JP2008198411A - Manganese dry cell - Google Patents

Manganese dry cell Download PDF

Info

Publication number
JP2008198411A
JP2008198411A JP2007030054A JP2007030054A JP2008198411A JP 2008198411 A JP2008198411 A JP 2008198411A JP 2007030054 A JP2007030054 A JP 2007030054A JP 2007030054 A JP2007030054 A JP 2007030054A JP 2008198411 A JP2008198411 A JP 2008198411A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
manganese dry
dry battery
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007030054A
Other languages
Japanese (ja)
Inventor
Hiroshi Hase
洋志 長谷
Harunari Shimamura
治成 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007030054A priority Critical patent/JP2008198411A/en
Priority to CNA2008800000377A priority patent/CN101542791A/en
Priority to PCT/JP2008/050061 priority patent/WO2008096559A1/en
Publication of JP2008198411A publication Critical patent/JP2008198411A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/182Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells with a collector centrally disposed in the active mass, e.g. Leclanché cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manganese dry cell with excellent corrosion resistance through prevention of leak of electrolyte solution due to a hole on an anode zinc can. <P>SOLUTION: A can of the manganese dry cell is made of an anode zinc can 3, which contains 0.05 to 0.6 wt.% of lead, or is made by molding a zinc plate in a bottomed cylindrical shape in hot impact molding at a temperature in the range of 110 to 130°C, with a crystal particle size of the zinc contained in the anode zinc can 3 of 30 μm or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐食性に優れた負極亜鉛缶を備えたマンガン乾電池に関する。   The present invention relates to a manganese dry battery including a negative electrode zinc can excellent in corrosion resistance.

マンガン乾電池に使用される負極亜鉛缶は、放電反応の進行に伴い、亜鉛が消費されて電池容量が低下したり、強度が低下する問題があり、これらの問題に対して、従来、亜鉛に鉛を添加することによって、亜鉛缶の耐食性を向上させていた。また、鉛の添加は亜鉛に延性を与えるため、亜鉛板を有底円筒形に成形する際の加工性を向上させていた。   Negative electrode zinc cans used in manganese dry batteries have a problem in that zinc is consumed as the discharge reaction progresses, resulting in a decrease in battery capacity and a decrease in strength. The corrosion resistance of the zinc can was improved by adding. In addition, since the addition of lead imparts ductility to zinc, the workability when forming a zinc plate into a bottomed cylindrical shape has been improved.

しかしながら、亜鉛缶の強度が低下する放電末期において、電池落下等の衝撃が加わったり、過放電により亜鉛缶の腐食が過度に進むと、亜鉛缶の一部に孔が開き、その孔から電解液が電池外部に漏液してしまうおそれがある。   However, at the end of the discharge when the strength of the zinc can decreases, if an impact such as a battery drop is applied or the corrosion of the zinc can progresses excessively due to overdischarge, a hole is opened in a part of the zinc can, and the electrolyte solution May leak outside the battery.

このような問題に対して、従来、負極亜鉛缶の外周を外装ラベルで覆うことによって、耐漏液性を向上させる対策が取られている。例えば、特許文献1には、外装ラベルに、耐電解液性及び耐衝撃性に優れたポリエチレン等の熱収縮性樹脂フィルムを用いる技術が記載されている。   Conventionally, countermeasures for improving the leakage resistance have been taken against such problems by covering the outer periphery of the negative electrode zinc can with an exterior label. For example, Patent Document 1 describes a technique in which a heat-shrinkable resin film such as polyethylene having excellent electrolytic solution resistance and impact resistance is used for an exterior label.

しかしながら、外装ラベルを用いた場合、マンガン乾電池はJIS等の規格で外形寸法が定められているため、外装ラベルの厚み分、小さな外径の亜鉛缶を用いることを余儀なくされ、高容量化を阻害する要因になっていた。   However, when an exterior label is used, the outer dimensions of manganese batteries are determined by standards such as JIS, so it is obliged to use a zinc can with a small outer diameter corresponding to the thickness of the exterior label, hindering high capacity. It was a factor.

ところで、負極亜鉛缶の腐食を予め考慮して、負極亜鉛缶の厚みを一定以上に厚くしておくことによって、外装ラベルを用いなくても、亜鉛缶の耐漏液性を向上させることが可能である。例えば、その目安として、正極の電気容量に対する負極の電気容量比が一定以上の大きさになるように、負極亜鉛缶の厚さを設定することによって、電池外部への電解液の漏液を防止することができる。
特開2006−19091号公報
By the way, considering the corrosion of the negative electrode zinc can in advance, it is possible to improve the leakage resistance of the zinc can without using an exterior label by making the thickness of the negative electrode zinc can thicker than a certain value. is there. For example, as a guideline, prevent the electrolyte from leaking to the outside of the battery by setting the thickness of the negative electrode zinc can so that the ratio of the negative electrode capacitance to the positive electrode capacitance is greater than a certain level. can do.
JP 2006-19091 A

