JP2007066762A - Battery can and alkaline dry cell using the same - Google Patents

Battery can and alkaline dry cell using the same Download PDF

Info

Publication number
JP2007066762A
JP2007066762A JP2005252621A JP2005252621A JP2007066762A JP 2007066762 A JP2007066762 A JP 2007066762A JP 2005252621 A JP2005252621 A JP 2005252621A JP 2005252621 A JP2005252621 A JP 2005252621A JP 2007066762 A JP2007066762 A JP 2007066762A
Authority
JP
Japan
Prior art keywords
battery
cylindrical side
thin
positive electrode
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005252621A
Other languages
Japanese (ja)
Inventor
Koji Adachi
光司 足立
Ichiro Matsuhisa
一朗 松久
Katsuhiko Mori
克彦 森
Fumiharu Sakashita
文晴 阪下
Masatoshi Uno
正敏 羽野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005252621A priority Critical patent/JP2007066762A/en
Publication of JP2007066762A publication Critical patent/JP2007066762A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery can which ensures a good contact status with a cathode mixture. <P>SOLUTION: The cylindrical battery can with a bottom is provided with: a cylindrical side part consisting of a thin-walled part formed on a bottom part side; and a thick-walled part thicker than the thin-walled part formed on an opening part side. The thick-walled part is made thicker towards inside of the cylindrical side part, an outer diameter of the cylindrical side part has the same size from the opening part to the bottom part, and the thin-walled part is an oval shape with a roundness from 0.1 to 1.0 mm on a surface perpendicular to an axis direction of the cylindrical side part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池缶、特にアルカリ乾電池用の電池缶に関する。   The present invention relates to a battery can, particularly a battery can for an alkaline dry battery.

従来から、アルカリ乾電池の電池缶に関して種々に検討されている。例えば、特許文献1では、有底円筒状の電池缶の筒状側部における、正極合剤を収納する胴体部の厚さを0.18mmより薄くし、筒状側部における開口端部の厚さを胴体部の厚さの1.4倍以上となるように、開口端部を筒状側部の内側に向かって肉厚とすることが提案されている。これにより電池缶の開口端部の強度を確保しつつ、電池缶の内容積を増大させることができる。   Conventionally, various studies have been made on battery cans of alkaline dry batteries. For example, in Patent Document 1, the thickness of the body portion that stores the positive electrode mixture in the cylindrical side portion of the bottomed cylindrical battery can is made thinner than 0.18 mm, and the thickness of the opening end portion in the cylindrical side portion is reduced. It has been proposed to make the opening end thicker toward the inside of the cylindrical side portion so that the thickness is 1.4 times or more the thickness of the body portion. Thereby, the internal volume of a battery can can be increased, ensuring the intensity | strength of the opening edge part of a battery can.

ところで、アルカリ乾電池では、有底円筒状の電池缶は正極端子を兼ねており、電池缶の内側には中空円筒状の正極合剤が接している。
しかし、上記のように電池缶の筒状側部における開口端部は胴体部よりも筒状側部の内側に向かって肉厚であり、正極合剤を胴体部の内径よりも小さい電池缶の開口部より挿入するため、正極合剤と電池缶との間のクリアランスが大きくなり、両者の接触状態が悪くなり、電池の内部抵抗が増大し、重負荷放電性能が低下しやすいという問題がある。
特開2002−151017号公報
By the way, in an alkaline battery, a bottomed cylindrical battery can also serves as a positive electrode terminal, and a hollow cylindrical positive electrode mixture is in contact with the inside of the battery can.
However, as described above, the opening end in the cylindrical side portion of the battery can is thicker toward the inside of the cylindrical side portion than the body portion, and the positive electrode mixture is smaller than the inner diameter of the body portion. Since it is inserted from the opening, there is a problem that the clearance between the positive electrode mixture and the battery can is increased, the contact state between the two is deteriorated, the internal resistance of the battery is increased, and the heavy load discharge performance is liable to be lowered. .
JP 2002-151017 A

そこで、本発明は、上記の従来の問題を解決するために、正極合剤と良好な接触状態を確保することが可能な電池缶を提供することを目的とする。   Therefore, an object of the present invention is to provide a battery can capable of ensuring a good contact state with a positive electrode mixture in order to solve the above-described conventional problems.

本発明の電池缶は、筒状側部、底部、および開口部を有する有底円筒状の電池缶であって、前記筒状側部は、前記底部側に形成された薄肉部および前記開口部側に形成された前記薄肉部よりも肉厚の厚肉部からなり、前記厚肉部は、前記筒状側部の内側に向かって肉厚であり、前記筒状側部の外径が開口部から底部にかけて同寸法であり、前記薄肉部は、前記筒状側部の軸方向に垂直な面において、真円度が0.1〜1.0mmの楕円状であることを特徴とする。   The battery can of the present invention is a bottomed cylindrical battery can having a cylindrical side portion, a bottom portion, and an opening portion, and the cylindrical side portion includes a thin portion formed on the bottom portion side and the opening portion. The thick part is thicker than the thin part formed on the side, and the thick part is thicker toward the inside of the cylindrical side part, and the outer diameter of the cylindrical side part is open. The thin-walled portion has an elliptical shape with a roundness of 0.1 to 1.0 mm on a surface perpendicular to the axial direction of the cylindrical side portion.

前記薄肉部の厚さが0.125〜0.270mmであるのが好ましい。
前記電池缶の内面が導電性皮膜で覆れているのが好ましい。
また、本発明は、上記の電池缶を用いたアルカリ乾電池に関する。
It is preferable that the thin portion has a thickness of 0.125 to 0.270 mm.
The inner surface of the battery can is preferably covered with a conductive film.
The present invention also relates to an alkaline dry battery using the battery can.

本発明によれば、電池缶と正極合剤との接触状態が良好であるため、重負荷放電性能に優れたアルカリ乾電池が得られる。   According to the present invention, since the contact state between the battery can and the positive electrode mixture is good, an alkaline dry battery excellent in heavy load discharge performance can be obtained.

