JP2008200639A - Method for biologically treating organic matter-containing water - Google Patents

Method for biologically treating organic matter-containing water Download PDF

Info

Publication number
JP2008200639A
JP2008200639A JP2007041636A JP2007041636A JP2008200639A JP 2008200639 A JP2008200639 A JP 2008200639A JP 2007041636 A JP2007041636 A JP 2007041636A JP 2007041636 A JP2007041636 A JP 2007041636A JP 2008200639 A JP2008200639 A JP 2008200639A
Authority
JP
Japan
Prior art keywords
biological treatment
treatment tank
concentration
containing water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007041636A
Other languages
Japanese (ja)
Other versions
JP5358886B2 (en
Inventor
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007041636A priority Critical patent/JP5358886B2/en
Priority to TW097103464A priority patent/TWI439428B/en
Priority to KR1020080013164A priority patent/KR101467476B1/en
Publication of JP2008200639A publication Critical patent/JP2008200639A/en
Application granted granted Critical
Publication of JP5358886B2 publication Critical patent/JP5358886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To prevent clogging of a membrane in the case where a mixture liquid containing biologically treated microorganisms is subjected to membrane separation. <P>SOLUTION: An iron salt is allowed to coexist so as to give an iron concentration of 10 to 40% by mass based on MLSS in an activated sludge held in a biological treatment tank 10. The pH value of the mixture liquid within the biological treatment tank 10 is brought to a range of 5 to 6.5, and, in this state, biological treatment is carried out. The presence of a predetermined amount range of iron salt and the control of pH value can realize strong aggregation of microorganisms constituting the activated sludge and, at the same time, can suppress the production of mucilage and the like by the microorganisms, whereby clogging of a membrane separation apparatus such as an immersion membrane 11 can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機物含有水を活性汚泥法により処理する有機物含有水の生物処理方法に関し、特に、生物処理槽内の混合液を膜分離して処理水を得る生物処理方法に関する。   The present invention relates to a biological treatment method for treating organic substance-containing water by an activated sludge method, and more particularly to a biological treatment method for obtaining treated water by membrane separation of a mixed solution in a biological treatment tank.

有機物含有水から有機物を除去する処理方法として、生物処理が知られている。生物処理法の中でも、活性汚泥と呼ばれる微生物群集を利用する活性汚泥法は、様々な性状の有機物含有水に適用でき、良好な水質の処理水が得られるため、広く用いられている。活性汚泥法により有機物含有水を処理して得られる活性汚泥処理水は、純水(超純水を含む。以下同じ)を製造するための原料水(原水とも称する)としても利用されている(例えば特許文献1)。   Biological treatment is known as a treatment method for removing organic matter from organic matter-containing water. Among biological treatment methods, an activated sludge method using a microbial community called activated sludge is widely used because it can be applied to organic matter-containing water having various properties and can provide treated water with good water quality. Activated sludge treated water obtained by treating organic substance-containing water by the activated sludge method is also used as raw water (also referred to as raw water) for producing pure water (including ultrapure water; hereinafter the same). For example, Patent Document 1).

ところで、活性汚泥法による処理を行う生物処理槽内には、処理槽に導入された有機物含有水と槽内に保持された微生物とが混合された液(混合液)が保持される。このため、生物処理槽で処理された清澄な処理液を得るには、混合液を固液分離する必要がある。生物処理槽の混合液中に含まれる微生物等は微細であることから、固液分離に先立ち、凝集剤を混合液に添加することで微細な固形分を凝集させる。   By the way, in the biological treatment tank that performs the treatment by the activated sludge method, a liquid (mixed liquid) in which the organic substance-containing water introduced into the treatment tank and the microorganisms retained in the tank are mixed is held. For this reason, in order to obtain the clear processing liquid processed with the biological treatment tank, it is necessary to carry out solid-liquid separation of the liquid mixture. Since the microorganisms and the like contained in the mixed liquid in the biological treatment tank are fine, a fine solid content is aggregated by adding a flocculant to the mixed liquid prior to solid-liquid separation.

混合液を清澄化する固液分離装置としては、沈殿池、膜分離装置、および浮上分離装置等がある。特に、膜分離装置は他の固液分離装置に比べても固形分の分離能が高く、膜分離装置を用いれば清澄な処理水を得ることができる。固液分離装置として膜分離装置を用いる場合、混合液中の固形分を凝集させる凝集剤を生物処理槽に添加することもある(例えば、特許文献2)。
特開平5−329477号公報 特開平11−347587号公報
Examples of the solid-liquid separation device for clarifying the mixed solution include a sedimentation basin, a membrane separation device, and a floating separation device. In particular, the membrane separator has a higher solids separation ability than other solid-liquid separators, and clear treated water can be obtained by using the membrane separator. When a membrane separator is used as the solid-liquid separator, a flocculant that aggregates the solid content in the mixed solution may be added to the biological treatment tank (for example, Patent Document 2).
Japanese Patent Laid-Open No. 5-329477 JP-A-11-347587

膜分離装置には、分離膜が目詰まりする問題がある。特に混合液を膜分離すると、混合液に含まれる微生物自体および微生物が生産した粘質物等が膜面に付着して目詰まりを生じる傾向がある。   The membrane separation apparatus has a problem that the separation membrane is clogged. In particular, when the mixed solution is subjected to membrane separation, microorganisms contained in the mixed solution and mucilage produced by the microorganisms tend to adhere to the membrane surface and cause clogging.

このため、生物処理槽の活性汚泥濃度(Mixed Liquor Suspended Solid)を低く(例えば10,000mg/L以下)に維持する、生物処理槽に保持される汚泥に対するBOD(生物化学的酸素消費量で表される有機物)汚泥負荷を0.1kg−BOD/kg−MLVSS/日程度に抑える、といった措置が講じられている。   Therefore, the BOD (Biochemical Oxygen Consumption) for the sludge retained in the biological treatment tank that maintains the activated sludge concentration (Mixed Liquor Suspended Solid) in the biological treatment tank at a low level (for example, 10,000 mg / L or less). Measures have been taken to suppress the sludge load to about 0.1 kg-BOD / kg-MLVSS / day.

しかし、これらの措置による目詰まり防止は必ずしも万全ではなく、膜の透過流速は浸漬膜の場合0.5m/日程度、高い場合でも0.7m/日程度である。このため、固液分離に多くの膜分離装置を要する。   However, the prevention of clogging by these measures is not always thorough, and the permeation flow rate of the membrane is about 0.5 m / day in the case of an immersion membrane, and about 0.7 m / day even in the case of being high. For this reason, many membrane separation apparatuses are required for solid-liquid separation.

本発明は、かかる課題に対し、凝集剤添加による膜の目詰まり防止効果を向上させ、膜分離装置の透過流速を高くできる有機物含有水の処理方法を提供することを目的とする。   An object of the present invention is to provide a method for treating organic substance-containing water that improves the effect of preventing clogging of the membrane by adding a flocculant and can increase the permeation flow rate of the membrane separation device.

本発明者は、曝気槽に保持される活性汚泥に所定範囲の濃度となるように鉄塩を含ませることで上記課題を達成できること見出し、本発明を完成した。具体的には、本発明は以下を提供する。   The present inventor has found that the above problem can be achieved by including an iron salt so that the activated sludge retained in the aeration tank has a concentration within a predetermined range, and has completed the present invention. Specifically, the present invention provides the following.

(1)有機物を含む有機物含有水を生物処理槽に導入して活性汚泥と混合して生物処理し、前記有機物含有水と前記活性汚泥とが混合された混合液を膜分離する有機物含有水の生物処理方法において、鉄塩を、鉄としての濃度が前記活性汚泥濃度の10質量%以上45質量%以下の割合となるように前記生物処理槽内に存在させ、かつ、前記混合液のpHを5以上6.5以下とする有機物含有水の生物処理方法。
(2)前記活性汚泥濃度に対する活性汚泥有機性浮遊物質の比であるMLVSS/MLSSを0.05以上0.75以下とする(1)に記載の有機物含有水の生物処理方法。
(3)前記生物処理槽内に浸漬させた浸漬膜モジュールにより、前記混合液を膜分離する(1)または(2)に記載の有機物含有水の生物処理方法。
(4)前記有機物含有水は、自然水、水道水または回収水である(1)から(3)のいずれかに記載の有機物含有水の生物処理方法。
(1) Organic matter-containing water containing organic matter is introduced into a biological treatment tank, mixed with activated sludge and biologically treated, and the mixture of the organic matter-containing water and the activated sludge is subjected to membrane separation. In the biological treatment method, the iron salt is present in the biological treatment tank so that the concentration as iron is 10% by mass or more and 45% by mass or less of the activated sludge concentration, and the pH of the mixed solution is adjusted. A biological treatment method for organic-containing water that is 5 or more and 6.5 or less.
(2) The biological treatment method for organic matter-containing water according to (1), wherein MLVSS / MLSS, which is a ratio of the activated sludge organic suspended solids to the activated sludge concentration, is 0.05 or more and 0.75 or less.
(3) The biological treatment method for organic matter-containing water according to (1) or (2), wherein the mixed solution is subjected to membrane separation by an immersion membrane module immersed in the biological treatment tank.
(4) The biological treatment method for organic matter-containing water according to any one of (1) to (3), wherein the organic matter-containing water is natural water, tap water, or recovered water.

