JP2008191056A - Snowfall sensor - Google Patents

Snowfall sensor Download PDF

Info

Publication number
JP2008191056A
JP2008191056A JP2007027206A JP2007027206A JP2008191056A JP 2008191056 A JP2008191056 A JP 2008191056A JP 2007027206 A JP2007027206 A JP 2007027206A JP 2007027206 A JP2007027206 A JP 2007027206A JP 2008191056 A JP2008191056 A JP 2008191056A
Authority
JP
Japan
Prior art keywords
receiving plate
snow
temperature
snow receiving
snowfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007027206A
Other languages
Japanese (ja)
Inventor
Toru Oshima
徹 大島
Noboru Momose
登 百生
Hitoshi Horikawa
均 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMAI KANKYO PLANNING KK
Original Assignee
SUMAI KANKYO PLANNING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMAI KANKYO PLANNING KK filed Critical SUMAI KANKYO PLANNING KK
Priority to JP2007027206A priority Critical patent/JP2008191056A/en
Publication of JP2008191056A publication Critical patent/JP2008191056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a snowfall sensor having a simple configuration, low energy consumption, and high detection accuracy. <P>SOLUTION: The snowfall sensor includes an outside air temperature sensor 12 for detecting an outside air temperature, a snow-receiving plate temperature sensor 18 for detecting the temperature of a snow-receiving plate 14, and a heater 20 for heating the snow-receiving plate 14. The snowfall sensor is provided with a control device 24 that controls the heater 20 so that the temperature of the snow receiving plate 14 becomes substantially equal to the outside air temperature or a predetermined plus snowfall temperature due to the heater 20. With the control device 24, supply energy corresponding to the fusion latent heat of snow adhering to the snow receiving plate 14 is detected, and thus, the snowfall intensity is detected. The snow receiving plate temperature sensor 18 is covered with a heat insulating material 22 on the back surface side. The front surface side of the snow receiving plate temperature sensor 18 contacts with the snow receiving plate 14 formed of a metallic plate in contact with the heater 20 and the snow receiving plate temperature sensor 18. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、融雪装置やその他の降雪に対応する機器等の制御に用いられ、降雪を電気的に検知する降雪センサに関する。   The present invention relates to a snowfall sensor that is used to control a snowmelt device or other equipment that supports snowfall and that electrically detects snowfall.

従来、降雪検知装置としては、表面に一対の電極を有する受雪板と、受雪板に付着した水分を各電極によって検知する水分検知部と、外気温度を検出する外気温度センサと、受雪板の温度を検出する受雪板温度センサと、受雪板を加熱するヒータとを備えたものがある。この降雪検知装置は、外気温度センサの検出温度が降雪可能な温度以下になり、受雪板に雪が降って各電極が雪の水分によって互いに導通したことが検知されると、所定の融雪装置を作動させるものである。この降雪検知装置は、外気温度センサの検出温度が所定の基準温度以下になった場合、または受雪板の各電極が水分を検知した場合は、ヒータを駆動するようになっている。これにより、受雪板に雪が積もらないようにしている。   Conventionally, as a snowfall detection device, a snow receiving plate having a pair of electrodes on the surface, a moisture detecting unit that detects moisture adhering to the snow receiving plate by each electrode, an outside air temperature sensor that detects outside air temperature, and a snow receiving Some have a snow receiving plate temperature sensor for detecting the temperature of the plate and a heater for heating the snow receiving plate. When the detected temperature of the outside air temperature sensor is below the temperature at which snow can fall, and when it is detected that snow has fallen on the snow receiving plate and the electrodes are electrically connected to each other by the moisture of the snow, a predetermined snow melting device is installed. It is to be operated. This snowfall detecting device drives the heater when the temperature detected by the outside air temperature sensor becomes a predetermined reference temperature or lower, or when each electrode of the snow receiving plate detects moisture. This prevents snow from accumulating on the snow receiving plate.

その他、降雪センサとしては、例えば特許文献1に開示されているようなものもある。この降雪センサは、外気温度や風の強さなどの外部の条件が変化した場合でも、受雪板の温度を常に所定温度に保つことのできるようにしたもので、受雪板の温度を検出する受雪板温度検出手段と、加熱手段の加熱量を制御する加熱量制御手段と、外気温度が所定の基準温度よりも低く、受雪板の水分が検知されていないときは受雪板の加熱温度を第1の設定温度に設定し、外気温度が前記基準温度よりも低く、受雪板の水分が検知されているときは受雪板の加熱温度を第2の設定温度に設定し、受雪板の加熱温度が各設定温度になるように加熱手段の加熱量を受雪板温度検出手段の検出温度に基づいて制御する制御手段とを備えている。これにより、加熱手段の加熱量が受雪板温度検出手段の検出温度に基づいて制御されることから、外気温度や風の強さなどの外部の条件が変化した場合でも、受雪板の加熱温度が各設定温度においてそれぞれ一定になるように制御される。   In addition, as a snowfall sensor, there exist some which are disclosed by patent document 1, for example. This snowfall sensor is designed to keep the temperature of the snow receiving plate at a predetermined temperature even when external conditions such as outside air temperature and wind strength change, and detects the temperature of the snow receiving plate. Snow receiving plate temperature detecting means, heating amount controlling means for controlling the heating amount of the heating means, and when the outside air temperature is lower than a predetermined reference temperature and moisture of the snow receiving plate is not detected, The heating temperature is set to the first set temperature, and when the outside air temperature is lower than the reference temperature and moisture of the snow receiving plate is detected, the heating temperature of the snow receiving plate is set to the second set temperature, Control means for controlling the heating amount of the heating means based on the detected temperature of the snow receiving plate temperature detecting means so that the heating temperature of the snow receiving plate becomes each set temperature. As a result, the heating amount of the heating means is controlled based on the detected temperature of the snow receiving plate temperature detecting means, so that the snow receiving plate can be heated even when external conditions such as the outside air temperature and wind strength change. The temperature is controlled to be constant at each set temperature.