本発明の電池缶の一実施形態を図1および2を参照しながら説明する。図1は、本発明の電池缶の縦断面図である。図2は、本発明の電池缶の薄肉部における横断面図である。
有底円筒形の電池缶1は、筒状側部2、底部3、および開口部4からなる。筒状側部2は、底部3側に形成された薄肉部2aと、開口部4側に形成された薄肉部2aよりも肉厚の厚肉部2bと、厚肉部2bと薄肉部2aとの間に形成された、薄肉部から厚肉部にかけて厚さがしだいに増大する境界部2cからなる。厚肉部2bは、筒状側部2の内側に向かって肉厚であり、筒状側部2の外径が開口部4から底部3にかけて同寸法であり、薄肉部2aは、筒状側部2の軸方向(図1中のXの方向)に垂直な面、すなわち図2に示す横断面において楕円状である。
One embodiment of the battery can of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a battery can according to the present invention. FIG. 2 is a cross-sectional view of the thin portion of the battery can according to the present invention.
The bottomed cylindrical battery can 1 includes a cylindrical side portion 2, a bottom portion 3, and an opening portion 4. The cylindrical side part 2 includes a thin part 2a formed on the bottom part 3 side, a thick part 2b thicker than the thin part 2a formed on the opening part 4 side, a thick part 2b, and a thin part 2a. The boundary portion 2c is formed between the thin-walled portion and the thick-walled portion. The thick part 2b is thick toward the inside of the cylindrical side part 2, the outer diameter of the cylindrical side part 2 is the same from the opening part 4 to the bottom part 3, and the thin part 2a is the cylindrical side. A plane perpendicular to the axial direction of the portion 2 (direction X in FIG. 1), that is, the cross section shown in FIG. 2, is elliptical.

薄肉部2aは、正極合剤が内接する部分に対応し、厚肉部2bは、封口体を、ガスケットを介してかしめつけて封口する部分に対応する。
薄肉部2aを楕円状とすることにより、楕円状の内径が小さい部分で、正極合剤と電池缶の筒状側部とが確実に接触状態を確保することができる。この電池缶を用いた電池では、優れた重負荷放電性能が得られる。
The thin-walled portion 2a corresponds to a portion where the positive electrode mixture is inscribed, and the thick-walled portion 2b corresponds to a portion that seals by sealing the sealing body via a gasket.
By making the thin-walled portion 2a elliptical, the positive electrode mixture and the cylindrical side portion of the battery can can be reliably in contact with each other at a portion where the inner diameter of the elliptical shape is small. In a battery using this battery can, excellent heavy load discharge performance can be obtained.

筒状側部2の軸方向Xに垂直な面において楕円状である薄肉部2aの真円度は0.1〜1.0mmである。
真円度とは、JIS B 0621に定義されているように、円形形体の幾何学的に正しい円(幾何学的円)からの狂いの大きさをいう。真円度は、円形形体を2つの同心の幾何学的円で挟んだとき、同心二円の間隔が最小となる場合の、二円の半径の差で表される。
The roundness of the thin part 2a that is elliptical in the plane perpendicular to the axial direction X of the cylindrical side part 2 is 0.1 to 1.0 mm.
Roundness refers to the magnitude of deviation from a geometrically correct circle (geometric circle) of a circular shape, as defined in JIS B 0621. Roundness is expressed as the difference between the radii of two circles when the distance between the two concentric circles is minimized when the circular shape is sandwiched between two concentric geometric circles.

真円度が0.1mm未満であると、電池缶と正極合剤との間のクリアランスが大きくなり、電池の内部抵抗が増大し、重負荷放電性能が低下する。一方、真円度が1.0mmを超えると、電池缶と正極合剤とのクリアランスが小さくなるため、電池缶内に正極合剤を収納する際に、正極合剤にクラックが生じ、電池性能へ悪影響を与える場合がある。   When the roundness is less than 0.1 mm, the clearance between the battery can and the positive electrode mixture increases, the internal resistance of the battery increases, and the heavy load discharge performance decreases. On the other hand, when the roundness exceeds 1.0 mm, the clearance between the battery can and the positive electrode mixture becomes small, so when the positive electrode mixture is stored in the battery can, the positive electrode mixture cracks, and the battery performance May adversely affect.

薄肉部2aの厚さT1が0.125〜0.270mmであるのが好ましい。
薄肉部の厚さT1が0.125mm未満であると、薄肉部の強度が低下するため、楕円化の加工が真円度0.1mmまでしかできず、電池缶と正極合剤とのクリアランスが大きくなり、電池の内部抵抗が増大しやすい。一方、薄肉部の厚さが0.270mmを超えると、薄肉部が厚くなり、薄肉部の薄肉化による電池缶の内容積の増大の効果が小さくなる。
It is preferable that the thickness T1 of the thin portion 2a is 0.125 to 0.270 mm.
If the thickness T1 of the thin wall portion is less than 0.125 mm, the strength of the thin wall portion decreases, so that the ovalization process can be performed only to a roundness of 0.1 mm, and the clearance between the battery can and the positive electrode mixture is reduced. It becomes large and the internal resistance of the battery tends to increase. On the other hand, when the thickness of the thin portion exceeds 0.270 mm, the thin portion becomes thick, and the effect of increasing the internal volume of the battery can by reducing the thickness of the thin portion becomes small.

厚肉部2bの厚さT2は0.150〜0.50mmであるのが好ましい。
厚肉部の厚さT2が0.15mm未満であると、電池缶封口部の強度が不十分で、落下などの強い衝撃で変形しやすく、漏液を起こす可能性がある。一方、厚肉部が0.50mmを超えると、かしめ加工が難しい。
筒状側部2の軸方向Xにおける厚肉部2bの長さは、電池の封口部分を覆う長さとして、6〜12mmが好ましい。
The thickness T2 of the thick part 2b is preferably 0.150 to 0.50 mm.
If the thickness T2 of the thick wall portion is less than 0.15 mm, the strength of the battery can sealing portion is insufficient, the battery can easily be deformed by a strong impact such as dropping, and liquid leakage may occur. On the other hand, when the thick portion exceeds 0.50 mm, it is difficult to perform caulking.
As for the length of the thick part 2b in the axial direction X of the cylindrical side part 2, 6-12 mm is preferable as length which covers the sealing part of a battery.

