JP2002339591A - Snow-melting device for solar cell attached roof and snow-melting controlling method - Google Patents

Snow-melting device for solar cell attached roof and snow-melting controlling method

Info

Publication number
JP2002339591A
JP2002339591A JP2001149255A JP2001149255A JP2002339591A JP 2002339591 A JP2002339591 A JP 2002339591A JP 2001149255 A JP2001149255 A JP 2001149255A JP 2001149255 A JP2001149255 A JP 2001149255A JP 2002339591 A JP2002339591 A JP 2002339591A
Authority
JP
Japan
Prior art keywords
solar cell
cell panel
roof
snow melting
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001149255A
Other languages
Japanese (ja)
Other versions
JP3884627B2 (en
Inventor
Hirofumi Ida
浩文 井田
Masahito Iijima
雅人 飯島
Norikazu Sakai
則和 坂井
Hironobu Hisashi
博信 久志
Masao Mabuchi
雅夫 馬渕
Takashi Ito
伊藤  隆
Kengo Wakabayashi
賢吾 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MSK CORP
Misawa Homes Co Ltd
Omron Corp
Original Assignee
MSK CORP
Misawa Homes Co Ltd
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MSK CORP, Misawa Homes Co Ltd, Omron Corp, Omron Tateisi Electronics Co filed Critical MSK CORP
Priority to JP2001149255A priority Critical patent/JP3884627B2/en
Publication of JP2002339591A publication Critical patent/JP2002339591A/en
Application granted granted Critical
Publication of JP3884627B2 publication Critical patent/JP3884627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a snow-melting device for a solar cell attached roof capable of promoting snow-melting efficiency and power generating efficiency. SOLUTION: The snow-melting device 20 includes an invertor 14 applying a predetermined voltage to a solar cell panel 11, a current detecting section 22 for detecting a current value flowing to the solar cell panel 11 in the case the predetermined voltage is applied to the solar cell panel 11 and a power source control section 23 for stopping the applied voltage from a power source section 21 when the current value detected by the current detecting section 22 becomes a set point set in advance. A state of fallen snow on the solar cell panel 11 can be decided by the current value flowing to the solar call panel 11, and when the fallen snow on the solar cell panel 11 is melted away, the applied voltage to the solar cell panel 11 can be automatically stopped. For that purpose, though there is no snow on the solar cell attached roof, the solar cell panel 11 is not heated, and the snow-melting efficiency and the power generating efficiency can be promoted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光を受光して
電力に変換する複数の太陽電池パネルが屋根面に縦横に
配列された太陽電池付屋根の融雪装置および融雪制御方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snow melting apparatus and a snow melting control method for a roof with solar cells in which a plurality of solar cell panels for receiving sunlight and converting it into electric power are arranged vertically and horizontally on a roof surface. .

【0002】[0002]

【背景技術】従来より、環境や生態系に悪影響を与えな
いクリーンなエネルギーとして太陽エネルギーが知られ
ている。太陽エネルギーを利用するに当たり、太陽の光
を電気に変換する太陽電池が利用されている。このよう
な太陽電池を家庭でも利用できるようにするために、屋
根面に太陽電池が設置された太陽電池付屋根が知られて
いる。太陽電池付屋根に設置される太陽電池は、水によ
る漏電や短絡等の事故を未然に防止する必要があり、太
陽電池であるソーラーセルを平板状の完全防水ケースの
内部に収めて太陽電池パネルとして設置されている。こ
の太陽電池パネルは、一枚で所定の電圧および電力が得
られるように、所定枚数のソーラーセルを有するものと
なっている(特開平10−140770号公報等参
照)。
BACKGROUND ART Conventionally, solar energy has been known as clean energy which does not adversely affect the environment and ecosystem. In using solar energy, a solar cell that converts sunlight into electricity is used. In order to make such a solar cell usable at home, a roof with a solar cell in which a solar cell is installed on a roof surface is known. Solar cells installed on roofs with solar cells need to prevent accidents such as electrical leakage and short circuits due to water.Solar cells, which are solar cells, are housed inside a flat, completely waterproof case, and solar cell panels It is installed as. This solar cell panel has a predetermined number of solar cells so that a predetermined voltage and power can be obtained by one sheet (see Japanese Patent Application Laid-Open No. H10-140770).

