JP2008210825A - Mounting structure and method of electronic component - Google Patents
Mounting structure and method of electronic component Download PDFInfo
- Publication number
- JP2008210825A JP2008210825A JP2007043259A JP2007043259A JP2008210825A JP 2008210825 A JP2008210825 A JP 2008210825A JP 2007043259 A JP2007043259 A JP 2007043259A JP 2007043259 A JP2007043259 A JP 2007043259A JP 2008210825 A JP2008210825 A JP 2008210825A
- Authority
- JP
- Japan
- Prior art keywords
- electronic component
- metal
- circuit board
- electrode pad
- mounting structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01043—Technetium [Tc]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
本発明は、半導体チップや半導体パッケージ等の電子部品を回路基板にはんだバンプを用いて接続する電子部品の実装構造及びその実装方法に係り、すなわちC4(シーフォー)の技術分野に関する。 The present invention relates to a mounting structure of an electronic component for connecting an electronic component such as a semiconductor chip or a semiconductor package to a circuit board using a solder bump and a mounting method thereof, that is, to the technical field of C4 (Sea Four).
図8は電子部品16を回路基板12にはんだバンプ14で接続する場合の従来の実装構造を示す縦断面図である。この実装構造において、低温度(例えば−40℃)状態と高温度(例えば125℃)状態の温度サイクル(以下、TCと略す場合もある。)を負荷すると、ある温度サイクル(耐TC寿命)で電子部品16と回路基板12とを接続するはんだバンプ14が破壊されて、電気的な接続不良が発生する問題がある。 FIG. 8 is a longitudinal sectional view showing a conventional mounting structure when the electronic component 16 is connected to the circuit board 12 by the solder bumps 14. In this mounting structure, when a temperature cycle (hereinafter sometimes abbreviated as TC) in a low temperature (for example, −40 ° C.) state and a high temperature (for example, 125 ° C.) state is loaded, the temperature structure (TC life) There is a problem in that the solder bump 14 connecting the electronic component 16 and the circuit board 12 is broken, resulting in poor electrical connection.
この接続不良の発生を抑制するため、従来では、特許文献1に記載されているように、電子部品と回路基板との間に熱硬化性樹脂材料を充填する方法(以下、アンダーフィル樹脂封止方法という。)が広く知られている。
ところで、温度サイクル試験によって、はんだバンプ14に接続不良が発生するメカニズムを図8及び図9を参照して説明する。 By the way, a mechanism for causing a connection failure in the solder bump 14 by the temperature cycle test will be described with reference to FIGS.
一般に、電子部品16と回路基板と12の間には、線膨張係数差が存在する。例えば、電子部品16がシリコンの場合、その線膨張係数は3ppm/℃であり、回路基板12が有機材料を絶縁樹脂とするビルドアップ基板の場合、その線膨張係数は10〜30ppm/℃程度である。はんだバンプ14が鉛錫共晶はんだや、鉛フリーはんだの場合、その線膨張係数は、20〜30ppm/℃である。 In general, a linear expansion coefficient difference exists between the electronic component 16 and the circuit board 12. For example, when the electronic component 16 is silicon, its linear expansion coefficient is 3 ppm / ° C., and when the circuit board 12 is a build-up substrate using an organic material as an insulating resin, its linear expansion coefficient is about 10 to 30 ppm / ° C. is there. When the solder bump 14 is a lead-tin eutectic solder or a lead-free solder, the coefficient of linear expansion is 20 to 30 ppm / ° C.
はんだバンプ14を用いて電子部品16を回路基板12に接続する場合、電子部品16のはんだバンプ14をはんだの融点(180℃〜300℃)まで加熱し、回路基板12に接触させて、電子部品16と回路基板12との接合を完了させた後に冷却する。 When the electronic component 16 is connected to the circuit board 12 using the solder bump 14, the solder bump 14 of the electronic component 16 is heated to the melting point (180 ° C. to 300 ° C.) of the solder and brought into contact with the circuit board 12. Cooling is performed after the bonding of 16 and the circuit board 12 is completed.
このとき、電子部品16と回路基板12との線膨張係数差によって、冷却時の収縮率が異なるため、はんだバンプ14が図9に示すように水平方向に変形する。このような温度サイクル試験によって、この水平方向の変形が繰り返し生じるため、はんだバンプ14にクラックが発生し、このクラックが進展してはんだバンプ14が断裂し、延いては電気的接続不良が発生する問題がある。 At this time, since the shrinkage rate at the time of cooling differs depending on the difference in linear expansion coefficient between the electronic component 16 and the circuit board 12, the solder bump 14 is deformed in the horizontal direction as shown in FIG. In such a temperature cycle test, this horizontal deformation is repeatedly generated, so that a crack is generated in the solder bump 14, the crack progresses and the solder bump 14 is broken, and an electrical connection failure occurs. There's a problem.
上述した特許文献1に記載された従来技術(アンダーフィル樹脂封止方法)では、バンプの水平方向の変形を抑制して、はんだバンプの耐TC寿命を向上させることができるものの、アンダーフィル樹脂封止後、電子部品を回路基板から取り外すことが困難になるという問題がある。 In the conventional technique (underfill resin sealing method) described in Patent Document 1 described above, the horizontal deformation of the bumps can be suppressed and the TC life of the solder bumps can be improved. After stopping, there is a problem that it becomes difficult to remove the electronic component from the circuit board.
また、上記アンダーフィル樹脂封止方法では、バンプ間に隙間なくアンダーフィル樹脂が流れ込むことや、アンダーフィル樹脂内に気泡を生じないことが要求されるが、実装配線密度の増加によってはんだバンプの狭ピッチ化が進むと、これらの要求を満たすことが困難になるという問題がある。 In addition, the underfill resin sealing method requires that the underfill resin flow without gaps between the bumps and that no bubbles are generated in the underfill resin. As pitching advances, there is a problem that it becomes difficult to satisfy these requirements.
さらに、上記アンダーフィル樹脂封止方法では、電子部品が高周波デバイスの場合、デバイスの電気特性が大幅に変化してしまうという問題がある。 Furthermore, in the underfill resin sealing method, when the electronic component is a high-frequency device, there is a problem that the electrical characteristics of the device are significantly changed.
本発明は、以上の点に鑑みてなされたものであり、電子部品を回路基板にはんだバンプを用いて接続する実装構造及び実装方法において、アンダーフィル樹脂で封止せずに、はんだバンプの耐温度サイクル寿命を向上させる電子部品の実装構造及びその実装方法を提供することを目的とする。 The present invention has been made in view of the above points, and in a mounting structure and a mounting method for connecting an electronic component to a circuit board using solder bumps, the solder bumps are resistant to temperature without being sealed with an underfill resin. It is an object of the present invention to provide an electronic component mounting structure and a mounting method for improving cycle life.
上記課題を解決するために、請求項1に記載の発明は、電子部品を回路基板にはんだバンプで接続した実装構造において、前記はんだバンプの内部に銅等の高融点金属からなる高融点金属部品が前記電子部品の電極パッド及び前記回路基板の電極パッドと分離して配置され、かつ前記高融点金属部品は、板状に形成されるとともに、当該金属板の長さ方向が前記電子部品及び前記回路基板と垂直になるように配置されていることを特徴とする。 In order to solve the above problems, the invention according to claim 1 is a mounting structure in which an electronic component is connected to a circuit board with a solder bump, and the refractory metal component made of a refractory metal such as copper inside the solder bump. Are disposed separately from the electrode pads of the electronic component and the electrode pads of the circuit board, and the refractory metal component is formed in a plate shape, and the length direction of the metal plate is the electronic component and the electronic component. It is arranged to be perpendicular to the circuit board.
請求項2に記載の発明は、電子部品を回路基板にはんだバンプで接続した実装構造において、前記はんだバンプの内部に銅等の高融点金属からなる高融点金属部品が前記電子部品の電極パッド及び前記回路基板の電極パッドと分離して配置され、かつ前記高融点金属部品は、横断面く字状の金属板に形成するとともに、当該金属板の長さ方向が前記電子部品及び前記回路基板と垂直になるように配置されていることを特徴とする。 According to a second aspect of the present invention, in a mounting structure in which an electronic component is connected to a circuit board with a solder bump, a refractory metal component made of a refractory metal such as copper is provided inside the solder bump. The refractory metal component is disposed separately from the electrode pads of the circuit board, and the metal plate is formed in a cross-sectionally-shaped metal plate, and the length direction of the metal plate is the electronic component and the circuit board. It arrange | positions so that it may become perpendicular | vertical.