本明細書においては、「生物処理槽」には、BOD除去を行う「曝気槽」、硝化を主体として行う「硝化槽」、および脱窒を主体として行う「脱窒槽」が含まれるものとする。生物処理槽は、「活性汚泥」と呼ばれる微生物群集を保持し、本明細書においては「活性汚泥」という場合、BODを分解する好気性細菌を主体とする汚泥(以下、特に「BOD汚泥」と称する)のみならず、アンモニアを酸化する硝化細菌を主体とする汚泥(以下、特に「硝化汚泥」と称する)および硝酸または亜硝酸を還元する脱窒菌を主体とする汚泥(以下、特に「脱窒汚泥」と称する)が含まれるものとする。   In this specification, “biological treatment tank” includes “aeration tank” for removing BOD, “nitrification tank” mainly for nitrification, and “denitrification tank” mainly for denitrification. . The biological treatment tank holds a microbial community called “activated sludge”. In the present specification, the term “activated sludge” refers to sludge mainly composed of aerobic bacteria that decompose BOD (hereinafter, particularly “BOD sludge”). Sludge mainly composed of nitrifying bacteria that oxidize ammonia (hereinafter referred to as “nitrified sludge”) and sludge mainly composed of denitrifying bacteria that reduce nitric acid or nitrous acid (hereinafter referred to as “denitrifying”). (Referred to as “sludge”).

生物処理槽は、MLSS濃度1,000〜30,000程度の活性汚泥を保持するように運転し、活性汚泥が、MLSS濃度の10質量%以上の割合で鉄を含むように鉄塩を添加する。添加する鉄塩としては、塩化第二鉄、塩化第一鉄、およびポリ硫酸第二鉄等が挙げられる。鉄塩の添加が過剰であると、鉄由来のきわめて微細な粒子が生成するため、鉄塩の添加量はMLSS濃度の40質量%を上限とし、35質量%を上限とすることがより好ましい。生物処理槽は、浮遊式、スポンジ等の担体が添加されたもの、および固定床等であってよく、担体を添加した場合、または固定床式の場合は、浮遊汚泥中の鉄塩の含有量が鉄として10質量%以上40質量%以下とすればよい。   The biological treatment tank is operated so as to hold activated sludge having an MLSS concentration of about 1,000 to 30,000, and an iron salt is added so that the activated sludge contains iron at a ratio of 10% by mass or more of the MLSS concentration. . Examples of the iron salt to be added include ferric chloride, ferrous chloride, and ferric sulfate. If the iron salt is excessively added, extremely fine particles derived from iron are generated. Therefore, the amount of iron salt added is preferably 40% by mass of the MLSS concentration and more preferably 35% by mass. The biological treatment tank may be a floating type, a type to which a carrier such as a sponge is added, and a fixed bed. If a carrier is added or a fixed bed type, the content of iron salt in the floating sludge Is 10 mass% or more and 40 mass% or less as iron.

鉄塩の添加量は、生物処理槽に導入される有機物含有水の有機物濃度を基準に決定してもよく、この場合、有機物含有水に含まれる有機物(TOC)の25〜400質量%程度を添加するとよい。生物処理槽内の活性汚泥には、鉄塩以外に凝集作用のある物質、例えばアルミニウム塩は含まれない方がよいが、多少(例えば鉄の10質量%程度以下)であれば混入していてもよい。   The addition amount of the iron salt may be determined based on the organic matter concentration of the organic matter-containing water introduced into the biological treatment tank. In this case, about 25 to 400% by mass of the organic matter (TOC) contained in the organic matter-containing water. It is good to add. The activated sludge in the biological treatment tank should not contain any aggregating substances other than iron salt, such as aluminum salt, but it is mixed in if it is somewhat (for example, about 10% by mass or less of iron). Also good.

ここで、MLSS中の有機物量の割合、具体的には活性汚泥有機性浮遊物質(Mixed Liquor Volatile Suspended Solids)/MLSS比は0.05〜0.75程度、特に0.15〜0.5の範囲となるようにするとよい。生物処理槽に導入される有機物含有水の有機物濃度が極端に低い場合(例えば生物分解可能な有機物であるAssimirable organic carbon、以下「AOC」濃度が100ng/L程度未満)、生物処理槽内における活性汚泥の増殖が少なくなり、MLVSS/MLSS比が上記範囲を外れる場合もある。このような場合は、生物処理槽に微量の有機物を添加するか、有機物濃度の高い他の有機物含有水を混合するようにすればよい。   Here, the ratio of the amount of organic matter in MLSS, specifically, the activated sludge organic suspended matter (Mixed Liquor Volatile Suspended Solids) / MLSS ratio is about 0.05 to 0.75, especially 0.15 to 0.5. It should be in the range. When the organic matter concentration of organic substance-containing water introduced into the biological treatment tank is extremely low (for example, assimilar organic carbon (hereinafter referred to as “AOC” concentration is less than about 100 ng / L)), the activity in the biological treatment tank In some cases, the sludge growth is reduced and the MLVSS / MLSS ratio is outside the above range. In such a case, a small amount of organic substance may be added to the biological treatment tank, or other organic substance-containing water having a high organic substance concentration may be mixed.

鉄塩が添加された活性汚泥を保持する生物処理槽の槽内液(すなわち混合液)は、pHを5〜6.5とし、特に5.5〜6.0とすることが好ましい。pH調整には塩酸等の酸またはアルカリを用いればよく、添加する鉄塩の種類および量によっては酸やアルカリを別途添加せずにpH調整をしてもよい。   The liquid in the biological treatment tank that holds the activated sludge to which the iron salt is added (that is, the mixed liquid) has a pH of 5 to 6.5, and particularly preferably 5.5 to 6.0. For pH adjustment, an acid such as hydrochloric acid or an alkali may be used. Depending on the type and amount of the iron salt to be added, the pH may be adjusted without separately adding an acid or an alkali.

鉄塩共存下でpHを上記範囲とすれば、活性汚泥は強固に凝集し濾過性が向上するため、膜分離を行う場合の目詰まり(ファウリング)を効果的に防止できる。また、鉄塩共存下でpHを上記範囲とすることにより、通常であれば活性汚泥から生産される粘質物のような代謝産物がほとんど生産されなくなる。このため、粘質物が膜に付着することによるファウリングのおそれを回避できる。さらに、生物処理槽から流出する処理水にも粘質物に由来する有機物(TOC)が含まれ難くなるため、処理水水質も向上させることができる。   If the pH is set in the above range in the presence of an iron salt, the activated sludge is strongly aggregated and the filterability is improved, so that clogging (fouling) when performing membrane separation can be effectively prevented. In addition, by adjusting the pH to the above range in the presence of iron salt, metabolites such as mucilage usually produced from activated sludge are hardly produced. For this reason, the risk of fouling due to sticky substances adhering to the film can be avoided. Furthermore, since it becomes difficult for the treated water flowing out from the biological treatment tank to contain the organic matter (TOC) derived from the sticky material, the treated water quality can also be improved.

膜分離装置で液分と分離された固形分(分離汚泥)は、必要に応じて一部を返送汚泥として生物処理槽に返送し、生物処理槽における汚泥の滞留時間が2〜50日程度、特に5〜20日程度とするように汚泥を引き抜くことが好ましい。引き抜いた汚泥は余剰汚泥として排出してもよく、オゾン反応層や消化槽等の減容化手段で減容化してもよい。   The solid content (separated sludge) separated from the liquid by the membrane separator is partially returned to the biological treatment tank as return sludge as necessary, and the sludge residence time in the biological treatment tank is about 2 to 50 days, In particular, it is preferable to extract the sludge so as to be about 5 to 20 days. The extracted sludge may be discharged as excess sludge, or may be reduced in volume by a volume reducing means such as an ozone reaction layer or a digester.