電池缶と、正極合剤との間の電気的接触状態をさらに良好とするために、電池缶の内面を導電性被膜で覆うのが好ましい。例えば、黒鉛塗料を1〜5g/cm2の範囲で電池缶の内面に塗布することにより導電性被膜として黒鉛塗膜を形成するのが好ましい。黒鉛塗料の塗布量が1g/cm2未満であると、導電性が十分に確保できない。一方、黒鉛塗料の塗布量が5g/cm2を超えると、乾燥に時間がかかり、生産性が低下する。 In order to further improve the electrical contact state between the battery can and the positive electrode mixture, it is preferable to cover the inner surface of the battery can with a conductive coating. For example, it is preferable to form a graphite coating as a conductive coating by applying a graphite coating to the inner surface of the battery can in a range of 1 to 5 g / cm 2 . When the coating amount of the graphite paint is less than 1 g / cm 2 , sufficient conductivity cannot be ensured. On the other hand, when the coating amount of the graphite paint exceeds 5 g / cm 2 , it takes time to dry and the productivity is lowered.

電池缶の内面に、電解液による鉄の腐食を抑制するためにNiメッキを施すことにより、Ni層を形成するのが好ましい。Ni層の厚さは、1〜3μmであるのが好ましい。Ni層の厚さが1μm未満であると、鉄が腐食して、ガス発生し、電池が漏液する場合がある。一方、Ni層の厚さが3μmを超えると、鉄がNi層に完全に覆われるため、保存性能が悪くなる。   It is preferable to form a Ni layer on the inner surface of the battery can by performing Ni plating in order to suppress iron corrosion by the electrolytic solution. The thickness of the Ni layer is preferably 1 to 3 μm. If the thickness of the Ni layer is less than 1 μm, iron may corrode, generate gas, and the battery may leak. On the other hand, when the thickness of the Ni layer exceeds 3 μm, iron is completely covered with the Ni layer, so that the storage performance is deteriorated.

本発明の電池缶は、以下のような方法により得られる。
DI工法により、筒状側部、底部、および開口部を有し、前記筒状側部が、底部側に形成された薄肉部および開口部側に形成された厚肉部からなる有底円筒状の中間体を作製する。DI工法について図4および5を参照しながら説明する。
成形ダイス7と成形パンチ6を用いて、カップ状の缶基材5を図5に示す有底円筒形の中間体8に加工する。成形ダイス7は、1つの絞りダイス7aおよび3段配置したしごきダイス7b〜7dを有する。成形パンチ6で加圧しながら缶基材5をダイスの孔に連続的に通過させて1段の絞り加工および3段のしごき加工を一挙に施す。
The battery can of the present invention can be obtained by the following method.
By DI method, it has a cylindrical side part, a bottom part, and an opening part, and the said cylindrical side part is a bottomed cylindrical shape consisting of a thin part formed on the bottom part side and a thick part formed on the opening part side. An intermediate of is prepared. The DI method will be described with reference to FIGS.
Using the molding die 7 and the molding punch 6, the cup-shaped can base material 5 is processed into a bottomed cylindrical intermediate body 8 shown in FIG. The forming die 7 has one drawing die 7a and ironing dies 7b to 7d arranged in three stages. While pressing with the forming punch 6, the can base material 5 is continuously passed through the hole of the die to perform one step of drawing and three steps of ironing at once.

中間体8は、筒状側部2、底部3、および開口部4からなる。筒状側部2は、底部3側に形成された薄肉部2aと、開口部4側に形成され、薄肉部2aよりも肉厚の厚肉部2bと、薄肉部2aと厚肉部2bとの間に形成され、薄肉部2aから厚肉部2bにつれてしだいに肉厚となる境界部2cとからなる。厚肉部2bは、筒状側部2の内側に向かって肉厚であり、筒状側部2の外径が、開口部4から底部3にかけて同寸法であり、薄肉部2aの横断面は図3に示すように真円状である。この中間体8の薄肉部2aにおける真円度は0.05mm以下である。   The intermediate body 8 includes a cylindrical side portion 2, a bottom portion 3, and an opening portion 4. The cylindrical side portion 2 includes a thin portion 2a formed on the bottom portion 3 side, a thick portion 2b that is formed on the opening 4 side, and is thicker than the thin portion 2a, and the thin portion 2a and the thick portion 2b. The boundary portion 2c is formed between the thin wall portion 2a and the thick wall portion 2b. The thick part 2b is thicker toward the inside of the cylindrical side part 2, the outer diameter of the cylindrical side part 2 is the same from the opening part 4 to the bottom part 3, and the cross section of the thin part 2a is As shown in FIG. 3, it is a perfect circle. The roundness of the thin portion 2a of the intermediate body 8 is 0.05 mm or less.

カップ状の缶基材5は、例えば、片面または両面にニッケルメッキを施した鋼板をプレス機に供給し、所定形状に打ち抜き、絞り工法により得られたものが用いられる。
成形パンチ6は、缶基材5を挿入する前方に設けられ、底部10および筒状側部2の薄肉部2aを形成するための円柱状の缶形成部6bと、缶形成部6bの後方に設けられ、径が缶形成部6bよりも小さい、厚肉部2bを形成するための円柱状の後端部6aと、缶形成部6bと後端部6aとの間に設けられ、後端部6aから缶形成部6bにかけてしだいに径が大きくなる、境界部2cを形成するためのテーパ部6cとを有する。
As the cup-shaped can base material 5, for example, a steel plate that is nickel-plated on one side or both sides is supplied to a press machine, punched into a predetermined shape, and obtained by a drawing method.
The forming punch 6 is provided in front of the can base material 5 and is inserted in the columnar can forming portion 6b for forming the thin portion 2a of the bottom portion 10 and the cylindrical side portion 2, and behind the can forming portion 6b. A cylindrical rear end portion 6a for forming the thick portion 2b, the diameter of which is smaller than that of the can forming portion 6b, and the rear end portion provided between the can forming portion 6b and the rear end portion 6a. The taper portion 6c for forming the boundary portion 2c has a diameter that gradually increases from 6a to the can forming portion 6b.