請求項3に記載の発明は、電子部品を回路基板にはんだバンプで接続した実装構造において、前記はんだバンプの内部に銅等の高融点金属からなる高融点金属部品が前記電子部品の電極パッド及び前記回路基板の電極パッドと分離して配置され、かつ前記高融点金属部品は、横断面コ字状の金属板に形成するとともに、当該金属板の長さ方向が前記電子部品及び前記回路基板と垂直になるように配置されていることを特徴とする。 According to a third aspect of the present invention, in a mounting structure in which an electronic component is connected to a circuit board with a solder bump, a refractory metal component made of a refractory metal such as copper is provided inside the solder bump. The refractory metal component is disposed on a metal plate having a U-shaped cross section and is disposed separately from the electrode pad of the circuit board, and the length direction of the metal plate is the electronic component and the circuit board. It arrange | positions so that it may become perpendicular | vertical.
請求項4に記載の発明は、電子部品を回路基板にはんだバンプで接続した実装構造において、前記はんだバンプの内部に銅等の高融点金属からなる高融点金属部品が前記電子部品の電極パッド及び前記回路基板の電極パッドと分離して配置され、かつ前記高融点金属部品は、角筒状に形成するとともに、当該金属角筒の長さ方向が前記電子部品及び前記回路基板と垂直になるように配置されていることを特徴とする。 According to a fourth aspect of the present invention, in a mounting structure in which an electronic component is connected to a circuit board with a solder bump, a refractory metal component made of a refractory metal such as copper is provided inside the solder bump. The refractory metal component is arranged separately from the electrode pads of the circuit board and is formed in a square tube shape, and the length direction of the metal square tube is perpendicular to the electronic component and the circuit board. It is characterized by being arranged in.
請求項5に記載の発明は、電子部品を回路基板にはんだバンプで接続した実装構造において、前記はんだバンプの内部に銅等の高融点金属からなる高融点金属部品が前記電子部品の電極パッド及び前記回路基板の電極パッドと分離して配置され、かつ前記高融点金属部品は、横断面円弧状の金属板に形成するとともに、当該円弧状金属板の長さ方向が前記電子部品及び前記回路基板と垂直になるように配置されていることを特徴とする。 According to a fifth aspect of the present invention, in a mounting structure in which an electronic component is connected to a circuit board with a solder bump, a refractory metal component made of a refractory metal such as copper is disposed inside the solder bump. The refractory metal component is disposed separately from the electrode pad of the circuit board, and the refractory metal component is formed on a metal plate having a cross-sectional arc shape, and the length direction of the arc-shaped metal plate is the electronic component and the circuit substrate. It is characterized by being arranged so as to be vertical.
請求項6に記載の発明は、電子部品を回路基板にはんだバンプで接続した実装構造において、前記はんだバンプの内部に銅等の高融点金属からなる高融点金属部品が前記電子部品の電極パッド及び前記回路基板の電極パッドと分離して配置され、かつ前記高融点金属部品は、両端面に穴が形成された一部中空円柱状もしくは円筒状に形成するとともに、これら一部中空金属円柱もしくは金属円筒の長さ方向が前記電子部品及び前記回路基板と垂直になるように配置されていることを特徴とする。 According to a sixth aspect of the present invention, in a mounting structure in which an electronic component is connected to a circuit board with a solder bump, a refractory metal component made of a refractory metal such as copper is disposed inside the solder bump. The refractory metal component is disposed separately from the electrode pads of the circuit board, and the refractory metal component is formed in a partially hollow cylindrical shape or cylindrical shape having holes formed in both end faces, and the partially hollow metal cylindrical shape or metal The cylinder is arranged such that the length direction of the cylinder is perpendicular to the electronic component and the circuit board.
請求項7に記載の発明は、請求項1乃至6のいずれか一項に記載の電子部品の実装構造において、前記電子部品の電極パッド及び前記回路基板の電極パッドのそれぞれに金等の高融点金属からなる突起が形成されていることを特徴とする。 According to a seventh aspect of the present invention, in the electronic component mounting structure according to any one of the first to sixth aspects, a high melting point such as gold is applied to each of the electrode pad of the electronic component and the electrode pad of the circuit board. Protrusions made of metal are formed.
請求項8に記載の発明は、請求項1又は7に記載の電子部品の実装構造において、前記金属板面と前記電子部品の電極パッドとの間隔及び前記金属板面と前記回路基板の電極パッドとの間隔が、それぞれ前記電子部品の電極パッドに形成した金属突起の突出長さ及び前記回路基板の電極パッドに形成した金属突起の突出長さより短いことを特徴とする。 According to an eighth aspect of the present invention, in the electronic component mounting structure according to the first or seventh aspect, the distance between the metal plate surface and the electrode pad of the electronic component and the metal plate surface and the electrode pad of the circuit board. Is shorter than the protruding length of the metal protrusion formed on the electrode pad of the electronic component and the protruding length of the metal protrusion formed on the electrode pad of the circuit board.
請求項9に記載の発明は、請求項2又は7に記載の電子部品の実装構造において、前記横断面く字状の金属板と前記電子部品の電極パッドとの間隔及び前記金属板と前記回路基板の電極パッドとの間隔が、それぞれ前記電子部品の電極パッドに形成した金属突起の突出長さ及び前記回路基板の電極パッドに形成した金属突起の突出長さより短いことを特徴とする。 According to a ninth aspect of the present invention, in the electronic component mounting structure according to the second or seventh aspect, the distance between the metal plate having a square cross section and the electrode pad of the electronic component, and the metal plate and the circuit. The distance from the electrode pad of the substrate is shorter than the protruding length of the metal protrusion formed on the electrode pad of the electronic component and the protruding length of the metal protrusion formed on the electrode pad of the circuit board, respectively.
請求項10に記載の発明は、請求項3又は7に記載の電子部品の実装構造において、前記横断面コ字状の金属板と前記電子部品の電極パッドとの間隔及び前記金属板と前記回路基板の電極パッドとの間隔が、それぞれ前記電子部品の電極パッドに形成した金属突起の突出長さ及び前記回路基板の電極パッドに形成した金属突起の突出長さより短いことを特徴とする。 According to a tenth aspect of the present invention, in the electronic component mounting structure according to the third or seventh aspect, the distance between the U-shaped cross-sectional metal plate and the electrode pad of the electronic component, and the metal plate and the circuit The distance from the electrode pad of the substrate is shorter than the protruding length of the metal protrusion formed on the electrode pad of the electronic component and the protruding length of the metal protrusion formed on the electrode pad of the circuit board, respectively.
請求項11に記載の発明は、請求項4又は7に記載の電子部品の実装構造において、前記電子部品の電極パッドの金属突起と前記回路基板の電極パッドの金属突起が、それぞれ前記金属角筒の開口部に入るように配置されることを特徴とする。 According to an eleventh aspect of the present invention, in the electronic component mounting structure according to the fourth or seventh aspect, the metal protrusions of the electrode pads of the electronic component and the metal protrusions of the electrode pads of the circuit board are respectively the metal square tube. It arrange | positions so that it may enter into the opening part.
請求項12に記載の発明は、請求項5又は7に記載の電子部品の実装構造において、前記円弧状金属板と前記電子部品の電極パッドの間隔及び前記円弧状金属板と前記回路基板の電極パッドの間隔が、それぞれ前記電子部品の電極パッドに形成した金属突起の突出長さ及び前記回路基板の電極パッドに形成した金属突起の突出長さより短いことを特徴とする。 According to a twelfth aspect of the present invention, in the electronic component mounting structure according to the fifth or seventh aspect, an interval between the arc-shaped metal plate and the electrode pad of the electronic component and an electrode of the arc-shaped metal plate and the circuit board. The pad spacing is shorter than the protruding length of the metal protrusion formed on the electrode pad of the electronic component and the protruding length of the metal protrusion formed on the electrode pad of the circuit board, respectively.
請求項13に記載の発明は、請求項6又は7に記載の電子部品の実装構造において、前記電子部品の電極パッドの金属突起と前記回路基板の電極パッドの金属突起が、それぞれ前記一部中空金属円柱の各穴もしくは前記金属円筒の開口部に入るように配置されることを特徴とする。 According to a thirteenth aspect of the present invention, in the electronic component mounting structure according to the sixth or seventh aspect, the metal protrusions of the electrode pads of the electronic component and the metal protrusions of the electrode pads of the circuit board are each partially hollow. It arrange | positions so that it may enter into each hole of a metal cylinder, or the opening part of the said metal cylinder.