本発明によれば、高度に清澄化されTOC濃度も低い処理水が得られる。このため、本発明は、地下水、河川水、湖沼(ダム湖含む)水等の自然水、水道水、または排水を処理して得られた回収水を原水として処理し、得られた処理水を純水製造に用いる場合に好適に用いることができる。   According to the present invention, treated water that is highly clarified and has a low TOC concentration is obtained. For this reason, the present invention treats recovered water obtained by treating natural water such as groundwater, river water, lake (including dam lake) water, tap water, or wastewater as raw water, and treating the obtained treated water. It can be suitably used when used for pure water production.

これらの水は、元来、有機物濃度が0.1〜10mg/L程度と低く、これらの水を純水製造の用水とする場合、シュードモナス属等の貧栄養細菌と呼ばれる微生物を主体とする生物活性炭等により生物処理された後、限外濾過(UF)膜や孔径が0.2μM以下程度の膜で固液分離される。純水製造用水の処理に用いられる膜は、孔径が小さいため、目詰まりを生じ易い。特に、自然水には、膜を詰まらせやすいフミン質や尿素が含まれ、不溶性懸濁物(SS)濃度も高い場合がある。しかし本発明によれば、高いファイリング防止効果が得られるため、原水に1mg/Lを超える高濃度のフミン質や尿素の一方または両方が含まれていてもよく、また、SSも0.1〜30mg/L程度の範囲で含まれていてもよい。   These waters originally have an organic substance concentration as low as about 0.1 to 10 mg / L. When these waters are used for producing pure water, organisms mainly composed of microorganisms called oligotrophic bacteria such as Pseudomonas After biological treatment with activated carbon or the like, solid-liquid separation is performed with an ultrafiltration (UF) membrane or a membrane having a pore size of about 0.2 μM or less. The membrane used for the treatment of pure water production water is likely to be clogged because of its small pore size. In particular, natural water contains humic substances and urea that tend to clog the membrane, and the concentration of insoluble suspension (SS) may be high. However, according to the present invention, since a high filing-preventing effect can be obtained, the raw water may contain one or both of high-concentration humic substances and urea exceeding 1 mg / L. It may be contained in the range of about 30 mg / L.

本発明では、生物処理槽内の活性汚泥に鉄塩を含ませ、pHを所定の範囲とすることで活性汚泥の凝集性を高めることができる。また、活性汚泥による代謝産物の生産を抑制できる。このため、生物処理槽内の混合液を膜分離する際の目詰まりを効果的に回避でき、処理水水質を向上させることができる。   In the present invention, the activated sludge in the biological treatment tank can be made to contain iron salt, and the coagulability of the activated sludge can be enhanced by setting the pH within a predetermined range. Moreover, the production of metabolites by activated sludge can be suppressed. For this reason, the clogging at the time of carrying out membrane separation of the liquid mixture in a biological treatment tank can be avoided effectively, and the quality of treated water can be improved.

以下、本発明について図面を用いて詳細に説明する。以下、同一部材については同一符号を付し、説明を省略または簡略化する。   Hereinafter, the present invention will be described in detail with reference to the drawings. Hereinafter, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified.

図1は、本発明に用いられる有機物含有水の生物処理装置(以下、単に「処理装置」という)1の模式図である。処理装置1は、生物処理槽10、膜分離装置としての浸漬膜11、鉄塩添加手段12、およびpH調整手段としてのpH調整手段13を備える。浸漬膜11は、生物処理槽10内に浸漬されている。鉄塩添加手段12は、鉄塩貯槽15および鉄塩添加路16で構成され、pH調整手段13はpH調整剤貯槽17とpH調整剤添加路18とで構成されている。以下、この処理装置1を用い、有機物含有水を処理する場合の処理方法について説明する。   FIG. 1 is a schematic view of a biological treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 for organic substance-containing water used in the present invention. The treatment apparatus 1 includes a biological treatment tank 10, an immersion membrane 11 as a membrane separation device, an iron salt addition unit 12, and a pH adjustment unit 13 as a pH adjustment unit. The immersion film 11 is immersed in the biological treatment tank 10. The iron salt addition means 12 includes an iron salt storage tank 15 and an iron salt addition path 16, and the pH adjustment means 13 includes a pH adjuster storage tank 17 and a pH adjuster addition path 18. Hereinafter, the processing method in the case of processing organic substance containing water using this processing apparatus 1 is demonstrated.

生物処理槽10には原水管31が接続され、原水管31を介して有機物含有水を生物処理槽10に導入する。本実施形態の生物処理槽10は、純水製造用水の処理を目的として構成され、シュードモナス属等の貧栄養好気性細菌を主体とするBOD汚泥をMLSS濃度1,000〜30,000mg/L程度で保持する。   A raw water pipe 31 is connected to the biological treatment tank 10, and organic substance-containing water is introduced into the biological treatment tank 10 through the raw water pipe 31. The biological treatment tank 10 of the present embodiment is configured for the purpose of treating pure water production water, and BOD sludge mainly composed of oligotrophic aerobic bacteria such as Pseudomonas is MLSS concentration of about 1,000 to 30,000 mg / L. Hold on.

生物処理槽10内の活性汚泥は、鉄塩を含むが、MLVSS/MLSSは0.05〜0.75程度、特に0.15〜0.5程度となるようにするとよい。生物処理槽10内のMLSS濃度およびMLVSS/MLSS比を上記範囲に維持するため、原水の有機物濃度が低い場合は、生物処理槽10には、BOD濃度1〜10mg/L程度の有機物含有水を導入することが好ましい。また、生物処理槽10は、BOD汚泥負荷0.01〜0.2kg−BOD/kg−MLVSS/日程度、汚泥滞留時間2〜50日程度で運転して、BODを活性汚泥により好気的に生物分解するとよい。   The activated sludge in the biological treatment tank 10 contains an iron salt, and the MLVSS / MLSS is preferably about 0.05 to 0.75, particularly about 0.15 to 0.5. In order to maintain the MLSS concentration and the MLVSS / MLSS ratio in the biological treatment tank 10 within the above ranges, when the organic matter concentration in the raw water is low, the biological treatment tank 10 contains organic substance-containing water having a BOD concentration of about 1 to 10 mg / L. It is preferable to introduce. The biological treatment tank 10 is operated with a BOD sludge load of 0.01 to 0.2 kg-BOD / kg-MLVSS / day and a sludge residence time of about 2 to 50 days, and the BOD is aerobically activated with activated sludge. Biodegradable.

生物処理槽10には、鉄塩添加路16を介して鉄塩貯層15から鉄塩を添加する。生物処理槽10には、凝集作用がある鉄塩を添加し、その種類は上述したとおりである。生物処理槽10には好ましくは図1に示すようにMLSS計を設け、鉄塩の添加量は上述したとおり、生物処理槽10のMLSS濃度の10〜40質量%とする。   Iron salt is added from the iron salt reservoir 15 to the biological treatment tank 10 via the iron salt addition path 16. An iron salt having an aggregating action is added to the biological treatment tank 10, and the kind thereof is as described above. The biological treatment tank 10 is preferably provided with an MLSS meter as shown in FIG. 1, and the amount of iron salt added is 10 to 40% by mass of the MLSS concentration of the biological treatment tank 10 as described above.

処理装置1では、浸漬膜11を生物処理槽10内に設けていることから、生物処理槽10内で浸漬膜11により固形分と液分とを膜分離する。分離された固形分(分離汚泥)は、一部を生物処理槽10に接続された分離汚泥管34から排出し、残部を生物処理槽10内に保持する。分離汚泥は、生物処理槽10の汚泥滞留時間が上述した範囲となるように定期的に生物処理槽10から引き抜けばよい。このように、処理装置1では生物処理槽10に添加された鉄塩は、分離汚泥の引き抜きに伴って生物処理槽10から持ち出されるため、鉄塩の添加量は、原水管31から生物処理槽10に導入される有機物含有水の有機物濃度を基準として決定すればよい。   In the processing apparatus 1, since the immersion film 11 is provided in the biological treatment tank 10, the solid content and the liquid content are separated into membranes by the immersion film 11 in the biological treatment tank 10. Part of the separated solid content (separated sludge) is discharged from the separated sludge pipe 34 connected to the biological treatment tank 10, and the remainder is held in the biological treatment tank 10. The separated sludge may be periodically withdrawn from the biological treatment tank 10 so that the sludge residence time in the biological treatment tank 10 is in the above-described range. Thus, in the processing apparatus 1, since the iron salt added to the biological treatment tank 10 is taken out from the biological treatment tank 10 with the extraction of the separated sludge, the amount of iron salt added is from the raw water pipe 31 to the biological treatment tank. What is necessary is just to determine on the basis of the organic substance density | concentration of the organic substance containing water introduce | transduced into 10. FIG.