上記のDI工法で得られた肉薄部2aの横断面が真円状である有底円筒状の中間体8を、厚肉部2bの外径よりも小さな隙間を設けた一対のガイド間に通すことにより、薄肉部2aの横断面を図2に示すように楕円状に加工して電池缶1が得られる。   The bottomed cylindrical intermediate body 8 whose cross section of the thin portion 2a obtained by the DI method is a perfect circle is passed between a pair of guides provided with a gap smaller than the outer diameter of the thick portion 2b. Thus, the battery can 1 is obtained by processing the cross section of the thin portion 2a into an ellipse as shown in FIG.

電池缶に内接する正極合剤は、例えば、正極活物質としての二酸化マンガン、および導電剤としての黒鉛を含む。正極合剤中における二酸化マンガン(M)の黒鉛(C)に対する重量比(以下、M/Cと表す)は、9〜15.7であるのが好ましい。M/Cが9未満であると、活物質である二酸化マンガン量が減少し、電池容量が低下する。一方、M/Cが15.7を超えると、正極合剤の導電性が低下する。
以下、本発明の実施例を詳細に説明するが、本発明は以下の実施例に限定されない。
The positive electrode mixture inscribed in the battery can includes, for example, manganese dioxide as a positive electrode active material and graphite as a conductive agent. The weight ratio of manganese dioxide (M) to graphite (C) (hereinafter referred to as M / C) in the positive electrode mixture is preferably 9 to 15.7. When M / C is less than 9, the amount of manganese dioxide as the active material is decreased, and the battery capacity is decreased. On the other hand, when M / C exceeds 15.7, the conductivity of the positive electrode mixture decreases.
Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.

《実施例1》
(1)電池缶の作製
Niめっきを施すことにより、両面に厚さ2μmのNi層が形成された鋼板を円形に打ち抜いて、カップ状の缶基材を得た。この缶基材に、図4および5と同じ成形パンチおよび成形ダイスを用いてDI工法により、開口部、底部、および筒状側部からなり、筒状側部が底部側に形成された薄肉部および開口部側に形成された厚肉部からなる円筒形の中間体を得た。
Example 1
(1) Production of Battery Can By applying Ni plating, a steel plate having a Ni layer with a thickness of 2 μm formed on both sides was punched out in a circular shape to obtain a cup-shaped can base material. This can base material is made up of an opening, a bottom, and a cylindrical side portion by a DI method using the same molding punch and molding die as in FIGS. 4 and 5, and the cylindrical side portion is formed on the bottom side. And the cylindrical intermediate body which consists of a thick part formed in the opening part side was obtained.

上記で得られた中間体の薄肉部を、厚肉部の外径よりも小さい寸法の隙間を設けた一対のガイドに通過させることにより、薄肉部の横断面を楕円化させて有底円筒形の図1と同じ電池缶を得た。
その後、電池缶の内面に、黒鉛塗料を3.5g/cm2の割合で塗布して黒鉛を含む導電性被膜を形成した。
By passing the thin part of the intermediate body obtained above through a pair of guides having a gap smaller than the outer diameter of the thick part, the cross section of the thin part is made elliptical and a bottomed cylindrical shape The same battery can as in FIG. 1 was obtained.
Thereafter, a graphite coating was applied to the inner surface of the battery can at a rate of 3.5 g / cm 2 to form a conductive film containing graphite.

(2)正極合剤の作製
二酸化マンガンと黒鉛とを、二酸化マンガンの黒鉛に対する重量比が12.3となるように混合した。そして、この混合物と、アルカリ電解液として40重量%の水酸化カリウム水溶液とを100:3の重量比で混合し、充分に攪拌した後、フレーク状に圧縮成形した。ついで、フレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成形してペレット状の正極合剤を得た。
(2) Preparation of positive electrode mixture Manganese dioxide and graphite were mixed so that the weight ratio of manganese dioxide to graphite was 12.3. And this mixture and 40 weight% potassium hydroxide aqueous solution as alkaline electrolyte were mixed by the weight ratio of 100: 3, and after fully stirring, it compression-molded to flake shape. Next, the flaky positive electrode mixture was pulverized into granules, classified by a sieve, and pressed into a hollow cylinder to obtain a pellet-shaped positive electrode mixture.

(3)ゲル状負極の作製
ゲル化剤としてポリアクリル酸ナトリウムと、アルカリ電解液として40重量%の水酸化カリウム水溶液と、負極活物質として亜鉛合金粉末を1:33:66の重量比で混合し、ゲル状負極を得た。尚、用いた亜鉛合金粉末は、Al含量が100ppm、Bi含量が500ppm、In含量が500ppmのものを使用した。
(3) Preparation of gelled negative electrode Sodium polyacrylate as a gelling agent, 40 wt% aqueous potassium hydroxide solution as an alkaline electrolyte, and zinc alloy powder as a negative electrode active material were mixed at a weight ratio of 1:33:66. Thus, a gelled negative electrode was obtained. The zinc alloy powder used was an Al content of 100 ppm, a Bi content of 500 ppm, and an In content of 500 ppm.