請求項14に記載の発明は、熱硬化性樹脂を穴あけして金属メッキする工程と、前記穴周辺の不要なメッキ及び前記熱硬化性樹脂を除去して金属筒を形成する工程と、電子部品及び回路基板の電極パッドに超音波溶接によって金属突起を形成する工程と、前記電子部品を前記回路基板にはんだバンプで接続し、前記電極パッドの前記金属突起が前記金属筒の開口部に入るように当該金属筒を配置する工程と、を備えることを特徴とする。 The invention according to claim 14 includes a step of drilling a thermosetting resin and metal plating, a step of removing unnecessary plating around the hole and the thermosetting resin to form a metal tube, and an electronic component. And forming a metal protrusion on the electrode pad of the circuit board by ultrasonic welding, and connecting the electronic component to the circuit board with a solder bump so that the metal protrusion of the electrode pad enters the opening of the metal cylinder. And a step of disposing the metal cylinder.
本発明の電子部品の実装構造によれば、はんだバンプ内に高融点金属部品が配置されたことにより、はんだバンプの水平方向の変形が抑制されるため、電子部品や回路基板の反りを未然に防止することができ、はんだバンプの耐温度サイクル寿命を向上させることができる。 According to the electronic component mounting structure of the present invention, since the refractory metal component is arranged in the solder bump, the deformation of the solder bump in the horizontal direction is suppressed. The temperature cycle life of the solder bump can be improved.
また、本発明の電子部品の実装構造及びその実装方法によれば、電子部品の電極パッドの金属突起と回路基板の電極パッドの金属突起が、それぞれ高融点金属からなる金属筒の開口部に入るように配置されることにより、はんだバンプに発生したクラックの進展が抑えられ、はんだバンプの耐温度サイクル寿命を向上させることができる。 Further, according to the electronic component mounting structure and the mounting method of the present invention, the metal protrusions of the electrode pads of the electronic component and the metal protrusions of the electrode pads of the circuit board respectively enter the opening of the metal cylinder made of a refractory metal. By arrange | positioning in this way, the progress of the crack which generate | occur | produced in the solder bump is suppressed and the temperature-resistant cycle life of a solder bump can be improved.
さらに、本発明の電子部品の実装構造及びその実装方法によれば、アンダーフィル樹脂封止を行う必要がなくなるため、回路基板から電子部品を容易に取り外すことができるとともに、はんだバンプの狭ピッチ化、電子部品の電気特性変化の抑制、及び低誘電率(low−k)膜電子部品の耐温度サイクル寿命の向上を図ることができる。 Furthermore, according to the mounting structure and mounting method of an electronic component of the present invention, it is not necessary to perform underfill resin sealing, so that the electronic component can be easily removed from the circuit board and the pitch of the solder bumps is reduced. In addition, it is possible to suppress the change in electrical characteristics of the electronic component and to improve the temperature cycle life of the low dielectric constant (low-k) film electronic component.
以下、図面を参照して本発明の最良の実施形態について詳細に説明する。なお、以下の各実施形態では、従来の構成と同一または対応する部分に図8と同一の符号を用いて説明する。 Hereinafter, the best embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the same or corresponding parts as those in the conventional configuration will be described using the same reference numerals as those in FIG.
(第1実施形態)
図1Aは本発明の第1実施形態の実装構造を示す縦断面図、図1Bは図1Aの金属円筒及び電極パッドを示す斜視図である。
(First embodiment)
FIG. 1A is a longitudinal sectional view showing the mounting structure of the first embodiment of the present invention, and FIG. 1B is a perspective view showing the metal cylinder and electrode pad of FIG. 1A.
図1A及び図1Bに示すように、電子部品16を回路基板12にはんだバンプ14で接続した実装構造では、はんだバンプ14の内部に、銅等の高融点金属からなる高融点金属部品としての金属円筒18が電子部品16の電極パッド22及び回路基板12の電極パッド20と分離して配置され、かつ金属円筒18の円筒軸(長さ方向)が電子部品16及び回路基板12の各面に対して垂直になるように金属円筒18が配置される。 As shown in FIGS. 1A and 1B, in the mounting structure in which the electronic component 16 is connected to the circuit board 12 by the solder bump 14, the metal as the refractory metal component made of a refractory metal such as copper is placed inside the solder bump 14. The cylinder 18 is disposed separately from the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12, and the cylinder axis (length direction) of the metal cylinder 18 is relative to each surface of the electronic component 16 and the circuit board 12. The metal cylinder 18 is arranged so as to be vertical.
また、電子部品16の電極パッド22と回路基板12の電極パッド20のそれぞれには、金等の高融点金属からなる金属突起24が突出形成され、この金属突起24が金属円筒18の開口部内に挿入されるように配置される。 Each of the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12 is formed with a metal protrusion 24 made of a refractory metal such as gold, and the metal protrusion 24 is formed in the opening of the metal cylinder 18. Arranged to be inserted.
さらに、金属円筒18の外径は、金属円筒18を配置する電子部品16の電極パッド22の径及び回路基板12の電極パッド20の径より小さくする。なお、金属円筒18は、その両端部のランド19,19も含めて、電子部品16の電極パッド22及び回路基板12の電極パッド20の内側に入るように配置することが望ましい。また、金属円筒18における両端部のランド19の径は、金属円筒18の外径に可能な限り近くすることが望ましい。 Furthermore, the outer diameter of the metal cylinder 18 is made smaller than the diameter of the electrode pad 22 of the electronic component 16 in which the metal cylinder 18 is disposed and the diameter of the electrode pad 20 of the circuit board 12. The metal cylinder 18 is preferably disposed so as to be inside the electrode pads 22 of the electronic component 16 and the electrode pads 20 of the circuit board 12 including the lands 19 and 19 at both ends thereof. Also, it is desirable that the diameters of the lands 19 at both ends of the metal cylinder 18 be as close as possible to the outer diameter of the metal cylinder 18.
金属突起24の突起幅は、金属円筒18の内径より小さくし、金属突起24が金属円筒18に接触しないように配置することが望ましい。 The protrusion width of the metal protrusion 24 is preferably smaller than the inner diameter of the metal cylinder 18 so that the metal protrusion 24 does not contact the metal cylinder 18.
金属円筒18は、その金属円筒18を配置する電子部品16の電極パッド22及び回路基板12の電極パッド20に可及的に近づけることが望ましい。 It is desirable that the metal cylinder 18 be as close as possible to the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12 on which the metal cylinder 18 is disposed.
図2は本発明の第1実施形態の実装構造における作用を示す縦断面図である。 FIG. 2 is a longitudinal sectional view showing the operation of the mounting structure according to the first embodiment of the present invention.
図2に示すように、温度サイクル試験によって、はんだバンプ14が図9に示すように水平方向に繰り返し変形するため、はんだバンプ14にクラック26が発生する場合がある。本実施形態の実装構造では、クラック26の進展が金属円筒18や金属突起24によって抑えられるため、はんだバンプ14の断裂に至るまでの時間が延び、はんだバンプ14の耐TC寿命を向上させることができる。 As shown in FIG. 2, the solder bump 14 is repeatedly deformed in the horizontal direction as shown in FIG. 9 due to the temperature cycle test, so that a crack 26 may occur in the solder bump 14. In the mounting structure of this embodiment, since the progress of the crack 26 is suppressed by the metal cylinder 18 or the metal protrusion 24, the time until the solder bump 14 is broken is extended, and the TC life of the solder bump 14 is improved. it can.
このように本実施形態の実装構造によれば、はんだバンプ14内に高融点金属からなる金属円筒18が配置されたことにより、はんだバンプ14の水平方向の変形が抑制されるため、電子部品16や回路基板12の反りを未然に防止することができ、はんだバンプ14の耐TC寿命を向上させることができる。 As described above, according to the mounting structure of the present embodiment, since the metal cylinder 18 made of a refractory metal is disposed in the solder bump 14, the deformation of the solder bump 14 in the horizontal direction is suppressed. In addition, warping of the circuit board 12 can be prevented and the TC resistance life of the solder bumps 14 can be improved.
また、本実施形態の実装構造によれば、電子部品16の電極パッド22の金属突起24と回路基板12の電極パッド20の金属突起24が、それぞれ高融点金属からなる金属円筒18の開口部に入るように配置されることにより、はんだバンプ14に発生したクラックの進展が抑えられ、はんだバンプ14の耐TC寿命を向上させることができる。 Further, according to the mounting structure of the present embodiment, the metal protrusions 24 of the electrode pads 22 of the electronic component 16 and the metal protrusions 24 of the electrode pads 20 of the circuit board 12 are respectively formed in the openings of the metal cylinder 18 made of a refractory metal. By arranging so as to enter, the progress of cracks generated in the solder bumps 14 is suppressed, and the TC life of the solder bumps 14 can be improved.