負極亜鉛缶の耐漏液性を確保するには、正極の電気容量に対する負極の電気容量比(以下、単に「電気容量比」という)を一定以上の大きさ(例えば、2.4以上)に設定しなければならない。これを満たすために、負極の活物質である亜鉛の量、すなわち、負極亜鉛缶の厚みを増やすと、その分、電池缶の内容積が小さくなって、正極の活物質である二酸化マンガンの量が減少し、その結果、ローレート放電特性の低下を招く。また、電気容量比を必要以上に大きくすると(例えば、4.0以上)、過剰な負極の電気容量に対して、正極の電気容量が不足してしまい、十分な放電容量が得られなくなる。   In order to ensure the leakage resistance of the negative electrode zinc can, the ratio of the negative electrode capacity to the positive electrode capacity (hereinafter simply referred to as “electric capacity ratio”) is set to a certain level (eg, 2.4 or more). Must. In order to satisfy this, the amount of zinc that is the active material of the negative electrode, that is, the thickness of the negative electrode zinc can increases, the internal volume of the battery can decreases accordingly, and the amount of manganese dioxide that is the active material of the positive electrode As a result, the low-rate discharge characteristics are deteriorated. Further, when the electric capacity ratio is increased more than necessary (for example, 4.0 or more), the electric capacity of the positive electrode becomes insufficient with respect to the electric capacity of the excessive negative electrode, and a sufficient discharge capacity cannot be obtained.

本発明は、かかる事情に鑑みなされたもので、その主な目的は、電解液の耐漏液性に優れた負極亜鉛缶を備えたマンガン乾電池を提供することにある。   This invention is made | formed in view of this situation, The main objective is to provide the manganese dry battery provided with the negative electrode zinc can excellent in the leakage resistance of electrolyte solution.

亜鉛缶が腐食することによって、最終的に亜鉛缶に孔があく現象は、次のような反応形態で進行するものと考えられる。   It is considered that the phenomenon that the zinc can finally becomes perforated due to corrosion of the zinc can proceeds in the following reaction form.

すなわち、電池を放電させると、亜鉛缶の表面は、成缶時に生じる筋(キズ)や、亜鉛の結晶粒界を反応起点として反応が始まり、そこから拡大するように反応が進行する(黒鉛を成缶時の潤滑剤として使用した場合は、黒鉛も反応起点の1つになる)。そして、反応が亜鉛缶内部へ進行すると、今度は、亜鉛缶内部に存在する結晶粒界のみが反応起点となって反応が進行していく。つまり、亜鉛缶内部に結晶粒界がある限り、反応は結晶粒界にそって進行し、その結果、亜鉛缶の反応が集中したところに孔があくと考えられる。   In other words, when the battery is discharged, the reaction starts on the surface of the zinc can, starting from the scratches generated at the time of the can, and the crystal grain boundary of zinc. When used as a lubricant for cans, graphite is one of the reaction starting points). When the reaction proceeds to the inside of the zinc can, only the crystal grain boundary existing inside the zinc can causes the reaction to proceed. That is, as long as there is a crystal grain boundary inside the zinc can, the reaction proceeds along the crystal grain boundary. As a result, it is considered that a hole is formed where the reaction of the zinc can is concentrated.

本願発明者等は、このような考察に基づき、亜鉛の結晶粒径を従来よりも小さくできれば、亜鉛缶の反応を、亜鉛缶の表面だけでなく、亜鉛缶内部においても均一化でき、これにより、亜鉛缶の耐食性を大幅に改善できることに思い至った。   Based on such considerations, the inventors of the present application can uniformize the reaction of the zinc can not only on the surface of the zinc can but also inside the zinc can if the crystal grain size of zinc can be made smaller than before. I came up with the idea that the corrosion resistance of zinc cans can be greatly improved.

ところで、マンガン乾電池に使用される負極亜鉛缶は、鉛を添加した溶融亜鉛を冷却して板状に圧延した亜鉛板を、インパクト成形により有底円筒形に成形して形成されるが、均一な形状に成缶するために、従来、亜鉛板を180〜200℃に加熱してインパクト成形(熱間インパクト成形)を行っていた。しかしながら、このような温度で熱間インパクト成形を行うと、亜鉛の再結晶化が進み、成缶された時点で亜鉛の結晶粒径が大きくなっている。然るに、亜鉛缶の耐食性を改善する観点で、熱間インパクトにおける加熱温度は従来全く考慮されていなかった。   By the way, a negative electrode zinc can used for a manganese dry battery is formed by molding a zinc plate obtained by cooling a molten zinc containing lead and rolling it into a plate shape into a bottomed cylindrical shape by impact molding. Conventionally, impact molding (hot impact molding) has been performed by heating a zinc plate to 180 to 200 ° C. in order to achieve a can shape. However, when hot impact molding is performed at such a temperature, recrystallization of zinc proceeds, and the crystal grain size of zinc increases when it is formed. However, from the viewpoint of improving the corrosion resistance of the zinc can, the heating temperature in the hot impact has not been considered at all.

本発明に係わるマンガン乾電池は、電池缶が負極亜鉛缶からなるマンガン乾電池であって、負極亜鉛缶は、0.05〜0.6重量%の鉛を含有し、かつ、負極亜鉛缶に含まれる亜鉛の平均結晶粒径が30μm以下であることを特徴とするものである。   The manganese dry battery according to the present invention is a manganese dry battery in which the battery can is a negative electrode zinc can, the negative electrode zinc can contains 0.05 to 0.6% by weight of lead, and is included in the negative electrode zinc can. The average crystal grain size of zinc is 30 μm or less.