生物処理槽10には、図1に示すように好ましくはpH計Hを設ける。そして、pH調整剤添加路18を介して、pH調整剤としてpH調整剤貯槽17に貯留された酸またはアルカリを添加することで、槽内液のpHを上記範囲とする。   The biological treatment tank 10 is preferably provided with a pH meter H as shown in FIG. And the pH of the liquid in a tank is made into the said range by adding the acid or alkali stored by the pH adjuster storage tank 17 as a pH adjuster via the pH adjuster addition path 18. FIG.

生物処理槽10内には、散気手段として酸気管14が設けられている。酸気管14からは、生物処理槽10内に設けられた浸漬膜11に対しても曝気が行われ、曝気により浸漬膜11を洗浄しながら膜分離を行う。   An acid air pipe 14 is provided in the biological treatment tank 10 as a diffuser. From the acid air pipe 14, aeration is also performed on the immersion membrane 11 provided in the biological treatment tank 10, and membrane separation is performed while cleaning the immersion membrane 11 by aeration.

浸漬膜11としては、固液分離に一般に用いられている膜であれば特に限定されない。具体的には、精密濾過(MF)膜、または限外濾過(UF)膜を用いればよく、膜モジュールの形状は中空糸、または平膜等であってよい。   The immersion film 11 is not particularly limited as long as it is a film generally used for solid-liquid separation. Specifically, a microfiltration (MF) membrane or an ultrafiltration (UF) membrane may be used, and the shape of the membrane module may be a hollow fiber or a flat membrane.

浸漬膜11には、処理水管32が取り付けられている。処理水管32の途中には、ポンプPが設けられ、ポンプPにより浸漬膜11内部を吸引して、生物処理槽10内の混合液を膜分離する。膜分離により固形分と分離され清澄化された液は、処理水として処理水管32を介して生物処理槽10から取出す。一方、分離汚泥は上述したとおり、生物処理槽10内に保持され、一部は分離汚泥管34から余剰汚泥として排出すればよい。   A treated water pipe 32 is attached to the immersion film 11. A pump P is provided in the middle of the treated water pipe 32, and the inside of the immersion membrane 11 is sucked by the pump P to separate the mixed liquid in the biological treatment tank 10 into a membrane. The liquid separated from the solid content by membrane separation and clarified is taken out from the biological treatment tank 10 through the treated water pipe 32 as treated water. On the other hand, as described above, the separated sludge is held in the biological treatment tank 10 and a part thereof may be discharged from the separated sludge pipe 34 as excess sludge.

本発明は、上記方法に限定されない。次に、本発明の他の実施態様として、図2に示す処理装置2を用いた処理方法を説明する。処理装置2は、有機物濃度が20〜100mg/L程度の有機物含有水を処理し、余剰汚泥の発生量が多い場合に適した装置であり、汚泥減容化手段としてのオゾン反応槽19をさらに有する。オゾン反応槽19は、分離汚泥管34を介して生物処理槽10と接続され、生物処理槽10から排出される余剰汚泥をオゾンにより可溶化する。   The present invention is not limited to the above method. Next, as another embodiment of the present invention, a processing method using the processing apparatus 2 shown in FIG. 2 will be described. The treatment apparatus 2 is an apparatus suitable for treating organic substance-containing water having an organic substance concentration of about 20 to 100 mg / L and generating a large amount of excess sludge. The treatment apparatus 2 further includes an ozone reaction tank 19 as a sludge volume reducing means. Have. The ozone reaction tank 19 is connected to the biological treatment tank 10 via the separated sludge pipe 34 and solubilizes excess sludge discharged from the biological treatment tank 10 with ozone.

オゾン反応槽19には、排泥管35を接続して可溶化された汚泥を取出す。排泥管35からは返送管34を分岐させ、返送管34を生物処理槽10と接続することで、可溶化された汚泥を生物処理槽10に返送すればよい。一方、MLVSS/MLSS比を上記範囲に維持するためには、排泥管35から適宜、無機物が集積した汚泥を排出する。   A sludge pipe 35 is connected to the ozone reaction tank 19 to take out the solubilized sludge. The return pipe 34 is branched from the sludge pipe 35 and the return pipe 34 is connected to the biological treatment tank 10 to return the solubilized sludge to the biological treatment tank 10. On the other hand, in order to maintain the MLVSS / MLSS ratio in the above range, the sludge in which inorganic substances are accumulated is appropriately discharged from the mud pipe 35.

この処理装置2を用いる処理方法では、余剰汚泥を可溶化して生物処理槽10に返送することで余剰汚泥の発生量を減らすことができる。また、余剰汚泥が生物処理槽10に返送されるため、処理装置2の系外へ持ち出される鉄塩の量が減る。このため、処理装置2を用いる処理方法では、生物処理槽10のMLSS濃度に対する鉄塩濃度が所定範囲となるように必要に応じて適宜、鉄塩を添加すればよい。このように、処理装置2を用いる処理方法では、処理装置1のように有機物含有水の有機物濃度を基準として鉄塩を連続的に添加する必要がないため、鉄塩の使用量を減らすことができる。   In the processing method using this processing apparatus 2, the amount of excess sludge generated can be reduced by solubilizing excess sludge and returning it to the biological treatment tank 10. Moreover, since excess sludge is returned to the biological treatment tank 10, the amount of iron salt taken out of the system of the treatment apparatus 2 is reduced. For this reason, in the processing method using the processing apparatus 2, an iron salt may be appropriately added as necessary so that the iron salt concentration with respect to the MLSS concentration in the biological treatment tank 10 falls within a predetermined range. Thus, in the processing method using the processing apparatus 2, since it is not necessary to add an iron salt continuously on the basis of the organic substance density | concentration of organic substance containing water like the processing apparatus 1, it can reduce the usage-amount of iron salt. it can.

ここまで膜分離を浸漬膜11により行う処理方法について述べたが、浸漬膜11に代えて図3に示す加圧型の膜モジュール21を膜分離装置として備える処理装置3を用いてもよい。膜モジュール21に用いる膜の種類は、MF膜やUF膜とすればよく、モジュール形式は、中空糸膜、平膜以外にスパイラル膜としてもよい。   Although the treatment method for performing the membrane separation with the immersion membrane 11 has been described so far, the treatment device 3 including the pressure type membrane module 21 shown in FIG. 3 as the membrane separation device may be used instead of the immersion membrane 11. The type of membrane used in the membrane module 21 may be an MF membrane or a UF membrane, and the module type may be a spiral membrane other than a hollow fiber membrane or a flat membrane.

膜モジュール21は、送液管36を介して生物処理槽10と接続されている。ポンプPは、送液管36の途中に設けられている。混合液は、生物処理槽10から取出され、鉄塩を含み凝集した活性汚泥を含み、pHが上記範囲とされた状態でポンプPにより膜モジュール21に送られ、加圧濾過される。   The membrane module 21 is connected to the biological treatment tank 10 via the liquid feeding pipe 36. The pump P is provided in the middle of the liquid feeding pipe 36. The mixed liquid is taken out from the biological treatment tank 10 and contains activated sludge that contains iron salt and agglomerated, and is sent to the membrane module 21 by the pump P in a state where the pH is in the above range, and is pressure filtered.

膜モジュール21には、処理水管32と分離汚泥管33が接続され、膜モジュール21により固形分を分離した処理水32は処理水管32から取出し、分離汚泥は分離汚泥管33から取出す。分離汚泥管33からは返送管34を分岐させ、返送管34を生物処理槽10と接続することで、分離汚泥33の一部を生物処理槽10に返送する。分離汚泥の一部は、余剰汚泥として分離汚泥管33から引き抜けばよい。この処理装置3を用いる場合は分離汚泥の返送量と引き抜き量とを調整することで、生物処理槽10の汚泥滞留時間、MLSS濃度、MLVSS/MLSS比を調整すればよい。   A treated water pipe 32 and a separated sludge pipe 33 are connected to the membrane module 21, and the treated water 32 separated from the solid content by the membrane module 21 is taken out from the treated water pipe 32, and the separated sludge is taken out from the separated sludge pipe 33. A part of the separated sludge 33 is returned to the biological treatment tank 10 by branching the return pipe 34 from the separated sludge pipe 33 and connecting the return pipe 34 to the biological treatment tank 10. A part of the separated sludge may be pulled out from the separated sludge pipe 33 as excess sludge. When using this processing apparatus 3, the sludge residence time, MLSS concentration, and MLVSS / MLSS ratio of the biological treatment tank 10 may be adjusted by adjusting the return amount and withdrawal amount of the separated sludge.

