JPH04198441A - Zinc alloy for manganese dry cell - Google Patents

Zinc alloy for manganese dry cell

Info

Publication number
JPH04198441A
JPH04198441A JP2325792A JP32579290A JPH04198441A JP H04198441 A JPH04198441 A JP H04198441A JP 2325792 A JP2325792 A JP 2325792A JP 32579290 A JP32579290 A JP 32579290A JP H04198441 A JPH04198441 A JP H04198441A
Authority
JP
Japan
Prior art keywords
manganese dry
weight
zinc alloy
dry cell
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2325792A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
浩之 高橋
Hiroshi Watabe
浩史 渡部
Kojiro Miyasaka
宮坂 幸次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2325792A priority Critical patent/JPH04198441A/en
Publication of JPH04198441A publication Critical patent/JPH04198441A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a zinc alloy for a manganese dry cell having high mechani cal strength and excellent corrosion resistance by incorporating specified compositional amounts of Pb, Mg and Bi into an alloy. CONSTITUTION:This is a zinc alloy for a manganese dry cell contg., by weight, 0.1 to 0.5% Pb and 0.001 to 0.002% Mg or 0.001 to 0.005% Bi. The alloy does not contain harmful Cd, having high mechanical strength and excellent corrosion resistance and is suitable as the negative polarity can of a manganese dry cell.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はマンガン乾電池用の亜鉛合金に関し、さらに詳
しくは、マンガン乾電池の缶に適する機械的強度と耐腐
蝕性を有するマンガン乾電池用の亜鉛合金に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a zinc alloy for manganese dry batteries, and more specifically, a zinc alloy for manganese dry batteries that has mechanical strength and corrosion resistance suitable for cans of manganese dry batteries. Regarding.

[従来の技術] マンガン乾電池の負極を兼ねる金属容器(以下、負極缶
という)として、亜鉛合金は古くから用いられてきた。
[Prior Art] Zinc alloys have long been used as metal containers (hereinafter referred to as negative electrode cans) that also serve as negative electrodes for manganese dry batteries.

その製缶加工の際に必要な延伸性や機械的強度を付巧し
、また内容物である電解液に対する耐食性を保持するた
めに、マンガン乾電池の負極缶として用いる従来の亜鉛
合金には、0.1〜0,8重量%の鉛と0.02〜00
6重量%のカドミウムを含んでいる。
Conventional zinc alloys used as negative electrode cans for manganese dry batteries are made with zero .1-0.8% by weight lead and 0.02-00
Contains 6% by weight of cadmium.

この亜鉛合金に含まれるカドミウムは微量ではあるが、
人体に有害であり、その流通・消費量が多くなるにつれ
て、産業廃棄物や家庭廃棄物に混入して廃棄されるカド
ミウムによる環境汚染を防止することが急務になってき
た。その対策として、マンガン乾電池の負極缶にも、カ
ドミウムを含有しない亜鉛合金の使用が強く望まれてい
る。
Although the amount of cadmium contained in this zinc alloy is small,
Cadmium is harmful to the human body, and as its distribution and consumption increases, it has become urgent to prevent environmental pollution caused by cadmium, which is mixed into industrial and household waste and disposed of. As a countermeasure, it is strongly desired to use a zinc alloy that does not contain cadmium in the negative electrode can of manganese dry batteries.

しかし、マンガン乾電池の負極缶材料として評価した場
合、従来から用いられている亜鉛合金から単にカドミウ
ムを除いて調整された合金は、カドミウム含有亜鉛合金
と比較して機械的強度がかなり低く、乾電池製造工程で
傷や変形(曲がり、へこみなど)を生して、内部短絡な
どの原因となっている。
However, when evaluated as negative electrode can materials for manganese dry batteries, alloys prepared by simply removing cadmium from conventionally used zinc alloys have considerably lower mechanical strength than cadmium-containing zinc alloys, and Scratches and deformations (bent, dented, etc.) occur during the process, causing internal short circuits.

[発明が解決しようとする課題] 本発明は、このような従来の無カドミウム合金がかかえ
る機械的強度の欠陥を解決し、カドミウムを含有せず、
しかもカドミウム含有合金以上の高い機械的強度及び良
好な耐腐蝕性を有するマンガン乾電池用の亜鉛合金を提
供しようとするものである。
[Problems to be Solved by the Invention] The present invention solves the mechanical strength defects of such conventional cadmium-free alloys, does not contain cadmium,
Furthermore, the present invention aims to provide a zinc alloy for manganese dry batteries that has higher mechanical strength and better corrosion resistance than cadmium-containing alloys.