【0003】ここで、降雪地帯等で雪が降り、その雪が
太陽電池付屋根に積もると、太陽電池パネルは太陽の光
を受光することができないため、発電することができな
い。この状態は、雪が止んでも太陽電池付屋根に積もっ
た雪が融けるまで続く。このため、屋根面上に散水器や
電熱シートを設置して太陽電池付屋根に積もった雪を強
制的に融かすことが行われている。しかし、屋根面上に
散水器や電熱シートを設置すると、その分太陽電池パネ
ルの設置枚数が少なくなり、太陽電池付屋根の発電効率
が低下することから、近年では、太陽電池パネル自体に
電圧を印加し、当該太陽電池パネルを発熱させて太陽電
池付屋根に積もった雪を融かす技術が開発されている。
Here, when snow falls in a snowfall zone or the like and the snow piles up on the roof with solar cells, the solar cell panels cannot receive the light of the sun and cannot generate electricity. This state continues until the snow on the solar cell roof melts even if the snow stops. For this reason, a sprinkler or an electric heating sheet is installed on the roof surface to forcibly melt snow accumulated on the roof with solar cells. However, installing a sprinkler or electric heating sheet on the roof surface reduces the number of solar panels installed by that amount and reduces the power generation efficiency of the roof with solar cells. A technique has been developed in which the applied solar cell panel generates heat to melt snow accumulated on a roof with solar cells.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、太陽電
池パネルを発熱させて太陽電池付屋根に積もった雪を融
かしている間は、発電することができず、特に、太陽電
池パネルに印加する電圧を止める作業は手動で行うの
で、既に太陽電池付屋根に雪がないにも関わらず、太陽
電池パネルを発熱させている場合があり、融雪効率およ
び発電効率が悪いという問題がある。
However, while the solar cell panel is generating heat and melting the snow accumulated on the roof with solar cells, power cannot be generated, and in particular, power is applied to the solar cell panel. Since the operation of stopping the voltage is performed manually, the solar cell panel may generate heat even though the roof with the solar cell does not already have snow, and there is a problem that the snow melting efficiency and the power generation efficiency are poor.

【0005】本発明の目的は、融雪効率および発電効率
を向上させることが可能な太陽電池付屋根の融雪装置お
よび融雪制御方法を提供することにある。
An object of the present invention is to provide a snow melting apparatus for a roof with a solar cell and a snow melting control method capable of improving snow melting efficiency and power generation efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は、図面を参照し
て説明すると、太陽光を受光して電力に変換する複数の
太陽電池パネル11が屋根面2Aに縦横に配列された太
陽電池付屋根2の融雪装置20であって、太陽電池パネ
ル11に所定の電圧を印加する電源部(例えばインバー
タ14)と、太陽電池パネル11に所定の電圧が印加さ
れた際の当該太陽電池パネル11に流れる電流値を検出
する電流検出部22と、この電流検出部22で検出され
た電流値が予め設定された設定電流値となった場合に、
電源部による電圧の印加を停止する電源制御部23とを
備えていることを特徴とする。ここで、電源部として
は、例えば、太陽電池パネルで発電した直流電力を交流
電力に変換し、当該交流電力を出力するインバータが、
交流電力を直流電力に変換し、当該直流電力を出力する
ことも可能な双方向インバータであれば、この双方向イ
ンバータを採用してもよいし、このインバータとは別に
融雪装置を構成する専用のものを採用してもよい。ま
た、所定の電圧を印加した際の太陽電池パネルに流れる
電流値は、表面温度が0℃近傍(具体的には、−5℃〜
+5℃が好ましく、より好ましくは−3℃〜+3℃、さ
らにより好ましくは−2℃〜+2℃である。)とされた
太陽電池パネルの電圧電流特性から得られる値であるこ
とが好ましい。また、設定電流値としては、太陽電池パ
ネルの表面温度が0℃近傍(具体的には、−5℃〜+5
℃が好ましく、より好ましくは−3℃〜+3℃、さらに
より好ましくは−2℃〜+2℃である。)から外れた温
度になった場合に流れる電流値が採用できる。
The present invention will be described with reference to the accompanying drawings. Referring to the drawings, a plurality of solar cell panels 11 for receiving sunlight and converting it into electric power are provided on a roof surface 2A. A power supply unit (for example, an inverter 14) that applies a predetermined voltage to the solar cell panel 11, which is a snow melting device 20 of the roof 2, and a solar cell panel 11 when a predetermined voltage is applied to the solar cell panel 11. A current detecting unit 22 for detecting a flowing current value; and, when the current value detected by the current detecting unit 22 becomes a preset current value,
A power supply control unit that stops application of a voltage by the power supply unit. Here, as the power supply unit, for example, an inverter that converts DC power generated by the solar cell panel into AC power and outputs the AC power,
Any bi-directional inverter that can convert AC power to DC power and output the DC power may employ this bi-directional inverter, or may be dedicated to configuring a snow melting device separately from this inverter. A thing may be adopted. Further, when a predetermined voltage is applied, the value of the current flowing through the solar cell panel is such that the surface temperature is around 0 ° C. (specifically, −5 ° C.
The temperature is preferably + 5 ° C, more preferably -3 ° C to + 3 ° C, and even more preferably -2 ° C to + 2 ° C. ) Is preferably a value obtained from the voltage-current characteristics of the solar cell panel. The set current value is such that the surface temperature of the solar cell panel is close to 0 ° C. (specifically, −5 ° C. to + 5 ° C.).
C is preferable, more preferably -3C to + 3C, and still more preferably -2C to + 2C. ) Can be adopted as the value of the current flowing when the temperature is out of the range.