また、本発明に係わる他のマンガン乾電池は、電池缶が負極亜鉛缶からなるマンガン乾電池であって、負極亜鉛缶は、亜鉛板を110〜130℃の範囲の温度で熱間インパクト成形により有底円筒形に成形されたものからなり、負極亜鉛缶に含まれる亜鉛の結晶粒径が30μm以下であることを特徴とするものである。   Another manganese dry battery according to the present invention is a manganese dry battery in which the battery can is a negative electrode zinc can, and the negative electrode zinc can is bottomed by hot impact molding at a temperature in the range of 110 to 130 ° C. It consists of what was shape | molded by the cylindrical shape, and the crystal grain diameter of the zinc contained in a negative electrode zinc can is 30 micrometers or less, It is characterized by the above-mentioned.

このような構成により、亜鉛缶の反応を、亜鉛缶の表面だけでなく、亜鉛缶内部においても均一化させることができ、亜鉛缶の孔あきによる電解液の漏液を効果的に抑制することができる。   With such a configuration, the reaction of the zinc can can be made uniform not only on the surface of the zinc can but also on the inside of the zinc can, and the electrolyte leakage due to the perforation of the zinc can is effectively suppressed. Can do.

また、負極活物質である負極亜鉛缶に含まれる亜鉛の、正極活物質である二酸化マンガンに対する電気容量比は1.8以上であることが好ましい。これにより、負極亜鉛缶の厚さを従来よりも薄くでき、マンガン乾電池のローレート放電特性を改善することができる。   Moreover, it is preferable that the electrical capacity ratio of zinc contained in the negative electrode zinc can which is the negative electrode active material to manganese dioxide which is the positive electrode active material is 1.8 or more. Thereby, the thickness of a negative electrode zinc can can be made thinner than before, and the low-rate discharge characteristic of a manganese dry battery can be improved.

本発明のマンガン乾電池によれば、電解液の耐漏液性に優れた負極亜鉛缶を備えたマンガン乾電池を提供することができる。   According to the manganese dry battery of the present invention, it is possible to provide a manganese dry battery provided with a negative electrode zinc can excellent in the leakage resistance of the electrolytic solution.

以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. In addition, this invention is not limited to the following embodiment.

図1は、本発明の実施形態におけるマンガン乾電池の構成を示した部分断面図で、電池缶が負極亜鉛缶3からなる。   FIG. 1 is a partial cross-sectional view showing the structure of a manganese dry battery according to an embodiment of the present invention, and the battery can comprises a negative electrode zinc can 3.

図1に示すように、有底円筒形の負極亜鉛缶3内に、電解液を含んだセパレータ7を介して、正極活物質である二酸化マンガンを含む正極合剤6が収納され、正極合剤6の中央部には集電体である炭素棒4が挿入されている。また、負極亜鉛缶3の上端開口部は封口体2で密閉され、炭素棒4は封口体2の中心穴を貫通して正極端子板1に接触され、正極合剤6の底部と負極亜鉛缶3の底部とは底紙8で絶縁されている。また、負極亜鉛缶3の外周面は、外装ラベル9で被覆されている。   As shown in FIG. 1, a positive electrode mixture 6 containing manganese dioxide, which is a positive electrode active material, is accommodated in a bottomed cylindrical negative electrode zinc can 3 via a separator 7 containing an electrolytic solution. A carbon rod 4 as a current collector is inserted in the center of 6. Further, the upper end opening of the negative electrode zinc can 3 is sealed with the sealing body 2, and the carbon rod 4 penetrates through the center hole of the sealing body 2 and comes into contact with the positive electrode terminal plate 1. 3 is insulated by a bottom paper 8. The outer peripheral surface of the negative electrode zinc can 3 is covered with an exterior label 9.

本実施形態における負極亜鉛缶3は、0.05〜0.6重量%の鉛を含有するもの、または、亜鉛板を110〜130℃の範囲の温度で熱間インパクト成形により有底円筒形に成形されたものからなり、負極亜鉛缶3に含まれる亜鉛の結晶粒径が30μm以下である。このように、電池缶を構成する亜鉛の結晶粒径を小さくすることによって、亜鉛缶3の反応を、亜鉛缶3の表面だけでなく、亜鉛缶3内部においても均一化させることができ、亜鉛缶3の孔あきによる電解液の漏液を効果的に抑制することができる。これにより、耐食性に優れたマンガン乾電池を実現することができる。   The negative electrode zinc can 3 in the present embodiment is one containing 0.05 to 0.6% by weight of lead or a zinc plate into a bottomed cylindrical shape by hot impact molding at a temperature in the range of 110 to 130 ° C. It consists of what was shape | molded and the crystal grain diameter of the zinc contained in the negative electrode zinc can 3 is 30 micrometers or less. Thus, by reducing the crystal grain size of zinc constituting the battery can, the reaction of the zinc can 3 can be made uniform not only on the surface of the zinc can 3 but also inside the zinc can 3. Electrolyte leakage due to the perforation of the can 3 can be effectively suppressed. Thereby, the manganese dry battery excellent in corrosion resistance is realizable.

通常、亜鉛の結晶粒の大きさは、一定の分布(例えば、正規分布)を有し、上記「結晶粒径」は、平均の結晶粒径を意味する。具体的には、ある一定領域に存在する個々の結晶粒の大きさを測定し、その平均値を「結晶粒径」とする。   Usually, the size of the crystal grains of zinc has a certain distribution (for example, a normal distribution), and the “crystal grain size” means an average crystal grain size. Specifically, the size of each crystal grain present in a certain region is measured, and the average value is defined as “crystal grain size”.