さらに、本実施形態の実装構造によれば、アンダーフィル樹脂封止を行う必要がなくなるため、回路基板12から電子部品16を容易に取り外すことができるとともに、はんだバンプ14の狭ピッチ化、電子部品16の電気特性変化の抑制、及び低誘電率(low−k)膜電子部品の耐TC寿命の向上を図ることができる。 Furthermore, according to the mounting structure of the present embodiment, since it is not necessary to perform underfill resin sealing, the electronic component 16 can be easily removed from the circuit board 12, and the solder bumps 14 can be reduced in pitch and electronic components. Thus, it is possible to suppress the change in the electrical characteristics of 16 and improve the TC life of the low dielectric constant (low-k) film electronic component.
次に、図3〜図5に基づいて本実施形態の実装方法について説明する。 Next, a mounting method according to the present embodiment will be described with reference to FIGS.
図3A〜図3Jは本発明の第1実施形態の実装方法を説明するための工程図、図4A及び図4Bは第1実施形態において固定基板の電極パッドに金属突起を形成するための工程図、図5は第1実施形態において電子部品の電極パッドにはんだバンプを形成するための説明図である。 3A to 3J are process diagrams for explaining the mounting method according to the first embodiment of the present invention, and FIGS. 4A and 4B are process diagrams for forming metal protrusions on the electrode pads of the fixed substrate in the first embodiment. FIG. 5 is an explanatory diagram for forming solder bumps on the electrode pads of the electronic component in the first embodiment.
まず、図3Aに示すように、電子部品16の電極パッド22の配置領域全体を覆う面積を有する熱硬化性樹脂板28を用意し、硬化温度で硬化させる。このとき、熱硬化性樹脂板28は、穴あけが可能なものであれば如何なるものでもよいが、はんだバンプ14内に熱硬化性樹脂板28の樹脂が残った場合、温度サイクルによる樹脂の膨張収縮がはんだバンプ14に与える影響を小さくするため、熱硬化性樹脂板28とはんだバンプ14との線膨張係数をなるべく同等にすることが望ましい。 First, as shown in FIG. 3A, a thermosetting resin plate 28 having an area covering the entire arrangement region of the electrode pads 22 of the electronic component 16 is prepared and cured at a curing temperature. At this time, the thermosetting resin plate 28 may be any material as long as it can be perforated. However, when the resin of the thermosetting resin plate 28 remains in the solder bumps 14, the resin expands and contracts due to the temperature cycle. In order to reduce the effect of the solder bump 14 on the solder bumps 14, it is desirable to make the linear expansion coefficients of the thermosetting resin plate 28 and the solder bumps 14 as equal as possible.
次に、図3Bに示すように、金属円筒18を形成する電極パッドの位置に対応する部分の熱硬化性樹脂板28をレーザー等で円柱状に穴あけする。このときの穴径は、金属円筒18の外径となるため、金属円筒18を配置する電子部品16の電極パッド22の径及び回路基板12の電極パッド20の径より小さくする。 Next, as shown in FIG. 3B, a portion of the thermosetting resin plate 28 corresponding to the position of the electrode pad forming the metal cylinder 18 is drilled in a cylindrical shape with a laser or the like. Since the hole diameter at this time is the outer diameter of the metal cylinder 18, the hole diameter is made smaller than the diameter of the electrode pad 22 of the electronic component 16 in which the metal cylinder 18 is disposed and the diameter of the electrode pad 20 of the circuit board 12.
その後、図3Cに示すように熱硬化性樹脂板28に金属めっき膜30を形成し、穴周辺の不要な金属めっき膜30をエッチングして取り除き、金属円筒18を形成する(図3D)。このとき、エッチングで除去しきれなかった金属めっき膜30部分が金属円筒18の端部にランドとして残るが、金属円筒18の周りの熱硬化性樹脂板28を可及的に取り除くため、このランド径を、金属円筒18の外径に可能な限り近くすることが望ましい。 Thereafter, as shown in FIG. 3C, a metal plating film 30 is formed on the thermosetting resin plate 28, and unnecessary metal plating film 30 around the hole is removed by etching to form a metal cylinder 18 (FIG. 3D). At this time, the portion of the metal plating film 30 that could not be removed by etching remains as a land at the end of the metal cylinder 18, but this land is removed to remove the thermosetting resin plate 28 around the metal cylinder 18 as much as possible. It is desirable that the diameter be as close as possible to the outer diameter of the metal cylinder 18.
次に、図3Eに示すように金属円筒18の周りの熱硬化性樹脂板28にレーザー等で切れ目を入れる。これは、後の図3Hに示す工程で、金属円筒18の周りの熱硬化性樹脂板28を取り除きやすくするためである。 Next, as shown in FIG. 3E, the thermosetting resin plate 28 around the metal cylinder 18 is cut with a laser or the like. This is to make it easier to remove the thermosetting resin plate 28 around the metal cylinder 18 in the later step shown in FIG. 3H.
ここで、回路基板12の電極パッド20に金属突起24を形成する工程を図4A及び図4Bに基づいて説明する。 Here, the process of forming the metal protrusion 24 on the electrode pad 20 of the circuit board 12 will be described with reference to FIGS. 4A and 4B.
金属突起24を形成する方法としては、種々の方法が考えられるが、本実施形態では、超音波溶接技術により、金線を電極パッド20に接合し、余分な金線を切断して、金属突起24を形成する方法を用いている。 Various methods are conceivable as a method for forming the metal protrusion 24. In the present embodiment, a metal wire is joined to the electrode pad 20 by an ultrasonic welding technique, and an extra gold wire is cut to form a metal protrusion. 24 is used.
すなわち、図4A及び図4Bに示すように金属円筒18を形成する回路基板12の電極パッド20に、超音波溶接技術によって金線を接合(ボンディング)し、余分な金線を切断して、金属突起24を形成する。このとき、金属突起24の突起幅は、金属円筒18の内径より小さくする。 That is, as shown in FIG. 4A and FIG. 4B, a gold wire is bonded (bonded) to the electrode pad 20 of the circuit board 12 forming the metal cylinder 18 by an ultrasonic welding technique, and the excess gold wire is cut. A protrusion 24 is formed. At this time, the protrusion width of the metal protrusion 24 is made smaller than the inner diameter of the metal cylinder 18.
次の図3Fに示す工程では、前工程(図4A及び図4Bに示す工程)で形成された回路基板12の金属突起24付き電極パッド20にはんだ32を塗布し、前工程(図3Eに示す工程)で形成された熱硬化性樹脂板28を裏返して、切れ目が回路基板12側に向くようにし、熱硬化性樹脂板28の金属円筒18部分を回路基板12の金属突起24付き電極パッド20の位置に合わせ、リフローはんだ付けによって、金属円筒18と回路基板12を接続する(図3G)。このとき、回路基板12の電極パッド20の金属突起24が金属円筒18の開口部に入るように、熱硬化性樹脂板28と回路基板12との間に圧力を加える。 In the next step shown in FIG. 3F, solder 32 is applied to the electrode pads 20 with the metal protrusions 24 of the circuit board 12 formed in the previous step (steps shown in FIG. 4A and FIG. 4B), and the previous step (shown in FIG. 3E). The thermosetting resin plate 28 formed in the step) is turned over so that the cut is directed to the circuit board 12 side, and the metal cylinder 18 portion of the thermosetting resin plate 28 is disposed on the electrode pad 20 with the metal protrusions 24 of the circuit board 12. And the metal cylinder 18 and the circuit board 12 are connected by reflow soldering (FIG. 3G). At this time, pressure is applied between the thermosetting resin plate 28 and the circuit board 12 so that the metal protrusions 24 of the electrode pads 20 of the circuit board 12 enter the openings of the metal cylinder 18.