処理装置3を用いる場合、分離汚泥33から連続的に余剰汚泥として分離汚泥を引き抜く場合は、処理装置1を用いる場合と同様に、生物処理槽10に導入される有機物含有水の有機物濃度を基準として鉄塩を添加すればよい。一方、分離汚泥管33を減容化手段と接続して余剰汚泥を可溶化して生物処理槽10に返送する場合は、処理装置2を用いる場合と同様に、鉄塩は必要に応じて生物処理槽10に添加すればよい。   In the case of using the processing apparatus 3, when the separated sludge is continuously extracted from the separated sludge 33 as excess sludge, the organic substance concentration of the organic substance-containing water introduced into the biological treatment tank 10 is used as a standard, as in the case of using the processing apparatus 1. As a result, an iron salt may be added. On the other hand, when the separated sludge pipe 33 is connected to the volume reducing means to solubilize the excess sludge and return it to the biological treatment tank 10, the iron salt is biologically used as necessary, as in the case of using the treatment apparatus 2. What is necessary is just to add to the processing tank 10.

このように、上記実施態様は適宜、変更可能であり、例えば、生物処理槽に硝化菌を主体とする硝化汚泥を保持する場合にも適用できる。あるいは、生物処理槽に脱窒菌主体とする脱窒汚泥を保持する場合にもできようできる。これらの場合も生物処理槽内のMLSS濃度に対し、鉄塩を上記範囲となるように添加し、pHを上記範囲とすればよい。   Thus, the said embodiment can be changed suitably, for example, can be applied also when hold | maintaining the nitrification sludge which has nitrifying bacteria as a main body in a biological treatment tank. Alternatively, it can also be performed when denitrifying sludge mainly composed of denitrifying bacteria is retained in the biological treatment tank. In these cases, the iron salt may be added so as to be in the above range with respect to the MLSS concentration in the biological treatment tank, and the pH may be set in the above range.

本発明者の知見によれば、これら種々の態様の中では、BODを除去する好気性細菌を主体とする活性汚泥により有機物含有水を処理する場合において、上記数値範囲のMLSS濃度で、上記数値範囲の鉄塩共存下、pHを上記範囲とする場合に高いファウリング防止効果が得られる。また、膜分離装置としては、ポンプによる送液時のフロック破壊のおそれが低い浸漬膜型の方が好ましい。   According to the knowledge of the present inventor, among these various aspects, in the case where organic substance-containing water is treated with activated sludge mainly composed of aerobic bacteria that remove BOD, the above numerical values are obtained at the MLSS concentration within the above numerical range. When the pH is in the above range in the presence of the iron salt in the range, a high antifouling effect is obtained. Further, as the membrane separation device, a submerged membrane type having a low risk of floc breakage during liquid feeding by a pump is preferable.

[比較例1]
以下、実施例および比較例について説明する。まず、比較例1として、河川水(BOD濃度1.2mg/L、SS濃度3mg/Lにリン酸1カリウムを添加して、リン濃度を0.3mg/Lとした有機物含有水を処理した。この河川水のフミン質の含有量を把握するため、フミン質と相関の高い、260nmの波長の紫外線吸光度E260を測定したところ、E260の値は0.42であった。
[Comparative Example 1]
Hereinafter, examples and comparative examples will be described. First, as Comparative Example 1, river water (organic water containing BOD concentration of 1.2 mg / L, SS concentration of 3 mg / L with addition of 1 potassium phosphate to a phosphorus concentration of 0.3 mg / L was treated. In order to grasp the content of humic substances in the river water, the ultraviolet absorbance E260 at a wavelength of 260 nm, which has a high correlation with the humic substances, was measured, and the value of E260 was 0.42.

比較例1では、図1に示す処理装置1を模した実験装置を用いた。生物処理槽の大きさは、0.2mで、内部に浸漬膜を浸漬させた。浸漬膜としては、4mの大きさの平膜タイプ、孔径0.1μmMF膜(三菱レーヨン株式会社製)を用いた。 In Comparative Example 1, an experimental apparatus simulating the processing apparatus 1 shown in FIG. 1 was used. The size of the biological treatment tank was 0.2 m 3 , and an immersion film was immersed therein. As the immersion film, a flat film type having a size of 4 m 3 and a pore diameter of 0.1 μmM F (manufactured by Mitsubishi Rayon Co., Ltd.) were used.

上記有機物含有水を3m/日の流量で生物処理槽に供給した。浸漬膜に接続した処理水管の途中に設けた真空ポンプにより減圧することで、処理水管から処理水を取出した。比較例1では、実験開始から1日で膜が目詰まりして処理水の引抜ができなくなった。この時点での処理水のTOC濃度は2.2mg/Lであり、槽内の混合液の性状は以下の通りであった。 The organic substance-containing water was supplied to the biological treatment tank at a flow rate of 3 m 3 / day. The treated water was taken out from the treated water pipe by reducing the pressure with a vacuum pump provided in the middle of the treated water pipe connected to the immersion membrane. In Comparative Example 1, the membrane was clogged in one day from the start of the experiment, and the treated water could not be drawn. The TOC concentration of the treated water at this time was 2.2 mg / L, and the properties of the mixed solution in the tank were as follows.

[生物処理槽内の混合液]
鉄含有割合 ;MLSSの4.8質量%(鉄として)
MLSS濃度 ;490mg/L
MLVSS濃度 ;180mg/L
pH ;7.1
[Mixed liquid in biological treatment tank]
Iron content ratio: 4.8% by mass of MLSS (as iron)
MLSS concentration: 490 mg / L
MLVSS concentration: 180 mg / L
pH: 7.1

[実施例1]
(第1段階)
比較例1で処理水が引き抜けなくなった生物処理槽を空にして、生物処理槽に活性汚泥をMLSS濃度100mg/Lとなるように添加し、この混合液に鉄塩として塩化第2鉄を鉄として1,000mg/Lの割合で添加した。また、生物処理槽にpH計を設けて水酸化ナトリウムによりpH調整を行い、pH6に維持した。そして、比較例1の処理対象とした有機物含有水に塩化第2鉄を4mg/Lで添加して、1.2m/日の流量で生物処理槽に供給したところ、通水開始から3日後から浸漬膜の差圧上昇がなくなった。この時点での処理水のTOC濃度は145ng/Lであり、生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの35質量%(鉄として)
MLSS濃度 ;1940mg/L
MLVSS濃度 ;110mg/L
pH ;6
[Example 1]
(First stage)
The biological treatment tank in which treated water could not be pulled out in Comparative Example 1 was emptied, and activated sludge was added to the biological treatment tank to an MLSS concentration of 100 mg / L, and ferric chloride was added as an iron salt to this mixed solution. Iron was added at a rate of 1,000 mg / L. In addition, a pH meter was provided in the biological treatment tank, pH was adjusted with sodium hydroxide, and the pH was maintained at 6. Then, ferric chloride was added at 4 mg / L to the organic substance-containing water to be treated in Comparative Example 1 and supplied to the biological treatment tank at a flow rate of 1.2 m 3 / day. Therefore, the increase in the differential pressure of the immersion film disappeared. The TOC concentration of treated water at this time was 145 ng / L, and the properties of the mixed solution in the biological treatment tank were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 35% by mass of MLSS (as iron)
MLSS concentration: 1940 mg / L
MLVSS concentration; 110 mg / L
pH: 6

(第2段階)
そこで第1段階を終了し、第2段階として生物処理槽に対する有機物含有水の供給量を3m/日とした。第2段階では生物処理槽から20L/日で槽内の汚泥を引き抜いた。その他の条件は第2段階と同様にして、生物処理槽には、塩化第2鉄を4mg/Lで添加した有機物含有水を供給し、生物処理槽内のpHも6に維持した。第2段階では、2ヶ月間、浸漬膜の差圧上昇は認められず、処理水のTOC濃度は20ng/L以下で安定した。第2段階における生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの22質量%(鉄として)
MLSS濃度 ;3,700mg/L
MLVSS濃度 ;1,670mg/L
pH ;6
(Second stage)
Therefore, the first stage was terminated, and the supply amount of organic substance-containing water to the biological treatment tank was set to 3 m 3 / day as the second stage. In the second stage, sludge in the tank was extracted from the biological treatment tank at 20 L / day. Other conditions were the same as in the second stage, and the organic treatment water to which ferric chloride was added at 4 mg / L was supplied to the biological treatment tank, and the pH in the biological treatment tank was also maintained at 6. In the second stage, no increase in the differential pressure of the immersion film was observed for 2 months, and the TOC concentration of the treated water was stabilized at 20 ng / L or less. The properties of the mixed solution in the biological treatment tank in the second stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 22% by mass of MLSS (as iron)
MLSS concentration: 3,700 mg / L
MLVSS concentration: 1,670 mg / L
pH: 6