また、結晶粒の大きさは、種々の方法で測定することができる。例えば、光学顕微鏡で観察した場合には、同一色を呈する領域(同一反射面の領域)または粒界で閉じられた領域を結晶粒と定め、一定線長さ当たりの結晶粒数を数えて平均粒径を算出し、これを所定の数のサンプルについて求めた平均値を「結晶粒径」とする。また、結晶粒径が微細な場合には、電子顕微鏡による観察を用いてもよい。   Moreover, the size of the crystal grains can be measured by various methods. For example, when observed with an optical microscope, a region exhibiting the same color (region of the same reflection surface) or a region closed by a grain boundary is defined as a crystal grain, and the average is obtained by counting the number of crystal grains per fixed line length. The particle diameter is calculated, and the average value obtained for a predetermined number of samples is defined as “crystal grain diameter”. When the crystal grain size is fine, observation with an electron microscope may be used.

ここで、負極活物質である負極亜鉛缶3に含まれる亜鉛の、正極活物質である二酸化マンガンに対する電気容量比は1.8以上であることが好ましい。本発明における負極亜鉛缶3は耐食性が向上しているため、負極亜鉛缶3の厚みを従来より薄くすることができ、その分、電池缶の内容積が大きくなって、正極の活物質である二酸化マンガンの量を増加させることができる。その結果、負極亜鉛缶3の耐漏液性を確保できる電気容量比を1.8まで引き下げることができ、これにより、マンガン乾電池の放電特性を向上させることができる。   Here, the electric capacity ratio of zinc contained in the negative electrode zinc can 3 as the negative electrode active material to manganese dioxide as the positive electrode active material is preferably 1.8 or more. Since the negative electrode zinc can 3 in the present invention has improved corrosion resistance, the thickness of the negative electrode zinc can 3 can be made thinner than before, and the internal volume of the battery can is increased correspondingly, and is a positive electrode active material. The amount of manganese dioxide can be increased. As a result, the electric capacity ratio that can ensure the liquid leakage resistance of the negative electrode zinc can 3 can be lowered to 1.8, thereby improving the discharge characteristics of the manganese dry battery.

また、負極亜鉛缶3は、少なくとも鉛を0.05〜0.6重量%含有していることが好ましい。本発明において、熱間インパクト成形における加熱温度を従来よりも低い温度で行っているため、亜鉛缶3に鉛を含有させることによって、成缶時の加工性を維持することができる。   Moreover, it is preferable that the negative electrode zinc can 3 contains 0.05 to 0.6 weight% of lead at least. In the present invention, since the heating temperature in the hot impact molding is performed at a temperature lower than the conventional temperature, the workability at the time of the can can be maintained by adding lead to the zinc can 3.

二酸化マンガンは、高い放電容量が得られる電解二酸化マンガンを用いることが好ましいが、製造コストを考慮して、安価な天然二酸化マンガンや化学マンガンを用いてもよい。また、セパレータ7は、例えば、クラフト紙の片面に架橋デンプンと酢酸ビニルを主とする結着剤とをアルコール系溶媒に溶かした糊材を塗布し乾燥させたものを用いることができる。封口体2は、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂やナイロンを用いることができる。なお、封口体2は、炭素棒4の頂部に嵌合させた正極端子板1の外周縁部と、負極亜鉛缶3の開口端部のかしめ部とにより締め付けられている。また、外装ラベル9は、例えば、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリエチレンテレフタレート等の熱収縮性樹脂フィルムを用いることができる。   As manganese dioxide, it is preferable to use electrolytic manganese dioxide that can provide a high discharge capacity, but in consideration of manufacturing costs, inexpensive natural manganese dioxide or chemical manganese may be used. The separator 7 may be, for example, a paste obtained by applying a paste obtained by dissolving a cross-linked starch and a binder mainly composed of vinyl acetate in an alcohol solvent on one side of kraft paper. For the sealing body 2, for example, a polyolefin resin such as polyethylene or polypropylene, or nylon can be used. The sealing body 2 is fastened by the outer peripheral edge portion of the positive electrode terminal plate 1 fitted to the top of the carbon rod 4 and the caulking portion of the open end portion of the negative electrode zinc can 3. The exterior label 9 may be a heat-shrinkable resin film such as polyethylene, polyvinyl chloride, polystyrene, or polyethylene terephthalate.

以下、実施例にもとづき、本発明に係わるマンガン乾電池の耐食性を評価した結果を説明する。なお、本発明は、以下の実施例に限定されない。   Hereinafter, based on an Example, the result of having evaluated the corrosion resistance of the manganese dry battery concerning this invention is demonstrated. In addition, this invention is not limited to a following example.

(負極亜鉛缶の作製)
溶解炉を使用して純度99.99%の亜鉛を約500℃で溶融した後、亜鉛に対して0.15重量%に相当する鉛を添加し、亜鉛合金溶湯を得た。その後、亜鉛合金溶湯を冷却しながら厚さ10mmの板状に圧延し、これをプレスで打ち抜くことにより、直径φ12.8mm、高さ4.5mmのボタン型の小片を得た。この小片の表面に、タルクとステアリン酸亜鉛とホウ酸とを3:1:1の重量比で構成した潤滑剤を固着させた。
(Preparation of negative electrode zinc can)
After melting 99.99% purity zinc at about 500 ° C. using a melting furnace, lead corresponding to 0.15% by weight of zinc was added to obtain a molten zinc alloy. Thereafter, the molten zinc alloy was cooled to a plate shape having a thickness of 10 mm, and punched out by a press to obtain a button-shaped piece having a diameter of 12.8 mm and a height of 4.5 mm. A lubricant composed of talc, zinc stearate, and boric acid in a weight ratio of 3: 1: 1 was fixed to the surface of the small piece.