この後、金属円筒18の周りの熱硬化性樹脂板28に、前工程(図3Eに示す工程)で形成された切れ目に合わせて、レーザー等で切れ目を入れ、熱硬化性樹脂板28を切断して、金属円筒18の周りの熱硬化性樹脂板28を取り除く(図3H)。このとき、金属円筒18の周りにおける熱硬化性樹脂板28の樹脂が可及的に取り除かれることが望ましい。 Thereafter, the thermosetting resin plate 28 around the metal cylinder 18 is cut with a laser or the like in accordance with the cut formed in the previous step (step shown in FIG. 3E), and the thermosetting resin plate 28 is cut. Then, the thermosetting resin plate 28 around the metal cylinder 18 is removed (FIG. 3H). At this time, it is desirable that the resin of the thermosetting resin plate 28 around the metal cylinder 18 is removed as much as possible.
ここで、電子部品16の電極パッド22に金属突起24を形成する工程を図5に基づいて説明する。 Here, the process of forming the metal protrusion 24 on the electrode pad 22 of the electronic component 16 will be described with reference to FIG.
前工程(図4A及び図4Bに示す工程)と同様に、超音波溶接技術により、金線を電極パッド22に接合し、余分な金線を切断して、金属突起24を形成した。そして、電子部品16の電極パッド22上にはんだバンプ14を形成した。 Similarly to the previous step (step shown in FIGS. 4A and 4B), the gold wire was joined to the electrode pad 22 by the ultrasonic welding technique, and the extra gold wire was cut to form the metal protrusion 24. Then, solder bumps 14 were formed on the electrode pads 22 of the electronic component 16.
次の図3Iの工程では、前工程(図3Hの工程)で形成された回路基板12の電極パッド20にはんだを塗布し、前工程(図5の工程)で形成された電子部品16の電極パッド22上のはんだバンプ14を回路基板12の電極パッド20の位置に合わせ、リフローはんだ付けによって、電子部品16と回路基板12を接続する(図3J)。このとき、電子部品16の電極パッド22の金属突起24が金属円筒18の開口部の中に入るように、電子部品16と回路基板12の間に圧力を加える。 In the next step of FIG. 3I, solder is applied to the electrode pads 20 of the circuit board 12 formed in the previous step (step of FIG. 3H), and the electrodes of the electronic component 16 formed in the previous step (step of FIG. 5). The solder bumps 14 on the pads 22 are aligned with the positions of the electrode pads 20 of the circuit board 12, and the electronic component 16 and the circuit board 12 are connected by reflow soldering (FIG. 3J). At this time, pressure is applied between the electronic component 16 and the circuit board 12 so that the metal protrusion 24 of the electrode pad 22 of the electronic component 16 enters the opening of the metal cylinder 18.
以上の実装方法を経て本発明の第1実施形態の実装構造が完成する。 The mounting structure of the first embodiment of the present invention is completed through the above mounting method.
なお、本実施形態では、高融点金属部品の形状が円筒である場合について説明したが、これに限らず中空角筒状に形成した金属角筒としてもよい。また、両端面に中空穴が形成された一部中空円柱状であってもよく、その中空穴の形状は円でなくてもよい。 In addition, although this embodiment demonstrated the case where the shape of a refractory metal component was a cylinder, it is good also as a metal square tube formed not only in this but in the shape of a hollow square tube. Moreover, the hollow cylinder shape with which the hollow hole was formed in both end surfaces may be sufficient, and the shape of the hollow hole does not need to be a circle.
これらの場合も上記実施形態と同様に、はんだバンプ14の内部に、このように形成された高融点金属部品が電子部品16の電極パッド22及び回路基板12の電極パッド20と分離して配置され、かつその長さ方向が電子部品16及び回路基板12の各面に対して垂直になるように配置される。 In these cases, as in the above embodiment, the refractory metal component thus formed is arranged separately from the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12 inside the solder bump 14. And the length direction is arrange | positioned so that it may become perpendicular | vertical with respect to each surface of the electronic component 16 and the circuit board 12. FIG.
(第2実施形態)
図6Aは本発明の第2実施形態の実装構造を示す縦断面図、図6Bは図6Aの円弧状金属板及び電極パッドを示す斜視図である。
(Second Embodiment)
FIG. 6A is a longitudinal sectional view showing the mounting structure of the second embodiment of the present invention, and FIG. 6B is a perspective view showing the arc-shaped metal plate and electrode pads of FIG. 6A.
図6A及び図6Bに示すように、電子部品16を回路基板12にはんだバンプ14で接続した実装構造において、はんだバンプ14の内部に、銅等の高融点金属からなり横断面円弧状に形成された円弧状金属板34が電子部品16の電極パッド22及び回路基板12の電極パッド20と分離して配置され、かつ円弧状金属板34の側面長さ方向が電子部品16及び回路基板12と垂直になるように円弧状金属板34が配置される。 As shown in FIGS. 6A and 6B, in the mounting structure in which the electronic component 16 is connected to the circuit board 12 with the solder bumps 14, the solder bumps 14 are made of a refractory metal such as copper and formed in an arc shape in cross section. The arc-shaped metal plate 34 is disposed separately from the electrode pads 22 of the electronic component 16 and the electrode pads 20 of the circuit board 12, and the side surface length direction of the arc-shaped metal plate 34 is perpendicular to the electronic component 16 and the circuit board 12. The arc-shaped metal plate 34 is arranged so as to be.
また、電子部品16の電極パッド22と回路基板12の電極パッド20のそれぞれには、金等の高融点金属からなる金属突起24が突出形成されている。さらに、円弧状金属板34と電子部品16の電極パッド22との距離、及び円弧状金属板34と回路基板12の電極パッド20との距離が、それぞれ電子部品16の電極パッド22に形成した金属突起24の突出長さ、及び回路基板12の電極パッド20に形成した金属突起24の突出長さより短くなるように配置される。 In addition, metal protrusions 24 made of a refractory metal such as gold protrude from each of the electrode pads 22 of the electronic component 16 and the electrode pads 20 of the circuit board 12. Further, the distance between the arc-shaped metal plate 34 and the electrode pad 22 of the electronic component 16 and the distance between the arc-shaped metal plate 34 and the electrode pad 20 of the circuit board 12 are the metal formed on the electrode pad 22 of the electronic component 16, respectively. The protrusion 24 is disposed so as to be shorter than the protrusion length of the protrusion 24 and the protrusion length of the metal protrusion 24 formed on the electrode pad 20 of the circuit board 12.
なお、円弧状金属板34の外径は、その円弧状金属板34を配置する電子部品16の電極パッド22の径及び回路基板12の電極パッド20の径より小さくする。また、円弧状金属板34が電子部品16の電極パッド22及び回路基板12の電極パッド20の内側に入るように配置することが望ましい。 The outer diameter of the arc-shaped metal plate 34 is set to be smaller than the diameter of the electrode pad 22 of the electronic component 16 on which the arc-shaped metal plate 34 is disposed and the diameter of the electrode pad 20 of the circuit board 12. Further, it is desirable that the arc-shaped metal plate 34 is disposed so as to be inside the electrode pads 22 of the electronic component 16 and the electrode pads 20 of the circuit board 12.
さらに、金属突起24の突起幅は、円弧状金属板34の内径より小さくし、金属突起24が円弧状金属板34に接触しないように配置することが望ましい。 Further, it is desirable that the protrusion width of the metal protrusion 24 is smaller than the inner diameter of the arc-shaped metal plate 34 so that the metal protrusion 24 does not contact the arc-shaped metal plate 34.
そして、円弧状金属板34は、その円弧状金属板34を配置する電子部品16の電極パッド22及び回路基板12の電極パッド20に可及的に近づけることが望ましい。 The arc-shaped metal plate 34 is preferably as close as possible to the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12 on which the arc-shaped metal plate 34 is disposed.
次に、本実施形態の実装構造の作用を説明する。 Next, the operation of the mounting structure of this embodiment will be described.
温度サイクル試験によって、はんだバンプ14が図9に示すように水平方向に繰り返し変形するため、はんだバンプ14にクラック26が発生する場合がある。本実施形態の実装構造では、クラック26の進展が円弧状金属板34や金属突起24によって抑えられるため、はんだバンプ14の断裂に至るまでの時間が延び、はんだバンプ14の耐TC寿命を向上させることができる。 Due to the temperature cycle test, the solder bumps 14 are repeatedly deformed in the horizontal direction as shown in FIG. In the mounting structure of this embodiment, since the progress of the crack 26 is suppressed by the arc-shaped metal plate 34 and the metal protrusion 24, the time until the solder bump 14 is broken is extended, and the TC life of the solder bump 14 is improved. be able to.
したがって、本実施形態でも前記第1実施形態と同様の効果が得られるものの、高融点金属を円弧状に形成したことから、前記第1実施形態の実装構造と比較すると、若干その効果が低減することになる。 Therefore, although the same effect as the first embodiment can be obtained in this embodiment, the effect is slightly reduced as compared with the mounting structure of the first embodiment because the refractory metal is formed in an arc shape. It will be.