【0007】つまり、太陽電池パネルは、温度によって
内部抵抗が変化するようになっており、電圧が一定であ
れば、当該太陽電池パネルに流れる電流が温度によって
変化する。この特性を利用し、所定の電圧を印加した
際、電流値が、表面温度が0℃近傍とされた太陽電池パ
ネルの電圧電流特性から得られる値であれば、太陽電池
パネル上に雪が積もっていると判断され、これにより、
融雪運転が継続される。一方、所定の電圧を印加した
際、電流値が太陽電池パネルの表面温度が0℃近傍から
外れた温度になった場合に流れる設定電流値であれば、
表面温度が0℃近傍ではない状態、言い換えると、太陽
電池パネル上に雪がない状態と判断され、これにより、
融雪運転が停止する。
[0007] That is, the internal resistance of the solar cell panel changes according to the temperature. If the voltage is constant, the current flowing through the solar cell panel changes according to the temperature. Utilizing this characteristic, when a predetermined voltage is applied, if the current value is a value obtained from the voltage-current characteristic of the solar cell panel whose surface temperature is close to 0 ° C., snow is accumulated on the solar cell panel. Is determined to be
Snow melting operation is continued. On the other hand, when a predetermined voltage is applied, if the current value is a set current value that flows when the surface temperature of the solar cell panel becomes a temperature outside the vicinity of 0 ° C.,
It is determined that the surface temperature is not close to 0 ° C., in other words, that there is no snow on the solar cell panel,
Snow melting operation stops.

【0008】このような本発明によれば、太陽電池パネ
ルに流れる電流値によって当該太陽電池パネル上の積雪
状態を判断することができ、太陽電池パネル上に積もっ
ていた雪がなくなると、自動的に太陽電池パネルへの電
圧の印加を停止することが可能となるので、既に太陽電
池付屋根に雪がないにも関わらず、太陽電池パネルを発
熱させていることがなく、これにより、融雪効率および
発電効率を向上させることが可能となる。
According to the present invention, it is possible to determine the snow condition on the solar cell panel based on the value of the current flowing through the solar cell panel, and when the snow accumulated on the solar cell panel disappears, it is automatically determined. Since the application of voltage to the solar cell panel can be stopped, the solar cell panel does not generate heat even though there is no snow on the roof with solar cells. Efficiency can be improved.

【0009】以上において、前述の融雪装置20は、太
陽電池パネル11を発電状態にする発電制御が行えるよ
うになっており、電源制御部23は、電源部による電圧
印加の停止後、太陽電池パネル11の発電制御に切り替
えることが望ましい。このようにすれば、太陽電池パネ
ルへの電圧の印加を停止した後、自動的に太陽電池パネ
ルを発電状態にすることが可能となるので、融雪状態か
ら発電状態に切り替える際の時間等のロスをほとんどな
くすことが可能となり、これにより、融雪効率および発
電効率を一層向上させることが可能となる。
In the above, the above-described snow melting apparatus 20 is capable of performing power generation control for bringing the solar cell panel 11 into a power generation state, and the power supply control unit 23 operates after the power supply unit stops applying voltage. It is desirable to switch to the eleventh power generation control. With this configuration, it is possible to automatically set the solar cell panel to the power generation state after the application of the voltage to the solar cell panel is stopped. Can be almost eliminated, whereby the snow melting efficiency and the power generation efficiency can be further improved.