この小片を母材として、予め所定の温度(以下、「予熱温度」という)に加熱した後、熱間インパクト成形により、外径がφ13.6mmで側面の厚さが0.25mm、底面の厚さが0.4mmの有底円筒形の単3形マンガン乾電池の負極亜鉛缶3を得た。この負極亜鉛缶3は、亜鉛の含有率が99.7重量%で、亜鉛に対する鉛を0.15重量%含有していた。   This small piece is used as a base material, heated in advance to a predetermined temperature (hereinafter referred to as “preheating temperature”), and then subjected to hot impact molding to have an outer diameter of φ13.6 mm, a side thickness of 0.25 mm, and a bottom thickness. A negative electrode zinc can 3 of a bottomed cylindrical AA manganese dry battery having a thickness of 0.4 mm was obtained. This negative electrode zinc can 3 had a zinc content of 99.7% by weight and contained 0.15% by weight of lead with respect to zinc.

(マンガン乾電池の作製)
上記で得られた負極亜鉛缶3を用い、図1に示した単3形マンガン乾電池を作製した。ここで、二酸化マンガンには純度が91%の電解二酸化マンガンを、炭素粉末にはアセチレンブラックを用いた。また、電解液には、塩化アンモニウムを2重量%と塩化亜鉛を30重量%とを含有する水溶液を用いた。そして、二酸化マンガンと炭素粉末と電解液とを5:1:4.4の重量比で混合した正極合剤6を、負極亜鉛缶3内にセパレータ7を介して充填し、さらに、負極亜鉛缶を外装ラベル9で覆って、マンガン乾電池1〜9を作製した。なお、マンガン乾電池の電気容量比は全て1.98とした。
(Manufacture of manganese batteries)
Using the negative electrode zinc can 3 obtained above, the AA manganese dry battery shown in FIG. 1 was produced. Here, electrolytic manganese dioxide having a purity of 91% was used for manganese dioxide, and acetylene black was used for carbon powder. Further, as the electrolytic solution, an aqueous solution containing 2% by weight of ammonium chloride and 30% by weight of zinc chloride was used. And the positive electrode mixture 6 which mixed manganese dioxide, carbon powder, and electrolyte solution by the weight ratio of 5: 1: 4.4 is filled through the separator 7 in the negative electrode zinc can 3, Furthermore, the negative electrode zinc can Was covered with an exterior label 9 to produce manganese dry batteries 1-9. In addition, all the electric capacity ratios of the manganese dry battery were 1.98.

表1は、異なる予熱温度で成缶した負極亜鉛缶3を用いてマンガン乾電池1〜9を作製したときの、各マンガン乾電池における負極亜鉛缶の亜鉛の平均結晶粒径の大きさと、漏液試験の結果を示したものである。   Table 1 shows the size of the average crystal grain size of zinc in the negative electrode zinc can in each manganese dry battery when the negative electrode zinc can 3 formed at different preheating temperatures was used, and the leakage test. This shows the results.

Figure 2008198411
Figure 2008198411

ここで、負極亜鉛缶3の平均結晶粒径は、負極亜鉛缶3から切り出したサンプルを光学顕微鏡で拡大写真撮影して、一定線長さ当たりの結晶粒数を数えて算出した。また、漏液試験は、各マンガン乾電池100個を、市販の懐中電灯(単三形乾電池2個使用)5台に装填し、1日あたり30分点灯させて、これを毎日繰り返し、懐中電灯が点灯できなくなった時点で、各電池を取り出して漏液した電池の個数をカウントすることで行った。   Here, the average crystal grain size of the negative electrode zinc can 3 was calculated by taking an enlarged photograph of the sample cut out from the negative electrode zinc can 3 and counting the number of crystal grains per certain line length. In addition, the leakage test was performed by loading 100 manganese batteries into 5 commercially available flashlights (using 2 AA batteries), lighting them for 30 minutes per day, and repeating this every day. When the lighting could not be performed, each battery was taken out and the number of leaked batteries was counted.

表1に示すように、熱間インパクトの予熱温度を110〜130℃の範囲で成缶した負極亜鉛缶(平均結晶粒子径が30μm以下)を用いて作製したマンガン乾電池7〜9においては、漏液は生じなかった。また、予熱温度が140℃以上では、平均結晶粒子径が大きくなるに伴い、漏液数が増えていることが分かる。この結果から、亜鉛の結晶粒径を小さくして、亜鉛缶の反応を、亜鉛缶の表面だけでなく、亜鉛缶内部においても均一化させることによって、電解液の漏液を効果的に抑制できることが分かる。なお、予熱温度を110℃以下にすれば、結晶粒径をさらに小さくできるが、逆に、熱間インパクト成形における加熱が不十分となり、均一な形状の負極亜鉛缶が得られにくくなるという問題がある。これより、予熱温度は、110〜130℃の範囲にあることが好ましい。   As shown in Table 1, in manganese dry batteries 7 to 9 manufactured using negative electrode zinc cans (average crystal particle diameter of 30 μm or less) formed with a preheating temperature of hot impact in the range of 110 to 130 ° C., leakage occurred. No liquid was produced. It can also be seen that when the preheating temperature is 140 ° C. or higher, the number of liquid leaks increases as the average crystal particle diameter increases. From this result, the leakage of electrolyte can be effectively suppressed by reducing the crystal grain size of zinc and making the reaction of the zinc can uniform not only on the surface of the zinc can but also inside the zinc can. I understand. Note that if the preheating temperature is set to 110 ° C. or less, the crystal grain size can be further reduced, but conversely, the heating in the hot impact molding becomes insufficient and there is a problem that it becomes difficult to obtain a negative electrode zinc can having a uniform shape. is there. Accordingly, the preheating temperature is preferably in the range of 110 to 130 ° C.