(4)円筒形アルカリ乾電池の組み立て
図6に示す構造の単1形のアルカリ乾電池(LR20)を下記の手順により作製した。図6は、円筒形アルカリ乾電池の一部を断面とする正面図である。電池缶1のサイズは、外径32mm、高さ65mmであった。また、筒状側部2の軸方向Xにおける、厚肉部2bの長さは10mmであり、境界部2cの長さは4mm、薄肉部2aの長さは51mmであった。
電池缶1内に、複数個の短筒状の正極合剤13を充填した。正極合剤13は、主構成材料である二酸化マンガンと黒鉛からなり、アルカリ電解液を含んでいる。このとき、正極合剤13は電池缶1内面に形成した導電性被膜12と接触させた。
(4) Assembly of cylindrical alkaline battery A single alkaline battery (LR20) having the structure shown in FIG. 6 was produced according to the following procedure. FIG. 6 is a front view with a cross section of a part of a cylindrical alkaline battery. The size of the battery can 1 was 32 mm in outer diameter and 65 mm in height. Moreover, the length of the thick part 2b in the axial direction X of the cylindrical side part 2 was 10 mm, the length of the boundary part 2c was 4 mm, and the length of the thin part 2a was 51 mm.
The battery can 1 was filled with a plurality of short cylindrical positive electrode mixtures 13. The positive electrode mixture 13 is composed of manganese dioxide and graphite, which are main constituent materials, and contains an alkaline electrolyte. At this time, the positive electrode mixture 13 was brought into contact with the conductive coating 12 formed on the inner surface of the battery can 1.

正極合剤13の中空内面および電池缶の底部内面に、それぞれセパレータ14および底紙15を配した。セパレータ14内にアルカリ電解液として40重量%の水酸化カリウム水溶液を所定量注入した。所定時間経過した後、上記で得られたゲル状負極16をセパレータ14内に充填した。なお、セパレータ14には、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布を用いた。   A separator 14 and a bottom paper 15 were disposed on the hollow inner surface of the positive electrode mixture 13 and the inner surface of the bottom of the battery can, respectively. A predetermined amount of 40% by weight potassium hydroxide aqueous solution was injected into the separator 14 as an alkaline electrolyte. After a predetermined time, the gelled negative electrode 16 obtained above was filled in the separator 14. In addition, the separator 14 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber.

次いで、ゲル状負極16の中央に負極集電体10を差し込んだ。負極集電体10は、樹脂製封口体17、負極端子を兼ねる底板18および絶縁ワッシャ19と一体に組み立てられている。そして、電池缶1の開口端部を、封口体17の周縁端部を介して底板18の周縁部にかしめることにより、開口部を密封した。最後に、電池缶1の外表面を外装ラベル11で被覆した。こうしてアルカリ乾電池を完成させた。   Next, the negative electrode current collector 10 was inserted into the center of the gelled negative electrode 16. The negative electrode current collector 10 is assembled integrally with a resin sealing member 17, a bottom plate 18 that also serves as a negative electrode terminal, and an insulating washer 19. And the opening part was sealed by crimping the opening edge part of the battery can 1 to the peripheral part of the baseplate 18 via the peripheral edge part of the sealing body 17. FIG. Finally, the outer surface of the battery can 1 was covered with the exterior label 11. In this way, an alkaline battery was completed.

上記の電池作製時において、電池缶の筒状側部における厚肉部の厚さを0.3mmとし、筒状側部の薄肉部の真円度および厚さを表1に示すように種々に変えて、それぞれ電池A〜Kを作製した。
電池Aでは、筒状側部の厚さが一定である従来の電池缶を用いた。電池缶の内面に導電性塗膜を形成しない以外は電池Dと同じ構成の電池Kを作製した。電池A、BおよびGでは、電池缶の筒状側部を楕円化しなかった。
筒状側部の薄肉部の真円度は、ガイドの隙間の寸法を変えることにより調整した。また、筒状側部の薄肉部の厚さは、成形パンチの缶形成部の径を変えることにより調整した。
At the time of manufacturing the battery, the thickness of the thick portion of the cylindrical side portion of the battery can is 0.3 mm, and the roundness and thickness of the thin portion of the cylindrical side portion are variously shown in Table 1. It changed and produced battery AK, respectively.
In battery A, a conventional battery can having a constant cylindrical side thickness was used. A battery K having the same configuration as that of the battery D was produced except that a conductive coating film was not formed on the inner surface of the battery can. In batteries A, B, and G, the cylindrical side portion of the battery can was not ovalized.
The roundness of the thin wall portion of the cylindrical side portion was adjusted by changing the dimension of the guide gap. Moreover, the thickness of the thin part of the cylindrical side part was adjusted by changing the diameter of the can forming part of the forming punch.

真円度の測定は、JIS B 7451に準拠して、接触式真円度測定機((株)東京精密製の真円度測定機ロンコム20A)を用いて、図1における筒状側部の薄肉部2aの真円度を測定した。なお、本実施例では、開口部から下方(底部側)へ20mmの距離に位置する箇所を測定し、拡大倍率200で測定したが、測定箇所は薄肉部2aのどの部分でもよく、一箇所でも本発明の範囲内であれば、上記の本発明の効果が得られる。   The roundness is measured in accordance with JIS B 7451 using a contact type roundness measuring machine (Round Com 20A, roundness measuring machine manufactured by Tokyo Seimitsu Co., Ltd.). The roundness of the thin portion 2a was measured. In the present embodiment, a location located at a distance of 20 mm from the opening downward (bottom side) was measured and measured at an enlargement factor of 200. However, the measurement location may be any portion of the thin portion 2a, or even at one location. Within the scope of the present invention, the effects of the present invention described above can be obtained.

