JP2003197945A - Photovoltaic power generating device - Google Patents

Photovoltaic power generating device

Info

Publication number
JP2003197945A
JP2003197945A JP2001396444A JP2001396444A JP2003197945A JP 2003197945 A JP2003197945 A JP 2003197945A JP 2001396444 A JP2001396444 A JP 2001396444A JP 2001396444 A JP2001396444 A JP 2001396444A JP 2003197945 A JP2003197945 A JP 2003197945A
Authority
JP
Japan
Prior art keywords
power generation
solar
solar cell
cell module
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001396444A
Other languages
Japanese (ja)
Inventor
Takuo Hirakawa
Hiroshi Komai
Hiroaki Yoshioka
宏哲 好岡
拓生 平川
浩 駒井
Original Assignee
Panahome Corp
パナホーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panahome Corp, パナホーム株式会社 filed Critical Panahome Corp
Priority to JP2001396444A priority Critical patent/JP2003197945A/en
Publication of JP2003197945A publication Critical patent/JP2003197945A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photovoltaic power generating device wherein it can be easily and safely ascertained that a variation in energy generated by the device is a normal phenomenon caused by a change in environment, and the malfunction of the device can be grasped at once when it gets out of order. <P>SOLUTION: This photovoltaic power generating device generates electric power by solar energy. The photovoltaic power generating device is equipped with a solar cell module, a solar radiation sensor, and a temperature sensor which measures the temperature of the solar cell module. Furthermore, the device is equipped with an operation part which calculates theoretical generated energy on the basis of data on solar radiation and temperatures, and a display unit which displays theoretical generated energy and actual generated energy. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、発電状態を簡単、
安全に確認しえる太陽光発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a solar power generation device that can be safely confirmed.
【0002】[0002]
【従来の技術】従来、太陽光発電はクリーンエネルギー
として注目されていたが、効率に難点があり、普及がお
くれていた。しかし近年、発電効率の改善、太陽電池モ
ジュールのコストダウンにより、オフィスビル、工場更
には一般家庭にも、太陽光発電装置の採用が急速に進ん
だ。
2. Description of the Related Art Conventionally, photovoltaic power generation has been attracting attention as a clean energy, but its efficiency has been difficult and its spread has been delayed. However, in recent years, due to the improvement of power generation efficiency and the cost reduction of solar cell modules, the adoption of solar power generation devices has rapidly progressed in office buildings, factories, and even general households.
【0003】[0003]
【発明が解決しようとする課題】ところで、天空に向か
って設置される太陽光発電装置の太陽電池モジュール
は、表面に大気中の埃、鳥の糞が付着し易く、このと
き、発電効率低下を招く。また、飛来物、落雷により太
陽電池モジュールが機能低下を招くことがある。更に、
複数併設して使用する太陽電池モジュール間に接続不良
が発生することもある。
By the way, in the solar cell module of the solar power generation device installed toward the sky, dust in the atmosphere and bird droppings are apt to adhere to the surface of the solar cell module. Invite. In addition, the solar cell module may deteriorate in function due to flying objects and lightning strikes. Furthermore,
Poor connection may occur between multiple solar cell modules that are used together.
【0004】しかし、太陽電池モジュールは屋根、屋上
に設置されることが多く、使用者、管理者による点検は
困難であり、かつ危険をともなう。
However, the solar cell module is often installed on the roof or the roof, and it is difficult and inconvenient for the user or the administrator to inspect it.
【0005】他方発電量は、季節即ち太陽高度の変化、
天候の変化に伴い変動する。しかし、使用者、管理者は
該条件変動の把握が困難であり、発電量の変動が正常か
否かが判断しえない。このため発電量低下時に、装置の
機能異常の不安感を払拭しえない。
On the other hand, the power generation amount is
It fluctuates as the weather changes. However, it is difficult for the user and the administrator to grasp the change in the condition, and it is impossible to judge whether or not the change in the power generation amount is normal. For this reason, when the amount of power generation is reduced, it is impossible to dispel the anxiety about the malfunction of the device.
【0006】本発明は、以上のような問題点に鑑み案出
なされたもので、発電量の変動が環境変化による正常な
現象であることを簡単、安全に確認でき、他方、装置の
機能異常時には即座にこれを把握できる太陽光発電装置
を提供することを目的としている。
The present invention has been devised in view of the above-mentioned problems, and it is possible to easily and safely confirm that the fluctuation of the amount of power generation is a normal phenomenon due to environmental changes, while the functional abnormality of the device is Sometimes it aims to provide a solar power generation device that can grasp this instantly.
【0007】[0007]
【課題を解決するための手段】本発明のうち請求項1記
載の発明は、太陽光エネルギーで起電する太陽光発電装
置であって、太陽電池モジュールと、日射量センサと、
太陽電池モジュールの温度を計測する温度センサを具
え、日射量データと温度データに基づく理論発電量を計
算する演算部と、理論発電量及び現実発電量の表示装置
を設けたことを特徴としている。
The invention according to claim 1 of the present invention is a solar power generation device which is electromotive with solar energy, comprising a solar cell module, a solar radiation sensor, and
It is characterized in that it has a temperature sensor for measuring the temperature of the solar cell module, and is provided with an arithmetic unit for calculating the theoretical power generation amount based on the solar radiation amount data and the temperature data, and a display device for the theoretical power generation amount and the actual power generation amount.