【0010】また、前述の融雪装置20は、設定時刻に
応じて動作切替を行うためのタイマ24を有し、電源制
御部23は、タイマ24によって、電源部の制御を自動
的に行うことが好ましい。このようにすれば、太陽電池
付屋根の融雪運転の開始および終了を自動的に行うこと
が可能となるうえ、発電制御を行うことで、融雪運転と
発電運転の自動切替運転を行うことが可能となるので、
融雪効率および発電効率をより一層向上させることが可
能となる。
The above-mentioned snow melting apparatus 20 has a timer 24 for switching the operation according to a set time, and the power control section 23 can automatically control the power section by the timer 24. preferable. In this way, it is possible to automatically start and end the snow melting operation of the roof with the solar cell, and to perform the power generation control, thereby performing the automatic switching operation between the snow melting operation and the power generation operation. So,
Snow melting efficiency and power generation efficiency can be further improved.

【0011】本発明は、前記のような装置だけでなく、
太陽電池パネル11に所定の電圧を印加する電圧印加工
程と、太陽電池パネル11に所定の電圧が印加された際
の当該太陽電池パネル11に流れる電流を検出する電流
検出工程と、この電流検出工程で検出された電流が予め
設定された設定電流値となった場合に、電圧印加工程を
停止する電源制御工程とを備えた太陽電池付屋根2の融
雪制御方法としても成立し、同様な作用効果を得ること
ができる。
[0011] The present invention is not limited to the above-described device.
A voltage application step of applying a predetermined voltage to the solar cell panel 11, a current detection step of detecting a current flowing through the solar cell panel 11 when a predetermined voltage is applied to the solar cell panel 11, and a current detection step When the current detected in step (b) reaches a preset current value, a method for controlling snow melting of the roof with solar cell 2 including a power control step of stopping the voltage application step is also realized. Can be obtained.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1には、本発明の一実施形態に
係る住宅1が示されている。この住宅1は、降雪地帯に
建てられ、太陽光を複数の太陽電池パネル11(後述)
で受光し、当該受光した太陽光から電力を得るための太
陽光発電装置10と、この太陽電池パネル11上に積も
った雪を融かすための融雪装置20とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a house 1 according to an embodiment of the present invention. The house 1 is built in a snowfall area, and transmits sunlight to a plurality of solar cell panels 11 (described later).
And a snow melting device 20 for melting the snow accumulated on the solar cell panel 11 for receiving power from the received sunlight.

【0013】詳しくは、太陽光発電装置10は、太陽光
で発電する太陽電池であるソーラーセルを平板状の完全
防水ケースの内部に収めた太陽電池パネル11により、
太陽光を電気に変換して利用するものである。この太陽
光発電装置10は、住宅1の勾配屋根2の屋根面2Aに
配置された複数の太陽電池パネル11と、各太陽電池パ
ネル11からの出力をまとめる接続器であるターミナル
ボックス12と、このターミナルボックス12でまとめ
られた電気を直流から交流に変換するインバータ14と
を含んで構成されている。これにより、勾配屋根2は太
陽電池付屋根とされている。従って、各太陽電池パネル
11で変換された直流電力は、ターミナルボックス12
でまとめられ、インバータ14に出力される。そして、
インバータ14に入力された直流電力は、交流電力に変
換され、分電盤15を介して住宅1内の図示しない照明
設備や空調装置等の設備機器に供給される。
More specifically, the photovoltaic power generator 10 includes a solar cell panel 11 in which a solar cell, which is a solar cell that generates power from sunlight, is housed in a flat waterproof case.
It converts sunlight into electricity for use. The photovoltaic power generation device 10 includes a plurality of solar panels 11 arranged on a roof surface 2A of a sloped roof 2 of a house 1, a terminal box 12 which is a connector for integrating outputs from the respective solar panels 11, and An inverter 14 converts the electricity collected by the terminal box 12 from DC to AC. Thus, the sloped roof 2 is a roof with solar cells. Therefore, the DC power converted by each solar cell panel 11 is supplied to the terminal box 12.
And output to the inverter 14. And
The DC power input to the inverter 14 is converted into AC power, and is supplied to equipment (not shown) such as lighting equipment and air conditioners in the house 1 via the distribution board 15.