[課題を解決するだめの手段] 本発明者らは、上記の目的を達成すべく研究を重ねた結
果、亜鉛に鉛と、マグネシウム又はビスマスとをそれぞ
れ特定量配合した亜鉛合金が、その目的に適合すること
を見出して、本発明をなすに至った。
[Means for Solving the Problem] As a result of repeated research to achieve the above object, the present inventors found that a zinc alloy containing specific amounts of lead and magnesium or bismuth was found to be suitable for the purpose. The present invention was made based on the finding that the two methods are compatible.

すなわち、本発明のマンガン乾電池用亜鉛合金は、亜鉛
ならびに:鉛を01〜0.5重量%含有し、かつマグネ
シウムを0.001〜0.002重量%又はビスマスを
0.001〜0005重量%含有することを特徴とする
That is, the zinc alloy for manganese dry batteries of the present invention contains 01 to 0.5% by weight of zinc and lead, and 0.001 to 0.002% by weight of magnesium or 0.001 to 0005% by weight of bismuth. It is characterized by

なお、亜鉛にはその精練の過程で、不可避的にppm単
位の銅、鉄、カドミウム、鉛などの不純物を含有するが
、本発明はそれらの不純物の存在には関与しない。
Note that zinc inevitably contains impurities such as copper, iron, cadmium, and lead in ppm units during its refining process, but the present invention is not concerned with the presence of these impurities.

本発明において亜鉛合金の成分として含有される鉛は、
該合金に延伸性、衝撃押出性及び耐腐食性を与えるもの
である。本発明における鉛の含有量は0.1〜0.5重
量%、好ましくは0.3〜0.5重量%である。これが
0.1重量%未満では、亜鉛合金は脆くなり、とくに圧
延加工やインパクト加工が困難になる。またマンガン乾
電池の電解液に対して、満足すべき耐食性が得られない
。また0 5重量%を越えると、柔軟に過ぎて、機械的
強度、とくに硬度が低下する。
In the present invention, lead contained as a component of the zinc alloy is
It provides the alloy with extensibility, impact extrudability and corrosion resistance. The content of lead in the present invention is 0.1 to 0.5% by weight, preferably 0.3 to 0.5% by weight. If this amount is less than 0.1% by weight, the zinc alloy becomes brittle, making it particularly difficult to perform rolling or impact processing. Furthermore, satisfactory corrosion resistance cannot be obtained with respect to the electrolyte of manganese dry batteries. If it exceeds 0.5% by weight, it becomes too flexible and the mechanical strength, especially the hardness, decreases.

本発明において成分として含有されるマグネシウムは、
合金に機械的強度を与えるものである。
Magnesium contained as a component in the present invention is
It provides mechanical strength to the alloy.

マグネシウムの含有量が0.001重量%未満では十分
な機械的強度を与えることができず、0.002Ji量
%を越えると電解液によって腐食を受けやすくなり、長
期の貯蔵性が大幅に低下する。
If the magnesium content is less than 0.001% by weight, it will not be able to provide sufficient mechanical strength, and if it exceeds 0.002% by weight, it will be susceptible to corrosion by the electrolyte, and its long-term storage stability will be significantly reduced. .

また、本発明において成分として含有されるビスマスは
、マグネシウムと同様、合金に機械的強度を与える。ビ
スマスの含有量が0001重量%未満ては十分な機械的
強度を与えることができず、0.005重量%を越える
と電解液によって腐食を受けやすくなる。
Furthermore, like magnesium, bismuth contained as a component in the present invention provides mechanical strength to the alloy. If the content of bismuth is less than 0.001% by weight, sufficient mechanical strength cannot be provided, and if it exceeds 0.005% by weight, it becomes susceptible to corrosion by the electrolyte.

なお、本発明において、機械的強度として必要なのは、
主として各種の製缶加工に耐える機械的強度であって、
それを硬度(ビッカース)で代表させて評価して差支え
ない。
In addition, in the present invention, what is required as mechanical strength is:
Mainly mechanical strength that can withstand various can manufacturing processes,
There is no problem in evaluating it by representing it with hardness (Vickers).

[発明の効果コ 本発明によって、環境を汚染するカドミウムを含有する
ことなく、従来のカドミウム含有亜鉛合金以上の高い機
械的強度及び優れた耐腐食性を有するマンガン乾電池用
の亜鉛合金を提供すること゛  ができた。本発明の亜
鉛合金は、マンガン乾電池の負極缶として有用である。
[Effects of the Invention] The present invention provides a zinc alloy for manganese dry batteries that does not contain cadmium that pollutes the environment and has higher mechanical strength and superior corrosion resistance than conventional cadmium-containing zinc alloys. And ゛ was completed. The zinc alloy of the present invention is useful as a negative electrode can for manganese dry batteries.