次に、本発明によりマンガン乾電池の耐食性を向上させたときの、亜鉛(負極活物質)の二酸化マンガン(正極活物質)に対する電気容量比と、マンガン乾電池の耐漏液性との関係を評価した結果を説明する。   Next, as a result of evaluating the relationship between the electrical capacity ratio of zinc (negative electrode active material) to manganese dioxide (positive electrode active material) and leakage resistance of the manganese dry battery when the corrosion resistance of the manganese dry battery is improved according to the present invention. Will be explained.

(電気容量比の異なるマンガン乾電池の作製)
負極亜鉛缶3は、130℃の予熱温度で熱間インパクト成形で成缶したもの(平均結晶粒子径が30μm)を用いた。なお、負極亜鉛缶3の外径(φ)を13.6mm、側面の厚さ(t)を0.25mm、底面の厚さを0.4mmとした。また、亜鉛の含有率を99.7重量%、亜鉛に対する鉛の含有率を0.15重量%とした。
(Production of manganese batteries with different electric capacity ratios)
The negative electrode zinc can 3 used was formed by hot impact molding at a preheating temperature of 130 ° C. (average crystal particle diameter was 30 μm). The outer diameter (φ) of the negative electrode zinc can 3 was 13.6 mm, the side surface thickness (t) was 0.25 mm, and the bottom surface thickness was 0.4 mm. The zinc content was 99.7% by weight, and the lead content relative to zinc was 0.15% by weight.

そして、正極合剤6の炭素粉末に対する二酸化マンガンの重量比を変えることによって、正極電気容量の大きさの異なるマンガン乾電池10〜17を作製した。なお、負極電気容量(C:一定)、及び正極電気容量(C)は、それぞれ以下の式(1)、(2)を用いて計算した。
=〔(φ/2)−(φ/2−t)〕×π×H×ρ×PZn×CZn ・・・式(1)
ここで、φは亜鉛缶の外径、tは亜鉛缶の側面の厚さ、Hは亜鉛缶の高さ、ρは亜鉛の密度、PZnは亜鉛の含有率、CZnは亜鉛の理論電気容量(0.820Ah/g)である。
=M×PMn×PMn×CMn ・・・式(2)
ここで、Mは正極合剤の重量、PMnは二酸化マンガンの含有率、PMnは二酸化マンガンの純度、CMnは二酸化マンガンの理論電気容量(0.308Ah/g)である。
And the manganese dry batteries 10-17 from which the magnitude | size of a positive electrode electric capacitance differs were produced by changing the weight ratio of the manganese dioxide with respect to the carbon powder of the positive electrode mixture 6. FIG. The negative electrode capacitance (C 1 : constant) and the positive electrode capacitance (C 2 ) were calculated using the following formulas (1) and (2), respectively.
C 1 = [(φ / 2) 2 − (φ / 2−t) 2 ] × π × H × ρ × P Zn × C Zn (1)
Where φ is the outer diameter of the zinc can, t is the thickness of the side surface of the zinc can, H is the height of the zinc can, ρ is the density of zinc, P Zn is the zinc content, and C Zn is the theoretical electricity of zinc. Capacity (0.820 Ah / g).
C 2 = M × P Mn × P Mn × C Mn (2)
Here, M weight of the positive electrode mixture, the P Mn is the content of manganese dioxide, P Mn purity of manganese dioxide, C Mn theoretical electric capacity of the manganese dioxide (0.308Ah / g).

表2は、異なる電気容量比(C/C)を有するマンガン乾電池10〜17を作製したときの、各マンガン乾電池における漏液試験(評価1)と、過放電時の漏液試験(評価2)の結果を示した表である。 Table 2 shows the leakage test (Evaluation 1) in each manganese dry battery and the leakage test (evaluation) during overdischarge when producing the manganese dry batteries 10 to 17 having different capacitance ratios (C 1 / C 2 ). It is the table | surface which showed the result of 2).

Figure 2008198411
Figure 2008198411

ここで、過放電漏液試験は、各マンガン乾電池100個を、市販の懐中電灯(単三形乾電池2個使用)5台に装填し、点灯させて明かりがつかなくなってもスイッチを切らずに1ヶ月放置して、その後に各電池を取り出して、漏液した電池の個数をカウントすることで行った。   Here, in the overdischarge leakage test, 100 manganese batteries were loaded into 5 commercially available flashlights (using 2 AA batteries) and turned on without turning off the lights. This was carried out by leaving it for one month and then taking out each battery and counting the number of leaked batteries.