[評価]
(5)電池の内部抵抗の測定
20℃環境下で、各電池20個ずつ準備し、4端子交流測定法にて電池の内部抵抗を測定し、平均値および標準偏差を求めた。
(6)電池の放電性能の評価
20℃環境下で、各電池を、1000mA(重負荷)または10mA(軽負荷)の電流値で連続放電し、閉路電圧が0.9Vに達するまでの放電持続時間を調べた。
上記の測定結果を表1に示す。なお、表1中の放電持続時間は電池Aの放電持続時間を100とした指数として表した。表1中の電池C〜EとH〜Kが、本発明の実施例の電池である。
[Evaluation]
(5) Measurement of internal resistance of battery Twenty batteries were prepared in an environment of 20 ° C., the internal resistance of the battery was measured by a four-terminal AC measurement method, and an average value and a standard deviation were obtained.
(6) Evaluation of battery discharge performance Under a 20 ° C environment, each battery is continuously discharged at a current value of 1000 mA (heavy load) or 10 mA (light load), and the discharge continues until the closed circuit voltage reaches 0.9V. I checked the time.
The measurement results are shown in Table 1. In addition, the discharge duration in Table 1 was expressed as an index with the discharge duration of the battery A as 100. The batteries C to E and H to K in Table 1 are the batteries of the examples of the present invention.

Figure 2007066762
Figure 2007066762

電池缶における筒状側部の真円度が0.1〜1.0mmである電池C〜Eでは、真円度が大きくなるにつれて、正極合剤と電池缶との間のクリアランスが小さくなるため、電池の内部抵抗の平均値が小さくなり、優れた軽負荷および重負荷放電性能が得られた。   In the batteries C to E in which the roundness of the cylindrical side portion in the battery can is 0.1 to 1.0 mm, the clearance between the positive electrode mixture and the battery can decreases as the roundness increases. The average value of the internal resistance of the battery was reduced, and excellent light load and heavy load discharge performance was obtained.

筒状側部の真円度が0.05mm以下である電池Bでは、正極合剤と電池缶との間のクリアランスが大きいため、電池の内部抵抗が大きくなり、重負荷放電性能が低下した。また、筒状側部の真円度が1.2mmである電池Fでは、電池缶と正極合剤との間のクリアランスが小さくなり、電池缶内に収納する際に正極合剤がクラックを生じたため、重負荷放電性能が低下した。電池缶の厚さを一定として真円度を変えた電池C〜Fを比較すると、真円度が大きいほど、電池缶と正極合剤との間のクリアランスが小さくなり、内部抵抗の平均値は低下するが、正極合剤にクラックを生じやすくなり、内部抵抗の標準偏差の値が大きくなった。   In the battery B in which the roundness of the cylindrical side portion is 0.05 mm or less, the clearance between the positive electrode mixture and the battery can is large, so that the internal resistance of the battery increases and the heavy load discharge performance decreases. Further, in the battery F in which the roundness of the cylindrical side portion is 1.2 mm, the clearance between the battery can and the positive electrode mixture is reduced, and the positive electrode mixture is cracked when stored in the battery can. As a result, the heavy load discharge performance deteriorated. Comparing the batteries C to F with the roundness changed with the thickness of the battery can constant, the larger the roundness, the smaller the clearance between the battery can and the positive electrode mixture, and the average value of the internal resistance is Although it decreases, cracks are likely to occur in the positive electrode mixture, and the standard deviation value of the internal resistance increases.

筒状側部の薄肉部の厚さが0.125〜0.27mmである電池IおよびJでは、優れた軽負荷および重負荷放電性能が得られた。薄肉部の厚さが0.1mmである電池Hでは、正極合剤と電池缶とのクリアランスが大きくなり、電池内部抵抗が増大して、重負荷放電性能が、若干低下した。
電池缶の内面に導電性被膜を有する電池Dは、電池缶の内面に導電性被膜を有しない電池Kに比べて、電池の内部抵抗が低減し、重負荷放電性能が向上した。
In the batteries I and J in which the thickness of the thin portion of the cylindrical side portion is 0.125 to 0.27 mm, excellent light load and heavy load discharge performance was obtained. In the battery H in which the thickness of the thin portion was 0.1 mm, the clearance between the positive electrode mixture and the battery can increased, the battery internal resistance increased, and the heavy load discharge performance slightly decreased.
Battery D, which has a conductive coating on the inner surface of the battery can, has a reduced internal resistance of the battery and improved heavy load discharge performance as compared to battery K which does not have a conductive coating on the inner surface of the battery can.

《実施例2》
電池サイズが単3形(LR6)である以外は、実施例1と同様の方法によりアルカリ乾電池を作製した。電池缶のサイズは、外径13.5mm、高さ55mmであった。また、筒状側部における、厚肉部の長さは10mmであり、境界部の長さは4mm、薄肉部の長さは41mmであった。
Example 2
An alkaline dry battery was produced in the same manner as in Example 1 except that the battery size was AA (LR6). The size of the battery can was 13.5 mm in outer diameter and 55 mm in height. Moreover, the length of the thick part in the cylindrical side part was 10 mm, the length of the boundary part was 4 mm, and the length of the thin part was 41 mm.

電池缶の筒状側部における厚肉部の厚みを0.2mmとし、筒状側部の薄肉部の真円度および厚さを表2に示すように種々に変えて、電池L〜Pを作製した。電池Lでは筒状側部の厚さが一定である従来の電池缶を用いた。電池LおよびMの電池缶では、筒状側部を楕円化しなかった。
これらの評価結果を表2に示す。なお、表2中の放電持続時間は、電池Lの放電持続時間を100とした指数として表した。表2中の電池NおよびOが本発明の実施例の電池である。
The thickness of the thick part in the cylindrical side part of the battery can is 0.2 mm, and the roundness and thickness of the thin part in the cylindrical side part are variously changed as shown in Table 2 to change the batteries L to P. Produced. In the battery L, a conventional battery can having a constant cylindrical side portion thickness was used. In the battery cans of the batteries L and M, the cylindrical side portion was not ovalized.
These evaluation results are shown in Table 2. In addition, the discharge duration in Table 2 was expressed as an index with the discharge duration of the battery L as 100. The batteries N and O in Table 2 are the batteries of the examples of the present invention.