その他、特許文献2に開示されているように、受雪板の複数箇所に設けた各電極対の信号に基づいて降雪強度を判定するようにしたものも提案されている。
特開平11−52065号公報 特開2001−27679号公報
In addition, as disclosed in Patent Document 2, it has been proposed to determine the snowfall intensity based on the signals of the electrode pairs provided at a plurality of locations on the snow receiving plate.
Japanese Patent Laid-Open No. 11-52065 JP 2001-27679 A

しかしながら、上記各従来の技術の場合、受雪板を加熱するヒータを備え、受雪板の電極対が導通することにより降雪を検知するもので、受雪板の構造が複雑になるとともに、融雪用の電力消費が大きいという問題があった。また、受雪板の濡れにより電気抵抗が変わり誤検知する恐れがあり、しかも降雨と降雪を外気温により区別しなければならないと言う問題があった。   However, each of the above conventional techniques includes a heater that heats the snow receiving plate, and detects snowfall when the electrode pair of the snow receiving plate is conducted. The structure of the snow receiving plate is complicated, and snow melting There was a problem that the power consumption for use was large. In addition, there is a possibility that the electrical resistance changes due to the wetting of the snow receiving plate, which may cause erroneous detection, and that rain and snow must be distinguished from each other depending on the outside temperature.

この発明は、上記従来の技術の問題点に鑑みてなされたもので、構成が簡単であり、エネルギー消費が少なく、検知精度も高い降雪センサを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a snowfall sensor having a simple configuration, low energy consumption, and high detection accuracy.

本発明は、外気温を検出する外気温度センサと、表面がほぼ上方を向いて設置され雪が降りかかる受雪板と、この受雪板の温度を検出する受雪板温度センサと、前記受雪板を加熱するヒータと、前記受雪板温度センサの出力が接続され前記ヒータを制御する制御装置とを備え、前記ヒータにより前記受雪板にエネルギーを供給して、前記受雪板が外気温または0℃より僅かに高い所定のプラスの降雪温度である基準温度とほぼ等しくなるように前記制御装置により制御し、前記受雪板に付着した雪の融解潜熱に対応する供給エネルギーを前記制御装置により演算して降雪強度を検出する降雪センサである。   The present invention relates to an outside air temperature sensor that detects an outside air temperature, a snow receiving plate that is installed with its surface facing substantially upward and on which snow falls, a snow receiving plate temperature sensor that detects the temperature of the snow receiving plate, and the snow receiving plate And a controller for controlling the heater connected to the output of the snow-receiving plate temperature sensor, supplying energy to the snow-receiving plate by the heater, and Control is performed by the control device so as to be substantially equal to a reference temperature which is a predetermined plus snowfall temperature slightly higher than 0 ° C., and supply energy corresponding to the melting latent heat of the snow attached to the snow receiving plate is controlled by the control device. It is a snowfall sensor that detects snowfall intensity by calculating.

前記受雪板温度センサは、裏面側が断熱材により覆われ、表面側には前記ヒータと前記受雪板温度センサとに接した金属板から成る受雪板に接している。   The snow receiving plate temperature sensor is covered with a heat insulating material on the back side, and the surface side is in contact with a snow receiving plate made of a metal plate in contact with the heater and the snow receiving plate temperature sensor.

前記制御装置は、外気温が0℃以下の温度となった場合は、受雪板温度を0℃より僅かに高いプラスの一定値にするものである。さらに、前記受雪板の表面は、酸化チタンの皮膜が設けられていても良い。   When the outside air temperature becomes 0 ° C. or lower, the control device sets the snow receiving plate temperature to a positive constant value slightly higher than 0 ° C. Further, the surface of the snow receiving plate may be provided with a titanium oxide film.

またこの発明は、光で発電する太陽光発電パネルと、前記太陽光発電パネル表面の保護ガラスと面一に一体に配置され表面に雪が降りかかる受雪板と、この受雪板の温度を検出する受雪板温度センサと、前記受雪板を加熱するヒータと、前記受雪板温度センサの出力が接続され前記ヒータを制御する制御装置とを備え、前記ヒータにより前記受雪板にエネルギーを供給して、前記受雪板が外気温または0℃より僅かに高い所定のプラスの降雪温度である基準温度とほぼ等しくなるように前記制御装置により制御し、前記受雪板に付着した雪の融解潜熱に対応する供給エネルギーを前記制御装置により演算して降雪強度を検出する降雪センサである。   The present invention also provides a photovoltaic power generation panel that generates power with light, a snow receiving plate that is integrally formed with the protective glass on the surface of the photovoltaic power generation panel and that snows on the surface, and detects the temperature of the snow receiving plate. A snow receiving plate temperature sensor, a heater for heating the snow receiving plate, and a control device for controlling the heater connected to the output of the snow receiving plate temperature sensor, and supplying energy to the snow receiving plate by the heater The snow receiving plate is controlled by the control device so that the snow receiving plate is substantially equal to a reference temperature which is a predetermined plus snowfall temperature slightly higher than an outside air temperature or 0 ° C., and melting of snow adhering to the snow receiving plate is performed. The snowfall sensor detects the snowfall intensity by calculating supply energy corresponding to latent heat by the control device.

本発明の降雪センサは、融雪水による導通を検知する電極対が不要であり、構造が簡単である。さらに、ヒータは外気温と等しい温度または所定の0℃に近い温度に維持されるので、ヒータによるエネルギー消費が少なく、経済的なものである。   The snowfall sensor of the present invention does not require an electrode pair for detecting conduction by snowmelt water, and has a simple structure. Furthermore, since the heater is maintained at a temperature equal to the outside air temperature or a temperature close to a predetermined 0 ° C., the heater consumes less energy and is economical.

以下、この発明の実施形態について図面に基づいて説明する。図1、図2はこの発明の一実施形態を示すもので、この実施形態の降雪センサ10は、雪が付着しない位置で外気に接し、外気温度を検出する外気温度センサ12と、表面がほぼ上方を向いて設置され雪が降りかかる受雪板14と、この受雪板14の温度を検出する受雪板温度センサ18とを有している。受雪板14の裏面側には、受雪板14を加熱するヒータ20が設けられ、ヒータ20により受雪板温度を外気温または所定の降雪温度とほぼ等しくなるようにヒータ20を制御するマイクロコンピュータ等の制御装置24が接続されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show an embodiment of the present invention. A snowfall sensor 10 according to this embodiment is in contact with the outside air at a position where no snow adheres to the outside air temperature sensor 12 for detecting the outside air temperature, and the surface is almost upward. And a snow receiving plate 14 that is installed facing the snow and on which snow falls, and a snow receiving plate temperature sensor 18 that detects the temperature of the snow receiving plate 14. A heater 20 that heats the snow receiving plate 14 is provided on the back surface side of the snow receiving plate 14, and the heater 20 is controlled by the heater 20 so that the temperature of the snow receiving plate is substantially equal to the outside air temperature or a predetermined snowfall temperature. A control device 24 such as a computer is connected.

受雪板温度センサ18は、周囲をヒータ20に囲まれ裏面側が断熱材22により覆われ、表面側は、ヒータ20と受雪板温度センサ18とに接した金属板から成る受雪板14に接している。受雪板14は傾斜して設置され、降雪は受雪板14上で素早く溶かされ、表面に水滴として残り、水滴は大きくなると受雪板14の傾斜によって排出されるようになっている。   The snow receiving plate temperature sensor 18 is surrounded by a heater 20, the back side is covered with a heat insulating material 22, and the front side is a snow receiving plate 14 made of a metal plate in contact with the heater 20 and the snow receiving plate temperature sensor 18. It touches. The snow receiving plate 14 is installed at an inclination, and the snowfall is quickly melted on the snow receiving plate 14 and remains as water droplets on the surface. When the water droplets become larger, the snow receiving plates 14 are discharged by the inclination of the snow receiving plate 14.

制御装置24は、受雪板温度センサ18による受雪板14の温度が、外気温度センサ12の温度と等しい温度となるようにヒータ20を制御する。また、外気温が0℃以下の場合、受雪板14の温度を0℃に近い一定値である基準温度、例えば1℃にする。制御装置24により、受雪板14に付着した雪の融解潜熱に対応する供給エネルギーを検知して、受雪板14の温度制御を行い、この制御に必要なエネルギーから降雪強度を検知する。また、受雪板14には、酸化チタンの皮膜16が設けられている。   The control device 24 controls the heater 20 so that the temperature of the snow receiving plate 14 by the snow receiving plate temperature sensor 18 is equal to the temperature of the outside air temperature sensor 12. When the outside air temperature is 0 ° C. or lower, the temperature of the snow receiving plate 14 is set to a reference temperature that is a constant value close to 0 ° C., for example, 1 ° C. The controller 24 detects the supply energy corresponding to the melting latent heat of the snow adhering to the snow receiving plate 14, controls the temperature of the snow receiving plate 14, and detects the snowfall intensity from the energy necessary for this control. The snow receiving plate 14 is provided with a titanium oxide film 16.

この降雪センサ10における制御方法は、先ず受雪板14の温度は、外気温度と一致するようヒータ20により制御される。降雪のない状態では、ヒータ20に通電しなくても外気温度センサ12による外気温度と、受雪板14の受雪板温度センサ18による温度は等しい。受雪板14の裏面は、断熱材22により断熱されている。そして、受雪板14の熱収支は、おおよそ式(1)のように表される。   In the control method in the snowfall sensor 10, first, the temperature of the snow receiving plate 14 is controlled by the heater 20 so as to coincide with the outside air temperature. In a state without snowfall, the outside air temperature by the outside air temperature sensor 12 and the temperature by the snow receiving plate temperature sensor 18 of the snow receiving plate 14 are equal even if the heater 20 is not energized. The back surface of the snow receiving plate 14 is thermally insulated by a heat insulating material 22. And the heat balance of the snow receiving board 14 is represented like Formula (1) roughly.

Figure 2008191056
Figure 2008191056

ここで、Tは受雪板温度、Tは外気温度、Tは雪(雨)の温度、qはヒータの電力、q、qは各々日射によるエネルギー、輻射エネルギーであり、Aは受光部面積、Cは受雪部の熱容量、hは受雪部と外気の間の熱伝達率、LHは水の融解潜熱、Cpは水の比熱、Qは降雪量(降雨量)[g/m2s]である。 Here, T is the temperature of the snow receiving plate, T A is the outside air temperature, T Q is the temperature of the snow (rain), q is the heater power, q I and q B are the solar radiation energy and radiation energy, respectively. Light receiving area, C is the heat capacity of the snow receiving section, h is the heat transfer coefficient between the snow receiving section and the outside air, LH is the latent heat of fusion of water, Cp is the specific heat of water, Q is the amount of snowfall (rainfall) [g / m 2 s].

受雪板14の表面温度は、日射によって暖められ、降雪によって冷却されることになる。すなわち、qを式(2)のように制御することにより受雪板14の放熱量とヒータ20による供給エネルギーが等しくなり、温度は外気温と一致する。実際は、受雪板14の温度と外気温を一致させるよう、以下の式(3)に示す比例制御を行う。   The surface temperature of the snow receiving plate 14 is warmed by solar radiation and cooled by snowfall. That is, by controlling q as shown in Expression (2), the heat radiation amount of the snow receiving plate 14 and the energy supplied by the heater 20 become equal, and the temperature matches the outside air temperature. Actually, proportional control shown in the following formula (3) is performed so that the temperature of the snow receiving plate 14 and the outside air temperature are matched.

Figure 2008191056
Figure 2008191056

Figure 2008191056
Figure 2008191056

ここでKは比例感度である。平衡状態ではこの発熱量q’から降雪量Qを算出することが出来る。具体的には、ヒータ20はAC電源を用い、ゼロクロスによるPWM制御を行う。制御は、制御装置24により式(3)に基づくによるデジタル比例制御を行い、サンプリング周期は、例えば1秒程度である。 Here, K is a proportional sensitivity. In an equilibrium state, the snowfall amount Q can be calculated from the calorific value q '. Specifically, the heater 20 uses an AC power supply and performs PWM control by zero crossing. For the control, digital proportional control based on the equation (3) is performed by the control device 24, and the sampling period is, for example, about 1 second.

次にこの降雪センサ10の利用例を、図2をもとにして以下に示す。この利用例は、降雪センサ10を太陽光発電パネル11の融雪に用いたものである。この太陽光発電パネル11は、図2に示すように、所定の大きさの矩形の板状体であり、太陽電池や回路基板等を含む太陽電池モジュールが設けられている。太陽電池モジュールの表面側には、太陽電池モジュール表面の保護ガラスが設けられ、この保護ガラスと兼用され面一に形成された受雪板14が太陽電池モジュールに接して一体に設けられ、降雪センサ10が太陽光発電パネル11と一体に形成されたものである。   Next, an example of use of the snowfall sensor 10 will be described below with reference to FIG. In this usage example, the snowfall sensor 10 is used for melting snow on the photovoltaic power generation panel 11. As shown in FIG. 2, the photovoltaic power generation panel 11 is a rectangular plate-shaped body having a predetermined size, and is provided with a solar cell module including a solar cell, a circuit board, and the like. A protective glass for the surface of the solar cell module is provided on the surface side of the solar cell module, and a snow receiving plate 14 that is also used as the protective glass and is flush with the solar cell module is integrally provided in contact with the solar cell module. 10 is formed integrally with the photovoltaic power generation panel 11.

太陽光発電パネル11は、図2に示すように、家屋28の屋根30の一方の斜面に、太陽光発電パネル11が複数個平坦に並べられて設けられている。屋根30の軒先には、軒樋32が設けられ、軒樋32の角部には雨水を集水する集水路34が下方に向かって連結され、集水路34の下端部は貯水槽36に連結されている。なお、降雪センサ10は、複数の太陽光発電パネル11のうちの1枚に一体に形成されていればよい。   As shown in FIG. 2, the photovoltaic power generation panel 11 is provided with a plurality of photovoltaic power generation panels 11 arranged flat on one slope of the roof 30 of the house 28. An eave ridge 32 is provided at the eaves end of the roof 30, and a water collecting channel 34 that collects rainwater is connected downward at a corner of the eaves 樋 32, and a lower end portion of the water collecting channel 34 is connected to a water storage tank 36. Has been. In addition, the snowfall sensor 10 should just be integrally formed in one sheet | seat of the some photovoltaic power generation panel 11. FIG.

屋根30の、尾根部38と太陽光発電パネル11の間には、尾根部38に対してほぼ平行に沿って散水ノズル40が複数個、ここでは4個がほぼ等間隔に設けられている。各散水ノズル40は、雨水を取水する給水路42に連結されて設けられている。   Between the ridge portion 38 and the photovoltaic power generation panel 11 of the roof 30, a plurality of water spray nozzles 40 are provided along the ridge portion 38 substantially in parallel with each other, and four here are provided at substantially equal intervals. Each water spray nozzle 40 is connected to a water supply path 42 for taking rainwater.

給水路42は、屋根30の角部から下方に向かって折れ曲がり、貯水槽36に連結されている。給水路42の途中には、貯水槽36内の雨水を散水ノズル40に送る供給ポンプ44が設けられている。供給ポンプ44には制御部を備えたポンプ制御器46が接続され、ポンプ制御器46は、制御装置24に接続されている。ポンプ制御器46は、制御装置24の信号により供給ポンプ44を駆動制御する。供給ポンプ44には、手動スイッチも設けられている。   The water supply channel 42 is bent downward from the corner of the roof 30 and is connected to the water storage tank 36. A supply pump 44 that sends rainwater in the water storage tank 36 to the watering nozzle 40 is provided in the middle of the water supply path 42. A pump controller 46 having a control unit is connected to the supply pump 44, and the pump controller 46 is connected to the control device 24. The pump controller 46 drives and controls the supply pump 44 according to a signal from the control device 24. The supply pump 44 is also provided with a manual switch.

また、給水路42には散水ノズル40の他に、水洗トイレ48や蛇口50等の給水設備に連結された供給管52が分岐して設けられている。各供給管52には、供給ポンプや弁が取り付けられても良い。貯水槽36の入口側または出口側に、ゴミ等を除去するフィルタや沈殿槽を設けるとさらに良い。   In addition to the watering nozzle 40, a supply pipe 52 connected to water supply equipment such as a flush toilet 48 and a faucet 50 is branched and provided in the water supply path 42. Each supply pipe 52 may be provided with a supply pump or a valve. More preferably, a filter or a sedimentation tank for removing dust or the like is provided on the inlet side or the outlet side of the water storage tank 36.

貯水槽36には、水道管の給水装置と、貯水槽36内の水面に浮かべて水位を検知する水位センサであるフロートが設けられている。そして、降雨が少なく貯水槽36内の水位がある一定限度を超えて下がった場合、フロートは水位とともに下に移動し、この給水装置から水道水が自動的に補給される。水位を検知するためには、フロート以外のセンサを設けても良い。   The water tank 36 is provided with a water supply device for a water pipe and a float that is a water level sensor that detects the water level floating on the water surface in the water tank 36. And when there is little rainfall and the water level in the water storage tank 36 falls below a certain limit, the float moves downward together with the water level, and tap water is automatically replenished from this water supply device. In order to detect the water level, a sensor other than the float may be provided.

次に、この実施形態の降雪センサ10の動作について説明する。まず、降雪時には、降雪センサ10の受雪板温度センサ18により測定された温度と、外気温度センサ12により測定された外気の温度の差を検知し、積雪により、外気より温度が低下した降雪センサ10の受雪面14に対して、ヒータ20の通電により外気の温度と等しい状態にする。そしてこの状態にするためにヒータ20に消費された電力を制御装置24により演算して、降雪強度に換算する。さらに、換算された降雪強度による雪量を溶かすために必要な散水量を制御装置24により設定して、信号をポンプ制御器46に送り、供給ポンプ44を駆動する。そして貯水槽36内の雨水を散水ノズル40から散水する。これにより、太陽光発電装置11表面の融雪を行い、太陽光を遮ることを防ぎ、発電を継続する。   Next, the operation of the snowfall sensor 10 of this embodiment will be described. First, at the time of snowfall, a difference between the temperature measured by the snow receiving plate temperature sensor 18 of the snowfall sensor 10 and the temperature of the outside air measured by the outside air temperature sensor 12 is detected, and the snowfall sensor whose temperature is lower than the outside air due to snow accumulation. The 10 snow receiving surfaces 14 are brought into a state equal to the temperature of the outside air by energization of the heater 20. And in order to set it as this state, the electric power consumed by the heater 20 is calculated by the control apparatus 24, and is converted into snowfall intensity. Further, the controller 24 sets a water spray amount necessary for melting the snow amount based on the converted snowfall intensity, sends a signal to the pump controller 46, and drives the supply pump 44. Then, rainwater in the water storage tank 36 is sprinkled from the watering nozzle 40. Thereby, snow melting on the surface of the solar power generation device 11 is performed to prevent the sunlight from being blocked, and power generation is continued.

なお、この降雪センサ10は、夏場等においては、太陽光発電パネル11の温度センサとして利用することができる。先ず、降雨があるときは、屋根30に降った雨水を軒樋32で受け、雨水が集水用の集水路34を通過して貯水槽36に溜める。そして、日射が多く太陽光発電パネル11の温度が上昇する状況においては、降雪センサ10の外気温度センサ12により太陽光発電パネル11の温度を測定し、制御装置24が目標の温度に下げるために必要な散水量を設定して信号をポンプ制御器46に送り、供給ポンプ44を駆動する。そして供給ポンプ44により貯水槽36内の雨水を散水ノズル40に送り、散水ノズル40から太陽光発電パネル11表面に散水し、冷却する。これにより太陽光発電パネル11は温度上昇が抑えられ、高い光電変換効率を維持する。   The snowfall sensor 10 can be used as a temperature sensor for the photovoltaic power generation panel 11 in summer and the like. First, when there is rain, rainwater that has fallen on the roof 30 is received by the eaves wall 32, and the rainwater passes through the water collection channel 34 and is collected in the water storage tank 36. And in the situation where there is much solar radiation and the temperature of the photovoltaic power generation panel 11 rises, the temperature of the photovoltaic power generation panel 11 is measured by the outside air temperature sensor 12 of the snowfall sensor 10, and the control device 24 lowers it to the target temperature. A necessary watering amount is set and a signal is sent to the pump controller 46 to drive the supply pump 44. And the rainwater in the water storage tank 36 is sent to the watering nozzle 40 with the supply pump 44, and water is sprayed from the watering nozzle 40 to the surface of the photovoltaic power generation panel 11 and cooled. Thereby, the temperature rise of the solar power generation panel 11 is suppressed, and high photoelectric conversion efficiency is maintained.

この太陽光発電パネル11により発電した電力は、供給ポンプ44や家電54の電力に利用されたり、パワーコンディショナ60、分電盤58を介して商用電源系統に流しても良く、電力が不足した場合に商用電源系統から電気を購入するようにすると良い。   The electric power generated by the solar power generation panel 11 may be used for the electric power of the supply pump 44 and the home appliance 54, or may flow to the commercial power supply system via the power conditioner 60 and the distribution board 58, resulting in insufficient power. In this case, it is better to purchase electricity from a commercial power system.

この実施形態の降雪センサ10は、受雪面に、融雪水による導通を検知する電極対が不要であり、構造が簡単である。さらに、ヒータ20は外気温と等しい温度または所定の0℃に近い基準温度に維持すればよいので、ヒータ20によるエネルギー消費が少なく、経済的である。   The snowfall sensor 10 of this embodiment does not require an electrode pair for detecting conduction by snowmelt water on the snow receiving surface, and has a simple structure. Furthermore, since the heater 20 may be maintained at a temperature equal to the outside air temperature or a reference temperature close to a predetermined 0 ° C., energy consumption by the heater 20 is small and economical.

なお、この発明の降雪センサは、上記実施の形態の太陽光発電パネルの消雪以外に、道路やその他の地域の消雪、または降雪に対応して作動する他の機器にも利用可能である。   The snowfall sensor of the present invention can also be used for snow removal on roads and other areas, or other devices that operate in response to snowfall, in addition to the snow removal of the photovoltaic power generation panel of the above embodiment. .

また、降雪センサは、太陽光発電パネルの上方で散水ノズルの上方に位置しても良い。この場合、散水の影響を受けずに積雪を検知することができる。   Moreover, the snowfall sensor may be located above the water spray nozzle above the photovoltaic power generation panel. In this case, snow can be detected without being affected by water spray.

次に、この発明の降雪センサの動作実験を行った実施例について説明する。ここでは、降雪センサ10から受雪板温度、外気温度およびヒータへの出力を、サンプリングタイム1秒で取り込み、同時に一定面積への積雪質量を電子天秤によって測定した。測定結果の一例を図3、図4に示す。図3、図4はヒータへの出力の時間変化を示しており、水の凝固潜熱334[J/g]を用いて降雪強度[g/m2s]に換算したものである。図中太線は、同時に計測している電子天秤による平均降雪強度を示している。図4はその積分値と電子天秤による積雪量の測定値(太線)との比較である。ここで、図3〜図6に示した実験は夜間行っており、日射の影響はなく、また、降雪時であり輻射の影響も少ないと考えられる。 Next, an example in which an operation experiment of the snowfall sensor of the present invention was conducted will be described. Here, the snow receiving plate temperature, the outside air temperature, and the output to the heater were taken in from the snowfall sensor 10 at a sampling time of 1 second, and at the same time, the snow mass on a certain area was measured with an electronic balance. An example of the measurement result is shown in FIGS. 3 and 4 show the change over time of the output to the heater, which is converted to snowfall intensity [g / m 2 s] using water solidification latent heat 334 [J / g]. The thick line in the figure shows the average snowfall intensity by the electronic balance that is being measured simultaneously. FIG. 4 is a comparison between the integrated value and the measured value (thick line) of the amount of snow by an electronic balance. Here, the experiments shown in FIGS. 3 to 6 are performed at night, and are not affected by solar radiation, and are considered to be during snowfall and have little influence of radiation.

図3より、ヒータ20への出力は実際の降雪量に較べて大きめの値となっている。これは、受雪板温度が、外気温より高く(この時間帯平均で0.5℃程度)、外気との間の熱伝達で受雪板が冷やされるためである。   As shown in FIG. 3, the output to the heater 20 is larger than the actual amount of snowfall. This is because the temperature of the snow receiving plate is higher than the outside air temperature (average of this time zone is about 0.5 ° C.), and the snow receiving plate is cooled by heat transfer with the outside air.

この降雪センサ10は、受雪板温度と外気温との間に平衡状態を作るため、外気温が氷点下に下がった場合は降雪量を測定できない。そこで、外気温が1℃を下回る場合は受雪板温度を、プラスの基準温度である1℃に制御する方法で測定した。その結果を図5、図6に示す。図3、図4の実験結果と同様に、ヒータ20への出力は実際の降雪量よりも多めとなっているが、受雪板温度が外気温より高いため熱伝達により冷却されるためである。しかし、図3、図4の実験に較べ相対的に誤差は小さくなっている。   Since the snowfall sensor 10 creates an equilibrium state between the snow receiving plate temperature and the outside air temperature, the amount of snowfall cannot be measured when the outside air temperature falls below the freezing point. Therefore, when the outside air temperature was below 1 ° C., the snow receiving plate temperature was measured by a method of controlling to 1 ° C. which is a positive reference temperature. The results are shown in FIGS. As in the experimental results of FIGS. 3 and 4, the output to the heater 20 is larger than the actual amount of snowfall, but because the snow receiving plate temperature is higher than the outside air temperature, it is cooled by heat transfer. . However, the error is relatively small compared to the experiments of FIGS.

この発明の降雪センサの縦断面図である。It is a longitudinal cross-sectional view of the snowfall sensor of this invention. この発明の一実施形態の降雪センサを利用した太陽光発電パネルの使用方法を示す斜視図である。It is a perspective view which shows the usage method of the photovoltaic power generation panel using the snowfall sensor of one Embodiment of this invention. この発明の一実施例の降雪センサに降る雪の、外気温1.3℃において、水の凝固潜熱を用いて降雪強度に換算したもの(細線)と、同時に計測している電子天秤による平均降雪強度(太線)を示すグラフである。Snow falling on a snowfall sensor according to an embodiment of the present invention, converted to snowfall intensity using the solidification latent heat of water (thin line) at an outside air temperature of 1.3 ° C., and average snowfall by an electronic balance simultaneously measured It is a graph which shows intensity | strength (thick line). この発明の一実施例の降雪センサに降る雪の、外気温1.3℃において、水の凝固潜熱を用いて降雪強度に換算したものの時間積分値(細線)と、同時に計測している電子天秤による平均降雪強度の時間積分値(太線)を示すグラフである。An electronic balance that simultaneously measures a time integral value (thin line) of snow falling on a snowfall sensor according to an embodiment of the present invention, converted to snowfall intensity using solidification latent heat of water at an outside air temperature of 1.3 ° C. It is a graph which shows the time integral value (thick line) of the average snowfall intensity by. この発明の一実施例の降雪センサに降る雪の、外気温−0.5℃において、水の凝固潜熱を用いて降雪強度に換算したもの(細線)と、同時に計測している電子天秤による平均降雪強度(太線)を示すグラフである。The average of the snow falling on the snowfall sensor of one embodiment of the present invention, converted into snowfall intensity using the solidification latent heat of water at an outside air temperature of -0.5 ° C (thin line), and the electronic balance simultaneously measured It is a graph which shows snowfall intensity (thick line). この発明の一実施例の降雪センサに降る雪の、外気温−0.5℃において、水の凝固潜熱を用いて降雪強度に換算したものの時間積分値(細線)と、同時に計測している電子天秤による平均降雪強度の時間積分値(太線)を示すグラフである。The time integral value (thin line) of the snow falling on the snowfall sensor according to one embodiment of the present invention, converted into snowfall intensity using the solidification latent heat of water at an outside air temperature of −0.5 ° C., and the electron simultaneously measured It is a graph which shows the time integral value (thick line) of the average snowfall intensity | strength by a balance.

符号の説明Explanation of symbols

10 降雪センサ
11 太陽光発電パネル
12 外気用温度センサ
14 受雪板
16 チタンコート層
18 受雪板温度センサ
20 ヒータ
22 断熱材
24 制御装置
DESCRIPTION OF SYMBOLS 10 Snowfall sensor 11 Solar power generation panel 12 Outside temperature sensor 14 Snow receiving plate 16 Titanium coat layer 18 Snow receiving plate temperature sensor 20 Heater 22 Heat insulating material 24 Controller

Claims (5)

外気温を検出する外気温度センサと、表面がほぼ上方を向いて設置され雪が降りかかる受雪板と、この受雪板の温度を検出する受雪板温度センサと、前記受雪板を加熱するヒータと、上記受雪板温度センサの出力が接続され前記ヒータを制御する制御装置とを備え、前記ヒータにより前記受雪板にエネルギーを供給して、前記受雪板が外気温または0℃より僅かに高い所定のプラスの降雪温度である基準温度とほぼ等しくなるように前記制御装置により制御し、前記受雪板に付着した雪の融解潜熱に対応する供給エネルギーを前記制御装置により演算して降雪強度を検出することを特徴とする降雪センサ。   An outside air temperature sensor that detects the outside air temperature, a snow receiving plate that is installed with its surface facing almost upward, and on which snow falls, a snow receiving plate temperature sensor that detects the temperature of the snow receiving plate, and a heater that heats the snow receiving plate And a control device for controlling the heater connected to the output of the snow receiving plate temperature sensor, supplying energy to the snow receiving plate by the heater, and the snow receiving plate is slightly less than an outside air temperature or 0 ° C. Is controlled by the control device so as to be substantially equal to a reference temperature, which is a predetermined high snowfall temperature, and the control device calculates a supply energy corresponding to the latent heat of melting of the snow adhering to the snow receiving plate. A snowfall sensor characterized by detecting intensity. 前記受雪板温度センサは、裏面側が断熱材により覆われ、表面側には前記ヒータと前記受雪板温度センサとに接した金属板から成る受雪板に接していることを特徴とする請求項1記載の降雪センサ。   The back surface of the snow receiving plate temperature sensor is covered with a heat insulating material, and the front surface is in contact with a snow receiving plate made of a metal plate in contact with the heater and the snow receiving plate temperature sensor. Item 1. A snowfall sensor according to item 1. 前記制御装置は、外気温が0℃以下の温度となった場合は、受雪板温度を0℃より僅かに高いプラスの一定値にすることを特徴とする請求項1記載の降雪センサ。   2. The snowfall sensor according to claim 1, wherein when the outside air temperature becomes a temperature of 0 ° C. or lower, the control device sets the snow receiving plate temperature to a constant value slightly higher than 0 ° C. 前記受雪板の表面は、酸化チタンの皮膜が設けられていることを特徴とする請求項1記載の降雪センサ。   The snowfall sensor according to claim 1, wherein a surface of the snow receiving plate is provided with a titanium oxide film. 光で発電する太陽光発電パネルと、前記太陽光発電パネル表面の保護ガラスと面一に一体に配置され表面に雪が降りかかる受雪板と、この受雪板の温度を検出する受雪板温度センサと、前記受雪板を加熱するヒータと、前記受雪板温度センサの出力が接続され前記ヒータを制御する制御装置とを備え、前記ヒータにより前記受雪板にエネルギーを供給して、前記受雪板が外気温または0℃より僅かに高い所定のプラスの降雪温度である基準温度とほぼ等しくなるように前記制御装置により制御し、前記受雪板に付着した雪の融解潜熱に対応する供給エネルギーを前記制御装置により演算して降雪強度を検出することを特徴とする降雪センサ。

A photovoltaic power generation panel that generates electricity with light, a snow receiving plate that is integrally arranged with the protective glass on the surface of the photovoltaic power generation panel and on which snow falls, and a snow receiving plate temperature sensor that detects the temperature of the snow receiving plate A heater for heating the snow receiving plate, and a control device for controlling the heater connected to an output of the snow receiving plate temperature sensor, supplying energy to the snow receiving plate by the heater, Supply corresponding to the melting latent heat of snow adhering to the snow receiving plate, which is controlled by the control device so that the snow plate is substantially equal to a reference temperature which is a predetermined plus snowfall temperature slightly higher than the outside air temperature or 0 ° C. A snowfall sensor, wherein energy is calculated by the control device to detect snowfall intensity.

JP2007027206A 2007-02-06 2007-02-06 Snowfall sensor Pending JP2008191056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027206A JP2008191056A (en) 2007-02-06 2007-02-06 Snowfall sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027206A JP2008191056A (en) 2007-02-06 2007-02-06 Snowfall sensor

Publications (1)

Publication Number Publication Date
JP2008191056A true JP2008191056A (en) 2008-08-21

Family

ID=39751282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027206A Pending JP2008191056A (en) 2007-02-06 2007-02-06 Snowfall sensor

Country Status (1)

Country Link
JP (1) JP2008191056A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123907A (en) * 2008-11-23 2010-06-03 Hiroya Sekiguchi Solar cell
US20130255665A1 (en) * 2012-03-28 2013-10-03 Snowlar Llc Snow melt system for solar collectors
CN110940556A (en) * 2019-12-18 2020-03-31 内蒙古工业大学 Automatic layered sampling and snow-collecting experimental device
JP2021508062A (en) * 2017-12-22 2021-02-25 ルクセンブルグ インスティテュート オブ サイエンス アンド テクノロジー(リスト) Directional icing precipitation detection devices and methods
CN113866347A (en) * 2021-08-16 2021-12-31 江苏彦达科技发展有限公司 Atmospheric pollution monitoring device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138676A (en) * 1979-04-17 1980-10-29 Toshiro Saito Instantaneous snowfall measuring method
JPH05323045A (en) * 1992-05-19 1993-12-07 Mitsubishi Materials Corp Apparatus and method for measuring snowfall
JPH05323047A (en) * 1992-05-19 1993-12-07 Mitsubishi Materials Corp Apparatus and method for measuring snowfall
JPH05323046A (en) * 1992-05-19 1993-12-07 Mitsubishi Materials Corp Apparatus and method for measuring snowfall
JPH07151865A (en) * 1993-11-30 1995-06-16 Kitadaihiyaku Tsushin Denki Kk Snowfall detecting system
JPH08260638A (en) * 1995-03-20 1996-10-08 Misawa Homes Co Ltd Roof with solar cell and solar cell panel for roof
JPH0992866A (en) * 1995-09-26 1997-04-04 Sharp Corp Solar cell module having water spray function
JP2001059314A (en) * 1999-08-25 2001-03-06 Nisshin A & C Co Ltd Solar roofing material, solar roof and proofing material
JP2001257376A (en) * 2000-03-13 2001-09-21 Omron Corp Photovoltaic power generation system and solar battery panel
JP2002339591A (en) * 2001-05-18 2002-11-27 Misawa Homes Co Ltd Snow-melting device for solar cell attached roof and snow-melting controlling method
JP2004259797A (en) * 2003-02-25 2004-09-16 Furukawa Electric Co Ltd:The Method of cooling solar power generation module and solar power generation system
JP2004354217A (en) * 2003-05-29 2004-12-16 Matsuo Denki Sangyo Kk Rainfall detection method and rainfall detector
JP2006029668A (en) * 2004-07-15 2006-02-02 Sanyo Electric Co Ltd Solar power generation system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138676A (en) * 1979-04-17 1980-10-29 Toshiro Saito Instantaneous snowfall measuring method
JPH05323045A (en) * 1992-05-19 1993-12-07 Mitsubishi Materials Corp Apparatus and method for measuring snowfall
JPH05323047A (en) * 1992-05-19 1993-12-07 Mitsubishi Materials Corp Apparatus and method for measuring snowfall
JPH05323046A (en) * 1992-05-19 1993-12-07 Mitsubishi Materials Corp Apparatus and method for measuring snowfall
JPH07151865A (en) * 1993-11-30 1995-06-16 Kitadaihiyaku Tsushin Denki Kk Snowfall detecting system
JPH08260638A (en) * 1995-03-20 1996-10-08 Misawa Homes Co Ltd Roof with solar cell and solar cell panel for roof
JPH0992866A (en) * 1995-09-26 1997-04-04 Sharp Corp Solar cell module having water spray function
JP2001059314A (en) * 1999-08-25 2001-03-06 Nisshin A & C Co Ltd Solar roofing material, solar roof and proofing material
JP2001257376A (en) * 2000-03-13 2001-09-21 Omron Corp Photovoltaic power generation system and solar battery panel
JP2002339591A (en) * 2001-05-18 2002-11-27 Misawa Homes Co Ltd Snow-melting device for solar cell attached roof and snow-melting controlling method
JP2004259797A (en) * 2003-02-25 2004-09-16 Furukawa Electric Co Ltd:The Method of cooling solar power generation module and solar power generation system
JP2004354217A (en) * 2003-05-29 2004-12-16 Matsuo Denki Sangyo Kk Rainfall detection method and rainfall detector
JP2006029668A (en) * 2004-07-15 2006-02-02 Sanyo Electric Co Ltd Solar power generation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123907A (en) * 2008-11-23 2010-06-03 Hiroya Sekiguchi Solar cell
US20130255665A1 (en) * 2012-03-28 2013-10-03 Snowlar Llc Snow melt system for solar collectors
JP2021508062A (en) * 2017-12-22 2021-02-25 ルクセンブルグ インスティテュート オブ サイエンス アンド テクノロジー(リスト) Directional icing precipitation detection devices and methods
JP7292304B2 (en) 2017-12-22 2023-06-16 ルクセンブルグ インスティテュート オブ サイエンス アンド テクノロジー(リスト) Directional icing precipitation detection device and method
CN110940556A (en) * 2019-12-18 2020-03-31 内蒙古工业大学 Automatic layered sampling and snow-collecting experimental device
CN110940556B (en) * 2019-12-18 2024-06-04 内蒙古工业大学 Automatic layering sampling snow collecting experimental device
CN113866347A (en) * 2021-08-16 2021-12-31 江苏彦达科技发展有限公司 Atmospheric pollution monitoring device

Similar Documents

Publication Publication Date Title
JP2003197945A (en) Photovoltaic power generating device
JP2008191056A (en) Snowfall sensor
KR101734221B1 (en) energy management system based on IoT
JP6667245B2 (en) Solar panel watering system
JP2013197252A (en) Sprinkling device for solar panel
CN108832886B (en) Automatic snow removal control method for photovoltaic car shed
JP2007071551A (en) Ultrasonic snow sensor and snow melting device using it
JP2017041461A (en) Photovoltaic power generation device
CN110098793B (en) Photovoltaic cell panel self-ice melting device based on heating carbon fibers and control method
US11480366B2 (en) Solar water heating system
KR20130109398A (en) Solar cell module structure havig snow removal unit and method for controlling the snow removal unit
KR101337475B1 (en) Solar cell module structure havig snow removal unit and method for controlling the snow removal unit
CN111512187B (en) Direct freezing precipitation detection device and method
JP2013206998A (en) Fluid control system
JP5937039B2 (en) Pyranometer
JP3612514B2 (en) Snow melting equipment
KR102144290B1 (en) Photovoltaic generator system with heating element and control method thereof
CN207081838U (en) A kind of anti-oxidant rainfall snowfall sensor of low temperature
JPH11274543A (en) Method and apparatus for solar generation, heat collection and melting snow
JPH043561Y2 (en)
JP4571706B1 (en) Condensation prevention method for road reflector and road reflector
RU68553U1 (en) DEVICE FOR PROTECTING A DRAINAGE PIPE FROM FREEZING WATER IN IT
JPH0535320Y2 (en)
JP5335027B2 (en) Watering system
KR102661157B1 (en) Apparatus and method for controlling heating according to insolation in solar panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A131 Notification of reasons for refusal

Effective date: 20120411

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120731

Free format text: JAPANESE INTERMEDIATE CODE: A02