JPH07296813A - Anode zinc can of battery - Google Patents

Anode zinc can of battery

Info

Publication number
JPH07296813A
JPH07296813A JP8967694A JP8967694A JPH07296813A JP H07296813 A JPH07296813 A JP H07296813A JP 8967694 A JP8967694 A JP 8967694A JP 8967694 A JP8967694 A JP 8967694A JP H07296813 A JPH07296813 A JP H07296813A
Authority
JP
Japan
Prior art keywords
zinc
bismuth
weight
lead
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8967694A
Other languages
Japanese (ja)
Other versions
JP2918446B2 (en
Inventor
Takaaki Yasumura
隆明 安村
Yoshiteru Nakagawa
吉輝 中川
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP8967694A priority Critical patent/JP2918446B2/en
Publication of JPH07296813A publication Critical patent/JPH07296813A/en
Application granted granted Critical
Publication of JP2918446B2 publication Critical patent/JP2918446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide good corrosion resistance and mechanical strength without the addition of lead, cadmium and mercury which are environmentally hazardous by employing predetermined amounts of bismuth and calcium and no appreciable amounts of topic materials such as mercury. CONSTITUTION:The addition to zinc of environmentally hazardous materials such as mercury, cadmium and lead is not carried out, but instead highly safe metals such as bismuth, calcium, nickel, aluminum and silicon are added in a predetermined combination and ratio; that is, a zinc base alloy that contains 0.004-0.75wt.% bismuth, 0.001-0.25wt.% calcium, and no appreciable amounts of toxic materials such as mercury, cadmium, and lead, is employed. This can restrain degradation of rollability and enhance corrosion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、微量金属を添加した
亜鉛基合金からなり有底円筒形に成形された電池用負極
亜鉛缶に関し、特に、水銀やカドミウムおよび鉛といっ
た有害物質を添加せずに高性能な負極亜鉛缶を実現する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode zinc can for a battery, which is made of a zinc-based alloy to which a trace amount of metal is added and is formed into a cylindrical shape with a bottom. The present invention relates to a technology for realizing a high-performance negative electrode zinc can.

【0002】[0002]

【従来の技術】[Prior art]

[負極亜鉛缶の製造方法]よく知られているように、マ
ンガン電池に使用されている負極亜鉛缶はつぎのような
一連の工程で製造されている。 …亜鉛地金に後述する適宜な微量金属を添加して溶解
する。 …溶解した亜鉛基合金を連続鋳造し、連続した帯状体
を得る。 …連続鋳造された帯状体を連続熱間圧延して、所定厚
みの板状体を得る。 …圧延された板状体から所定寸法の円形または六角形
などのペレットを打ち抜く。 …ペレットを金型内にセットしてパンチで衝撃的に加
圧し、有底円筒形に成形する(衝撃後方押出し法)。 …有底円筒形に成形された亜鉛缶の開口部分を切断し
て、円筒の高さ寸法を揃える。例えば単一形マンガン電
池の負極亜鉛缶の場合、圧延工程では板状体の厚みを
約5.2mmとし、打ち抜き工程で直径30mmの円形ペ
レットを打ち抜き、成缶工程で外径31.4mmで肉厚
0.5mmの有底円筒形に成形し、高さ切断工程で円筒
の高さを53.5mmにする。
[Manufacturing Method of Negative Electrode Zinc Can] As is well known, the negative electrode zinc can used in the manganese battery is manufactured by the following series of steps. ... An appropriate trace amount of metal, which will be described later, is added to zinc ingot and dissolved. ... The molten zinc-based alloy is continuously cast to obtain a continuous strip. ... The continuously cast strip is continuously hot-rolled to obtain a plate having a predetermined thickness. ... Punch pellets, such as circles or hexagons, of specified dimensions from a rolled plate. ... The pellets are set in a mold and impacted by a punch to form a bottomed cylindrical shape (impact backward extrusion method). … Cut the opening of a zinc can that has been molded into a bottomed cylinder to make the height of the cylinder uniform. For example, in the case of a negative electrode zinc can of a single-type manganese battery, the thickness of the plate-shaped body is about 5.2 mm in the rolling process, a circular pellet with a diameter of 30 mm is punched in the punching process, and the outer diameter is 31.4 mm in the forming process It is molded into a bottomed cylinder with a thickness of 0.5 mm, and the height of the cylinder is 53.5 mm in the height cutting process.

【0003】[負極亜鉛缶およびその材料に要求される
諸特性]連続熱間圧延工程および衝撃後方押出し法に
よる成缶工程において、材料の圧延加工性あるいは塑
性加工性(展延性)が十分でないと、材料に亀裂やヒビ
あるいはバリ等が生じ、その後の加工に支障をきたす。
ヒビ割れなどの不良を生じないで歩留り良く円筒缶に成
形できることが基本的な必須の要件である(これを加工
性と称する)。
[Characteristics Required for Negative Electrode Zinc Can and Its Material] In the continuous hot rolling process and the forming process by impact backward extrusion method, the material must have sufficient rolling workability or plastic workability (spreadability). However, cracks, cracks, burrs, etc. occur in the material and interfere with the subsequent processing.
It is a fundamental and essential requirement to be able to form a cylindrical can with a good yield without causing defects such as cracking (this is called workability).

【0004】完成した負極亜鉛缶はつぎに電池の組み立
てラインに進み、正極やセパレータおよび電解液などを
この缶内に収納し、さらに正極端子板と封口ガスケット
を缶の開口部にはめ込んで缶を密封する。ここで亜鉛缶
の缶としての機械的強度が低過ぎると、電池組み立て中
および後に缶が変形してしまい、さまざまな不都合を生
じる。そのため、成缶後の亜鉛缶にはある程度以上の機
械的強度が必要である。この成缶後の強度は前記の塑性
加工性(展延性)と相反する関係にある。
The completed negative electrode zinc can then proceeds to the battery assembly line, the positive electrode, the separator, the electrolytic solution, etc. are stored in this can, and the positive electrode terminal plate and the sealing gasket are fitted into the opening of the can to seal the can. To do. If the mechanical strength of the zinc can as a can is too low, the can will be deformed during and after the battery assembly, causing various problems. Therefore, the zinc can after being formed needs a certain level of mechanical strength. The strength after the canning is in a relationship contradictory to the plastic workability (spreadability).

【0005】完成した電池では負極亜鉛缶は内部の電解
液と常時接しているが、電池の保存中の自己放電を防止
するために、亜鉛缶は電解液に対して十分な耐食性を備
えていなければならない。
In the completed battery, the negative electrode zinc can is constantly in contact with the internal electrolytic solution, but the zinc can must have sufficient corrosion resistance to the electrolytic solution to prevent self-discharge during storage of the battery. I have to.

【0006】以上のように、電池の負極亜鉛缶には、塑
性加工性と成缶後の機械的強度と電解液に対する耐食性
といった特性が要求される。これらの特性には、亜鉛基
合金の組成だけでなく、前記製造プロセスにおける溶解
工程の溶解温度、鋳造工程の鋳型の温度、圧延工程
の温度と圧延率、ペレット打ち抜き工程の温度、成
缶工程の温度と加工率(これらをプロセスファクター
と呼ぶ)などの要因も係わっている。
As described above, the negative electrode zinc can of a battery is required to have such properties as plastic workability, mechanical strength after forming, and corrosion resistance to an electrolytic solution. These characteristics include not only the composition of the zinc-based alloy, but also the melting temperature of the melting process in the manufacturing process, the temperature of the casting process mold, the rolling process temperature and rolling rate, the pellet punching process temperature, and the forming container process temperature. Factors such as temperature and processing rate (these are called process factors) are also involved.