Figure 2007066762
Figure 2007066762

薄肉部の真円度が0.1〜1.0mmである電池缶を用いた電池NおよびOでは、優れた軽負荷および重負荷放電性能が得られた。   Batteries N and O using battery cans having a roundness of 0.1 to 1.0 mm at the thin-walled portion obtained excellent light load and heavy load discharge performance.

筒状側部の真円度が0.05mm以下である電池Mでは、正極合剤と電池缶との間のクリアランスが大きいため、電池の内部抵抗が大きくなり、重負荷放電性能が低下した。また、筒状側部の真円度が1.2mmである電池Pでは、電池缶と正極合剤との間のクリアランスが小さくなり、電池缶内に収納する際に正極合剤がクラックを生じたため、重負荷放電性能が低下した。   In the battery M in which the roundness of the cylindrical side portion is 0.05 mm or less, the clearance between the positive electrode mixture and the battery can is large, so that the internal resistance of the battery increases and the heavy load discharge performance decreases. In addition, in the battery P in which the roundness of the cylindrical side portion is 1.2 mm, the clearance between the battery can and the positive electrode mixture is reduced, and the positive electrode mixture is cracked when stored in the battery can. As a result, the heavy load discharge performance deteriorated.

《実施例3》
電池サイズが単2形(LR14)である以外は、実施例1と同様の方法によりアルカリ乾電池を作製した。電池缶のサイズは、外径24mm、高さ50mmであった。また、筒状側部における、厚肉部の長さは10mmであり、境界部の長さは4mm、薄肉部の長さは36mmであった。
Example 3
An alkaline dry battery was produced in the same manner as in Example 1 except that the battery size was single 2 (LR14). The size of the battery can was 24 mm in outer diameter and 50 mm in height. Moreover, the length of the thick part in a cylindrical side part was 10 mm, the length of the boundary part was 4 mm, and the length of the thin part was 36 mm.

電池缶の筒状側部における厚肉部の厚みを0.3mmとし、筒状側部の薄肉部の真円度および厚さを表3に示すように種々に変えて、電池Q〜Uを作製した。電池Qでは、筒状側部が一定の厚さの従来の電池缶を用いた。電池QおよびRの電池缶では、筒状側部を楕円化しなかった。
これらの評価結果を表3に示す。なお、表3中の放電持続時間は電池Qの放電持続時間を100とした指数として表した。表3中の電池SおよびTが、本発明の実施例の電池である。
The thickness of the thick wall portion in the cylindrical side portion of the battery can is set to 0.3 mm, and the roundness and thickness of the thin wall portion in the cylindrical side portion are variously changed as shown in Table 3 to change the batteries Q to U. Produced. For battery Q, a conventional battery can with a cylindrical side portion having a constant thickness was used. In the battery cans of the batteries Q and R, the cylindrical side portion was not ovalized.
These evaluation results are shown in Table 3. In addition, the discharge duration in Table 3 was expressed as an index with the discharge duration of the battery Q as 100. The batteries S and T in Table 3 are the batteries of the examples of the present invention.

Figure 2007066762
Figure 2007066762

薄肉部の真円度が0.1〜1.0mmである電池缶を用いた電池SおよびTでは、優れた軽負荷および重負荷放電性能が得られた。   In the batteries S and T using the battery can having a roundness of 0.1 to 1.0 mm at the thin wall portion, excellent light load and heavy load discharge performance was obtained.

筒状側部の真円度が0.05mm以下である電池Rでは、正極合剤と電池缶との間のクリアランスが大きいため、電池の内部抵抗が大きくなり、重負荷放電性能が低下した。また、筒状側部の真円度が1.2mmである電池Uでは、電池缶と正極合剤との間のクリアランスが小さくなり、電池缶内に収納する際に正極合剤がクラックを生じたため、重負荷放電性能が低下した。   In the battery R in which the roundness of the cylindrical side portion is 0.05 mm or less, the clearance between the positive electrode mixture and the battery can is large, so that the internal resistance of the battery is increased and the heavy load discharge performance is deteriorated. In addition, in the battery U in which the roundness of the cylindrical side portion is 1.2 mm, the clearance between the battery can and the positive electrode mixture is reduced, and the positive electrode mixture is cracked when stored in the battery can. As a result, the heavy load discharge performance deteriorated.

本発明のアルカリ乾電池は、携帯機器や情報機器等の電子機器の電源として好適に用いられる。   The alkaline dry battery of the present invention is suitably used as a power source for electronic devices such as portable devices and information devices.

本発明の電池缶の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the battery can of this invention. 本発明の電池缶の筒状側部における薄肉部の横断面図である。It is a cross-sectional view of the thin part in the cylindrical side part of the battery can of this invention. 中間体の筒状側部における薄肉部の横断面図である。It is a cross-sectional view of the thin part in the cylindrical side part of an intermediate body. 中間体を得るためのDI加工を示す縦断面図である。It is a longitudinal cross-sectional view which shows DI process for obtaining an intermediate body. DI加工により中間体が得られた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state by which the intermediate body was obtained by DI process. 本発明のアルカリ乾電池の一部を断面にした正面図である。It is the front view which made a part of alkaline dry battery of the present invention a section.