次に、本実施形態の実装方法について説明する。 Next, the mounting method of this embodiment will be described.
まず、金属薄板を円柱に巻回して所定の大きさの円弧状金属板34を形成する。 First, a thin metal plate is wound around a cylinder to form an arc-shaped metal plate 34 having a predetermined size.
次に、前記第1実施形態の実装方法の図4に示す工程と同様にして形成された回路基板12の金属突起24付き電極パッド20にはんだを塗布し、前工程で形成された円弧状金属板34を、その側面長さ方向が回路基板12と垂直になるようにして、回路基板12の金属突起24付き電極パッド20の位置に合わせ、リフローはんだ付けによって、円弧状金属板34と回路基板12とを接続する。このとき、円弧状金属板34と回路基板12の電極パッド20との距離が、回路基板12の電極パッド20に形成した金属突起24の突出長さより短くなるように、円弧状金属板34と回路基板12との間に圧力を加える。 Next, solder is applied to the electrode pads 20 with the metal protrusions 24 of the circuit board 12 formed in the same manner as the process shown in FIG. 4 of the mounting method of the first embodiment, and the arc-shaped metal formed in the previous process. The plate 34 is aligned with the position of the electrode pad 20 with the metal protrusions 24 of the circuit board 12 so that the side surface length direction is perpendicular to the circuit board 12, and the arc-shaped metal plate 34 and the circuit board are reflow soldered. 12 is connected. At this time, the arc-shaped metal plate 34 and the circuit are arranged such that the distance between the arc-shaped metal plate 34 and the electrode pad 20 of the circuit board 12 is shorter than the protruding length of the metal protrusion 24 formed on the electrode pad 20 of the circuit board 12. A pressure is applied between the substrate 12 and the substrate 12.
次の工程では、前工程で形成された回路基板12の電極パッド20にはんだ32を塗布し、前記第1実施形態の実装方法の図5に示す工程と同様にして形成された電子部品16の電極パッド22上のはんだバンプ14を回路基板12の電極パッド20の位置に合わせ、リフローはんだ付けによって、電子部品16と回路基板12とを接続する。このとき、円弧状金属板34と電子部品16の電極パッド22との距離が電子部品16の電極パッド22に形成した金属突起24の突出長さより短くなるように、電子部品16と回路基板12との間に圧力を加える。 In the next step, the solder 32 is applied to the electrode pads 20 of the circuit board 12 formed in the previous step, and the electronic component 16 formed in the same manner as in the step shown in FIG. 5 of the mounting method of the first embodiment. The solder bumps 14 on the electrode pads 22 are aligned with the positions of the electrode pads 20 on the circuit board 12, and the electronic component 16 and the circuit board 12 are connected by reflow soldering. At this time, the electronic component 16 and the circuit board 12 are arranged such that the distance between the arc-shaped metal plate 34 and the electrode pad 22 of the electronic component 16 is shorter than the protruding length of the metal protrusion 24 formed on the electrode pad 22 of the electronic component 16. Apply pressure in between.
以上の実装方法を経て本発明の第2実施形態の実装構造が完成する。 Through the above mounting method, the mounting structure of the second embodiment of the present invention is completed.
(第3実施形態)
図7Aは本発明の第3実施形態の実装構造を示す縦断面図、図7Bは図7Aのコ字状金属板及び電極パッドを示す斜視図である。
(Third embodiment)
FIG. 7A is a longitudinal sectional view showing the mounting structure of the third embodiment of the present invention, and FIG. 7B is a perspective view showing the U-shaped metal plate and electrode pad of FIG. 7A.
図7A及び図7Bに示すように、電子部品16を回路基板12にはんだバンプ14で接続した実装構造において、はんだバンプ14の内部に、銅等の高融点金属からなり横断面コ字状に形成されたコ字状金属板36が電子部品16の電極パッド22及び回路基板12の電極パッド20と分離して配置され、かつコ字状金属板36の側面長さ方向が電子部品16及び回路基板12と垂直になるようにコ字状金属板36が配置される。 As shown in FIGS. 7A and 7B, in the mounting structure in which the electronic component 16 is connected to the circuit board 12 by the solder bumps 14, the solder bumps 14 are formed of a refractory metal such as copper in a U-shaped cross section. The U-shaped metal plate 36 is disposed separately from the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12, and the side length direction of the U-shaped metal plate 36 is the electronic component 16 and the circuit board. The U-shaped metal plate 36 is arranged so as to be perpendicular to the T 12.
また、電子部品16の電極パッド22と回路基板12の電極パッド20のそれぞれには、金等の高融点金属からなる金属突起24が突出形成されている。さらに、コ字状金属板36と電子部品16の電極パッド22との距離、及びコ字状金属板36と回路基板12の電極パッド20との距離が、それぞれ電子部品16の電極パッド22に形成した金属突起24の突出長さ、及び回路基板12の電極パッド20に形成した金属突起24の突出長さより短くなるように配置される。 In addition, metal protrusions 24 made of a refractory metal such as gold protrude from each of the electrode pads 22 of the electronic component 16 and the electrode pads 20 of the circuit board 12. Further, the distance between the U-shaped metal plate 36 and the electrode pad 22 of the electronic component 16 and the distance between the U-shaped metal plate 36 and the electrode pad 20 of the circuit board 12 are formed on the electrode pad 22 of the electronic component 16, respectively. The protruding length of the metal protrusion 24 and the protruding length of the metal protrusion 24 formed on the electrode pad 20 of the circuit board 12 are arranged.
なお、コ字状金属板36の外周幅は、そのコ字状金属板36を配置する電子部品16の電極パッド22の径及び回路基板12の電極パッド20の径より小さくする。また、コ字状金属板36が電子部品16の電極パッド22及び回路基板12の電極パッド20の内側に入るように配置することが望ましい。 Note that the outer peripheral width of the U-shaped metal plate 36 is smaller than the diameter of the electrode pad 22 of the electronic component 16 on which the U-shaped metal plate 36 is disposed and the diameter of the electrode pad 20 of the circuit board 12. Further, it is desirable that the U-shaped metal plate 36 is disposed so as to be inside the electrode pads 22 of the electronic component 16 and the electrode pads 20 of the circuit board 12.
さらに、金属突起24の突起幅は、コ字状金属板36の内周幅より小さくし、金属突起24がコ字状金属板36に接触しないように配置することが望ましい。 Furthermore, it is desirable that the protrusion width of the metal protrusion 24 be smaller than the inner peripheral width of the U-shaped metal plate 36 so that the metal protrusion 24 does not contact the U-shaped metal plate 36.
そして、コ字状金属板36は、そのコ字状金属板36を配置する電子部品16の電極パッド22及び回路基板12の電極パッド20に可及的に近づけることが望ましい。 The U-shaped metal plate 36 is preferably as close as possible to the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12 on which the U-shaped metal plate 36 is disposed.
次に、本実施形態の実装構造の作用を説明する。 Next, the operation of the mounting structure of this embodiment will be described.
温度サイクル試験によって、はんだバンプ14が図9に示すように水平方向に繰り返し変形するため、はんだバンプ14にクラック26が発生する場合がある。本実施形態の実装構造では、クラック26の進展がコ字状金属板36や金属突起24によって抑えられるため、はんだバンプ14の断裂に至るまでの時間が延び、はんだバンプ14の耐TC寿命を向上させることができる。 Due to the temperature cycle test, the solder bumps 14 are repeatedly deformed in the horizontal direction as shown in FIG. In the mounting structure of this embodiment, since the progress of the crack 26 is suppressed by the U-shaped metal plate 36 and the metal protrusion 24, the time until the solder bump 14 is broken is extended, and the TC life of the solder bump 14 is improved. Can be made.
したがって、本実施形態でも前記第1実施形態と同様の効果が得られるものの、高融点金属をコ字状に形成したことから、前記第1実施形態の実装構造と比較すると、若干その効果が低減することになる。 Therefore, although the same effect as the first embodiment can be obtained in this embodiment, the effect is slightly reduced compared to the mounting structure of the first embodiment because the refractory metal is formed in a U shape. Will do.
次に、本実施形態の実装方法について説明する。 Next, the mounting method of this embodiment will be described.
まず、金属薄板をコ字状に折曲し、所定の大きさのコ字状金属板36を形成する。 First, a thin metal plate is bent into a U-shape to form a U-shaped metal plate 36 having a predetermined size.