【0007】[亜鉛基合金の添加金属]前記の加工性、
機械的強度、耐食性などの諸特性を向上させるために、
旧来のマンガン電池では0.15重量%程度の鉛と0.
05重量%程度のカドミウムを添加した亜鉛基合金で負
極亜鉛缶を構成し、また亜鉛缶表面をアマルガム化して
いた。ところが周知のように、電池の構成材料から有害
物質をできるだけ排除するという技術思想の下で、まず
無水銀化が達成され、つぎにカドミウムの非使用が達成
された。つまり、古くから使われてきた特性向上効果の
大きな添加金属を排除し、しかも電池の性能を低下させ
ない、という技術改良が重ねられてきている(例えば特
開昭61−273861号、特公平4−30712号、
特開平4−198441号など)。
[Additional metal of zinc-based alloy] The above-mentioned workability,
In order to improve various properties such as mechanical strength and corrosion resistance,
In the old manganese battery, about 0.15% by weight of lead and 0.
A negative electrode zinc can was made of a zinc-based alloy to which about 05% by weight of cadmium was added, and the surface of the zinc can was amalgamated. However, as is well known, under the technical idea of removing harmful substances from the constituent materials of batteries as much as possible, first, the anhydrous silver was achieved, and then the non-use of cadmium was achieved. In other words, technical improvements have been made to eliminate the added metal, which has been used for a long time and has a great effect of improving the characteristics, and does not deteriorate the performance of the battery (for example, JP-A-61-273861, Japanese Patent Publication No. No. 30712,
JP-A-4-198441).

【0008】しかし最近のマンガン電池においても、負
極亜鉛缶には0.4重量%程度の鉛が依然として含まれ
ているのが実情であり、この鉛の添加を廃止することが
つぎの技術課題となっている。
However, even in recent manganese batteries, it is the actual situation that the negative electrode zinc can still contains about 0.4% by weight of lead, and the next technical problem is to abolish the addition of lead. Has become.

【0009】[0009]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

[純亜鉛で形成した亜鉛缶の試作評価]0.4重量%の
鉛を含み良好な特性を示す従来の負極亜鉛缶に対し、純
亜鉛の缶を試作して比較評価した。
[Prototype Evaluation of Zinc Can Made of Pure Zinc] A pure zinc can was experimentally manufactured and compared with a conventional negative electrode zinc can containing 0.4% by weight of lead and showing good characteristics.

【0010】亜鉛純度が99.9986重量%の地金を
原料とし、他の金属をまったく添加せずに前述した製造
プロセスで亜鉛缶を製作する。その際にプロセスファク
ター(溶解工程の溶解温度、鋳造工程の鋳型の温
度、圧延工程の温度と圧延率、ペレット打ち抜き工程
の温度、成缶工程の温度と加工率)を適宜に変化さ
せて試作を繰り返す。そして、欠陥のない缶を歩留り良
く成形できるという基本の要件(塑性加工性)を満たす
範囲で、プロセスファクターを変えた試作品を作り、そ
れぞれの試作品について成缶後の機械的強度および電解
液に対する耐食性を以下の条件で調べ、従来品と比較し
た(比較試験は単一形マンガン電池用の負極亜鉛缶につ
いて行った)。
A zinc can is manufactured by the above-described manufacturing process without using any other metal at all, by using a base metal having a zinc purity of 99.9986% by weight as a raw material. At that time, process factors (melting temperature of melting process, mold temperature of casting process, temperature and rolling rate of rolling process, temperature of pellet punching process, temperature and processing rate of forming container process) are appropriately changed to make a prototype. repeat. Prototypes with different process factors were made to the extent that they satisfy the basic requirement (plastic workability) that defect-free cans can be formed with good yield. Corrosion resistance to was examined under the following conditions and compared with the conventional product (comparison test was conducted on negative electrode zinc cans for single-type manganese batteries).

【0011】(a)…成形した缶の外側中央部から20
mm角の試料片を切り出し、試料片のビッカース硬度を各
5点測定し、10個のサンプルについての平均値を求め
た。これを機械的強度の評価とした。
(A) 20 from the outer center of the molded can
5 mm square sample pieces were cut out, the Vickers hardness of each sample piece was measured at 5 points, and the average value of 10 samples was obtained. This was used as the evaluation of mechanical strength.

【0012】(b)…耐食性の評価としては、同様に切
り出した10mm角の試料片を電解液に一定期間浸した後
の腐食減量を測定し、10個のサンプルについての平均
値を求めた。なお電解液はZnCl2 (26.4重量
%)とNH4 Cl(2.2重量%)を含むpH=4.7
の水溶液である。また放置期間は20日で、雰囲気温度
は45℃である。
(B) As for the evaluation of corrosion resistance, the similarly cut out 10 mm square sample pieces were immersed in the electrolytic solution for a certain period of time, and the corrosion weight loss was measured to obtain the average value of 10 samples. The electrolytic solution contains ZnCl 2 (26.4% by weight) and NH 4 Cl (2.2% by weight) and has a pH of 4.7.
Is an aqueous solution of. The period of standing is 20 days, and the ambient temperature is 45 ° C.

【0013】その結果、鉛を添加している従来品の硬度
がHV45であったのに対し、純亜鉛の試作品の硬度は
最大値でHV37であった。また従来品の腐食減量が
0.93mg/cm2 であったのに対し、純亜鉛の試作
品の腐食減量は最小値で9.5mg/cm2 であった。
硬度については極端に劣っているとは言えないが、腐食
減量は大幅に劣っている。鉛を添加することが大きな効
果を奏しているわけである。
As a result, the hardness of the conventional product containing lead was HV45, whereas the hardness of the prototype of pure zinc was HV37 at the maximum. The corrosion weight loss of the conventional product was 0.93 mg / cm 2 , whereas the corrosion weight loss of the prototype of pure zinc was 9.5 mg / cm 2 at the minimum.
It cannot be said that the hardness is extremely inferior, but the corrosion weight loss is significantly inferior. The addition of lead has a great effect.

【0014】[ビスマスを添加した亜鉛基合金による試
作評価]純亜鉛にビスマスを微量添加した亜鉛基合金に
より先の例と同じ単一形マンガン電池用の負極亜鉛缶を
前記のプロセスで製作し、前記(a)および(b)の方
法でビッカース硬度と腐食減量を測定した。その結果、
ビスマスの添加量が0.0010重量%の試作品では、
硬度はHV38.1、腐食減量は8.91mg/cm2
となり、前記の純亜鉛製のものより向上した。しかし、
前記熱間圧延工程で製作された板状体の両側部分に若
干のヒビ割れが生じた(その後の成缶工程にはあまり支
障のない程度であった)。
[Prototype Evaluation Using Zinc-Based Alloy With Bismuth Addition] A negative electrode zinc can for a single-type manganese battery similar to the previous example was manufactured by the above-mentioned process using a zinc-based alloy containing a trace amount of bismuth added to pure zinc. Vickers hardness and corrosion weight loss were measured by the methods (a) and (b). as a result,
In the prototype with 0.0010% by weight of bismuth,
Hardness HV38.1, corrosion weight loss is 8.91mg / cm 2
Which is an improvement over that of pure zinc. But,
Some cracks were formed on both sides of the plate-shaped body manufactured in the hot rolling process (there was no problem in the subsequent forming process).

【0015】そこで、ビスマスの添加量を0.0040
重量%に増やしたもの、さらに0.0100重量%に増
やしたもので試作してみた。この場合、材料(ビスマス
を含む亜鉛基合金)の圧延加工性が著しく低下し、熱間
圧延工程では正常に圧延することができず、材料が粉
々に破壊してしまった。
Therefore, the addition amount of bismuth is set to 0.0040.
I tried to make a prototype by increasing the weight to 0.0% and further increasing it to 0.0100% by weight. In this case, the rolling workability of the material (zinc-based alloy containing bismuth) was remarkably deteriorated, normal rolling could not be performed in the hot rolling step, and the material was broken into pieces.

【0016】[発明の目的]この発明の目的は、環境上
有害とされる鉛、カドミウム、水銀を添加せずに良好な
耐食性と機械的強度を有する負極亜鉛缶を提供するもの
である。
[Object of the Invention] An object of the present invention is to provide a negative electrode zinc can having good corrosion resistance and mechanical strength without adding lead, cadmium and mercury which are harmful to the environment.

【0017】[0017]

【課題を解決するための手段】第1の発明の負極亜鉛缶
は、ビスマスを0.004〜0.75重量%含有すると
ともに、カルシウムを0.001〜0.25重量%含有
し、かつ水銀やカドミウムおよび鉛といった有害物質を
有意に含有していない亜鉛基合金からなる。
A negative electrode zinc can of the first invention contains 0.004 to 0.75% by weight of bismuth, 0.001 to 0.25% by weight of calcium, and mercury. It consists of a zinc-based alloy that does not significantly contain harmful substances such as cadmium and lead.

【0018】第2の発明の負極亜鉛缶は、ビスマスを
0.004〜1.00重量%含有するとともに、カルシ
ウムを0.001〜0.25重量%含有し、さらにニッ
ケルを0.001〜0.25重量%含有し、かつ水銀や
カドミウムおよび鉛といった有害物質を有意に含有して
いない亜鉛基合金からなる。
The negative electrode zinc can of the second invention contains 0.004 to 1.00% by weight of bismuth, 0.001 to 0.25% by weight of calcium, and 0.001 to 0 of nickel. It is composed of a zinc base alloy containing 25% by weight and containing no significant harmful substances such as mercury, cadmium and lead.

【0019】第3の発明の負極亜鉛缶は、ビスマスを
0.004〜1.00重量%含有するとともに、カルシ
ウムを0.001〜0.25重量%含有し、さらにアル
ミニウムまたはシリコンを0.0005〜0.20重量
%含有し、かつ水銀やカドミウムおよび鉛といった有害
物質を有意に含有していない亜鉛基合金からなる。
The negative electrode zinc can of the third invention contains 0.004 to 1.00% by weight of bismuth, 0.001 to 0.25% by weight of calcium, and 0.0005 of aluminum or silicon. .About.0.20% by weight and does not contain harmful substances such as mercury, cadmium and lead significantly.

【0020】[0020]

【作用】以下に説明する多数の比較試験結果から分るよ
うに、純亜鉛にビスマスを添加することで耐食性が向上
するが、圧延加工性が低下する傾向を示す。しかし、ビ
スマスに加えてカルシウムを前記の割り合いで添加する
ことで、圧延加工性の低下を防ぐことができる。また、
ビスマスとカルシウムに加えてニッケルまたはアルミニ
ウムまたはシリコンを前記の割り合いで添加すること
で、ビスマスの添加量をさらに増やしても(耐食性がさ
らに向上する)、圧延加工性の低下が抑制される。その
結果、目標値である硬度40HV以上、腐食減量7.0
mg/cm2以下を達成することができる。
As can be seen from the results of many comparative tests described below, the addition of bismuth to pure zinc improves corrosion resistance, but tends to reduce rolling workability. However, by adding calcium in addition to bismuth in the above proportion, it is possible to prevent the rolling workability from deteriorating. Also,
By adding nickel, aluminum, or silicon in addition to bismuth and calcium in the above-mentioned proportion, even if the amount of bismuth added is further increased (corrosion resistance is further improved), deterioration of rolling workability is suppressed. As a result, the target value of hardness of 40 HV or more, corrosion loss of 7.0
It is possible to achieve mg / cm 2 or less.

【0021】[0021]

【実施例】亜鉛純度が99.9986重量%の純亜鉛地
金を原料とし(不可避の不純物は考慮しない)、この純
亜鉛に対して以下の割り合いで微量金属を添加し、前述
した製造プロセスで単一形マンガン電池用の負極亜鉛缶
を製作する。そして各試作品について、先に詳述した
(a)および(b)の方法にしたがってビッカース硬度
(HV)と腐食減量(mg/cm2 )とを測定した。ま
た、同時に前記の熱間圧延工程での加工性についての
評価をつぎのように行った。
EXAMPLE A pure zinc metal having a zinc purity of 99.9986% by weight was used as a raw material (inevitable impurities were not taken into consideration), and a trace amount of metal was added to this pure zinc at the following ratio, and the above-mentioned manufacturing process was performed. Will manufacture a negative electrode zinc can for a single manganese battery. Then, for each prototype, the Vickers hardness (HV) and the corrosion weight loss (mg / cm 2 ) were measured according to the methods (a) and (b) detailed above. At the same time, the workability in the hot rolling step was evaluated as follows.