(第3段階)
第2段階に続き、第3段階として生物処理槽に対する有機物含有水の供給量を4m/日とした以外は第2段階と同様にして1ヶ月間、処理を続けた。1ヶ月間の第3段階期間中、浸漬膜の差圧上昇は認められず、処理水のTOC濃度は100ng/L以下で安定した。第3段階における生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの19.7質量%(鉄として)
MLSS濃度 ;4,900mg/L
MLVSS濃度 ;2,350mg/L
pH ;6
(3rd stage)
Subsequent to the second stage, the treatment was continued for one month in the same manner as in the second stage except that the supply amount of organic substance-containing water to the biological treatment tank was changed to 4 m 3 / day as the third stage. During the third stage of one month, no increase in the differential pressure of the immersion film was observed, and the TOC concentration of the treated water was stable at 100 ng / L or less. The properties of the mixed solution in the biological treatment tank in the third stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 19.7% by mass of MLSS (as iron)
MLSS concentration: 4,900 mg / L
MLVSS concentration: 2,350 mg / L
pH: 6

(第4段階)
第3段階に続き、第4段階として生物処理槽に供給する有機物含有水にイソプロピルアルコール(IPA)を8mg/Lでさらに添加した。有機物含有水にIPAを添加した以外は第3段階と同様にして1ヶ月間、処理を続けた。1ヶ月間の第4段階期間中、浸漬膜の差圧上昇は認められず、処理水のTOC濃度は133ng/Lであった。第4段階における生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの15.3質量%(鉄として)
MLSS濃度 ;5,690mg/L
MLVSS濃度 ;2,810mg/L
pH ;6
(Fourth stage)
Following the third stage, isopropyl alcohol (IPA) was further added at 8 mg / L to the organic substance-containing water supplied to the biological treatment tank as the fourth stage. The treatment was continued for one month in the same manner as in the third stage except that IPA was added to the organic substance-containing water. During the fourth stage period of one month, no increase in the differential pressure of the immersion film was observed, and the TOC concentration of the treated water was 133 ng / L. The properties of the mixed solution in the biological treatment tank in the fourth stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 15.3% by mass of MLSS (as iron)
MLSS concentration: 5,690 mg / L
MLVSS concentration: 2,810 mg / L
pH: 6

(第5段階)
第4段階に続き、第5段階として有機物含有水へのIPAの添加量を10mg/Lに増やし、生物処理槽への有機物含有水の供給量3m/日とした。有機物含有水へのIPA添加量を増やし、通水量を下げた以外は第4段階と同様にして1週間、処理を続けた。1週間の第5段階期間中、浸漬膜の差圧はほとんど上昇せず処理水のTOC濃度は274ng/Lであった。第5段階における生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの12.9質量%(鉄として)
MLSS濃度 ;2700mg/L
MLVSS濃度 ;1377mg/L
pH ;6
(5th stage)
Subsequent to the fourth stage, as the fifth stage, the amount of IPA added to the organic substance-containing water was increased to 10 mg / L, and the amount of organic substance-containing water supplied to the biological treatment tank was 3 m 3 / day. The treatment was continued for one week in the same manner as in the fourth step except that the amount of IPA added to the organic substance-containing water was increased and the water flow rate was lowered. During the fifth phase of one week, the differential pressure of the immersion film hardly increased and the TOC concentration of the treated water was 274 ng / L. The properties of the mixed solution in the biological treatment tank in the fifth stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 12.9% by mass of MLSS (as iron)
MLSS concentration: 2700 mg / L
MLVSS concentration: 1377 mg / L
pH: 6

(第6段階)
第5段階に続き、第6段階として有機物含有水へのIPAの添加量を50mg/Lに増やした。有機物含有水へのIPA添加量を増やした以外は第5段階と同様にして1週間、処理を続けた。第6段階では、浸漬膜の差圧は上昇し始め、1週間後の第6段階終了時点では第6段階開始時と比べ、40kPの差圧上昇があり、処理水のTOC濃度は1.6mg/Lであった。第6段階終了時点での生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの9.4質量%(鉄として)
MLSS濃度 ;5700mg/L
MLVSS濃度 ;3477mg/L
pH ;6
(6th stage)
Following the fifth stage, as the sixth stage, the amount of IPA added to the organic substance-containing water was increased to 50 mg / L. The treatment was continued for one week in the same manner as in the fifth stage except that the amount of IPA added to the organic substance-containing water was increased. In the sixth stage, the differential pressure of the submerged membrane starts to increase, and at the end of the sixth stage one week later, there is a 40 kP differential pressure increase compared to the start of the sixth stage, and the TOC concentration of treated water is 1.6 mg. / L. The properties of the mixed solution in the biological treatment tank at the end of the sixth stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 9.4% by mass of MLSS (as iron)
MLSS concentration: 5700 mg / L
MLVSS concentration; 3477 mg / L
pH: 6

(第7段階)
第7段階を開始する前、生物処理槽から浸漬膜を取出し、水酸化ナトリウム、クエン酸、および次亜塩素酸ナトリウムの溶液で洗浄した。さらに、生物処理槽内の活性汚泥を半分、引き抜くと共に、生物処理槽にMLSSに対する鉄塩の含有割合が15質量%となるように塩化第2鉄を添加した。その上で、第7段階として有機物含有水へのIPAの添加量を10mg/Lに減らし、それ以外は第6段階と同様にして1週間、処理を続けた。1週間の第7段階期間中、浸漬膜の差圧は上昇せず、処理水のTOC濃度は192ng/Lであった。第7段階における生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの15.1質量%(鉄として)
MLSS濃度 ;2,840mg/L
MLVSS濃度 ;1,510mg/L
pH ;6
(7th stage)
Before starting the seventh stage, the immersion membrane was removed from the biological treatment tank and washed with a solution of sodium hydroxide, citric acid, and sodium hypochlorite. Further, half of the activated sludge in the biological treatment tank was pulled out, and ferric chloride was added to the biological treatment tank so that the content of iron salt relative to MLSS was 15% by mass. After that, as the seventh stage, the amount of IPA added to the organic substance-containing water was reduced to 10 mg / L, and otherwise, the treatment was continued for one week in the same manner as in the sixth stage. During the seventh stage of one week, the differential pressure of the immersion film did not increase, and the TOC concentration of the treated water was 192 ng / L. The properties of the mixed solution in the biological treatment tank in the seventh stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 15.1% by mass of MLSS (as iron)
MLSS concentration: 2,840 mg / L
MLVSS concentration: 1,510 mg / L
pH: 6

(第8段階)
第7段階に続き、第8段階として生物処理槽内の混合液のpHを5に維持した。混合液のpHを下げた以外は、第7段階と同様にして1週間、処理を続けたところ、浸漬膜の差圧は上昇せず、処理水のTOC濃度は222ng/Lであった。第8段階における生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの16.7質量%(鉄として)
MLSS濃度 ;3,160mg/L
MLVSS濃度 ;1,630mg/L
pH ;5
(Eighth stage)
Following the seventh stage, the pH of the mixed solution in the biological treatment tank was maintained at 5 as the eighth stage. The treatment was continued for one week in the same manner as in the seventh step except that the pH of the mixed solution was lowered. As a result, the differential pressure of the immersion film did not increase, and the TOC concentration of the treated water was 222 ng / L. The properties of the mixed solution in the biological treatment tank in the eighth stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 16.7% by mass of MLSS (as iron)
MLSS concentration: 3,160 mg / L
MLVSS concentration: 1,630 mg / L
pH: 5

(第9段階)
第8段階に続き、第9段階として生物処理槽内の混合液のpHを5.5に維持した。混合液のpHを上げた以外は、第8段階と同様にして1週間、処理を続けたところ、浸漬膜の差圧は上昇せず、処理水のTOC濃度は197ng/Lであった。第9段階における生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの18.4質量%(鉄として)
MLSS濃度 ;3,360mg/L
MLVSS濃度 ;1,690mg/L
pH ;5.5
(9th stage)
Following the eighth stage, the pH of the mixed solution in the biological treatment tank was maintained at 5.5 as the ninth stage. When the treatment was continued for one week in the same manner as in the eighth step except that the pH of the mixed solution was raised, the differential pressure of the immersion film did not rise, and the TOC concentration of the treated water was 197 ng / L. The properties of the mixed solution in the biological treatment tank in the ninth stage were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 18.4% by mass of MLSS (as iron)
MLSS concentration: 3,360 mg / L
MLVSS concentration: 1,690 mg / L
pH; 5.5

(第10段階)
第9段階に続き、第10段階として生物処理槽内の混合液のpHを7に上げた。混合液のpHを上げた以外は、第9段階と同様にしたところ、第10段階開始の翌日から浸漬膜の差圧が上昇し、2日で処理が継続できなくなった。処理停止2時間前の処理水のTOC濃度は910ng/Lであり、この時点での生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの19.5質量%(鉄として)
MLSS濃度 ;3,660mg/L
MLVSS濃度 ;1,720mg/L
pH ;7
(10th stage)
Subsequent to the ninth stage, as the tenth stage, the pH of the mixed solution in the biological treatment tank was raised to 7. Except for raising the pH of the mixed solution, the same procedure as in the ninth stage was performed. As a result, the differential pressure of the immersion film increased from the day after the start of the tenth stage, and the treatment could not be continued in two days. The TOC concentration of the treated water 2 hours before the treatment stop was 910 ng / L, and the properties of the mixed solution in the biological treatment tank at this time were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 19.5% by mass of MLSS (as iron)
MLSS concentration: 3,660 mg / L
MLVSS concentration: 1,720 mg / L
pH: 7

[比較例2]
比較例2では、水道水(TOC濃度0.3mg/L、SS濃度1mg/L以下)を有機物含有水として処理した。比較例2では、比較例1および実施例1と同じ構成の処理装置を用いた。
[Comparative Example 2]
In Comparative Example 2, tap water (TOC concentration 0.3 mg / L, SS concentration 1 mg / L or less) was treated as organic matter-containing water. In Comparative Example 2, a processing apparatus having the same configuration as Comparative Example 1 and Example 1 was used.

比較例2では、上記有機物含有水に塩化第2鉄を3mg/Lの添加量で添加して3m/日の流量で生物処理槽に供給した。処理水は、処理水管の途中に設けた真空ポンプにより減圧することで、浸漬膜を減圧して取出した。比較例2では、処理開始からほどなく浸漬膜の差圧が上昇し始め、実験開始から10日で膜が目詰まりして処理水の引抜ができなくなった。この時点での処理水のTOC濃度は234ng/Lであり、槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの46質量%(鉄として)
MLSS濃度 ;1,160mg/L
MLVSS濃度 ;71mg/L
pH ;6.8
In Comparative Example 2, ferric chloride was added to the organic substance-containing water at an addition amount of 3 mg / L and supplied to the biological treatment tank at a flow rate of 3 m 3 / day. The treated water was taken out by decompressing the submerged membrane by depressurizing with a vacuum pump provided in the middle of the treated water pipe. In Comparative Example 2, the differential pressure of the submerged membrane began to increase soon after the start of the treatment, and the membrane was clogged 10 days after the start of the experiment, making it impossible to draw the treated water. The TOC concentration of the treated water at this time was 234 ng / L, and the properties of the mixed solution in the tank were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 46% by mass of MLSS (as iron)
MLSS concentration: 1,160 mg / L
MLVSS concentration: 71 mg / L
pH: 6.8

[比較例3]
比較例2で処理水が引き抜けなくなった生物処理槽から浸漬膜を取出し、クエン酸で洗浄し、生物処理槽に再度、浸漬させた。また、生物処理槽にpH計を設け、1質量%の濃度の硫酸を添加することで、pHを5.8〜6.2の範囲に維持した。その他は比較例2と同様の条件で実験を行ったところ、浸漬膜の差圧は徐々に上昇して実験開始から1ヶ月で処理水の引抜ができなくなった。この時点での処理水のTOC濃度は0.266mg/Lであり、生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの49質量%(鉄として)
MLSS濃度 ;1,740mg/L
MLVSS濃度 ;49mg/L
pH ;5.8〜6.2
[Comparative Example 3]
The immersion film was taken out of the biological treatment tank in which the treated water could not be pulled out in Comparative Example 2, washed with citric acid, and immersed again in the biological treatment tank. Further, a pH meter was provided in the biological treatment tank, and the pH was maintained in the range of 5.8 to 6.2 by adding sulfuric acid having a concentration of 1% by mass. In other cases, the experiment was performed under the same conditions as in Comparative Example 2. As a result, the differential pressure of the immersion film gradually increased, and the treated water could not be drawn out in one month from the start of the experiment. The TOC concentration of treated water at this time was 0.266 mg / L, and the properties of the mixed solution in the biological treatment tank were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 49% by mass of MLSS (as iron)
MLSS concentration: 1,740 mg / L
MLVSS concentration; 49 mg / L
pH: 5.8-6.2

[実施例2]
比較例3で処理水が引き抜けなくなった生物処理槽から浸漬膜を取出し、クエン酸で洗浄し、生物処理槽に再度、浸漬させた。また、比較例3で処理した水道水にIPAを2mg/L、およびリン酸2アンモニウムをNとして1mg/Lとなるようにさらに添加した。その他は比較例3と同様の条件で実験を行ったところ、1ヶ月に渡り、浸漬膜の差圧上昇は認められなかった。実施例2の実験開始から1ヶ月後の処理水のTOC濃度は217ng/Lであり、生物処理槽内の混合液の性状は以下の通りであった。
[生物処理槽内の混合液]
鉄含有割合 ;MLSSの38質量%(鉄として)
MLSS濃度 ;2,920mg/L
MLVSS濃度 ;674mg/L
pH ;5.8〜6.2
[Example 2]
The immersion film was taken out from the biological treatment tank in which the treated water could not be pulled out in Comparative Example 3, washed with citric acid, and immersed again in the biological treatment tank. Further, IPA was further added to the tap water treated in Comparative Example 3 so that the concentration was 1 mg / L with 2 mg / L of IPA and N of diammonium phosphate as N. Other than that, the experiment was performed under the same conditions as in Comparative Example 3. As a result, no increase in the differential pressure of the immersion film was observed over one month. The TOC concentration of treated water one month after the start of the experiment in Example 2 was 217 ng / L, and the properties of the mixed solution in the biological treatment tank were as follows.
[Mixed liquid in biological treatment tank]
Iron content ratio: 38% by mass of MLSS (as iron)
MLSS concentration: 2,920 mg / L
MLVSS concentration; 674 mg / L
pH: 5.8-6.2

以上より、生物処理槽のMLSSに対する鉄塩の割合を所定範囲にすることで膜のファウリングを効果的に防止し、高い透過流速で処理ができることが示された。   From the above, it was shown that the fouling of the membrane can be effectively prevented and the treatment can be performed at a high permeation flow rate by setting the ratio of the iron salt to the MLSS in the biological treatment tank within a predetermined range.

本発明は、有機物含有水の処理に用いることができる。   The present invention can be used for the treatment of organic substance-containing water.

本発明に用いられる第1の生物処理装置の模式図。The schematic diagram of the 1st biological treatment apparatus used for this invention. 本発明に用いられる第2の生物処理装置の模式図。The schematic diagram of the 2nd biological treatment apparatus used for this invention. 本発明に用いられる第3の生物処理装置の模式図。The schematic diagram of the 3rd biological treatment apparatus used for this invention.

符号の説明Explanation of symbols

1〜3 生物処理装置
10 生物処理槽
11 浸漬膜
12 鉄塩添加手段
13 pH調整手段
14 酸気管
15 鉄塩貯槽
16 鉄塩添加路
17 pH調整剤貯槽
18 pH調整剤添加路
19 オゾン反応槽
1-3 biological treatment apparatus 10 biological treatment tank 11 immersion film 12 iron salt addition means 13 pH adjustment means 14 acid pipe 15 iron salt storage tank 16 iron salt addition path 17 pH adjustment agent storage path 18 pH adjustment agent addition path 19 ozone reaction tank

Claims (4)

有機物を含む有機物含有水を生物処理槽に導入して活性汚泥と混合して生物処理し、前記有機物含有水と前記活性汚泥とが混合された混合液を膜分離する有機物含有水の生物処理方法において、
鉄塩を、鉄としての濃度が前記活性汚泥濃度の10質量%以上45質量%以下の割合となるように前記生物処理槽内に存在させ、かつ、前記混合液のpHを5以上6.5以下とする有機物含有水の生物処理方法。
Biological treatment method for organic matter-containing water, wherein organic matter-containing water containing organic matter is introduced into a biological treatment tank and mixed with activated sludge to be biologically treated, and the mixed liquid in which the organic matter-containing water and the activated sludge are mixed is subjected to membrane separation In
An iron salt is present in the biological treatment tank so that the concentration of iron is 10% by mass or more and 45% by mass or less of the activated sludge concentration, and the pH of the mixed solution is 5 or more and 6.5. Biological treatment method of organic substance-containing water as follows.
前記活性汚泥濃度に対する活性汚泥有機性浮遊物質の比であるMLVSS/MLSSを0.05以上0.75以下とする請求項1に記載の有機物含有水の生物処理方法。   The biological treatment method for organic matter-containing water according to claim 1, wherein MLVSS / MLSS, which is a ratio of the activated sludge organic suspended solids to the activated sludge concentration, is 0.05 or more and 0.75 or less. 前記生物処理槽内に浸漬させた浸漬膜モジュールにより、前記混合液を膜分離する請求項1または2に記載の有機物含有水の生物処理方法。   The biological treatment method for organic matter-containing water according to claim 1 or 2, wherein the mixed solution is subjected to membrane separation by a submerged membrane module immersed in the biological treatment tank. 前記有機物含有水は、自然水、水道水、また回収水である請求項1から3のいずれかに記載の有機物含有水の生物処理方法。   The biological treatment method for organic matter-containing water according to any one of claims 1 to 3, wherein the organic matter-containing water is natural water, tap water, or recovered water.
JP2007041636A 2007-02-22 2007-02-22 Biological treatment method of water containing organic matter Expired - Fee Related JP5358886B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007041636A JP5358886B2 (en) 2007-02-22 2007-02-22 Biological treatment method of water containing organic matter
TW097103464A TWI439428B (en) 2007-02-22 2008-01-30 Biological treatment method for water containing organic matter
KR1020080013164A KR101467476B1 (en) 2007-02-22 2008-02-13 Method for biological processing of water containing organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041636A JP5358886B2 (en) 2007-02-22 2007-02-22 Biological treatment method of water containing organic matter

Publications (2)

Publication Number Publication Date
JP2008200639A true JP2008200639A (en) 2008-09-04
JP5358886B2 JP5358886B2 (en) 2013-12-04

Family

ID=39778663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041636A Expired - Fee Related JP5358886B2 (en) 2007-02-22 2007-02-22 Biological treatment method of water containing organic matter

Country Status (3)

Country Link
JP (1) JP5358886B2 (en)
KR (1) KR101467476B1 (en)
TW (1) TWI439428B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110085A1 (en) 2009-03-25 2010-09-30 イビデン株式会社 Method for treating organic matter-containing liquid
WO2011039831A1 (en) * 2009-09-29 2011-04-07 栗田工業株式会社 Biotreatment method for water containing organic substance
CN102510840A (en) * 2009-09-29 2012-06-20 栗田工业株式会社 Organic wastewater treatment method and treatment device
WO2013008522A1 (en) * 2011-07-14 2013-01-17 株式会社明電舎 Air diffuser
JP2013223815A (en) * 2012-04-19 2013-10-31 Jfe Steel Corp Method and device for treating wastewater containing nitric acid
CN103910444A (en) * 2012-12-28 2014-07-09 栗田工业株式会社 Agglutination treatment method for silt-containing water and device
WO2014155845A1 (en) * 2013-03-29 2014-10-02 栗田工業株式会社 Method and device for treating organic wastewater
JP2015116537A (en) * 2013-12-18 2015-06-25 オルガノ株式会社 Biological treatment device and biological treatment method
CN111392868A (en) * 2020-04-02 2020-07-10 曹艺凡 Anti-blocking early warning system and method for constructed wetland

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457293B (en) * 2009-09-30 2014-10-21 Kurita Water Ind Ltd Method and processing device for organic drainage
CN102712512A (en) * 2009-11-10 2012-10-03 诺维信生物股份有限公司 Methods, compositions and systems for controlling fouling of a membrane
KR101646674B1 (en) * 2010-10-13 2016-08-08 삼성전자주식회사 Backlight unit and display system employing the same
CN104817166B (en) * 2014-01-31 2020-07-31 三菱化学株式会社 Wastewater treatment method and wastewater treatment apparatus
JP6365714B1 (en) * 2017-03-16 2018-08-01 栗田工業株式会社 Aerobic treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347587A (en) * 1998-06-03 1999-12-21 Kurita Water Ind Ltd Apparatus for treating sewage
JP2002191942A (en) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd Method for waste water treatment
JP2003053363A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Treatment method and treatment equipment for organic matter-containing water
JP2003094088A (en) * 2001-09-21 2003-04-02 Ataka Construction & Engineering Co Ltd Water treatment system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280626B1 (en) * 1998-08-12 2001-08-28 Mitsubishi Rayon Co., Ltd. Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly
JP4729718B2 (en) * 2005-03-29 2011-07-20 富士電機株式会社 Organic waste treatment methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347587A (en) * 1998-06-03 1999-12-21 Kurita Water Ind Ltd Apparatus for treating sewage
JP2002191942A (en) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd Method for waste water treatment
JP2003053363A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Treatment method and treatment equipment for organic matter-containing water
JP2003094088A (en) * 2001-09-21 2003-04-02 Ataka Construction & Engineering Co Ltd Water treatment system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110085A1 (en) 2009-03-25 2010-09-30 イビデン株式会社 Method for treating organic matter-containing liquid
WO2011039831A1 (en) * 2009-09-29 2011-04-07 栗田工業株式会社 Biotreatment method for water containing organic substance
CN102510840A (en) * 2009-09-29 2012-06-20 栗田工业株式会社 Organic wastewater treatment method and treatment device
WO2013008522A1 (en) * 2011-07-14 2013-01-17 株式会社明電舎 Air diffuser
JP2013017979A (en) * 2011-07-14 2013-01-31 Meidensha Corp Air diffuser
JP2013223815A (en) * 2012-04-19 2013-10-31 Jfe Steel Corp Method and device for treating wastewater containing nitric acid
CN103910444A (en) * 2012-12-28 2014-07-09 栗田工业株式会社 Agglutination treatment method for silt-containing water and device
WO2014155845A1 (en) * 2013-03-29 2014-10-02 栗田工業株式会社 Method and device for treating organic wastewater
JP2014198289A (en) * 2013-03-29 2014-10-23 栗田工業株式会社 Treatment method and treatment apparatus of organic effluent
KR20150134331A (en) * 2013-03-29 2015-12-01 쿠리타 고교 가부시키가이샤 Method and device for treating organic wastewater
KR102078434B1 (en) 2013-03-29 2020-02-17 쿠리타 고교 가부시키가이샤 Method and device for treating organic wastewater
JP2015116537A (en) * 2013-12-18 2015-06-25 オルガノ株式会社 Biological treatment device and biological treatment method
CN111392868A (en) * 2020-04-02 2020-07-10 曹艺凡 Anti-blocking early warning system and method for constructed wetland
CN111392868B (en) * 2020-04-02 2020-12-22 乐清市泰博恒电子科技有限公司 Anti-blocking early warning system and method for constructed wetland

Also Published As

Publication number Publication date
KR101467476B1 (en) 2014-12-01
KR20080078550A (en) 2008-08-27
JP5358886B2 (en) 2013-12-04
TWI439428B (en) 2014-06-01
TW200835655A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
JP5358886B2 (en) Biological treatment method of water containing organic matter
TWI494281B (en) Apparatus for treating organic waste water
JP4632356B2 (en) Biological nitrogen removal method and system
JP2007130526A (en) Wastewater treatment apparatus and wastewater treatment method
JP5034778B2 (en) Membrane separation wastewater treatment method and apparatus
JP2007038107A (en) Method for treating organic drainage
JP2009226373A (en) Biological treatment method of organic substance containing water
WO2011039831A1 (en) Biotreatment method for water containing organic substance
JP5309760B2 (en) Organic wastewater treatment method and treatment apparatus
WO2011039832A1 (en) Organic wastewater treatment method and treatment device
JP2007050312A (en) Method and apparatus for biologically treating waste water
JP2013240794A (en) Membrane separation activated sludge treatment apparatus, and membrane separation activated sludge treatment method
JP5062052B2 (en) Biological treatment method of water containing organic matter
JP2010029768A (en) Method and apparatus for treating organic wastewater
TWI633067B (en) Method and device for treating organic drainage
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
JP4101348B2 (en) Biological nitrogen removal method
JP2010253404A (en) Method and apparatus of denitrifying digested sludge separation liquid
JP2009220020A (en) Wastewater treatment system and its operation method
JP4031597B2 (en) How to remove nitrogen from wastewater
JP2014213265A (en) Method and device for biologically treating organic matter-containing water
JP5817177B2 (en) Organic wastewater treatment equipment
JP2003266096A (en) Wastewater treatment apparatus
JP2001047089A (en) Method and apparatus for treating sewage
JP2010207752A (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5358886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees