2002-07-11 2004-02-12 Canon Inc 投影光学系、露光装置及びデバイス製造方法
AU2003298405A1 (en) 2002-09-03 2004-03-29 Carl Zeiss Smt Ag Optimization method for an objective with fluoride crystal lenses and objective with fluoride crystal lenses
JP5102492B2 (ja) * 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
JP2006113533A (ja) * 2004-08-03 2006-04-27 Nikon Corp 投影光学系、露光装置、および露光方法
KR20070105976A (ko) 2005-02-25 2007-10-31 칼 짜이스 에스엠티 아게 광학시스템, 특히 마이크로리소그래픽 투사노출장치용대물렌즈 또는 조명장치
DE102006038398A1 (de) * 2006-08-15 2008-02-21 Carl Zeiss Smt Ag Projektionsobjektiv einer mikrolithographischen Projektionsbelichtungsanlage

Also Published As

Publication number Publication date
EP1965228A1 (en) 2008-09-03
KR20080080436A (ko) 2008-09-04
US20080212058A1 (en) 2008-09-04
TW200907585A (en) 2009-02-16
US7474380B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
JP5621807B2 (ja) 露光装置、露光方法、およびデバイス製造方法
JP2004205698A (ja) 投影光学系、露光装置および露光方法
JP2004333761A (ja) 反射屈折型の投影光学系、露光装置、および露光方法
JP4370582B2 (ja) 投影光学系、露光装置、および露光方法
CN101006377A (zh) 反射型投影光学系统以及具备此反射型投影光学系统的曝光装置
JP2007305821A (ja) 投影光学系、露光装置、およびデバイス製造方法
US7714985B2 (en) Projection optical system
JP2005129775A (ja) 反射屈折投影光学系、露光装置及び露光方法
JP2009025737A (ja) 反射屈折型投影光学系、露光装置及びデバイス製造方法
JP2008216498A (ja) 投影光学系、露光装置及びデバイス製造方法
JP6358242B2 (ja) 露光装置、露光方法、デバイス製造方法およびパターン形成方法
JP2005195713A (ja) 投影光学系、露光装置、および露光方法
JP4482874B2 (ja) 投影光学系、露光装置、および露光方法
US7843645B2 (en) Projection optical system, exposure apparatus, and method of manufacturing device
JP2009031603A (ja) 投影光学系、露光装置及びデバイス製造方法
JP5664697B2 (ja) 反射屈折型の投影光学系、露光装置、および露光方法
JP4940009B2 (ja) 投影光学系
JP2004354555A (ja) 反射屈折型の投影光学系、露光装置および露光方法
JP2014194552A (ja) 反射屈折型の投影光学系、露光装置、および露光方法
JP5877965B2 (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2011049571A (ja) 反射屈折投影光学系、露光装置及び露光方法
JP2018077519A (ja) 露光装置、露光方法およびデバイス製造方法
JP2016136273A (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2015132843A (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2014056255A (ja) 投影光学系、露光装置及び露光方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511