[実施例] 以下、本発明を実施例及び比較例によって詳細に説明す
る。本発明は実施例によって限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in detail by Examples and Comparative Examples. The invention is not limited by the examples.

熱精練した純度99.99重量%以上の亜鉛地金を用い
、これに鉛及びマグネシウム又はビスマスを配合して、
表1に示すような、本発明の組成による合金試料(実施
例1〜8)を調製した。
Using heat-refined zinc ingot with a purity of 99.99% by weight or more, blending lead and magnesium or bismuth,
Alloy samples (Examples 1 to 8) according to the composition of the present invention as shown in Table 1 were prepared.

また比較のために、鉛及びカドミウムを配合した従来品
を用意しく比較例1)、また同様に表2に示す本発明の
組成範囲外の各種の試料(比較例2〜18)を調製した
For comparison, a conventional product containing lead and cadmium was prepared (Comparative Example 1), and various samples (Comparative Examples 2 to 18) outside the composition range of the present invention shown in Table 2 were similarly prepared.

これらについて、次のような試験によって評価を行った
。なお、nは各実施例及び比較例の組織ごとの供試試料
数である。
These were evaluated by the following tests. Note that n is the number of test samples for each structure of each example and comparative example.

(1)硬度(n=30) 厚さ0.42〜0147mmのR20マンガン乾電池用
負極缶を作成し、マイクロビッカース硬度計(MV)を
用いて、その側面の硬度を測定した。
(1) Hardness (n=30) An R20 manganese dry battery negative electrode can having a thickness of 0.42 to 0147 mm was prepared, and the hardness of its side surface was measured using a micro Vickers hardness meter (MV).

(2)腐食減量(n=20) (1)と同様の負極缶を作成した。これを秤量した後、
26重量%の塩化亜鉛及び1.5重量%の塩化アンモニ
ウムを含有する水溶液からなるマンガン乾電池用電解液
に浸漬して密閉し、45°Cて15日間放置した。つい
で該電解液から取出し、水洗後、乾燥して秤量し、重量
減少率を算出して腐食減量とした。
(2) Corrosion loss (n=20) A negative electrode can similar to (1) was created. After weighing this,
It was immersed in an electrolytic solution for manganese dry batteries consisting of an aqueous solution containing 26% by weight of zinc chloride and 1.5% by weight of ammonium chloride, sealed, and left at 45° C. for 15 days. Then, it was taken out from the electrolytic solution, washed with water, dried and weighed, and the weight loss rate was calculated to determine the corrosion weight loss.

(3)工程中の外観不良率(n=1,000)供試合金
のペレットより、鱗片状黒鉛とホウ酸との混合物を潤滑
剤として、衝撃押出法によって(1)と同様の負極缶の
大量試作を行い、R20マンガン乾電池を得た。ついて
、電池の金属外装部を取り外し、負極缶を検査して、傷
、曲り、へこみなどの外観不良率を求めた。
(3) Appearance defect rate during the process (n = 1,000) A negative electrode can similar to that in (1) was made by impact extrusion using a mixture of flaky graphite and boric acid as a lubricant from pellets of the test metal. We conducted mass trial production and obtained R20 manganese dry batteries. Then, the metal exterior of the battery was removed and the negative electrode can was inspected to determine the percentage of defects in appearance such as scratches, bends, and dents.

これらの評価結果を、成分組成とともに表1及び表2に
示す。
These evaluation results are shown in Tables 1 and 2 together with the component compositions.

表1 表2 表1及び表2から明らかなように、硬度及び外観不良率
については、マグネシウム又はビスマスの含有量を増加
するほど良好であり、鉛を01重量%以上含有すれば、
従来品と同等もしくはそれ以上の性能を示す。その反面
、腐食減量はマグネシウム又はビスマスの含有量が増加
するほど低下し、とくに鉛の含有量が低い場合にその傾
向が顕著である。
Table 1 Table 2 As is clear from Tables 1 and 2, the hardness and appearance defect rate are better as the magnesium or bismuth content increases;
Shows performance equivalent to or better than conventional products. On the other hand, the corrosion loss decreases as the content of magnesium or bismuth increases, and this tendency is particularly noticeable when the content of lead is low.