表2に示すように、表1と同じ方法の漏液試験(評価1)では、全てのマンガン乾電池10〜17において、漏液は生じなかった。これに対して、過放電漏液試験(評価2)では、電気容量比が1.8以上であるマンガン乾電池10〜14において漏液は生じなかった。すなわち、130℃の予熱温度で熱間インパクト成形により成缶した負極亜鉛缶は、耐食性が優れているため、二酸化マンガンの量を増加させても(電気容量比を小さくしても)、過放電による漏液を防止することができる。これにより、マンガン乾電池のローレート放電特性を改善することができる。   As shown in Table 2, in the leak test (Evaluation 1) of the same method as in Table 1, no leak occurred in all the manganese dry batteries 10-17. On the other hand, in the overdischarge leakage test (Evaluation 2), no leakage occurred in the manganese dry batteries 10 to 14 having an electric capacity ratio of 1.8 or more. That is, the negative electrode zinc can formed by hot impact molding at a preheating temperature of 130 ° C. is excellent in corrosion resistance, so that even if the amount of manganese dioxide is increased (electric capacity ratio is reduced), overdischarge Leakage due to can be prevented. Thereby, the low-rate discharge characteristic of a manganese dry battery can be improved.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態において、亜鉛板を110〜130℃の範囲の温度で熱間インパクト成形することによって負極亜鉛缶を成形したが、熱間インパクト成形の代わりに、絞り加工成形により負極亜鉛缶を成缶してもよい。この絞り加工成形は、熱間インパクト成形に比べて生産性は劣るが、負極亜鉛缶の成缶工程において加熱を要さないため、亜鉛の再結晶化がほとんど進まず、5μm以下の結晶粒径を有する負極亜鉛缶を得ることができ、これにより、負極亜鉛缶の耐食性を向上させることができる。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above embodiment, the negative electrode zinc can was formed by hot impact molding at a temperature in the range of 110 to 130 ° C., but instead of hot impact molding, the negative electrode zinc can was formed by drawing. Can be grown. Although this drawing process is inferior in productivity to hot impact molding, it does not require heating in the process of forming the negative electrode zinc can, so the recrystallization of zinc hardly progresses and the crystal grain size of 5 μm or less Thus, the corrosion resistance of the negative electrode zinc can can be improved.

本発明に係わるマンガン乾電池は、電解液の耐漏液性に優れ、懐中電灯や携帯用の電子機器等の電源に有用である。   The manganese dry battery according to the present invention is excellent in the leakage resistance of the electrolyte, and is useful as a power source for flashlights, portable electronic devices, and the like.

本発明の実施形態におけるマンガン乾電池の構成を示した部分断面図である。It is the fragmentary sectional view which showed the structure of the manganese dry battery in embodiment of this invention.

符号の説明Explanation of symbols

1 正極端子板
2 封口体
3 負極亜鉛缶
4 炭素棒
6 正極合剤
7 セパレータ
8 底紙
9 外装ラベル
DESCRIPTION OF SYMBOLS 1 Positive electrode terminal board 2 Sealing body 3 Negative electrode zinc can 4 Carbon rod 6 Positive electrode mixture 7 Separator 8 Bottom paper 9 Exterior label

Claims (9)

電池缶が負極亜鉛缶からなるマンガン乾電池であって、
前記負極亜鉛缶は、0.05〜0.6重量%の鉛を含有し、かつ、前記負極亜鉛缶に含まれる亜鉛の平均結晶粒径が30μm以下である、マンガン乾電池。
The battery can is a manganese dry battery made of a negative electrode zinc can,
The said negative electrode zinc can contains 0.05 to 0.6 weight% of lead, and the average crystal grain diameter of the zinc contained in the said negative electrode zinc can is 30 micrometers or less.
電池缶が負極亜鉛缶からなるマンガン乾電池であって、
前記負極亜鉛缶は、亜鉛板を110〜130℃の範囲の温度で熱間インパクト成形により有底円筒形に成形されたものからなり、
前記負極亜鉛缶に含まれる亜鉛の平均結晶粒径が30μm以下である、マンガン乾電池。
The battery can is a manganese dry battery made of a negative electrode zinc can,
The negative electrode zinc can consists of a zinc plate formed into a bottomed cylindrical shape by hot impact molding at a temperature in the range of 110 to 130 ° C.
A manganese dry battery, wherein an average crystal grain size of zinc contained in the negative electrode zinc can is 30 μm or less.
負極活物質である前記負極亜鉛缶に含まれる亜鉛の、正極活物質である二酸化マンガンに対する電気容量比が1.8以上である、請求項1または2に記載のマンガン乾電池。   The manganese dry battery of Claim 1 or 2 whose electric capacity ratio of zinc contained in the said negative electrode zinc can which is a negative electrode active material with respect to manganese dioxide which is a positive electrode active material is 1.8 or more. 負極活物質である前記負極亜鉛缶に含まれる亜鉛の、正極活物質である二酸化マンガンに対する電気容量比が4.0以下である、請求項3に記載のマンガン乾電池。   The manganese dry battery according to claim 3, wherein an electric capacity ratio of zinc contained in the negative electrode zinc can, which is a negative electrode active material, to manganese dioxide, which is a positive electrode active material, is 4.0 or less. 前記負極亜鉛缶の外周面は、外装ラベルで覆われている、請求項1または2に記載のマンガン乾電池。   The manganese dry battery according to claim 1 or 2, wherein an outer peripheral surface of the negative electrode zinc can is covered with an exterior label. 電池缶が負極亜鉛缶からなるマンガン乾電池であって、
前記負極亜鉛缶は、亜鉛板を加熱せずに絞り加工成形により有底円筒形に成形されたものからなり、
前記負極亜鉛缶の結晶粒子径が5μm以下である、マンガン乾電池。
The battery can is a manganese dry battery made of a negative electrode zinc can,
The negative electrode zinc can consists of one formed into a bottomed cylindrical shape by drawing without heating the zinc plate,
A manganese dry battery, wherein the negative electrode zinc can has a crystal particle size of 5 μm or less.
負極活物質である前記負極亜鉛缶に含まれる亜鉛の、正極活物質である二酸化マンガンに対する電気容量比が1.8以上である、請求項6に記載のマンガン乾電池。   The manganese dry battery according to claim 6, wherein an electric capacity ratio of zinc contained in the negative electrode zinc can, which is a negative electrode active material, to manganese dioxide, which is a positive electrode active material, is 1.8 or more. 負極活物質である前記負極亜鉛缶に含まれる亜鉛の、正極活物質である二酸化マンガンに対する電気容量比が4.0以下である、請求項7に記載のマンガン乾電池。   The manganese dry battery according to claim 7, wherein an electric capacity ratio of zinc contained in the negative electrode zinc can, which is a negative electrode active material, to manganese dioxide, which is a positive electrode active material, is 4.0 or less. 前記負極亜鉛缶の外周面は、外装ラベルで覆われている、請求項6に記載のマンガン乾電池。   The manganese dry battery according to claim 6, wherein an outer peripheral surface of the negative electrode zinc can is covered with an exterior label.
JP2007030054A 2007-02-09 2007-02-09 Manganese dry cell Withdrawn JP2008198411A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007030054A JP2008198411A (en) 2007-02-09 2007-02-09 Manganese dry cell
CNA2008800000377A CN101542791A (en) 2007-02-09 2008-01-08 Manganese dry cell
PCT/JP2008/050061 WO2008096559A1 (en) 2007-02-09 2008-01-08 Manganese dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030054A JP2008198411A (en) 2007-02-09 2007-02-09 Manganese dry cell