【0008】また請求項2記載の発明は、現実発電量が
理論発電量に対し設定値以下の状態を告知する警告装置
を具えたことを特徴とする請求項1記載の太陽光発電装
置である。
The invention according to claim 2 is the solar power generation device according to claim 1, further comprising a warning device for notifying that the actual power generation amount is less than a set value with respect to the theoretical power generation amount. .
【0009】[0009]
【発明の実施の形態】以下本発明の実施の一形態を図面
に基づき説明する。本発明の太陽光発電装置1は、太陽
電池モジュールMと、日射量センサ7と、太陽電池モジ
ュールMの温度を計測する温度センサ6を具える。ま
た、理論発電量を計算する演算部56と、該理論発電量
と現実発電量を表示する表示装置9を設ける。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. The solar power generation device 1 of the present invention includes a solar cell module M, a solar radiation sensor 7, and a temperature sensor 6 that measures the temperature of the solar cell module M. Further, the calculation unit 56 for calculating the theoretical power generation amount and the display device 9 for displaying the theoretical power generation amount and the actual power generation amount are provided.
【0010】なお、本実施形態では、図1に示すよう
に、太陽光発電装置1は住宅、店舗等、寄せ棟屋根Rの
平屋家屋に設置され、該寄せ棟屋根Rは二等辺三角形状
の東面屋根Re、西面屋根Rw、等脚台形状の南面屋根
Rs、北面屋根Rnで構成される。
In this embodiment, as shown in FIG. 1, the photovoltaic power generator 1 is installed in a flat house of a house R, such as a house or a store, and the house R has an isosceles triangular shape. It consists of an east roof Re, a west roof Rw, an isosceles trapezoidal south roof Rs, and a north roof Rn.
【0011】太陽電池モジュールMは、数十枚の太陽電
池セルの表面に透明フィルム、透明樹脂、裏面に絶縁樹
脂、補強材等を配し、矩形平板状の耐候性パッケージに
納めて構成する。太陽電池セルは太陽の光エネルギーを
電気エネルギーに変換する機能をもつ最小単位である。
The solar cell module M is constructed by arranging a transparent film, a transparent resin, an insulating resin, a reinforcing material, etc. on the front surface of several tens of solar cells and placing them in a rectangular flat plate weatherproof package. A solar cell is the smallest unit that has the function of converting the light energy of the sun into electrical energy.
【0012】太陽電池アレイAは、図1に示すように、
縦横に組み合わせた複数枚の太陽電池モジュールMから
成り、直列或いは並列に接続して望みの直列電圧、発電
電力が得られる。
The solar cell array A, as shown in FIG.
It is composed of a plurality of solar cell modules M vertically and horizontally combined and connected in series or in parallel to obtain a desired series voltage and generated power.
【0013】太陽電池アレイAは、図3、4に示すよう
に、合板、パーティクルボード等の野地板18上に防水
シート19を敷設した屋根下地17上に、ビス固定( 図
示せず)した枠材Fを具える。枠材Fは、図3(a)に
示すように、軒先に向く溝部61と上記屋根下地17に
固定するフランジ62からなる上枠材F1、一対の溝部
61、61を具えた横枠材F2、図3(b)に示すよう
に、軒側に位置する下枠材F3、図4に示すように、内
側に向く溝部61を具えた側枠材F5、左右の側枠材F
5、5間に等間隔に配置する縦枠材F4から成り、太陽
電池モジュールMは、その周縁が各枠材Fの溝部61に
嵌着される。
As shown in FIGS. 3 and 4, the solar cell array A is a frame fixed with screws (not shown) on a roof substrate 17 in which a waterproof sheet 19 is laid on a base plate 18 such as plywood or particle board. Material F is provided. As shown in FIG. 3A, the frame member F includes an upper frame member F1 including a groove portion 61 facing the eaves and a flange 62 fixed to the roof base 17, and a horizontal frame member F2 including a pair of groove portions 61, 61. As shown in FIG. 3 (b), a lower frame member F3 located on the eaves side, as shown in FIG. 4, a side frame member F5 having a groove portion 61 facing inward, and left and right side frame members F.
The solar cell module M includes vertical frame members F4 arranged at equal intervals between 5 and 5, and the solar cell module M has its peripheral edge fitted in the groove portion 61 of each frame member F.
【0014】なお、本実施形態では、図1に示すよう
に、太陽電池アレイAs、Ae、Awは、各々南面屋根
Rs、東面屋根Re、西面屋根Rwに分散形成され、日
射角度の変化の影響が小さい安定した発電量が得られ
る。
In this embodiment, as shown in FIG. 1, the solar cell arrays As, Ae, and Aw are dispersedly formed on the south roof Rs, the east roof Re, and the west roof Rw, respectively, and the solar radiation angle changes. A stable amount of power generation with little influence of is obtained.
【0015】日射量センサ7は、太陽及び大空からの日
射量を測定するもので、本実施形態では、図1に示すよ
うに、太陽電池アレイAの上方位置で寄せ棟屋根Rの表
面に取付ける。この日射量センサ7で計測した日射量デ
ータを伝達する導線63は、寄せ棟屋根Rを水密的に貫
通し制御盤8にいたる。
The solar radiation sensor 7 measures the solar radiation from the sun and the sky. In this embodiment, as shown in FIG. 1, the solar radiation sensor 7 is mounted on the surface of the roof R of the parquet roof above the solar cell array A. . The conducting wire 63 that transmits the solar radiation amount data measured by the solar radiation amount sensor 7 penetrates the roof R of the dock building watertightly and reaches the control panel 8.
【0016】温度センサ6は、太陽電池モジュールMの
温度を測定するもので、図4に示すように、太陽電池モ
ジュールMの裏面に接着する。この温度データを伝達す
る導線64は、家屋内を配線され、制御盤8にいたる。
但し、温度データや前記日射量データは、ワイヤレスで
制御盤8へ送信することもできる。
The temperature sensor 6 measures the temperature of the solar cell module M and is attached to the back surface of the solar cell module M as shown in FIG. A conductor 64 for transmitting this temperature data is wired inside the house and reaches the control panel 8.
However, the temperature data and the solar radiation amount data can be wirelessly transmitted to the control panel 8.
【0017】前記演算部56は、制御盤8内に回路とし
て構成される。南面屋根Rsの日射量データをL(Kw
/m2)とすると、太陽電池アレイAsは、面積Mm2
の太陽電池モジュールMをN枚で構成されており、従っ
て太陽電池アレイAsへの総日射量は、L×M×N(K
w)である。一方、太陽光発電では、太陽の光エネルギ
ーは一定の割合が損失し、電気エネルギーに変換され
る。すなわち、変換効率は太陽電池モジュールMの機能
等によるモジュール変換効率Y、直流を交流へ変換する
際に生じるインバータ効率Z、太陽電池モジュールMの
温度上昇による変換効率低下を補正する温度補正係数K
(t)の積、Y×Z×K(t)で求まる。なお、さらに
温度補正係数K(t)は、太陽電池モジュールMの温度
tの関数値として計算される。すなわち演算部56は、
変数として日射量データL、太陽電池モジュールMの温
度データtが入力され、L×M×S×Y×Z×K(t)
(Kw)の計算に基づき、理論発電量を出力する。太陽
電池アレイAe、Awも、同様演算され、最終その合計
値が全体の理論発電量として出力される。
The arithmetic unit 56 is configured as a circuit in the control panel 8. The solar radiation data for the south roof Rs is L (Kw
/ M2), the solar cell array As has an area Mm2
Since the solar cell module M is composed of N pieces, the total amount of solar radiation to the solar cell array As is L × M × N (K
w). On the other hand, in photovoltaic power generation, the light energy of the sun is lost at a constant rate and converted into electric energy. That is, the conversion efficiency is a module conversion efficiency Y due to the function of the solar cell module M, an inverter efficiency Z that occurs when converting direct current into an alternating current, and a temperature correction coefficient K that corrects a decrease in conversion efficiency due to an increase in temperature of the solar cell module M.
It is calculated by the product of (t) and Y × Z × K (t). Further, the temperature correction coefficient K (t) is calculated as a function value of the temperature t of the solar cell module M. That is, the calculation unit 56
The solar radiation amount data L and the temperature data t of the solar cell module M are input as variables, and L × M × S × Y × Z × K (t)
The theoretical amount of power generation is output based on the calculation of (Kw). The solar cell arrays Ae and Aw are also calculated in the same manner, and the final total value thereof is output as the total theoretical power generation amount.
【0018】表示装置9は、本実施形態では、図2に示
すように、制御盤8の表面に組み込んだ液晶ディスプレ
イから成り、現実発電量、理論発電量を上下に文字表示
する。ただし、表示装置9はこの態様には限定されず、
回転針と文字盤からなるメーター、発光部分の長さが発
電量に比例して変化する発光ダイオードを採用した装置
等も採用しうる。
In the present embodiment, as shown in FIG. 2, the display device 9 is composed of a liquid crystal display incorporated in the surface of the control panel 8 and displays the actual power generation amount and the theoretical power generation amount in upper and lower characters. However, the display device 9 is not limited to this mode,
A meter including a rotating needle and a dial, a device that employs a light emitting diode in which the length of the light emitting portion changes in proportion to the amount of power generation, and the like can also be adopted.
【0019】このように、本実施形態の太陽光発電装置
1では、表示装置9上の現実発電量と理論発電量から、
発電の運転状況を即座に確認、判断でき、現実発電量の
異常低下時に迅速に対応できる。また、現実発電量の急
減も、理論発電量の追従であれば、不安感を排除しえ
る。
As described above, in the solar power generation device 1 of this embodiment, from the actual power generation amount and the theoretical power generation amount on the display device 9,
The operation status of power generation can be immediately confirmed and judged, and it is possible to promptly respond to an abnormal decrease in the actual power generation amount. Further, even if the actual power generation amount is drastically reduced, if the theoretical power generation amount is followed, anxiety can be eliminated.
【0020】また、警告装置10は、本実施形態では、
図2に示すように、現実発電量が理論発電量を、例え
ば、10パーセント以上下回る時に、前記制御盤8内の
回路が発する信号で点滅する警告灯から成る。ただし、
警告装置10は、この態様には限定されず、ブザー、ベ
ル、前記表示装置9の文字表示の点滅、或いはこれらの
機能を複合したもの等使用条件に応じ種々のものを採用
しうる。
Further, the warning device 10 according to the present embodiment is
As shown in FIG. 2, when the actual power generation amount falls below the theoretical power generation amount by, for example, 10% or more, it comprises a warning light that blinks with a signal emitted from a circuit in the control panel 8. However,
The warning device 10 is not limited to this mode, and various devices such as a buzzer, a bell, blinking of the character display on the display device 9 or a combination of these functions can be adopted according to the usage conditions.
【0021】このように、本実施形態の太陽光発電装置
1では、現実発電量の異常低下時に、警告装置が警告を
発するので、運転停止、点検、修理、メンテ会社へ連絡
等迅速に対応できる。
As described above, in the solar power generation system 1 of the present embodiment, the warning device issues a warning when the actual power generation amount is abnormally lowered, so that it is possible to promptly respond to the operation stop, inspection, repair, contact with the maintenance company, etc. .
【0022】また、本実施態様では、図1、3、4に示
すように、太陽電池モジュール表面に向いた液体の散布
器3と、散布器3へ液体を圧送する供給管32を具え
る。
Further, in this embodiment, as shown in FIGS. 1, 3 and 4, a liquid sprayer 3 facing the surface of the solar cell module and a supply pipe 32 for pumping the liquid to the sprayer 3 are provided.
【0023】散布器3は、図3(a)に示すように、ス
テンレス、銅、合成樹脂等で形成される散布管31と先
端のノズル33から成り、散布カバー36内に取付けら
れる。本実施形態では、散布器3は、ノズル33から太
陽電池モジュールM上面に向け液体を噴霧するものであ
るため、液体が広範囲に平均的に散布される点で好まし
い。更に、太陽電池モジュールMの高温化防止目的で
は、噴霧された液体は気化しやすいため、蒸発潜熱によ
る冷却効果が大きくなる点で好ましい。ただし、散布器
3はこのような態様に限定されず、液体を太陽電池モジ
ュールM上面に向け滴下するものでも良い。液体は、本
実施形態では、市水で補充される雨水を採用するが、太
陽電池モジュールMの洗浄目的には洗浄水、太陽電池モ
ジュールMの冷却目的には揮発性液体等を採用しえる。
As shown in FIG. 3A, the spraying device 3 comprises a spraying pipe 31 made of stainless steel, copper, synthetic resin or the like and a nozzle 33 at the tip, and is mounted in a spraying cover 36. In the present embodiment, since the sprayer 3 sprays the liquid from the nozzle 33 toward the upper surface of the solar cell module M, it is preferable in that the liquid is uniformly sprayed over a wide range. Further, for the purpose of preventing the temperature of the solar cell module M from rising, the sprayed liquid is easily vaporized, which is preferable in that the cooling effect by the latent heat of vaporization becomes large. However, the sprayer 3 is not limited to such a mode, and may be a device that drops liquid toward the upper surface of the solar cell module M. As the liquid, rainwater supplemented with city water is used in the present embodiment, but cleaning water may be used for cleaning the solar cell module M, and volatile liquid or the like may be used for cooling the solar cell module M.
【0024】散布カバー36は、散布孔35を穿孔した
L字片37と尾片38が一体成形され、通気部材14上
に取付けられる。散布孔35は、散布器3のノズル33
に向き合い、液体を通過させる。
The sprinkling cover 36 is integrally formed with an L-shaped piece 37 and a tail piece 38 in which the sprinkling holes 35 are formed, and is mounted on the ventilation member 14. The spray hole 35 is provided in the nozzle 33 of the sprayer 3.
To face and let the liquid pass.
【0025】供給管32は、本実施形態では、図1に示
すように、貯水槽23からポンプ21を介して、散布器
3まで配管される。また図3(a)に示すように、供給
管32は屋根下地17に水密嵌合し、上端に散布器3を
装着する。
In this embodiment, the supply pipe 32 is piped from the water tank 23 to the sprayer 3 via the pump 21 as shown in FIG. Further, as shown in FIG. 3 (a), the supply pipe 32 is watertightly fitted to the roof substrate 17, and the spreader 3 is attached to the upper end.
【0026】貯水槽23は、図1に示すように、寄せ棟
屋根Rの軒樋27で集水された雨水が、縦樋28を介し
て流入し、濾過器24で落ち葉等を除去して貯える。降
雨不足時には、市水で補充され、逆に満水状態を越える
とオーバーフロー管20から排水される。また貯水槽2
3は、地下に埋設することもでき、植栽用、洗車用とし
ても使用しえる。このように、本実施形態の太陽光発電
装置1は、雨水を貯水し有効活用しえるもので、資源有
効活用とランニングコストが低減できる。
As shown in FIG. 1, in the water storage tank 23, rainwater collected in the eaves gutter 27 of the roof R of the ridge flows in through a vertical gutter 28 and removes fallen leaves and the like by a filter 24. store. When the rainfall is insufficient, it is replenished with city water, and conversely, when it exceeds a full state, it is drained from the overflow pipe 20. Also water tank 2
3 can be buried underground and can be used for planting and car washing. As described above, the solar power generation device 1 of the present embodiment can store rainwater and effectively utilize it, and can effectively utilize resources and reduce running costs.
【0027】ポンプ21は、図1に示すように、貯水槽
23に並設し、貯水槽23の比較的低位の水を、リリー
フバルブ( 図示せず) で圧力調整し、供給管32へ送給
するもので、ベーンポンプ、ギヤーポンプ等が使用でき
る。
As shown in FIG. 1, the pump 21 is installed in parallel with the water storage tank 23, and the relatively low water level of the water storage tank 23 is adjusted by a relief valve (not shown) and sent to the supply pipe 32. Vane pump, gear pump, etc. can be used.
【0028】集液部41は、本実施形態では、図3
(b)に示すように、屋根下地17の軒部に固定したL
字状の止め具44に、その両端部の受部43、43を嵌
合固定した塩化ビニル製の樋状体から成る。太陽電池モ
ジュールM表面を流下する液体は、一端を下枠材F3の
溝部61に嵌着した軒先カバー13上を経て集液部41
へ流入する。
In the present embodiment, the liquid collecting section 41 is shown in FIG.
As shown in (b), L fixed to the eaves of the roof substrate 17
It consists of a vinyl chloride gutter body in which the receiving portions 43, 43 at both ends thereof are fitted and fixed to a letter-shaped stopper 44. The liquid flowing down on the surface of the solar cell module M passes over the eaves cover 13 having one end fitted in the groove portion 61 of the lower frame member F3, and then the liquid collecting portion 41.
Flow into.
【0029】熱交換装置4は、集液部41から搬送管4
7を経て流入する液体を貯える温水槽4aと、熱交換部
4bから成る。熱交換後の液体は、熱交換装置4から回
収管46を経て前記貯水槽23へ回収されるが、貯水槽
23の満水時は、切換弁25により排水管26から排水
される。熱回収しえない低温の液体は、三方弁( 図示せ
ず) の操作により、温水槽4aを経由せず、バイパス管
42を介して回収管46へ導く。
The heat exchanging device 4 is constructed from the liquid collecting portion 41 to the conveying pipe 4
A hot water tank 4a for storing the liquid flowing in via 7 and a heat exchange section 4b. The liquid after heat exchange is recovered from the heat exchange device 4 to the water storage tank 23 through the recovery pipe 46, and when the water storage tank 23 is full, the liquid is drained from the drain pipe 26 by the switching valve 25. The low-temperature liquid that cannot recover heat is guided to the recovery pipe 46 via the bypass pipe 42 without passing through the hot water tank 4a by the operation of the three-way valve (not shown).
【0030】前記熱交換部4bは、温水槽4a内に配置
された蛇行状の銅管で構成され、内部の市水が温水槽4
aの液体から熱伝播を受け加熱される。本実施形態で
は、加熱された市水は、低温水時作動する加熱部48を
経て浴槽49に供給するが、台所、洗面等へも供給でき
る。
The heat exchanging section 4b is composed of a meandering copper pipe arranged in the hot water tank 4a, and the city water inside the hot water tank 4a.
It receives heat from the liquid a and is heated. In the present embodiment, the heated city water is supplied to the bathtub 49 via the heating unit 48 that operates during low-temperature water, but can also be supplied to the kitchen, the washbasin, and the like.
【0031】このような太陽光発電装置1では、発電中
太陽光で高温化する太陽電池モジュールMの温度センサ
6からデータ送信を受けた制御盤8の制御回路が、ポン
プ21へ始動信号を発信し、貯水槽23中の液体(雨
水)が散布器3から太陽電池モジュールM表面に向け噴
霧される。雨水の顕熱、蒸発潜熱による太陽電池モジュ
ールMの温度低下を受け、制御盤8の停止信号によりポ
ンプ21が止まる。該動作で、太陽電池モジュールMの
温度上昇によるエネルギー変換効率低下を防止でき、同
時に太陽電池モジュールM表面の汚れを洗浄し、発電効
率を維持しえる。また、汚れ洗浄のため、制御盤8で一
定時間毎の噴霧も制御できる。さらに、図2に示すよう
に、制御盤8の冷却スイッチ11の操作にもとづき、一
定時間継続した噴霧の制御もできる。
In such a photovoltaic power generator 1, the control circuit of the control panel 8 which receives data from the temperature sensor 6 of the solar cell module M which is heated by sunlight during power generation sends a start signal to the pump 21. Then, the liquid (rainwater) in the water tank 23 is sprayed from the sprayer 3 toward the surface of the solar cell module M. The pump 21 is stopped by the stop signal of the control panel 8 when the temperature of the solar cell module M is lowered by the sensible heat of rainwater and the latent heat of evaporation. By this operation, it is possible to prevent the energy conversion efficiency from being lowered due to the temperature rise of the solar cell module M, and at the same time, to clean the dirt on the surface of the solar cell module M and maintain the power generation efficiency. Further, for cleaning dirt, the control panel 8 can also control spraying at regular intervals. Further, as shown in FIG. 2, based on the operation of the cooling switch 11 of the control panel 8, it is possible to control the spraying continued for a fixed time.
【0032】太陽電池モジュールM上を流下した高温液
体(雨水)は、集液部41から搬送管47を経て熱交換
装置4の温水槽4aへ流入する。熱交換部4bで熱回収
した温水は、浴槽49、台所、洗面等で生活の便に供さ
れ、太陽電池モジュールM冷却で得た熱エネルギーを有
効活用しうる。
The high-temperature liquid (rainwater) flowing down on the solar cell module M flows from the liquid collecting section 41 through the transfer pipe 47 into the hot water tank 4a of the heat exchange device 4. The hot water whose heat is recovered in the heat exchange unit 4b is provided for daily life in the bathtub 49, kitchen, washbasin, etc., and the thermal energy obtained by cooling the solar cell module M can be effectively used.
【0033】図5は、本実施形態の太陽光発電装置1
の、制御系統、冷却系統及び熱回収系統のシステムを示
す全体ブロック図である。
FIG. 5 shows the photovoltaic power generation system 1 of this embodiment.
2 is an overall block diagram showing a system of a control system, a cooling system, and a heat recovery system of FIG.
【0034】[0034]
【発明の効果】以上説明したように、本発明では、現実
発電量と理論発電量の表示により発電の運転状況を即座
に確認、判断でき、現実発電量が理論発電量に比し大き
く下まわる場合、運転停止、点検、修理、メンテ会社へ
連絡等の対策が迅速になしえる。また、たとえ現実発電
量が低下しても理論発電量に追従する場合は正常運転で
あることが確認され、不要な不安感はこれを排除しえ
る。
As described above, according to the present invention, the actual power generation amount and the theoretical power generation amount can be immediately confirmed and judged by the display of the actual power generation amount and the theoretical power generation amount, and the actual power generation amount greatly falls below the theoretical power generation amount. In this case, measures such as operation stop, inspection, repair and contact with maintenance company can be taken promptly. Further, even if the actual power generation amount decreases, it is confirmed that the operation is normal when it follows the theoretical power generation amount, and unnecessary anxiety can be eliminated.
【0035】また請求項2記載の発明では、異常を告知
する警告装置が設置されるので、対応処置を迅速になし
える。
Further, according to the second aspect of the invention, since the warning device for notifying the abnormality is installed, it is possible to quickly take the countermeasure.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施形態である太陽光発電装置1の斜
視図である。
FIG. 1 is a perspective view of a photovoltaic power generator 1 according to an embodiment of the present invention.
【図2】表示装置9と警告装置10の正面図である。FIG. 2 is a front view of a display device 9 and a warning device 10.
【図3】(a)(b)は、太陽電池アレイAの異なる部
分の断面図である。
3A and 3B are cross-sectional views of different portions of the solar cell array A.
【図4】太陽光発電装置1の一部切り欠き斜視図であ
る。
FIG. 4 is a partially cutaway perspective view of the solar power generation device 1.
【図5】太陽光発電装置1の全体ブロック図である。FIG. 5 is an overall block diagram of the solar power generation device 1.
【符号の説明】[Explanation of symbols]
M 太陽電池モジュール 6 温度センサ 7 日射量センサ 9 表示装置 10 警告装置 56 演算部 M solar cell module 6 Temperature sensor 7 Solar radiation sensor 9 Display device 10 Warning device 56 Operation unit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平川 拓生 大阪府豊中市新千里西町1丁目1番4号 ナショナル住宅産業株式会社内 Fターム(参考) 5F051 BA03 BA11 JA11 JA18 KA02 KA08 5H420 BB03 BB12 CC03 FF08 FF14 FF28 LL10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takuo Hirakawa             1-4-1, Shinsenri Nishimachi, Toyonaka City, Osaka Prefecture             National Housing Industry Co., Ltd. F-term (reference) 5F051 BA03 BA11 JA11 JA18 KA02                       KA08                 5H420 BB03 BB12 CC03 FF08 FF14                       FF28 LL10

Claims (2)

    【特許請求の範囲】[Claims]
  1. 【請求項1】太陽光エネルギーで起電する太陽光発電装
    置であって、太陽電池モジュールと、日射量センサと、
    太陽電池モジュールの温度を計測する温度センサを具
    え、日射量データと温度データに基づく理論発電量を計
    算する演算部と、理論発電量及び現実発電量の表示装置
    を設けたことを特徴とする太陽光発電装置。
    1. A solar power generation device that generates electricity with solar energy, comprising a solar cell module, a solar radiation sensor,
    A solar module comprising a temperature sensor for measuring the temperature of a solar cell module, a calculation unit for calculating theoretical power generation based on solar radiation data and temperature data, and a display device for displaying theoretical power generation and actual power generation. Photovoltaic device.
  2. 【請求項2】現実発電量が理論発電量に対し設定値以下
    の状態を告知する警告装置を具えたことを特徴とする請
    求項1記載の太陽光発電装置。
    2. The solar power generation device according to claim 1, further comprising a warning device for notifying that the actual power generation amount is less than a set value with respect to the theoretical power generation amount.
JP2001396444A 2001-12-27 2001-12-27 Photovoltaic power generating device Withdrawn JP2003197945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396444A JP2003197945A (en) 2001-12-27 2001-12-27 Photovoltaic power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396444A JP2003197945A (en) 2001-12-27 2001-12-27 Photovoltaic power generating device

Publications (1)

Publication Number Publication Date
JP2003197945A true JP2003197945A (en) 2003-07-11

Family

ID=27602538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396444A Withdrawn JP2003197945A (en) 2001-12-27 2001-12-27 Photovoltaic power generating device

Country Status (1)

Country Link
JP (1) JP2003197945A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337639A (en) * 2004-05-28 2005-12-08 Toshiba Kyaria Kk Air conditioner
KR100927743B1 (en) 2009-06-08 2009-11-18 (주)하이레벤 Method of controlling solar cell facility maintenance device
JP2010539724A (en) * 2007-10-01 2010-12-16 韓國電子通信研究院Electronics and Telecommunications Research Institute Solar panel surface cleaning system
JP2011001800A (en) * 2009-06-22 2011-01-06 Shinichi Okamoto Automatic cleaning apparatus for photovoltaic power generation panel
JP2011035136A (en) * 2009-07-31 2011-02-17 Kowa Denki Sangyo Kk Restoration device of photovoltaic power generator, photovoltaic power generation system and restoration system of the photovoltaic power generator
JP2011100782A (en) * 2009-11-04 2011-05-19 Toyota Home Kk Device for cooling solar panel
JP2011181711A (en) * 2010-03-02 2011-09-15 Shunnosuke Shimano Maintenance apparatus of solar cell panel
JP2012055090A (en) * 2010-09-01 2012-03-15 Ntt Facilities Inc Solar energy generation diagnostic system
EP2464465A1 (en) * 2009-08-14 2012-06-20 Newdoll Enterprises Llc. Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
JP2012257419A (en) * 2011-06-10 2012-12-27 Hitachi Consumer Electronics Co Ltd System interconnection apparatus
CN103085670A (en) * 2011-11-04 2013-05-08 吴德滨 Solar cell panel for railway line
KR200468958Y1 (en) 2010-03-24 2013-09-09 전북대학교산학협력단 Steam supply and power generator
JP2013219277A (en) * 2012-04-11 2013-10-24 Panasonic Corp Frame
EP2034323A3 (en) * 2007-09-06 2014-01-15 Enphase Energy, Inc. Method and apparatus for detecting impairment of a solar array
JP2014053337A (en) * 2012-09-05 2014-03-20 Hioki Ee Corp Abnormality detection device for solar cell panel
US9200818B2 (en) 2009-08-14 2015-12-01 Newdoll Enterprises Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
US9812859B2 (en) 2007-03-27 2017-11-07 Solaredge Technologies Ltd. Distributed maximum power point tracking system, structure and process
WO2017221462A1 (en) * 2016-06-21 2017-12-28 パナソニックIpマネジメント株式会社 Power generation amount estimation device for solar cells, power generation amount estimation method, and power generation amount estimation program
US10020657B2 (en) 2007-03-27 2018-07-10 Newdoll Enterprises Llc Pole-mounted power generation systems, structures and processes
US10116257B2 (en) 2009-08-14 2018-10-30 Accurate Solar Power, Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
EP2360487B1 (en) * 2010-01-22 2019-03-13 General Electric Company Model-based power estimation of photovoltaic power generation system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337639A (en) * 2004-05-28 2005-12-08 Toshiba Kyaria Kk Air conditioner
US10020657B2 (en) 2007-03-27 2018-07-10 Newdoll Enterprises Llc Pole-mounted power generation systems, structures and processes
US9812859B2 (en) 2007-03-27 2017-11-07 Solaredge Technologies Ltd. Distributed maximum power point tracking system, structure and process
US10615594B2 (en) 2007-03-27 2020-04-07 Solaredge Technologies Ltd. Distributed maximum power point tracking system, structure and process
US9048693B2 (en) 2007-09-06 2015-06-02 Enphase Energy, Inc. Method and apparatus for detecting impairment of a solar array
EP2034323A3 (en) * 2007-09-06 2014-01-15 Enphase Energy, Inc. Method and apparatus for detecting impairment of a solar array
US8474084B2 (en) 2007-10-01 2013-07-02 Electronics And Telecommunications Research Institute System for cleaning surface of solar cell panel
JP2010539724A (en) * 2007-10-01 2010-12-16 韓國電子通信研究院Electronics and Telecommunications Research Institute Solar panel surface cleaning system
KR100927743B1 (en) 2009-06-08 2009-11-18 (주)하이레벤 Method of controlling solar cell facility maintenance device
JP2011001800A (en) * 2009-06-22 2011-01-06 Shinichi Okamoto Automatic cleaning apparatus for photovoltaic power generation panel
JP2011035136A (en) * 2009-07-31 2011-02-17 Kowa Denki Sangyo Kk Restoration device of photovoltaic power generator, photovoltaic power generation system and restoration system of the photovoltaic power generator
US10250184B2 (en) 2009-08-14 2019-04-02 Accurate Solar Power, Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
US9200818B2 (en) 2009-08-14 2015-12-01 Newdoll Enterprises Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
EP2464465A4 (en) * 2009-08-14 2014-05-07 Newdoll Entpr Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
EP2464465A1 (en) * 2009-08-14 2012-06-20 Newdoll Enterprises Llc. Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
US10116257B2 (en) 2009-08-14 2018-10-30 Accurate Solar Power, Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
JP2011100782A (en) * 2009-11-04 2011-05-19 Toyota Home Kk Device for cooling solar panel
EP2360487B1 (en) * 2010-01-22 2019-03-13 General Electric Company Model-based power estimation of photovoltaic power generation system
JP2011181711A (en) * 2010-03-02 2011-09-15 Shunnosuke Shimano Maintenance apparatus of solar cell panel
KR200468958Y1 (en) 2010-03-24 2013-09-09 전북대학교산학협력단 Steam supply and power generator
JP2012055090A (en) * 2010-09-01 2012-03-15 Ntt Facilities Inc Solar energy generation diagnostic system
JP2012257419A (en) * 2011-06-10 2012-12-27 Hitachi Consumer Electronics Co Ltd System interconnection apparatus
CN103085670A (en) * 2011-11-04 2013-05-08 吴德滨 Solar cell panel for railway line
JP2013219277A (en) * 2012-04-11 2013-10-24 Panasonic Corp Frame
JP2014053337A (en) * 2012-09-05 2014-03-20 Hioki Ee Corp Abnormality detection device for solar cell panel
WO2017221462A1 (en) * 2016-06-21 2017-12-28 パナソニックIpマネジメント株式会社 Power generation amount estimation device for solar cells, power generation amount estimation method, and power generation amount estimation program

Similar Documents

Publication Publication Date Title
Tripathy et al. A critical review on building integrated photovoltaic products and their applications
Lamnatou et al. Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues
Edalati et al. Comparative performance investigation of mono-and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates
US9520826B2 (en) Solar cell module efficacy monitoring system and monitoring method therefor
Koehl et al. Modeling of the nominal operating cell temperature based on outdoor weathering
Ganguly et al. Modeling and analysis of solar photovoltaic-electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse
Rekioua et al. Optimization of photovoltaic power systems: modelization, simulation and control
Mohamed et al. Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment
Norton et al. Enhancing the performance of building integrated photovoltaics
Kumar et al. Performance study on a grid connected 20 kWp solar photovoltaic installation in an industry in Tiruchirappalli (India)
Chattopadhyay et al. Visual degradation in field-aged crystalline silicon PV modules in India and correlation with electrical degradation
Chandrasekar et al. Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures
JP5806132B2 (en) Power generation amount prediction device, power generation amount prediction correction method, and natural energy power generation system
Yin et al. Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings
Makdisie et al. An optimal photovoltaic conversion system for future smart grids
Fuentealba et al. Photovoltaic performance and LCoE comparison at the coastal zone of the Atacama Desert, Chile
US20160065124A1 (en) Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
JP3315575B2 (en) Solar energy conversion device, building, and temperature control method for photoelectric conversion element
Mondol et al. Long term performance analysis of a grid connected photovoltaic system in Northern Ireland
Hankins Stand-alone solar electric systems: the earthscan expert handbook for planning, design and installation
Emmott et al. In-situ, long-term operational stability of organic photovoltaics for off-grid applications in Africa
KR101390405B1 (en) Monitoring and control system for photovoltaic power generation device management system
Santhakumari et al. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques
KR101295529B1 (en) Remote monitoring system for solar cell problem
US20090223550A1 (en) Roof tile or tiled solar thermal collector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301