符号の説明Explanation of symbols

1 電池缶
2 筒状側部
2a 薄肉部
2b 厚肉部
2c 境界部
3 底部
4 開口部
5 缶基材
6 成形パンチ
6a 後端部
6b 缶形成部
6c テーパ部
7 成形ダイス
7a 絞りダイス
7b、7c、7d しごきダイス
8 中間体
10 負極集電体
11 外装ラベル
12 導電性被膜
13 正極合剤
14 セパレータ
15 絶縁キャップ
16 ゲル状負極
17 封口体
18 底板
19 絶縁ワッシャ


DESCRIPTION OF SYMBOLS 1 Battery can 2 Cylindrical side part 2a Thin part 2b Thick part 2c Boundary part 3 Bottom part 4 Opening part 5 Can base material 6 Molding punch 6a Rear end part 6b Can formation part 6c Taper part 7 Molding die 7a Drawing die 7b, 7c 7d Ironing die 8 Intermediate 10 Negative electrode current collector 11 Exterior label 12 Conductive coating 13 Positive electrode mixture 14 Separator 15 Insulating cap 16 Gelled negative electrode 17 Sealing body 18 Bottom plate 19 Insulating washer


Claims (4)

筒状側部、底部、および開口部を有する有底円筒状の電池缶であって、
前記筒状側部は、前記底部側に形成された薄肉部および前記開口部側に形成された前記薄肉部よりも肉厚の厚肉部からなり、
前記厚肉部は、前記筒状側部の内側に向かって肉厚であり、前記筒状側部の外径が開口部から底部にかけて同寸法であり、
前記薄肉部は、前記筒状側部の軸方向に垂直な面において、真円度が0.1〜1.0mmの楕円状であることを特徴とする電池缶。
A bottomed cylindrical battery can having a cylindrical side, a bottom, and an opening,
The cylindrical side portion is composed of a thin portion formed on the bottom side and a thick portion thicker than the thin portion formed on the opening side,
The thick part is thick toward the inside of the cylindrical side part, and the outer diameter of the cylindrical side part is the same dimension from the opening part to the bottom part,
The battery can according to claim 1, wherein the thin portion is an ellipse having a roundness of 0.1 to 1.0 mm on a surface perpendicular to the axial direction of the cylindrical side portion.
前記薄肉部の厚さが0.125〜0.270mmである請求項1記載の電池缶。   The battery can according to claim 1, wherein the thin portion has a thickness of 0.125 to 0.270 mm. 前記電池缶の内面が導電性皮膜で覆われた請求項1記載の電池缶。   The battery can according to claim 1, wherein an inner surface of the battery can is covered with a conductive film. 請求項1記載の電池缶を用いたアルカリ乾電池。



An alkaline dry battery using the battery can according to claim 1.



JP2005252621A 2005-08-31 2005-08-31 Battery can and alkaline dry cell using the same Withdrawn JP2007066762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005252621A JP2007066762A (en) 2005-08-31 2005-08-31 Battery can and alkaline dry cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005252621A JP2007066762A (en) 2005-08-31 2005-08-31 Battery can and alkaline dry cell using the same

Publications (1)

Publication Number Publication Date
JP2007066762A true JP2007066762A (en) 2007-03-15

Family

ID=37928708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005252621A Withdrawn JP2007066762A (en) 2005-08-31 2005-08-31 Battery can and alkaline dry cell using the same

Country Status (1)

Country Link
JP (1) JP2007066762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019841A1 (en) * 2007-08-03 2009-02-12 Panasonic Corporation Battery can, and method and device for producing the battery can
JP2009158472A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack
EP2113956A1 (en) 2008-04-25 2009-11-04 Panasonic Corporation Alkaline Battery
WO2010035857A1 (en) * 2008-09-25 2010-04-01 Fdkエナジー株式会社 Battery can and alkaline battery
JP2010186649A (en) * 2009-02-12 2010-08-26 Fdk Energy Co Ltd Alkaline cell
US8043742B2 (en) 2008-06-09 2011-10-25 Samsung Sdi Co., Ltd. Secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019841A1 (en) * 2007-08-03 2009-02-12 Panasonic Corporation Battery can, and method and device for producing the battery can
JP2009037979A (en) * 2007-08-03 2009-02-19 Panasonic Corp Battery can, its manufacturing method, and manufacturing apparatus
JP2009158472A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack
EP2113956A1 (en) 2008-04-25 2009-11-04 Panasonic Corporation Alkaline Battery
US8043742B2 (en) 2008-06-09 2011-10-25 Samsung Sdi Co., Ltd. Secondary battery
WO2010035857A1 (en) * 2008-09-25 2010-04-01 Fdkエナジー株式会社 Battery can and alkaline battery
JP2010080247A (en) * 2008-09-25 2010-04-08 Fdk Energy Co Ltd Battery can and alkaline battery
US20110165455A1 (en) * 2008-09-25 2011-07-07 Fdk Energy Co., Ltd. Battery can and alkaline battery
US8546015B2 (en) * 2008-09-25 2013-10-01 Fdk Energy Co., Ltd. Battery can and alkaline battery
JP2010186649A (en) * 2009-02-12 2010-08-26 Fdk Energy Co Ltd Alkaline cell

Similar Documents

Publication Publication Date Title
US7341803B2 (en) Battery with increased electrode interfacial surface area and increased active materials
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
JPH1154095A (en) Battery and its manufacture
JP2007027046A (en) Battery can and method of manufacturing same
JP3857818B2 (en) Lithium ion secondary battery
JP2007066762A (en) Battery can and alkaline dry cell using the same
KR20020093095A (en) Cell tube and method of manufacturing the cell tube
JP3630992B2 (en) Battery and method for manufacturing battery can
US20050147879A1 (en) Electrochemical cell closure
JP5108356B2 (en) Metal parts for batteries, manufacturing method thereof, batteries
JP6516197B2 (en) Sealed battery and battery case
JP2006500742A (en) Battery with increased electrode interface surface area and increased active material
CN105655132A (en) Electrolytic capacitor
JP2008117577A (en) Alkaline dry cell and its manufacturing method
CN107251292A (en) Alkaline battery
JP4064642B2 (en) Battery can manufacturing method
JP5495833B2 (en) Alkaline battery and method for producing the same
JP2008311198A (en) Battery can and battery provided with the same
JP5191253B2 (en) Positive electrode mixture for alkaline battery and alkaline battery
JP2023124499A (en) flat button battery
JPH0817437A (en) Alkaline battery
JP4268851B2 (en) Alkaline battery
JPH10284020A (en) Alkaline battery
JP2009301720A (en) Manganese dry cell
JP2004079398A (en) Coin-shaped lithium primary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100112