次に、前記第1実施形態の実装方法の図4に示す工程と同様にして形成された回路基板12の金属突起24付き電極パッド20にはんだを塗布し、前工程で形成されたコ字状金属板36を、その側面長さ方向が回路基板12と垂直になるようにして、回路基板12の金属突起24付き電極パッド20の位置に合わせ、リフローはんだ付けによって、コ字状金属板36と回路基板12とを接続する。このとき、コ字状金属板36と回路基板12の電極パッド20との距離が、回路基板12の電極パッド20に形成した金属突起24の突出長さより短くなるように、コ字状金属板36と回路基板12との間に圧力をかける。 Next, solder is applied to the electrode pads 20 with the metal protrusions 24 of the circuit board 12 formed in the same manner as the process shown in FIG. 4 of the mounting method of the first embodiment, and the U-shape formed in the previous process is applied. The metal plate 36 is aligned with the position of the electrode pad 20 with the metal protrusions 24 on the circuit board 12 so that the side surface length direction is perpendicular to the circuit board 12, and reflow soldering is performed. The circuit board 12 is connected. At this time, the U-shaped metal plate 36 is such that the distance between the U-shaped metal plate 36 and the electrode pad 20 of the circuit board 12 is shorter than the protruding length of the metal protrusion 24 formed on the electrode pad 20 of the circuit board 12. A pressure is applied between the circuit board 12 and the circuit board 12.
次の工程では、前工程で形成された回路基板12の電極パッド20にはんだ32を塗布し、前記第1実施形態の実装方法の図5に示す工程と同様にして形成された電子部品16の電極パッド22上のはんだバンプ14を回路基板12の電極パッド20の位置に合わせ、リフローはんだ付けによって、電子部品16と回路基板12とを接続する。このとき、コ字状金属板36と電子部品16の電極パッド22との距離が電子部品16の電極パッド22に形成した金属突起24の突出長さより短くなるように、電子部品16と回路基板12との間に圧力を加える。 In the next step, the solder 32 is applied to the electrode pads 20 of the circuit board 12 formed in the previous step, and the electronic component 16 formed in the same manner as in the step shown in FIG. 5 of the mounting method of the first embodiment. The solder bumps 14 on the electrode pads 22 are aligned with the positions of the electrode pads 20 on the circuit board 12, and the electronic component 16 and the circuit board 12 are connected by reflow soldering. At this time, the electronic component 16 and the circuit board 12 are arranged such that the distance between the U-shaped metal plate 36 and the electrode pad 22 of the electronic component 16 is shorter than the protruding length of the metal protrusion 24 formed on the electrode pad 22 of the electronic component 16. Apply pressure between.
以上の実装方法を経て本発明の第3実施形態の実装構造が完成する。 The mounting structure of the third embodiment of the present invention is completed through the above mounting method.
なお、本実施形態では、高融点金属部品の形状が横断面コ字状に形成した場合について説明したが、これに限らず横断面く字状に形成したく字状金属板としてもよい。また、金属板単体の平板形状のままでもよい。 In the present embodiment, the case where the shape of the refractory metal part is formed in a U-shaped cross section has been described. However, the present invention is not limited to this, and may be a rectangular metal plate formed in a U-shaped cross section. Further, the flat plate shape of a single metal plate may be used.
これらの場合も前記第1実施形態と同様に、はんだバンプ14の内部に、このように形成された高融点金属部品が電子部品16の電極パッド22及び回路基板12の電極パッド20と分離して配置され、かつその長さ方向が電子部品16及び回路基板12の各面に対して垂直になるように配置される。 In these cases, as in the first embodiment, the refractory metal component thus formed is separated from the electrode pad 22 of the electronic component 16 and the electrode pad 20 of the circuit board 12 inside the solder bump 14. The electronic components 16 and the circuit board 12 are arranged so that their length directions are perpendicular to the surfaces of the electronic component 16 and the circuit board 12.
このように、本実施形態の実装構造は、適用したはんだバンプの耐TC寿命を向上させる効果を有するため、電子部品16を回路基板12にはんだバンプ14で接続した実装構造において、最も壊れやすいはんだバンプ及びその周辺のはんだバンプのみに適用しても、同様の効果を得ることができる。 As described above, since the mounting structure of this embodiment has an effect of improving the TC life of the applied solder bump, the most fragile solder in the mounting structure in which the electronic component 16 is connected to the circuit board 12 by the solder bump 14. The same effect can be obtained even when applied only to the bump and the surrounding solder bump.
以下、具体的な実施例に基づいて本発明の第1実施形態の実装構造及びその実装方法を説明する。 The mounting structure and mounting method according to the first embodiment of the present invention will be described below based on specific examples.
厚さ0.35mm、幅6mm角のシリコンチップを厚さ1.5mm、幅24mmのビルドアップ基板にSn−3.5Ag−0.75Cu(M31、千住金属株式会社製)のはんだバンプで接続したFC(フリップチップ)パッケージについて、第1実施形態を実施した。ここで、シリコンチップとビルドアップ基板の電極パッド径は0.1mm、バンプピッチは0.3mmであり、はんだバンプが6列配置されている。 A silicon chip having a thickness of 0.35 mm and a width of 6 mm was connected to a build-up substrate having a thickness of 1.5 mm and a width of 24 mm with solder bumps of Sn-3.5Ag-0.75Cu (M31, manufactured by Senju Metal Co., Ltd.). The first embodiment was implemented for an FC (flip chip) package. Here, the electrode pad diameter of the silicon chip and the build-up substrate is 0.1 mm, the bump pitch is 0.3 mm, and six rows of solder bumps are arranged.
厚さ0.05mm(銅箔厚0.012mm)、幅10mm角の熱硬化性樹脂(APL−4601、住友ベークライト株式会社製)の板を用意し、260℃で硬化させた。そして、熱硬化性樹脂APL−4601の板に対して、シリコンチップの最外周の電極パッドに対応する位置にUV、YAGレーザー(ML605GTW−5050U、三菱電機株式会社製)で0.080mm径の穴を開けた。 A plate of thermosetting resin (APL-4601, manufactured by Sumitomo Bakelite Co., Ltd.) having a thickness of 0.05 mm (copper foil thickness of 0.012 mm) and a width of 10 mm square was prepared and cured at 260 ° C. Then, with respect to the plate of the thermosetting resin APL-4601, a hole having a diameter of 0.080 mm with a UV and YAG laser (ML605GTW-5050U, manufactured by Mitsubishi Electric Corporation) at a position corresponding to the outermost electrode pad of the silicon chip. Opened.
この後、無電解銅めっきと電解銅めっきによって、硬化樹脂APL−4601の板に厚さ約0.015mmの銅層を形成した。そして、穴周辺の不要な銅めっきをエッチングによって取り除き、外径0.080mm、内径約0.050mm、長さ約0.1mmの銅円筒を形成した。このとき、エッチングで除去しきれなかった銅めっき部分が銅円筒の端部にランドとして残るが、ランド径約0.1mm、ランド厚約0.03mmであった。 Thereafter, a copper layer having a thickness of about 0.015 mm was formed on the plate of the cured resin APL-4601 by electroless copper plating and electrolytic copper plating. Then, unnecessary copper plating around the hole was removed by etching to form a copper cylinder having an outer diameter of 0.080 mm, an inner diameter of about 0.050 mm, and a length of about 0.1 mm. At this time, the copper plating portion that could not be removed by etching remained as a land at the end of the copper cylinder, but the land diameter was about 0.1 mm and the land thickness was about 0.03 mm.
次に、銅円筒周りの硬化樹脂APL−4601部分にUV、YAGレーザー(ML605GTW−5050U、三菱電機株式会社製)で深さ約0.03mm幅約0.05mmの切れ目を銅円筒の周囲に円周状に入れた。 Next, UV resin and YAG laser (ML605GTW-5050U, manufactured by Mitsubishi Electric Co., Ltd.) are cut around the hardened resin APL-4601 around the copper cylinder to form a circle with a depth of about 0.03 mm and a width of about 0.05 mm around the copper cylinder. I put it in a circle.