【0022】熱間圧延工程では、図1に示すような、
幅10数cmで厚さ5mm程度の板状体1を得るのであ
るが、材料の圧延加工性が悪いと、板状体1の両側寄り
の部分にヒビ割れ2を発生する。ヒビ割れ2が長くて多
くなるほど材料の加工性が悪いと言える。前述したビス
マスを多く添加した試作品のように、材料の加工性が極
端に悪くなると、板状体1を形成することができなくな
り、材料が粉々に破壊してしまう。
In the hot rolling process, as shown in FIG.
The plate-shaped body 1 having a width of 10 cm and a thickness of about 5 mm is obtained. However, if the rolling workability of the material is poor, cracks 2 are generated in portions of the plate-shaped body 1 on both sides. It can be said that the longer the cracks 2 are and the more the cracks 2 are, the worse the workability of the material is. If the workability of the material is extremely poor, as in the case of the trial product containing a large amount of bismuth, the plate-shaped body 1 cannot be formed, and the material breaks into pieces.

【0023】以下の多数の試験例の表においては、この
圧延加工性についてつぎのように5段階に評価して記入
している。 「○」…ヒビ割れの発生はなく、きわめて良好。 「○/△」…ヒビ割れ2の長さは板状体1の幅の1%以
内であり、良好。 「△」…ヒビ割れ2の長さは板状体1の幅の3%以内で
あり、ほぼ良好。 「△/×」…ヒビ割れ2の長さが板状体1の幅の3%を
超え、不良。 「×」…材料が粉々に破壊し、圧延不能。
In the following tables of a large number of test examples, the rolling workability is evaluated and entered in five stages as follows. "○": Very good with no cracks. “◯ / Δ” ... The length of the crack 2 is within 1% of the width of the plate-shaped body 1 and is good. “Δ”: The length of the crack 2 is within 3% of the width of the plate-shaped body 1, which is almost good. “Δ / ×”: The length of the crack 2 exceeds 3% of the width of the plate-shaped body 1 and is defective. “×”… The material was shattered and could not be rolled.

【0024】[0024]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 [Table 8]

【0025】[0025]

【発明の効果】以上詳細に説明したように、この発明に
よれば、水銀やカドミウムおよび鉛といった有害物質を
亜鉛に添加することを廃止し、代りにビスマス、カルシ
ウム、ニッケル、アルミニウム、シリコンといった安全
性の高い金属を前記の組み合わせ・割り合いで添加する
ことで、従来の鉛添加の負極亜鉛缶と同等あるいはそれ
以上の特性の負極亜鉛缶を実現することができる。
As described in detail above, according to the present invention, the addition of harmful substances such as mercury, cadmium and lead to zinc is abolished, and safety such as bismuth, calcium, nickel, aluminum and silicon is replaced. By adding metals having high properties in the above combination and ratio, a negative electrode zinc can having characteristics equal to or better than those of conventional lead-added negative electrode zinc cans can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間圧延工程でのヒビ割れ発生のようすを示す
概略図である。
FIG. 1 is a schematic diagram showing how cracking occurs in a hot rolling process.

【符号の説明】[Explanation of symbols]

1 板状体 2 ヒビ割れ 1 Plate 2 Crack

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ビスマスを0.004〜0.75重量%
含有するとともに、カルシウムを0.001〜0.25
重量%含有し、かつ水銀やカドミウムおよび鉛といった
有害物質を有意に含有していない亜鉛基合金からなるこ
とを特徴とする電池の負極亜鉛缶。
1. Bismuth 0.004 to 0.75% by weight
In addition to containing 0.001 to 0.25 calcium
A negative electrode zinc can for a battery, which is made of a zinc-based alloy containing 50% by weight and containing no significant harmful substances such as mercury, cadmium and lead.
【請求項2】 ビスマスを0.004〜1.00重量%
含有するとともに、カルシウムを0.001〜0.25
重量%含有し、さらにニッケルを0.001〜0.25
重量%含有し、かつ水銀やカドミウムおよび鉛といった
有害物質を有意に含有していない亜鉛基合金からなるこ
とを特徴とする電池の負極亜鉛缶。
2. 0.004 to 1.00% by weight of bismuth
In addition to containing 0.001 to 0.25 calcium
% By weight, and 0.001-0.25 nickel
A negative electrode zinc can for a battery, which is made of a zinc-based alloy containing 50% by weight and containing no significant harmful substances such as mercury, cadmium and lead.
【請求項3】 ビスマスを0.004〜1.00重量%
含有するとともに、カルシウムを0.001〜0.25
重量%含有し、さらにアルミニウムまたはシリコンを
0.0005〜0.20重量%含有し、かつ水銀やカド
ミウムおよび鉛といった有害物質を有意に含有していな
い亜鉛基合金からなることを特徴とする電池の負極亜鉛
缶。
3. Bismuth in an amount of 0.004 to 1.00% by weight
In addition to containing 0.001 to 0.25 calcium
% Of aluminum, and 0.0005 to 0.20% by weight of aluminum or silicon, and a zinc-based alloy containing no harmful substances such as mercury, cadmium and lead significantly. Negative electrode zinc can.
JP8967694A 1994-04-27 1994-04-27 Battery negative electrode zinc can Expired - Fee Related JP2918446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8967694A JP2918446B2 (en) 1994-04-27 1994-04-27 Battery negative electrode zinc can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8967694A JP2918446B2 (en) 1994-04-27 1994-04-27 Battery negative electrode zinc can

Publications (2)

Publication Number Publication Date
JPH07296813A true JPH07296813A (en) 1995-11-10
JP2918446B2 JP2918446B2 (en) 1999-07-12

Family

ID=13977364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8967694A Expired - Fee Related JP2918446B2 (en) 1994-04-27 1994-04-27 Battery negative electrode zinc can

Country Status (1)

Country Link
JP (1) JP2918446B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053109A1 (en) * 1997-05-23 1998-11-26 N.V. Union Miniere S.A. Alloy and process for galvanizing steel
WO2002039517A1 (en) * 2000-11-10 2002-05-16 Powergenix Systems, Inc. Formulation of zinc negative electrode for rechargeable cells having an alkaline electrolyte
US6811926B2 (en) 2000-11-10 2004-11-02 Powergenix Systems, Inc. Formulation of zinc negative electrode for rechargeable cells having an alkaline electrolyte
WO2006040857A1 (en) 2004-10-15 2006-04-20 Toshiba Battery Co., Ltd. Method for producing manganese dry cell negative electrode zinc material
US7033700B2 (en) 2000-11-10 2006-04-25 Powergenix Systems, Inc. Formulation of zinc negative electrode for rechargeable cells having an alkaline electrolyte
WO2007004632A1 (en) * 2005-07-04 2007-01-11 Matsushita Electric Industrial Co., Ltd. Layered manganese dry cell battery
US7550230B2 (en) 2001-03-15 2009-06-23 Powergenix Systems, Inc. Electrolyte composition for nickel-zinc batteries
US7833663B2 (en) 2003-08-18 2010-11-16 Powergenix Systems, Inc. Method of manufacturing nickel zinc batteries
US8048558B2 (en) 2005-04-26 2011-11-01 Powergenix Systems, Inc. Cylindrical nickel-zinc cell with negative can

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988528A (en) * 2017-12-05 2018-05-04 宁波昕钶医疗科技有限公司 A kind of medical degradable zinc bismuth system alloy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053109A1 (en) * 1997-05-23 1998-11-26 N.V. Union Miniere S.A. Alloy and process for galvanizing steel
AU731443B2 (en) * 1997-05-23 2001-03-29 N.V. Union Miniere S.A. Alloy and process for galvanizing steel
CN1082557C (en) * 1997-05-23 2002-04-10 联合矿业有限公司 Alloy and process for galvanizing steel
CZ297569B6 (en) * 1997-05-23 2007-02-07 Umicore Alloy and steel hot dip-galvanizing process
US6811926B2 (en) 2000-11-10 2004-11-02 Powergenix Systems, Inc. Formulation of zinc negative electrode for rechargeable cells having an alkaline electrolyte
US7033700B2 (en) 2000-11-10 2006-04-25 Powergenix Systems, Inc. Formulation of zinc negative electrode for rechargeable cells having an alkaline electrolyte
WO2002039517A1 (en) * 2000-11-10 2002-05-16 Powergenix Systems, Inc. Formulation of zinc negative electrode for rechargeable cells having an alkaline electrolyte
US7550230B2 (en) 2001-03-15 2009-06-23 Powergenix Systems, Inc. Electrolyte composition for nickel-zinc batteries
US7816030B2 (en) 2001-03-15 2010-10-19 Powergenix Systems, Inc. Electrolyte composition for nickel-zinc batteries
US7833663B2 (en) 2003-08-18 2010-11-16 Powergenix Systems, Inc. Method of manufacturing nickel zinc batteries
WO2006040857A1 (en) 2004-10-15 2006-04-20 Toshiba Battery Co., Ltd. Method for producing manganese dry cell negative electrode zinc material
JPWO2006040857A1 (en) * 2004-10-15 2008-05-15 東芝電池株式会社 Method for producing manganese battery negative electrode zinc material
US7874346B2 (en) 2004-10-15 2011-01-25 Toshiba Battery Co., Ltd. Method for producing manganese dry cell negative electrode zinc material
JP5072363B2 (en) * 2004-10-15 2012-11-14 東芝ホームアプライアンス株式会社 Method for producing manganese battery negative electrode zinc material
US8048558B2 (en) 2005-04-26 2011-11-01 Powergenix Systems, Inc. Cylindrical nickel-zinc cell with negative can
WO2007004632A1 (en) * 2005-07-04 2007-01-11 Matsushita Electric Industrial Co., Ltd. Layered manganese dry cell battery

Also Published As

Publication number Publication date
JP2918446B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP5399272B2 (en) Storage battery grid, storage positive electrode grid, and lead acid storage battery
JP2002526646A (en) Alloy for battery grid
JPH07296813A (en) Anode zinc can of battery
EP3125341B1 (en) Lead storage cell and electrode collector for lead storage cell
JP2918434B2 (en) Battery negative electrode zinc can
CA2151531C (en) Manganese dry battery
CN100454616C (en) Method for producing anode can for battery and manganese dry battery using such anode can for battery
CN1898822B (en) Negative electrode can for battery and manganese dry battery utilizing the same
KR100895941B1 (en) Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
US5645961A (en) Zinc anode can of a battery, method of manufacture thereof, and manganese dry battery using such zinc can prepared by such method
JP2612137B2 (en) Battery negative electrode zinc can
CN1328803C (en) Environment-friendly zinc-manganese battery cathode can
JP3592345B2 (en) Manganese dry cell
JP3344486B2 (en) Method for producing non-melonized zinc alloy powder for alkaline batteries
JP2612138B2 (en) Battery negative electrode zinc can
JP2918469B2 (en) Battery negative electrode zinc can and method of manufacturing the same
EP0795617B1 (en) Method of manufacturing an anode zinc can for a manganese dry battery
JPH0575813B2 (en)
JP2918468B2 (en) Battery negative electrode zinc can and method of manufacturing the same
JPH06179936A (en) Negative electrode material for aluminum battery
EP1750316A1 (en) Negative electrode of dry battery, manufacture method of the same, and zinc-manganese dry battery using the same
JP3265673B2 (en) Manganese dry cell
US4583285A (en) Method of making self-supporting electrode for sea-water batteries
EP0819774B1 (en) Silver-alloyed or silver-titanium-alloyed zinc anode can for manganese dry battery
JP3651852B2 (en) Manganese battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees