JPH05323046A - Apparatus and method for measuring snowfall - Google Patents

Apparatus and method for measuring snowfall

Info

Publication number
JPH05323046A
JPH05323046A JP15147592A JP15147592A JPH05323046A JP H05323046 A JPH05323046 A JP H05323046A JP 15147592 A JP15147592 A JP 15147592A JP 15147592 A JP15147592 A JP 15147592A JP H05323046 A JPH05323046 A JP H05323046A
Authority
JP
Japan
Prior art keywords
thermistor
snow
heat conduction
snowfall
conduction plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15147592A
Other languages
Japanese (ja)
Inventor
Masami Koshimura
正己 越村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15147592A priority Critical patent/JPH05323046A/en
Publication of JPH05323046A publication Critical patent/JPH05323046A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a snowfall at a high accuracy with a smaller size and a simple construction without causing drop in sensitivity and malfunction by garbage and sunlight. CONSTITUTION:A main thermistor 16 is arranged on a heat transfer plate 10 for receiving snow fall and a sub-thermistor 17 on a heat transfer plate 11 for correction receiving no snow. A controller 36 controls the supply of power with power supply circuits 31 and 32 from detection outputs of a voltage detection circuit 33 of the main thermistor and a voltage detection circuit 34 of the sub-thermistor. Electric energy supplied to the main and sub-thermistors is measured with watt-hour meters 37 and 38 to determine the intensity of snowfall from the difference between the results.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は降雪を検知しかつその降
雪量を計測する装置及びその方法に関する。更に詳しく
は、散水式、電気ヒータ式、温水パイプ埋設式等の融雪
装置を降雪時に自動的に作動させるに適した降雪量計測
装置及び方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for detecting snowfall and measuring the amount of snowfall. More specifically, the present invention relates to a snowfall measuring device and method suitable for automatically operating a snowmelting device such as a water spray type, an electric heater type, a hot water pipe burying type, or the like during snowfall.

【0002】[0002]

【従来の技術】降雪を検知し或いは降雪量を計測する方
式として、例えば電極方式、レーザ光線方式、超音波方
式、熱電対を用いた方式等がある。 電極方式では、傾斜した受雪体の裏面にヒータを設
け、表面に両電極を一定の間隔で設け、受雪体上の雪が
融けたときの融雪水による両電極間の電気伝導度により
降雪を検知する。 レーザ光線方式では、特開昭55−129783号
公報に示されるように、上下動可能なレーザ光発光源
と、この発光源からのレーザ光線を受光する上下方向に
延びる受光柱とを間隔をあけて降雪場所にそれぞれ設置
し、レーザ光発光源を上昇させて受光柱がレーザ光線を
受光し始める発光源の高さを積雪深として計測する。 超音波方式では、特開昭55−9181号公報に示
されるように、ホーンから直下の雪面に向けて超音波が
放射され、雪面で反射した超音波がホーンで信号変換さ
れて受波回路に供給され、ここで反射成分による信号を
処理して降雪量を計測する。
2. Description of the Related Art As methods for detecting snowfall or measuring snowfall, there are, for example, an electrode method, a laser beam method, an ultrasonic method, a method using a thermocouple, and the like. In the electrode method, a heater is provided on the back surface of the inclined snow receiver, both electrodes are provided on the front surface at regular intervals, and when the snow on the snow receiver melts, the snow is melted by the electric conductivity between the electrodes to prevent snowfall. Detect. In the laser beam method, as shown in Japanese Patent Laid-Open No. 55-129783, a vertically movable laser light emitting source and a vertically extending light receiving column for receiving the laser beam from the light emitting source are spaced from each other. The height of the light emitting source where the light receiving column starts to receive the laser beam is measured as the snow depth. In the ultrasonic method, as disclosed in JP-A-55-9181, ultrasonic waves are radiated from the horn toward the snow surface directly below, and the ultrasonic waves reflected by the snow surface are converted by the horn into a signal and received. It is supplied to the circuit, where it processes the signal due to the reflection component and measures the amount of snowfall.

【0003】 熱電対方式では、特公昭57−605
85号公報に示されるように、雪を受ける受雪用加熱板
に第1及び第2のヒータと1つの熱電対を設け、雪を受
けない補正用加熱板に1つのヒータと1つの熱電対を設
け、受雪用加熱板の第2のヒータと補正用加熱板のヒー
タを直列に結線する。雨が雪に変わる外気温度が約3℃
以下になった場合に、直列に結線した2つのヒータに電
流が流され、加熱用及び補正用加熱板の温度がそれぞれ
一定に保たれる。ここで、降雪があるときには受雪用加
熱板の温度が下がるため、この温度を受雪用加熱板の第
1のヒータに電流を流して補正用加熱板の温度と等しく
し、受雪用加熱板の温度を一定に保つ。この第1のヒー
タに流れる電力量を計測することにより降雪量を知るこ
とができる。
In the thermocouple method, Japanese Patent Publication No. 57-605
As shown in Japanese Patent Publication No. 85, the first and second heaters and one thermocouple are provided on the snow-receiving heating plate that receives snow, and one heater and one thermocouple are provided on the correction heating plate that does not receive snow. And the second heater of the snow-receiving heating plate and the heater of the correction heating plate are connected in series. The outside air temperature at which rain turns into snow is about 3 ℃
In the case of the following, current is passed through the two heaters connected in series, and the temperatures of the heating plate for correction and the heating plate for correction are kept constant. Here, when there is snow, the temperature of the snow-receiving heating plate decreases, so an electric current is passed through the first heater of the snow-receiving heating plate to make it equal to the temperature of the correction heating plate, and the snow-receiving heating plate is heated. Keep the plate temperature constant. It is possible to know the amount of snowfall by measuring the amount of electric power flowing through the first heater.

【0004】[0004]

【発明が解決しようとする課題】の電極方式では、融
雪水が存在しない状態で電極間にごみが連なった場合、
このごみが僅かであっても電極間が導通状態になり誤動
作の原因になる。また電極が直接水分と接触するため、
錆を生じ易く、また電極が銀の場合には電極間全てに融
雪水がなくても融雪水においてイオン移動(ion migrat
ion)が生じて導通状態となり誤動作の原因となる。
のレーザ光線方式では、発光源や受光柱がごみなどによ
って覆われると感度が著しく低下する。また太陽光など
発光源以外の光源の受光により誤動作し易い。の超音
波方式の場合でも同様であり、しかも装置が高価になり
易い。上記の〜のいずれの場合も気温が高い時でも
動作してしまう。の熱電対方式では、ヒータの数が多
く、構造が複雑で、小型化できない。また熱電対は温度
変化に対する感度が比較的低く、これを高感度にして熱
電対の精度を上げるためには、基準温度(ゼロ接点)の
高精度化等を必要とし、システムとして値段が高くな
る。
In the electrode method of [Problem to be Solved by the Invention], when dust is accumulated between electrodes in the absence of snowmelt water,
Even a small amount of this dust causes conduction between the electrodes, which causes malfunction. In addition, since the electrodes come into direct contact with moisture,
Rust is likely to occur, and when the electrodes are silver, ion migration (ion migrat) occurs in the snowmelt water even if there is no snowmelt water between the electrodes.
ion) occurs and becomes conductive, causing malfunction.
In the laser beam method, if the light emitting source or the light receiving column is covered with dust or the like, the sensitivity is significantly reduced. In addition, malfunctions are likely to occur due to reception of light sources such as sunlight other than light emitting sources. The same applies to the case of the ultrasonic method, and the apparatus tends to be expensive. In any of the above cases, it works even when the temperature is high. In the thermocouple method, the number of heaters is large, the structure is complicated, and the size cannot be reduced. Further, the thermocouple has a relatively low sensitivity to temperature changes, and in order to make it highly sensitive and improve the accuracy of the thermocouple, it is necessary to improve the accuracy of the reference temperature (zero contact point), etc., and the system becomes expensive. ..

【0005】本発明の目的は、ごみや太陽光による感度
の低下と誤動作を生じることがなく、小型でしかも簡単
な構造で高精度に降雪量を計測し得る降雪量計測装置及
びその方法を提供することにある。
An object of the present invention is to provide a snowfall amount measuring apparatus and method capable of highly accurately measuring the snowfall amount with a small and simple structure without causing a decrease in sensitivity and malfunction due to dust or sunlight. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成を図1に基づいて説明する。本発明の降
雪量計測装置は、降る雪を受ける受雪用熱伝導板10
と、降る雪を受けない補正用熱伝導板11と、受雪用熱
伝導板10に接触して設けられ自己加熱により受雪用熱
伝導板10を加熱可能な主サーミスタ16と、補正用熱
伝導板11に接触して設けられ自己加熱により補正用熱
伝導板11を加熱可能な副サーミスタ17と、主サーミ
スタ16に印加される電圧を検出する第1電圧検出回路
33と、副サーミスタ17に印加される電圧を検出する
第2電圧検出回路34と、副サーミスタ17に電流を流
して副サーミスタ17を自己加熱させ第2電圧検出回路
34の出力に基づいて副サーミスタ17の抵抗値RB
降雪時の所定の外気温に相応した第2抵抗値RB3になる
ように調整維持する副サーミスタ用電力供給回路32
と、主サーミスタ16に電流を流して主サーミスタ16
を自己加熱させ第1電圧検出回路33の出力に基づいて
主サーミスタ16の抵抗値RAを所定の外気温に相応し
た第1抵抗値RA3になるように調整維持する主サーミス
タ用電力供給回路31と、主サーミスタ用電力供給回路
31が供給した電力量を計測する第1電力量計37と、
副サーミスタ用電力供給回路32が供給した電力量を計
測する第2電力量計38とを備えたものである。
The structure of the present invention for achieving the above object will be described with reference to FIG. The snowfall measuring device of the present invention is a snow-receiving heat conduction plate 10 for receiving falling snow.
A correction heat conduction plate 11 that does not receive falling snow; a main thermistor 16 that is provided in contact with the snow reception heat conduction plate 10 and that can heat the snow reception heat conduction plate 10 by self-heating; The auxiliary thermistor 17, which is provided in contact with the conductive plate 11 and can heat the correction heat conductive plate 11 by self-heating, the first voltage detection circuit 33 for detecting the voltage applied to the main thermistor 16, and the auxiliary thermistor 17. The resistance value R B of the auxiliary thermistor 17 is set based on the output of the second voltage detection circuit 34, which detects the applied voltage, and the auxiliary thermistor 17, by causing a current to flow through the auxiliary thermistor 17. Sub-thermistor power supply circuit 32 for adjusting and maintaining the second resistance value R B3 corresponding to a predetermined outside temperature during snowfall
Then, a current is passed through the main thermistor 16 and the main thermistor 16
Power supply circuit for the main thermistor which controls the resistance value R A of the main thermistor 16 to become the first resistance value R A3 corresponding to a predetermined ambient temperature based on the output of the first voltage detection circuit 33 by self-heating 31 and a first watt-hour meter 37 that measures the amount of power supplied by the main thermistor power supply circuit 31.
The second watt-hour meter 38 for measuring the amount of electric power supplied by the sub-thermistor power supply circuit 32.

【0007】また本発明の降雪量計測方法は、先ず降る
雪を受けない補正用熱伝導板11に接触して設けられた
副サーミスタ17にこのサーミスタ17が自己加熱しな
い程度の微弱電流を流し、微弱電流による副サーミスタ
17の抵抗値RBを計測する。 ここで降雨が雪に変わ
る約3℃以下の外気温になったとき、即ち副サーミスタ
17の抵抗値RBがこの温度に相当する第2抵抗値RB3
以上になったとき、副サーミスタ17に電流を流して、
このサーミスタ17を自己加熱させてその抵抗値RB
上記所定の外気温に相応した第2抵抗値RB3になるよう
に調整維持する。次に降る雪を受ける受雪用熱伝導板1
0に接触して設けられた主サーミスタ16に電流を流し
てその抵抗値RAを上記所定の外気温に相応した第1抵
抗値RA3になるように調整維持する。更に主サーミスタ
16が消費した電力量と副サーミスタ17が消費した電
力量をそれぞれ計測した後、両電力量の差異を求め、こ
の差異から受雪用熱伝導板10が受けた雪の融解に要し
た熱量を求め、この熱量を受雪用熱伝導板10の受雪面
積で除算して降雪強度を求める。
According to the snowfall measuring method of the present invention, first, a weak current is supplied to the sub-thermistor 17 provided in contact with the correction heat conduction plate 11 which does not receive snow, so that the thermistor 17 does not self-heat, The resistance value R B of the sub thermistor 17 due to the weak current is measured. Here, when the outside temperature changes to about 3 ° C. or less when the rainfall changes to snow, that is, the resistance value R B of the auxiliary thermistor 17 corresponds to this temperature, the second resistance value R B3.
When the above is reached, a current is passed through the sub thermistor 17,
The thermistor 17 is self-heated and its resistance value R B is adjusted and maintained so as to become the second resistance value R B3 corresponding to the predetermined outside air temperature. Snow conduction heat conduction plate 1 for receiving the next snow
A current is passed through the main thermistor 16 provided in contact with 0 to adjust and maintain the resistance value R A of the main thermistor 16 to be the first resistance value R A3 corresponding to the predetermined ambient temperature. Furthermore, after measuring the amount of electric power consumed by the main thermistor 16 and the amount of electric power consumed by the sub thermistor 17, the difference between the two amounts of electric power is obtained, and it is necessary to melt the snow received by the snow-receiving heat conductive plate 10 from this difference. The amount of heat generated is calculated, and this amount of heat is divided by the snow receiving area of the heat receiving plate for snow reception 10 to obtain the snowfall intensity.

【0008】以下、本発明を詳述する。図1に示すよう
に、本発明の降雪量計測装置は、降る雪を受ける受雪用
熱伝導板10と降る雪を受けない補正用熱伝導板11と
をそれぞれ中空体、例えば筒体12及び13の端部にこ
れらの内部12a及び13aを塞ぐように接着剤やねじ
等により固着される。図2に示すように単一の中空体1
4の上面に受雪用熱伝導板10を設け、中空体14の下
面に補正用熱伝導板11を設けてもよい。この場合に
は、より一層小型になり取付コストが安価で済む。熱伝
導板で中空体を塞ぐことによりサーミスタの取付場所で
ある中空体内部12a〜14aへの雪、雨、水蒸気、ご
み等の侵入を防止できる。熱伝導板10及び11は銀、
銅等のような熱伝導度が大きい材料が感度の上から好ま
しく、錆等が発生しないように表面処理をしておくこと
がより好ましい。また補正用熱伝導板11は受雪用熱伝
導板10と同一の熱放散定数、即ち同一形状で同一材料
を形成し、受雪用熱伝導板10と同一環境に設置するこ
とが補正を容易にし設計が簡単になるため好ましい。両
熱伝導板10及び11の熱放散定数を同一にした場合に
は、これに取付けるサーミスタ16及び17が自己加熱
により生じる熱量は同じである必要があり、主サーミス
タ16と副サーミスタ17の所定温度の第1抵抗値RA3
と第2抵抗値RB3とは同じ値にしておく。しかし、両熱
伝導板10及び11の形状や種類が異なるときにはその
分だけ主サーミスタ16の抵抗値を副サーミスタ17の
抵抗値と変えておく。
The present invention will be described in detail below. As shown in FIG. 1, the snowfall measuring device of the present invention includes a snow-receiving heat conduction plate 10 that receives falling snow and a correction heat conduction plate 11 that does not receive falling snow. It is fixed to the end of 13 with an adhesive, a screw, or the like so as to close the insides 12a and 13a. As shown in FIG. 2, a single hollow body 1
The snow-receiving heat conduction plate 10 may be provided on the upper surface of the hollow body 4, and the correction heat conduction plate 11 may be provided on the lower surface of the hollow body 14. In this case, the size is further reduced and the mounting cost is low. By blocking the hollow body with the heat conduction plate, it is possible to prevent snow, rain, water vapor, dust, etc. from entering the hollow body interiors 12a to 14a where the thermistor is attached. The heat conductive plates 10 and 11 are silver,
A material having a large thermal conductivity, such as copper, is preferable from the viewpoint of sensitivity, and it is more preferable to perform surface treatment so as not to generate rust. Further, the correction heat conduction plate 11 is formed of the same heat dissipation constant as the snow reception heat conduction plate 10, that is, the same material with the same shape, and the correction can be easily performed in the same environment as the snow reception heat conduction plate 10. It is preferable because it simplifies the design. When the heat dissipation constants of the two heat conducting plates 10 and 11 are the same, the amount of heat generated by the thermistors 16 and 17 attached thereto must be the same, so that the main thermistor 16 and the auxiliary thermistor 17 have a predetermined temperature. First resistance value R A3
And the second resistance value R B3 are set to the same value. However, when the shapes and types of the two heat conduction plates 10 and 11 are different, the resistance value of the main thermistor 16 is changed to the resistance value of the sub thermistor 17 accordingly.

【0009】図2に示すように勾配をつけて受雪用熱伝
導板10を設けると、融雪水が熱伝導板10から流れ落
ち好ましい。これは融雪水が受雪用熱伝導板10の表面
に表面張力等により貯まると、受雪用熱伝導板10の雪
の融解に費やされる熱エネルギが融雪水の昇温にも費や
され、正確に融雪のための熱エネルギを計測できなくな
るからである。中空体12、13及び14は計測誤差を
減少しかつ電力消費量を増大させないために熱不導体で
あることが好ましい。この傾斜角度θは10〜40度の
範囲から決められる。θが10度未満では融雪水が流れ
にくく、一方40度を超えると降雪が付着しにくくなり
好ましくない。
When the snow-receiving heat conduction plate 10 is provided with a slope as shown in FIG. 2, it is preferable that the snowmelt water flows down from the heat conduction plate 10. This is because when the snow melting water is stored on the surface of the snow receiving heat conductive plate 10 due to surface tension or the like, the heat energy consumed for melting the snow of the snow receiving heat conductive plate 10 is also spent for raising the temperature of the snow melting water, This is because the thermal energy for snow melting cannot be measured accurately. Hollow bodies 12, 13 and 14 are preferably thermal non-conductors to reduce measurement errors and not increase power consumption. This inclination angle θ is determined from the range of 10 to 40 degrees. If the angle θ is less than 10 degrees, the snowmelt water will not flow easily, while if it exceeds 40 degrees, snow will not easily adhere, which is not preferable.

【0010】受雪用熱伝導板10には主サーミスタ16
が、また補正用熱伝導板11には副サーミスタ17がそ
れぞれ接触して設けられる。副サーミスタ17のサーミ
スタ特性、即ち降雨が雪に変わる所定の外気温における
抵抗値及び温度係数は、主サーミスタ16のサーミスタ
特性と同一であることが補正を容易にし好ましい。具体
的にはこれらのサーミスタ16及び17はそれぞれNT
Cサーミスタであって、図示するように表面を外気に接
する面とするとき、受雪用熱伝導板10及び補正用熱伝
導板11の各裏面に設けられる。補正用熱伝導板11が
防雪又は防雨カバー18で覆われるとき(図1)には、
図示しないが、副サーミスタ17は補正用熱伝導板11
の表面に設けてもよい。カバー18に通気孔18aを設
けておくと、補正精度が向上し好ましい。また中空体1
4に配設される受雪用熱伝導板10及び補正用熱伝導板
11には中空体内部14aを臨む各内面に主サーミスタ
16及び副サーミスタ17が接着される。中空体12,
13及びカバー18はねじ19により基板21に、中空
体14は中空アーム22を介して壁23の内面にそれぞ
れ取付けられる。基板21及び壁23は降雪場所に設置
される。基板21にはサーミスタ用配線孔19a,19
bが、壁23にはサーミスタ用配線孔23aがそれぞれ
設けられる。中空アーム22の先端は中空体14を貫通
して中空体14に固着され、中空アーム22の基端は配
線孔23aを覆って壁23に接着される。壁23を筒壁
にして、中空体14を筒壁の内部に設けると、吹雪のと
きにも降る雪を安定して高精度に計測できる。
A main thermistor 16 is provided on the heat conducting plate 10 for receiving snow.
However, the correction heat conduction plate 11 is provided with the auxiliary thermistors 17 in contact therewith. It is preferable that the thermistor characteristics of the sub thermistor 17, that is, the resistance value and the temperature coefficient at a predetermined ambient temperature at which rain changes into snow, are the same as the thermistor characteristics of the main thermistor 16 for easy correction. Specifically, these thermistors 16 and 17 are NT respectively.
The C thermistor is provided on each of the back surfaces of the snow-receiving heat conduction plate 10 and the correction heat conduction plate 11 when the surface is a surface in contact with the outside air as shown in the figure. When the correction heat conduction plate 11 is covered with the snowproof or rainproof cover 18 (FIG. 1),
Although not shown, the auxiliary thermistor 17 is a correction heat conduction plate 11.
It may be provided on the surface of. It is preferable to provide the cover 18 with the ventilation hole 18a because the correction accuracy is improved. Also hollow body 1
A main thermistor 16 and a sub thermistor 17 are adhered to the inner surfaces of the snow-receiving heat conduction plate 10 and the correction heat conduction plate 11 which are arranged in FIG. Hollow body 12,
13 and the cover 18 are attached to the base plate 21 by screws 19 and the hollow body 14 is attached to the inner surface of the wall 23 via the hollow arm 22. The substrate 21 and the wall 23 are installed in a snowfall place. The substrate 21 has the thermistor wiring holes 19a, 19
b, the wall 23 is provided with a thermistor wiring hole 23a. The distal end of the hollow arm 22 penetrates the hollow body 14 and is fixed to the hollow body 14, and the proximal end of the hollow arm 22 covers the wiring hole 23a and is bonded to the wall 23. When the wall 23 is a cylinder wall and the hollow body 14 is provided inside the cylinder wall, the snowfall can be stably and highly accurately measured even during snowstorm.

【0011】図1に示すように、主サーミスタ16の配
線16aは配線孔19aを通って主サーミスタ用電力供
給回路31に接続され、副サーミスタ17の配線17a
は配線孔19bを通って副サーミスタ用電力供給回路3
2に接続される。主サーミスタ16に印加される電圧を
検出する第1電圧検出回路33及び副サーミスタ17に
印加される電圧を検出する第2電圧検出回路34が配線
16a及び17aにそれぞれ接続される。35は電源端
子である。電圧検出回路33及び34の検出出力はマイ
クロコンピュータからなるコントローラ36に接続され
る。電力供給回路31及び32にはこれらの電力供給回
路31及び32がサーミスタ16及び17にそれぞれ供
給した電力量を計測する第1電力量計37及び第2電力
量計38が接続される。これらの電力量計37及び38
の各出力はコントローラ36に接続される。またコント
ローラ36の制御出力は電力供給回路31,32及びプ
リンタ39及び融雪装置40に接続される。図2に示す
サーミスタ16,17の配線16a,17aは束ねられ
ワイヤハーネス41の形態で中空アーム22及び配線孔
23aを通って壁23外の電力供給回路31及び32に
接続される。図2では他の図1に示した電気回路は省略
している。
As shown in FIG. 1, the wiring 16a of the main thermistor 16 is connected to the power supply circuit 31 for the main thermistor through the wiring hole 19a, and the wiring 17a of the sub thermistor 17 is connected.
Is the power supply circuit 3 for the sub thermistor through the wiring hole 19b.
Connected to 2. A first voltage detection circuit 33 that detects a voltage applied to the main thermistor 16 and a second voltage detection circuit 34 that detects a voltage applied to the sub thermistor 17 are connected to the wirings 16a and 17a, respectively. Reference numeral 35 is a power supply terminal. The detection outputs of the voltage detection circuits 33 and 34 are connected to a controller 36 composed of a microcomputer. The power supply circuits 31 and 32 are connected to a first watt-hour meter 37 and a second watt-hour meter 38 that measure the amount of power supplied to the thermistors 16 and 17 by the power supply circuits 31 and 32, respectively. These electricity meters 37 and 38
Each output of is connected to the controller 36. The control output of the controller 36 is connected to the power supply circuits 31, 32, the printer 39, and the snow melting device 40. The wires 16a and 17a of the thermistors 16 and 17 shown in FIG. 2 are bundled and connected in the form of a wire harness 41 to the power supply circuits 31 and 32 outside the wall 23 through the hollow arm 22 and the wire hole 23a. In FIG. 2, other electric circuits shown in FIG. 1 are omitted.

【0012】次にこのような構成の降雪量計測装置の使
用方法について説明する。 <計測準備>先ず、副サーミスタ17に自己加熱しない
程度の微弱な電流を流し、電圧検出回路34が検出する
電圧より抵抗値RBを求め、この抵抗値から計測場所の
外気温を測定する。外気温が3℃以下のときに雨降りで
なく降雪状態になることが経験的に知られているため、
外気温が3℃以下のときは計測を続け副サーミスタ17
及び主サーミスタ16をともに所定温度の3℃に相応し
た抵抗値RA3及びRB3に調整維持する。具体的には、コ
ントローラ36は電圧供給回路31及び32により主サ
ーミスタ16及び副サーミスタ17にそれぞれ自己加熱
する電流を流し、電圧検出回路33及び34が検出する
電圧から求めた抵抗値RA及びRBをそれぞれRA=RA3
及びRB=RB3となるように制御する。サーミスタ16
とサーミスタ17のサーミスタ特性が同じであれば、R
A=RBとなり、両サーミスタ16,17にそれぞれ流れ
る電流はiA=iBとなる。
Next, a method of using the snowfall measuring device having such a configuration will be described. <Measurement Preparation> First, a weak current that does not self-heat is supplied to the sub thermistor 17, the resistance value R B is obtained from the voltage detected by the voltage detection circuit 34, and the outside air temperature at the measurement location is measured from this resistance value. It is empirically known that when the outside air temperature is 3 degrees Celsius or less, it will snow instead of rain.
When the outside air temperature is 3 ° C or less, the measurement is continued and the secondary thermistor 17
The main thermistor 16 is adjusted and maintained at the resistance values R A3 and R B3 corresponding to the predetermined temperature of 3 ° C. Specifically, the controller 36 causes the voltage supply circuits 31 and 32 to supply currents for self-heating to the main thermistor 16 and the sub thermistor 17, respectively, and the resistance values R A and R obtained from the voltages detected by the voltage detection circuits 33 and 34. B is R A = R A3
And R B = R B3 . Thermistor 16
And the thermistor characteristics of the thermistor 17 are the same, R
A = R B, and the current flowing on both thermistors 16 and 17 becomes i A = i B.

【0013】<降雪量の計測>この状態で雪C(図1)
が降り始め、受雪用熱伝導板10が雪Cを受けると、熱
伝導板10は雪で冷却され、サーミスタ16の抵抗値R
AはRA3より大きくなろうとする。コントローラ36は
サーミスタ16の抵抗値RAがRA3より大きくなり始め
ると、サーミスタ16に流す電流iAを増加させて、自
己加熱させ熱伝導板10を加熱し、常にサーミスタ16
の抵抗値RAがRA3になるように維持する。このサーミ
スタ16の電流iAがサーミスタ17の電流iBより大き
くなると降雪状態になったことを検知できる。またこの
電流値の差(iA−iB)或いは電力の差(P=PA
B)よりサーミスタ16をサーミスタ17と同じ温度
に保つに必要な電力量が分るため、降雪強度V(g/c
2・分)を求めることができる。
<Measurement of Snowfall> Snow C (Fig. 1)
When the snow receiving heat conducting plate 10 receives the snow C and the heat conducting plate 10 is cooled by the snow, the resistance value R of the thermistor 16 increases.
A tries to be larger than R A3 . When the resistance value R A of the thermistor 16 starts to become larger than R A3, the controller 36 increases the current i A flowing through the thermistor 16 to heat it by itself to heat the heat conduction plate 10 and always to the thermistor 16
The resistance value R A is maintained at R A3 . When the current i A of the thermistor 16 becomes larger than the current i B of the thermistor 17, it can be detected that the snowfall state has occurred. Further, the difference in current value (i A −i B ) or the difference in power (P = P A
P B ), the amount of electric power required to keep the thermistor 16 at the same temperature as the thermistor 17 is known, so the snowfall intensity V (g / c
m 2 · min) can be obtained.

【0014】即ち、降る雪を受ける受雪用熱伝導板10
の受雪面積S(cm2)に降る降雪量は1分当りS・V
(g/分)であり、これが3℃のサーミスタ16の熱に
より融解されるため、雪の融解熱を80cal/gとす
れば、その熱量は80・S・V(cal/分)となる。
一方、電力の差P(watt・秒)は、1分間当り60
・P/4.2(cal/分)であるから、 60・P/4.2=80・S・V V=P/5.6・S (1) となる。主サーミスタ16と副サーミスタ17とが消費
した電力量を電力量計37及び38で計測し、コントロ
ーラ36はその差Pを求め、予め分っている受雪用熱伝
導板10の受雪面積Sとにより、上記式(1)から降雪
強度Vを求める。このコントローラ36で求めた降雪強
度はプリンタ39に印刷され、その降雪強度が所定値を
超えるときには融雪装置40を作動させる。
That is, the snow-conducting heat-conducting plate 10 for receiving falling snow.
Snowfall area S (cm 2 ) of S
(G / min), which is melted by the heat of the thermistor 16 at 3 ° C. Therefore, if the melting heat of snow is 80 cal / g, the amount of heat is 80 · S · V (cal / min).
On the other hand, the power difference P (watt · sec) is 60 per minute.
Since it is P / 4.2 (cal / min), it becomes 60 * P / 4.2 = 80 * S * VV = P / 5.6 * S (1). The amount of electric power consumed by the main thermistor 16 and the sub thermistor 17 is measured by the watt-hour meters 37 and 38, and the controller 36 obtains the difference P, and the snow receiving area S of the snow receiving heat conductive plate 10 which is known in advance. From the above, the snowfall intensity V is obtained from the above equation (1). The snowfall intensity obtained by the controller 36 is printed on the printer 39, and when the snowfall intensity exceeds a predetermined value, the snow melting device 40 is operated.

【0015】[0015]

【実施例】次に本発明の実施例を説明する。本発明はこ
の実施例に限られるものではない。図1に示すように、
塩化ビニルのパイプからなる中空体12及び13の各上
面に銅板からなる受雪用熱伝導板10及び補正用熱伝導
板11をエポキシ系接着剤により取付ける。中空体12
及び13の各サイズはともに外径21mm、内径14m
m、高さ15mmである。また熱伝導板10及び11の
各サイズはともに直径20mm、厚さ0.3mmであ
る。外径2.0mm、内径1.1mm、長さ3.8mm
のガラス管にサーミスタ素子を挿入し、サーミスタ素子
の両端にジュメット線(dumet wire)を押当てた状態で
ガラス管内にサーミスタ素子を封入して作られたサーミ
スタを2つ用意する。これらのサーミスタはともに3℃
の抵抗値R3が6.0kΩであって、3℃と25℃の間
のB定数が3370Kである線径0.3mmのリード付
きのDHT(double heat-sink diode thermister)型
サーミスタである。一方のサーミスタを主サーミスタ1
6としてこれを受雪用熱伝導板10の裏面に、他方のサ
ーミスタを副サーミスタ17としてこれを補正用熱伝導
板11の裏面にそれぞれエポキシ系接着剤で樹脂モール
ドして固定する。
EXAMPLES Next, examples of the present invention will be described. The invention is not limited to this embodiment. As shown in Figure 1,
A snow-receiving heat conduction plate 10 and a correction heat conduction plate 11 made of a copper plate are attached to the upper surfaces of hollow bodies 12 and 13 made of vinyl chloride pipe by an epoxy adhesive. Hollow body 12
Outer diameter is 21mm and inner diameter is 14m.
m, height 15 mm. Further, each size of the heat conduction plates 10 and 11 has a diameter of 20 mm and a thickness of 0.3 mm. Outer diameter 2.0 mm, inner diameter 1.1 mm, length 3.8 mm
Insert the thermistor element into the glass tube and prepare two thermistors made by enclosing the thermistor element in the glass tube with the dumet wire pressed against both ends of the thermistor element. Both of these thermistors are 3 ° C
Has a resistance R 3 of 6.0 kΩ and a B constant between 3 ° C. and 25 ° C. of 3370 K and is a DHT (double heat-sink diode thermister) type thermistor with a wire diameter of 0.3 mm. One thermistor is the main thermistor 1
6 is fixed to the back surface of the snow-receiving heat conductive plate 10 and the other thermistor is used as the sub thermistor 17 by resin molding with an epoxy adhesive on the back surface of the correction heat conductive plate 11.

【0016】サーミスタ及び熱伝導板を有する中空体1
2及び13を基板21にねじ19により両者を約7cm
離してそれぞれ取付ける。図1に示す電気回路の配線1
6a及び17aをサーミスタ16及び17にそれぞれ接
続する。中空体13には上面に孔がなく側面に直径1.
5mmの多数の通気孔18aの開いた直径70mm、高
さ70mmの筒状のカバー18を被せ、その中心に中空
体13が位置するようにねじ19で固定する。降雪のな
い状態で、計測の準備をした。即ち補正用熱伝導板11
のサーミスタ17に自己加熱が生じない程度の微弱な1
μAの電流を流し、その抵抗値を測定した結果、6.7
4kΩで、温度に換算すると約0℃であった。補正用熱
伝導板11のサーミスタ14の抵抗値が6kΩ以上とな
っていたため、iBの電流を増加させ6kΩ、即ち3℃
に保つこととした。これに要した電流値は1.2mAで
あった。この時の受雪用熱伝導板10を3℃に保つに必
要なサーミスタ16の電流値も同様に1.2mAであっ
た。
Hollow body 1 having a thermistor and a heat conducting plate
Approximately 7 cm of 2 and 13 on the substrate 21 with the screw 19
Install separately. Wiring 1 of the electric circuit shown in FIG.
6a and 17a are connected to the thermistors 16 and 17, respectively. The hollow body 13 has no holes on the upper surface and a diameter of 1.
A cylindrical cover 18 having a diameter of 70 mm and a height of 70 mm in which a large number of 5 mm vent holes 18a are opened is covered, and is fixed by a screw 19 so that the hollow body 13 is located at the center thereof. I prepared for measurement without snowfall. That is, the correction heat conduction plate 11
Thermistor 17 is weak enough to prevent self-heating.
As a result of measuring the resistance value by applying a current of μA, 6.7
It was 4 kΩ and was about 0 ° C. when converted into temperature. Since the resistance value of the thermistor 14 of the correction heat conduction plate 11 was 6 kΩ or more, the current of i B was increased to 6 kΩ, that is, 3 ° C.
I decided to keep it. The current value required for this was 1.2 mA. At this time, the current value of the thermistor 16 required to keep the snow-receiving heat conductive plate 10 at 3 ° C. was also 1.2 mA.

【0017】次に、計測を開始した。雪が降り始める
と、受雪用熱伝導板10の抵抗値RAは6kΩから増加
し始めたため、更に電流iAを増加させ、この抵抗値RA
を6.0kΩの抵抗値RA3とするようにした。この電流
値iAがiBより大きくなることから、雪が降り始めたこ
とを検知できた。続いて、降雪強度がほぼ一定とみなさ
れる時間内で、ビーカーに雪を一定時間受け、一定面積
に降る雪の量を算出した。この時の重量より算出した降
雪強度は1.6mg/分・cm2であった。一方、この
際の受雪用熱伝導板10のサーミスタ16に流した電流
は平均3.3mA、受雪用熱伝導板10のサーミスタ1
7に流した電流は平均1.1mAであり、その差は2.
2mAであった。この時のサーミスタ16とサーミスタ
17との電力量の差Pは P=i2・R=(2.2×10-32×6×103=2.
9×10-2(W)、 面積Sは3.14cm2であるから、前述した式(1)
より V=P/5.6・S=1.65mg/分・cm2 となり、ビーカーで採取した量より算出した値とほぼ一
致していることを確かめた。更に、雪が雨に変った状態
では、電流iBを1μAまで低下させても抵抗値は6K
Ω以下、即ち3℃以上となり雪と雨の区別ができること
が判った。
Next, the measurement was started. When the snow started to fall, the resistance value R A of the snow-receiving heat conductive plate 10 started to increase from 6 kΩ, so that the current i A was further increased and the resistance value R A was increased.
To have a resistance value R A3 of 6.0 kΩ. Since the current value i A was larger than i B , it was possible to detect that the snow started to fall. Subsequently, the beaker was exposed to snow for a certain period of time within which the snowfall intensity was considered to be almost constant, and the amount of snow falling on a certain area was calculated. The snowfall intensity calculated from the weight at this time was 1.6 mg / min · cm 2 . On the other hand, the current flowing through the thermistor 16 of the snow receiving heat conductive plate 10 at this time is 3.3 mA on average, and the thermistor 1 of the snow receiving heat conductive plate 10 is
The average current passed through No. 7 was 1.1 mA, and the difference was 2.
It was 2 mA. At this time, the difference P in the amount of electric power between the thermistor 16 and the thermistor 17 is P = i 2 · R = (2.2 × 10 −3 ) 2 × 6 × 10 3 = 2.
9 × 10 -2 (W) and the area S is 3.14 cm 2 , so the above formula (1)
As a result, V = P / 5.6 · S = 1.65 mg / min · cm 2 , and it was confirmed that the values were almost the same as the values calculated from the amount collected by the beaker. Furthermore, when the snow i turns into rain, the resistance value is 6K even if the current i B is reduced to 1 μA.
It was found that the temperature was below Ω, that is, above 3 ° C, and it was possible to distinguish between snow and rain.

【0018】[0018]

【発明の効果】本発明は、熱伝導板にサーミスタを接触
して設けたものであり、特にサーミスタ自身を自己加熱
させて受雪用熱伝導板を一定の温度に維持することがで
きるため、降雪検知システムが極めて簡単となる。この
ため、ごみ等による誤動作がなく、小型で、しかも低価
格な降雪検知システムを得ることができ、かつサーミス
タ自身が温度センサであるため、気温が高い状態では動
作しないように設計されているので、省電力化が可能で
ある。また、降る雪を受ける受雪用熱伝導板と降る雪を
受けない補正用熱伝導板に接触して設けられた主サーミ
スタと副サーミスタのサーミスタ特性と抵抗値を同一に
することにより、降雪後にサーミスタに流れる電流の増
加量を精度良く測定することができる。また、サーミス
タは温度変化に対し、極めて大きな感度を有し、かつサ
ーミスタは熱電対のような基準点(ゼロ接点)を要しな
いから、高精度化も容易である。
According to the present invention, the thermistor is provided in contact with the heat conducting plate, and in particular, the thermistor itself can be self-heated to maintain the snow conducting heat conducting plate at a constant temperature. The snowfall detection system becomes extremely simple. Therefore, there is no malfunction due to dust etc., it is possible to obtain a small, low-priced snow detection system, and since the thermistor itself is a temperature sensor, it is designed not to operate in high temperature conditions. It is possible to save power. In addition, by making the thermistor characteristics and resistance values of the main thermistor and auxiliary thermistor, which are provided in contact with the snow-receiving heat conduction plate that receives the falling snow and the correction heat conduction plate that does not receive the falling snow, to be the same after the snowfall. It is possible to accurately measure the increase amount of the current flowing in the thermistor. Further, since the thermistor has extremely high sensitivity to temperature changes, and the thermistor does not require a reference point (zero contact point) like a thermocouple, it is easy to achieve high accuracy.

【0019】更に、降った雪の融解熱を利用して降雪量
を求めるので、降る雪を検知する受雪用熱伝導板を3℃
に保持するに必要な単位面積当りの電力量が容易に分
る。この電力量が雪を融解するために必要なその時点で
の電力量であるから、これにより融雪装置と組合わせれ
ば、その積雪状態及び気温、気流、湿度等の外気の状態
に応じて融雪装置の電力を調節できるため、融雪装置の
省電力化が可能である。なお、サーミスタは熱電対と比
べると温度に対する感度が高く、しかも抵抗値を種々選
べるから容易に感度を上げることができる。例えば、比
較的起電力が大きいクロメル−アルメル熱電対の場合で
も1℃当り0.04mVに対し、サーミスタでは1℃当
り約4%抵抗値が変化するから、抵抗値5kΩ、電流値
1mAでは200mV、1μAでも0.2mVと検出感
度が極めて高く、検出回路が簡単になる。
Further, since the amount of snowfall is obtained by utilizing the heat of melting of the snowfall, a heat receiving plate for receiving snow for detecting the snowfall is set at 3 ° C.
The amount of electric power per unit area required for holding is easily known. Since this amount of electric power is the amount of electric power required at that time to melt the snow, if this is combined with the snow melting device, the snow melting device can be adjusted according to the snow accumulation state and the outside air conditions such as temperature, airflow, and humidity. Since the power of the snow melting device can be adjusted, it is possible to save the power of the snow melting device. It should be noted that the thermistor has a higher sensitivity to temperature than a thermocouple, and since the resistance value can be selected variously, the sensitivity can be easily increased. For example, even in the case of a chromel-alumel thermocouple having a relatively large electromotive force, the resistance value changes by about 4% per 1 ° C. in the thermistor, while it is 0.04 mV per 1 ° C., so that the resistance value is 5 kΩ and the current value is 1 mA, 200 mV. Even 1 μA has a very high detection sensitivity of 0.2 mV, which simplifies the detection circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の降雪量計測装置の構成図。FIG. 1 is a configuration diagram of a snowfall measuring device according to an embodiment of the present invention.

【図2】本発明の別の実施例の降雪量計測装置の構成
図。
FIG. 2 is a configuration diagram of a snowfall measuring device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 受雪用熱伝導板 11 補正用熱伝導板 12,13,14 中空体 14a 中空体内部 16 主サーミスタ 17 副サーミスタ 31 主サーミスタ用電力供給回路 32 副サーミスタ用電力供給回路 33 第1電圧検出回路 34 第2電圧検出回路 36 コントローラ 37 第1電力量計 38 第2電力量計 10 Snow-receiving heat conduction plate 11 Correction heat conduction plate 12, 13, 14 Hollow body 14a Hollow body inside 16 Main thermistor 17 Sub-thermistor 31 Main thermistor power supply circuit 32 Sub-thermistor power supply circuit 33 First voltage detection circuit 34 2nd voltage detection circuit 36 Controller 37 1st electric energy meter 38 2nd electric energy meter

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 降る雪を受ける受雪用熱伝導板(10)と、 降る雪を受けない補正用熱伝導板(11)と、 前記受雪用熱伝導板(10)に接触して設けられ自己加熱に
より前記受雪用熱伝導板(10)を加熱可能な主サーミスタ
(16)と、 前記補正用熱伝導板(11)に接触して設けられ自己加熱に
より前記補正用熱伝導板(11)を加熱可能な副サーミスタ
(17)と、 前記主サーミスタ(16)に印加される電圧を検出する第1
電圧検出回路(33)と、 前記副サーミスタ(17)に印加される電圧を検出する第2
電圧検出回路(34)と、 前記副サーミスタ(17)に電流を流して前記副サーミスタ
(17)を自己加熱させ前記第2電圧検出回路(34)の出力に
基づいて前記副サーミスタ(17)の抵抗値(RB)を降雪時の
所定の外気温に相応した第2抵抗値(RB3)になるように
調整維持する副サーミスタ用電力供給回路(32)と、 前記主サーミスタ(16)に電流を流して前記主サーミスタ
(16)を自己加熱させ前記第1電圧検出回路(33)の出力に
基づいて前記主サーミスタ(16)の抵抗値(RA)を前記所定
の外気温に相応した第1抵抗値(RA3)になるように調整
維持する主サーミスタ用電力供給回路(31)と、 前記主サーミスタ用電力供給回路(31)が供給した電力量
を計測する第1電力量計(37)と、 前記副サーミスタ用電力供給回路(32)が供給した電力量
を計測する第2電力量計(38)とを備えた降雪量計測装
置。
1. A heat conduction plate (10) for receiving snow, a correction heat conduction plate (11) which does not receive snow, and a heat conduction plate (10) for contacting the snow. Main thermistor capable of heating the snow-receiving heat conduction plate (10) by self-heating
(16) and an auxiliary thermistor which is provided in contact with the correction heat conduction plate (11) and can heat the correction heat conduction plate (11) by self-heating.
(17) and a first for detecting a voltage applied to the main thermistor (16)
A second voltage detecting circuit (33) for detecting a voltage applied to the auxiliary thermistor (17)
A voltage is detected in the voltage detection circuit (34) and in the sub thermistor (17).
(17) is self-heated, and the resistance value (R B ) of the sub thermistor (17) is adjusted to a second resistance value (corresponding to a predetermined outside temperature during snowfall) based on the output of the second voltage detection circuit (34). R B3 ), the main thermistor power supply circuit (32) for adjusting and maintaining the main thermistor (16) and the main thermistor (16).
(16) is self-heated, and the resistance value (R A ) of the main thermistor (16) is adjusted based on the output of the first voltage detection circuit (33) to the first resistance value (R A3 The main thermistor power supply circuit (31) that adjusts and maintains the power consumption of the main thermistor, the first watt hour meter (37) that measures the amount of power supplied by the main thermistor power supply circuit (31), and the sub thermistor. A snowfall measuring device comprising a second watt hour meter (38) for measuring the amount of electric power supplied by the electric power supply circuit (32).
【請求項2】 第1及び第2電圧検出回路(33,34)の各
検出電圧値から主サーミスタ用及び副サーミスタ用電力
供給回路(31,32)をそれぞれ制御し、第1及び第2電力
量計(37,38)の各計測した電力量から両電力量の差異を
求めこの差異から受雪用熱伝導板(10)が受けた雪の融解
に要した熱量を求め前記熱量を前記受雪用熱伝導板(10)
の受雪面積で除算して降雪強度を出力するコントローラ
(36)を備えた請求項1記載の降雪量計測装置。
2. The power supply circuits (31, 32) for the main thermistor and the auxiliary thermistor are controlled from the respective detected voltage values of the first and second voltage detection circuits (33, 34) to control the first and second power supplies, respectively. The difference between the electric energy measured by each of the electricity meters (37, 38) is calculated and the heat quantity required for melting the snow received by the snow-receiving heat conduction plate (10) is calculated from the difference. Heat conduction plate for snow (10)
Controller that outputs the snowfall intensity by dividing by the snowfall area
The snowfall measuring device according to claim 1, further comprising (36).
【請求項3】 受雪用熱伝導板(10)がその表面に降る雪
を受けるように設けられ、 主サーミスタ(16)が前記受雪用熱伝導板(10)の裏面に接
触して設けられ、 副サーミスタ(17)が補正用熱伝導板(11)の表面又は裏面
に接触して設けられた請求項1記載の降雪量計測装置。
3. A snow-receiving heat-conducting plate (10) is provided so as to receive snow falling on its surface, and a main thermistor (16) is provided in contact with the back surface of the snow-receiving heat-conducting plate (10). The snowfall measuring device according to claim 1, wherein the auxiliary thermistor (17) is provided in contact with the front surface or the back surface of the correction heat conduction plate (11).
【請求項4】 補正用熱伝導板(11)は受雪用熱伝導板(1
0)と同一形状でかつ同一材料である請求項1記載の降雪
量計測装置。
4. The correction heat conduction plate (11) is a snow reception heat conduction plate (1).
The snowfall measuring device according to claim 1, which has the same shape and the same material as those of 0).
【請求項5】 副サーミスタ(17)のサーミスタ特性が主
サーミスタ(16)のサーミスタ特性と同一であって、第1
抵抗値(RA3)が第2抵抗値(RB3)と同一である請求項1記
載の降雪量計測装置。
5. The thermistor characteristic of the auxiliary thermistor (17) is the same as the thermistor characteristic of the main thermistor (16),
The snowfall measuring device according to claim 1, wherein the resistance value (R A3 ) is the same as the second resistance value (R B3 ).
【請求項6】 中空体(14)の上面に受雪用熱伝導板(10)
が設けられ、前記中空体(14)の下面に補正用熱伝導板(1
1)が設けられ、前記中空体内部(14a)を臨む前記受雪用
熱伝導板(10)の内面に主サーミスタ(16)が設けられ、前
記中空体内部(14a)を臨む前記補正用熱伝導板(11)の内
面に副サーミスタ(17)が設けられた請求項1記載の降雪
量計測装置。
6. A heat conducting plate (10) for receiving snow on the upper surface of a hollow body (14).
Is provided on the lower surface of the hollow body (14) for correction heat conduction plate (1
1) is provided, the main thermistor (16) is provided on the inner surface of the snow-receiving heat conduction plate (10) that faces the inside of the hollow body (14a), and the correction heat that faces the inside of the hollow body (14a) is provided. The snowfall measuring device according to claim 1, wherein an auxiliary thermistor (17) is provided on the inner surface of the conductive plate (11).
【請求項7】 受雪用熱伝導板(10)が勾配をつけて設け
られた請求項1又は請求項2記載の降雪量計測装置。
7. The snowfall measuring device according to claim 1 or 2, wherein the snow-receiving heat conduction plate (10) is provided with a slope.
【請求項8】 降る雪を受けない補正用熱伝導板(11)に
接触して設けられた副サーミスタ(17)に前記副サーミス
タ(17)が自己加熱しない程度の微弱電流を流し、 前記微弱電流による前記副サーミスタ(17)の抵抗値(RB)
を計測し、 降雨が雪に変わる所定の外気温になったとき、前記副サ
ーミスタ(17)に電流を流して前記副サーミスタ(17)を自
己加熱させてその抵抗値(RB)を前記所定の外気温に相応
した第2抵抗値(RB3)になるように調整維持し、 降る雪を受ける受雪用熱伝導板(10)に接触して設けられ
た主サーミスタ(16)に電流を流してその抵抗値(RA)を前
記所定の外気温に相応した第1抵抗値(RA3)になるよう
に調整維持し、 前記主サーミスタ(16)が消費した電力量を計測し、 前記副サーミスタ(17)が消費した電力量を計測し、 前記両電力量の差異を求め、 この差異から前記受雪用熱伝導板(10)が受けた雪の融解
に要した熱量を求め、 前記熱量を前記受雪用熱伝導板(10)の受雪面積で除算し
て降雪強度を求める降雪量計測方法。
8. A weak current is supplied to a sub-thermistor (17) provided in contact with a correction heat conduction plate (11) which does not receive falling snow so that the sub-thermistor (17) does not self-heat, Resistance value (R B ) of the sub thermistor (17) due to current
When the rainfall reaches a predetermined outside temperature that changes to snow, a current is passed through the sub thermistor (17) to self-heat the sub thermistor (17) and the resistance value (R B ) thereof is set to the predetermined value. Adjust and maintain the second resistance value (R B3 ) corresponding to the outside temperature of the snow, and apply current to the main thermistor (16) provided in contact with the snow-receiving heat conduction plate (10) that receives the falling snow. Flowing and adjusting and maintaining the resistance value (R A ) so as to become the first resistance value (R A3 ) corresponding to the predetermined outside air temperature, measuring the amount of power consumed by the main thermistor (16), The amount of power consumed by the sub thermistor (17) is measured, the difference between the two amounts of power is obtained, and the amount of heat required to melt the snow received by the snow-receiving heat conductive plate (10) is obtained from this difference, A snowfall amount measuring method for obtaining a snowfall intensity by dividing the amount of heat by the snow-receiving area of the snow-receiving thermal conductive plate (10).
JP15147592A 1992-05-19 1992-05-19 Apparatus and method for measuring snowfall Pending JPH05323046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15147592A JPH05323046A (en) 1992-05-19 1992-05-19 Apparatus and method for measuring snowfall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15147592A JPH05323046A (en) 1992-05-19 1992-05-19 Apparatus and method for measuring snowfall

Publications (1)

Publication Number Publication Date
JPH05323046A true JPH05323046A (en) 1993-12-07

Family

ID=15519327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15147592A Pending JPH05323046A (en) 1992-05-19 1992-05-19 Apparatus and method for measuring snowfall

Country Status (1)

Country Link
JP (1) JPH05323046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191056A (en) * 2007-02-06 2008-08-21 Sumai Kankyo Planning:Kk Snowfall sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191056A (en) * 2007-02-06 2008-08-21 Sumai Kankyo Planning:Kk Snowfall sensor

Similar Documents

Publication Publication Date Title
JP3553657B2 (en) How to measure relative humidity
US6694174B2 (en) Infrared thermometer with heatable probe tip and protective cover
US6098457A (en) Fluid level detector using thermoresistive sensor
JP3442503B2 (en) Humidity measurement method and structure for radiosonde meteorological observation
EP0749013B1 (en) Humidity sensor
JPWO2017213118A1 (en) Dew point measuring method and dew point measuring apparatus
SE461177B (en) DEVICE FOR Saturation of thermal properties of a test substance
GB2373582A (en) Temperature sensing probe assembly
EP0564625A4 (en) Regulated infrared source
US5440924A (en) Heating resistor type air flow meter with separate/processing unit
JPH0797113B2 (en) Wind direction and wind speed measurement method and device
JPH05323047A (en) Apparatus and method for measuring snowfall
JPH07218465A (en) Detector and method for observing presence of liquid or change in phase in liquid or both
JP2007225612A (en) Level sensor, its operation method, its manufacturing method, and its usage
US8115139B2 (en) Heatable infrared sensor and infrared thermometer comprising such an infrared sensor
JPH05323046A (en) Apparatus and method for measuring snowfall
JPH05323045A (en) Apparatus and method for measuring snowfall
EP0062936B1 (en) Temperature sensor
US20030035462A1 (en) Method and apparatus for measuring the level of the contents
JPH05333162A (en) Snow fall detecting device
CN215075531U (en) Heating non-burning smoking set and heating device thereof
JPS62251621A (en) Liquid level detector
JPH11218580A (en) Snowfall detector
WO2022235154A1 (en) Thermal sensor, measurement system, and method of estimating an air temperature and/or a convective heat transfer coefficient
JPH11344578A (en) Detector comprising peltier thermoelectric module

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000524