ビルドアップ基板に対して、シリコンチップの最外周の電極パッドに対応する位置の電極パッドに、超音波溶接技術によって、径0.015mmの金線を接合し、余分な金線を切断して、最大幅約0.03mm長さ約0.03mmの金突起を形成した。そして、はんだ印刷機(SI−300、ソニーマニュファクチュリングシステムズ)によって、金突起付き電極パッドにSn−Ag−Cu系クリームはんだ(NP303−MF255−GQ、ニホンゲンマ)を塗布した。 With respect to the buildup substrate, a gold wire having a diameter of 0.015 mm is joined to an electrode pad at a position corresponding to the outermost electrode pad of the silicon chip by ultrasonic welding technology, and an extra gold wire is cut. A gold protrusion having a maximum width of about 0.03 mm and a length of about 0.03 mm was formed. And Sn-Ag-Cu type | system | group cream solder (NP303-MF255-GQ, Nihon Genma) was apply | coated to the electrode pad with a gold protrusion with the solder printer (SI-300, Sony Manufacturing Systems).
次の工程では、前工程で形成された熱硬化性樹脂APL−4601を裏返して切れ目がビルドアップ基板側に向くようにし、熱硬化性樹脂APL−4601の銅円筒部分をビルドアップ基板の金突起付き電極パッドの位置に合わせ、リフロー温度260℃ではんだ付けし、銅円筒とビルドアップ基板を接続した。 In the next step, the thermosetting resin APL-4601 formed in the previous step is turned over so that the cut faces toward the build-up substrate side, and the copper cylindrical portion of the thermosetting resin APL-4601 is placed on the gold protrusion of the build-up substrate. In accordance with the position of the attached electrode pad, soldering was performed at a reflow temperature of 260 ° C., and the copper cylinder and the buildup substrate were connected.
このとき、ビルドアップ基板の電極パッドの金突起が銅円筒の開口部の中に入るように、熱硬化性樹脂APL−4601とビルドアップ基板の間に10MPaの圧力を加えた。 At this time, a pressure of 10 MPa was applied between the thermosetting resin APL-4601 and the build-up substrate so that the gold protrusions of the electrode pads of the build-up substrate entered the opening of the copper cylinder.
その後、銅円筒周りの熱硬化性樹脂APL−4601に、前工程で形成された切れ目に合わせて、UV、YAGレーザー(ML605GTW−5050U、三菱電機株式会社製)で切れ目を入れ、熱硬化性樹脂APL−4601を切断し、銅円筒周りの熱硬化性樹脂APL−4601を取り除いた。このとき、銅円筒周りの熱硬化性樹脂APL−4601が厚さ約0.01mm残った。 After that, the thermosetting resin APL-4601 around the copper cylinder is cut with UV and YAG laser (ML605GTW-5050U, manufactured by Mitsubishi Electric Corporation) in accordance with the cut formed in the previous step, and the thermosetting resin. APL-4601 was cut and the thermosetting resin APL-4601 around the copper cylinder was removed. At this time, the thermosetting resin APL-4601 around the copper cylinder remained about 0.01 mm thick.
シリコンチップに対して、シリコンチップの最外周の電極パッドに、超音波溶接技術によって、径0.015mmの金線を接合し、余分な金線を切断して、最大幅約0.03mm長さ約0.03mmの金突起を形成した。そして、シリコンチップの電極パッド上に最大径0.15mmのはんだバンプを形成した。 To a silicon chip, a gold wire having a diameter of 0.015 mm is joined to the outermost electrode pad of the silicon chip by ultrasonic welding technology, and an extra gold wire is cut to have a maximum width of about 0.03 mm. About 0.03 mm of gold protrusion was formed. A solder bump having a maximum diameter of 0.15 mm was formed on the electrode pad of the silicon chip.
次の工程では、前工程で形成されたビルドアップ基板の銅円筒のない電極パッドにSn−Ag−Cu系クリームはんだ(NP303−MF255−GQ、ニホンゲンマ)を塗布し、前工程で形成されたシリコンチップの電極パッド上のはんだバンプをビルドアップ基板の電極パッドの位置に合わせ、リフロー温度260℃ではんだバンプを溶融させながら、はんだバンプをビルドアップ基板の電極パッドに接触させ、冷却して接続させた。リフロー時は、シリコンチップの電極パッドの金突起が銅円筒の開口部の中に入るように、シリコンチップとビルドアップ基板の間に20MPaの圧力を加えた。 In the next step, Sn-Ag-Cu-based cream solder (NP303-MF255-GQ, Nihon Genma) is applied to the electrode pad without the copper cylinder of the build-up substrate formed in the previous step, and the silicon formed in the previous step. Align the solder bumps on the chip's electrode pads with the electrode pads on the build-up board, melt the solder bumps at a reflow temperature of 260 ° C, bring the solder bumps into contact with the electrode pads on the build-up board, and cool and connect them. It was. At the time of reflow, a pressure of 20 MPa was applied between the silicon chip and the build-up substrate so that the gold protrusion on the electrode pad of the silicon chip entered the opening of the copper cylinder.
このようして構成した実装構造によれば、前記第1実施形態と同様の効果が得られることが判明した。 According to the mounting structure configured as described above, it has been found that the same effect as the first embodiment can be obtained.
12 回路基板
14 はんだバンプ
16 電子部品
18 金属円筒
20 電極パッド
22 電極パッド
24 金属突起
26 クラック
28 熱硬化性樹脂板
30 金属めっき
32 はんだ
34 円弧状金属板
36 コ字状金属板
DESCRIPTION OF SYMBOLS 12 Circuit board 14 Solder bump 16 Electronic component 18 Metal cylinder 20 Electrode pad 22 Electrode pad 24 Metal protrusion 26 Crack 28 Thermosetting resin plate 30 Metal plating 32 Solder 34 Arc-shaped metal plate 36 U-shaped metal plate
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043259A JP2008210825A (en) | 2007-02-23 | 2007-02-23 | Mounting structure and method of electronic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043259A JP2008210825A (en) | 2007-02-23 | 2007-02-23 | Mounting structure and method of electronic component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008210825A true JP2008210825A (en) | 2008-09-11 |
Family
ID=39786912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007043259A Withdrawn JP2008210825A (en) | 2007-02-23 | 2007-02-23 | Mounting structure and method of electronic component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008210825A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201629A (en) * | 2020-09-01 | 2021-01-08 | 苏州通富超威半导体有限公司 | Flip chip packaging structure and manufacturing method thereof |
US11804414B2 (en) | 2021-03-29 | 2023-10-31 | Mitsubishi Electric Corporation | Semiconductor device comprising a lead electrode including a through hole |
-
2007
- 2007-02-23 JP JP2007043259A patent/JP2008210825A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201629A (en) * | 2020-09-01 | 2021-01-08 | 苏州通富超威半导体有限公司 | Flip chip packaging structure and manufacturing method thereof |
US11804414B2 (en) | 2021-03-29 | 2023-10-31 | Mitsubishi Electric Corporation | Semiconductor device comprising a lead electrode including a through hole |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5747805B2 (en) | Electronic equipment | |
JP2011040606A (en) | Method of manufacturing semiconductor device | |
JP4265607B2 (en) | Laminated electronic component and mounting structure of laminated electronic component | |
JP2014192476A (en) | Printed circuit board solder packaging method and solder packaging structure | |
US9224620B2 (en) | Method for packaging quad flat non-leaded package body, and package body | |
JP2008288489A (en) | Process for producing built-in chip substrate | |
JP2008311520A (en) | Method for manufacturing electronic component built-in substrate | |
US20090072383A1 (en) | Semiconductor device, electronic component module, and method for manufacturing semiconductor device | |
JP6787692B2 (en) | Wiring board | |
JP2015173005A (en) | Circuit board and manufacturing method of the same | |
KR20100095031A (en) | Method for manufacturing electronic component module | |
WO2011071111A1 (en) | Resin substrate with built-in electronic component and electronic circuit module | |
JP2017028156A (en) | Mounting structure and manufacturing method therefor | |
JP5245276B2 (en) | Electronic component mounting structure and mounting method thereof | |
JP2007243106A (en) | Semiconductor package structure | |
JP2007200920A (en) | Solder bonding structure of inserted mounting component, manufacturing method therefor and optical module | |
JP2008210825A (en) | Mounting structure and method of electronic component | |
US20050253258A1 (en) | Solder flow stops for semiconductor die substrates | |
JP2008135410A (en) | Method for mounting electronic component, circuit board having electronic component mounted thereon, and electronic equipment having circuit board mounted thereon | |
JP2006319145A (en) | Metal core circuit board | |
JP4100685B2 (en) | Semiconductor device | |
JP4680703B2 (en) | Semiconductor device | |
WO2015083249A1 (en) | Multilayer wiring board and method for manufacturing same | |
JP4735352B2 (en) | Electronic component arrangement structure and arrangement method | |
JP4853276B2 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100511 |