Publications (1)

Publication Number Publication Date
JP2008198411A true JP2008198411A (en) 2008-08-28

Family

ID=39681470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030054A Withdrawn JP2008198411A (en) 2007-02-09 2007-02-09 Manganese dry cell

Country Status (3)

Country Link
JP (1) JP2008198411A (en)
CN (1) CN101542791A (en)
WO (1) WO2008096559A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130313A4 (en) * 2020-03-27 2023-09-27 Mitsui Mining & Smelting Co., Ltd. Zinc foil, battery negative electrode active material using same, and zinc foil production method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143277A (en) * 1983-02-04 1984-08-16 Matsushita Electric Ind Co Ltd Alkaline primary battery
JPH04198441A (en) * 1990-11-29 1992-07-17 Toshiba Battery Co Ltd Zinc alloy for manganese dry cell
JP2612137B2 (en) * 1992-12-22 1997-05-21 富士電気化学株式会社 Battery negative electrode zinc can
JP2612138B2 (en) * 1992-12-22 1997-05-21 富士電気化学株式会社 Battery negative electrode zinc can
AU2002223126A1 (en) * 2000-11-17 2002-05-27 Toshiba Battery Co., Ltd. Enclosed nickel-zinc primary battery, its anode and production methods for them
JP4243449B2 (en) * 2002-02-15 2009-03-25 Fdk株式会社 Alkaline primary battery
CN100454616C (en) * 2003-12-25 2009-01-21 东芝电池株式会社 Method for producing anode can for battery and manganese dry battery using such anode can for battery

Also Published As

Publication number Publication date
CN101542791A (en) 2009-09-23
WO2008096559A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP5090380B2 (en) Electrode assembly and secondary battery having electrode assembly
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
JP4746278B2 (en) Nonaqueous electrolyte secondary battery
JPWO2013002279A1 (en) Electrolytic copper foil, method for producing the electrolytic copper foil, and lithium ion secondary battery using the electrolytic copper foil as a current collector
JP2011113825A (en) Positive electrode material for lithium-ion secondary battery, and lithium-ion secondary battery using it
CN101044653A (en) Cylindrical lithium secondary battery
JP2012014887A (en) Lithium ion secondary battery
CN111969266A (en) Cylindrical lithium ion battery capable of automatically pre-lithiating and preparation method thereof
JP2023101817A (en) Alkaline electrochemical cell comprising increased zinc oxide level
CN100559634C (en) Lithium rechargeable battery
JP2008171762A (en) Manganese dry cell, and negative electrode zinc can for manganese dry cell
JPH09306503A (en) Lithium secondary battery
JP2007066762A (en) Battery can and alkaline dry cell using the same
JP2008204839A (en) Sealing plate for cylindrical battery cell
JP2008198411A (en) Manganese dry cell
JP2005327592A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2020518101A (en) Method for manufacturing cylindrical battery case with improved surface roughness
JP2008016267A (en) Nonaqueous electrolyte secondary battery
JP2005197058A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte used for it
JP2006253004A (en) Electrode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2005032688A (en) Non-aqueous electrolyte secondary battery
CN1499660A (en) Lithium secondary cell and mfg. method thereof
JP2006049237A (en) Anode material for lithium ion battery
US20230163321A1 (en) Electrochemical cell with increased runtime and reduced internal shorting
WO2023210155A1 (en) Battery

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110520