硬度、外観不良率と耐腐食性とを総合すると、マンガン
乾電池用亜鉛合金としては、鉛を01〜0.5重量%含
有し、かつマグネシウムを0.001〜0.002重量
%又はビスマスをo、ooi〜0.005重量%含有す
る合金が好適であることがわかった。
Considering hardness, appearance defect rate, and corrosion resistance, zinc alloy for manganese dry batteries contains 0.1 to 0.5% by weight of lead and 0.001 to 0.002% by weight of magnesium or o. , ooi to 0.005% by weight was found to be suitable.

Claims (1)

【特許請求の範囲】[Claims] (1)鉛を0.1〜0.5重量%含有し:かつマグネシ
ウムを0.001〜0.002重量%又はビスマスを0
.001〜0.005重量%含有することを特徴とする
マンガン乾電池用亜鉛合金。
(1) Contains 0.1 to 0.5% by weight of lead: and 0.001 to 0.002% by weight of magnesium or 0% of bismuth.
.. A zinc alloy for manganese dry batteries, characterized in that the zinc alloy contains 001 to 0.005% by weight.
JP2325792A 1990-11-29 1990-11-29 Zinc alloy for manganese dry cell Pending JPH04198441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325792A JPH04198441A (en) 1990-11-29 1990-11-29 Zinc alloy for manganese dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325792A JPH04198441A (en) 1990-11-29 1990-11-29 Zinc alloy for manganese dry cell

Publications (1)

Publication Number Publication Date
JPH04198441A true JPH04198441A (en) 1992-07-17

Family

ID=18180652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325792A Pending JPH04198441A (en) 1990-11-29 1990-11-29 Zinc alloy for manganese dry cell

Country Status (1)

Country Link
JP (1) JPH04198441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688056A1 (en) * 1994-06-14 1995-12-20 Matsushita Electric Industrial Co., Ltd. Manganese dry battery with zinc alloy can
EP0819774A1 (en) * 1996-07-19 1998-01-21 Matsushita Electric Industrial Co., Ltd. Silver-alloyed or silver-titanium-alloyed zinc anode can for manganese dry battery
WO2008096559A1 (en) * 2007-02-09 2008-08-14 Panasonic Corporation Manganese dry cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688056A1 (en) * 1994-06-14 1995-12-20 Matsushita Electric Industrial Co., Ltd. Manganese dry battery with zinc alloy can
US5595836A (en) * 1994-06-14 1997-01-21 Matsushita Electric Industrial Co., Ltd. Manganese dry battery
EP0819774A1 (en) * 1996-07-19 1998-01-21 Matsushita Electric Industrial Co., Ltd. Silver-alloyed or silver-titanium-alloyed zinc anode can for manganese dry battery
CN1114962C (en) * 1996-07-19 2003-07-16 松下电器产业株式会社 Mn try cell
WO2008096559A1 (en) * 2007-02-09 2008-08-14 Panasonic Corporation Manganese dry cell

Similar Documents

Publication Publication Date Title
US4159908A (en) Alkali metal containing battery grid lead alloy
KR19990082621A (en) Lead-Calcium Alloys for Battery Grids
KR0150391B1 (en) Manganese dry battery with zinc alloy can
JPH03504253A (en) How to treat titanium structures
JP3592345B2 (en) Manganese dry cell
KR840002048B1 (en) Low antimony-lead based alloy
JPS6127063A (en) Method of stabilizing primary electrochemical generator
JP2918434B2 (en) Battery negative electrode zinc can
KR100895941B1 (en) Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
JPH04198441A (en) Zinc alloy for manganese dry cell
JPH05159786A (en) Manganese dry battery
JPH04284358A (en) Zinc alkaline battery
JPH0620686A (en) Manganese dry battery
WO2005064713A1 (en) Negative electrode can for battery and manganese dry battery utilizing the same
JPH04362150A (en) Zinc alloy for manganese dry cell
CN108300919B (en) A kind of heat-proof corrosion-resistant magnesium alloy and preparation method thereof
JPH0794193A (en) Manganese dry battery
JPH07296813A (en) Anode zinc can of battery
JP3651852B2 (en) Manganese battery
JP3113895B2 (en) Lead alloy for storage battery
JPH0794194A (en) Manganese dry battery
CN109750286B (en) Promoter for mechanical zinc-aluminum-magnesium alloy plating layer
CN1045352C (en) Manganese dry cell
Hasan et al. Effect of Antimony Addition with Lead in H2SO4 Acidic Medium on Corrosion Behavior
JPH05320701A (en) Corrosion-resistant material