【0014】融雪装置20は、太陽電池パネル11上に
積もった雪を融かす融雪運転を行うものであり、電源部
である前述のインバータ14と、融雪コントローラ部2
0Aとを備えて構成されている。つまり、インバータ1
4は、前述の各太陽電池パネル11で変換された直流電
力を交流電力に変換して分電盤15等に出力可能である
とともに、住宅1で利用されている交流電力を直流電力
に変換して太陽電池パネル11に出力することが可能な
双方向インバータである。
The snow melting device 20 performs a snow melting operation for melting snow accumulated on the solar cell panel 11, and includes the inverter 14 as a power supply unit and the snow melting controller unit 2.
0A. That is, inverter 1
4 converts the DC power converted by each solar cell panel 11 into AC power and outputs the AC power to the distribution board 15 and the like, and converts the AC power used in the house 1 into DC power. This is a bidirectional inverter that can output to the solar cell panel 11.

【0015】融雪運転時のインバータ14は、前記各太
陽電池パネル11に所定の電圧を印加するものであり、
このインバータ14から太陽電池パネル11に所定の電
圧を印加することにより、当該太陽電池パネル11が発
熱するようになっている。ここで、太陽電池パネル11
は、温度によって内部抵抗が変化するようになってお
り、電圧が一定であれば、当該太陽電池パネル11に流
れる電流が温度によって変化する。具体的には、図2に
示されるように、太陽電池パネル11の表面温度が約0
℃の場合、曲線Aのような電圧電流特性を示し、同様
に、表面温度が約5℃の場合、曲線Bのような電圧電流
特性を示し、表面温度が約−5℃の場合、曲線Cのよう
な電圧電流特性を示す。なお、本実施形態では、インバ
ータ14から出力される所定の電圧は、太陽電池パネル
1枚当たり30〜35(V)に設定されている。
The inverter 14 during the snow melting operation applies a predetermined voltage to each of the solar cell panels 11.
By applying a predetermined voltage from the inverter 14 to the solar cell panel 11, the solar cell panel 11 generates heat. Here, the solar cell panel 11
The internal resistance changes according to the temperature. If the voltage is constant, the current flowing through the solar cell panel 11 changes according to the temperature. Specifically, as shown in FIG.
° C, a voltage-current characteristic as shown by a curve A is shown. Similarly, when the surface temperature is about 5 ° C, a voltage-current characteristic is shown as a curve B. When the surface temperature is about -5 ° C, a curve C is shown. Voltage-current characteristics as shown in FIG. In the present embodiment, the predetermined voltage output from the inverter 14 is set to 30 to 35 (V) per solar cell panel.

【0016】融雪コントローラ部20Aは、電流検出部
22と、電源制御部23と、タイマ24とを備えて構成
されている。電流検出部22は、インバータ14から太
陽電池パネル11に所定の電圧が印加された際の、当該
インバータ14に流れる電流値を検出するものであり、
検出した電流値は、逐次電源制御部23に出力する。
The snow melting controller 20A includes a current detector 22, a power controller 23, and a timer 24. The current detection unit 22 detects a current value flowing through the inverter 14 when a predetermined voltage is applied from the inverter 14 to the solar cell panel 11.
The detected current values are sequentially output to the power supply control unit 23.

【0017】電源制御部23は、図2に示されるグラフ
をデータベース化した電圧電流特性データベースが内蔵
されており、この電圧電流データベースや、電流検出部
22から入力された電流値、後述するタイマ24等によ
って、インバータ14の制御および発電制御を行うもの
である。具体的には、電源制御部23は、電流検出部2
2から入力された電流値が、インバータ14から太陽電
池パネル11に所定の電圧を印加した際、表面温度が0
℃近傍(具体的には、−5℃〜+5℃が好ましく、より
好ましくは−3℃〜+3℃、さらにより好ましくは−2
℃〜+2℃)から外れた温度になった場合に流れる設定
電流値(図2の領域P1の電流値)であれば、太陽電池
パネル11上に雪がない状態と判断し、インバータ14
による電圧の印加を停止する。そして、電源制御部23
は、インバータ14による電圧の印加を停止した後、太
陽光発電装置10に、インバータ14停止信号および太
陽電池パネル11の発電制御開始信号を出力する(図示
略)。つまり、インバータ14の変換および出力方向を
逆にし、当該インバータ14を各太陽電池パネル11で
変換された直流電力を交流電力に変換して分電盤15等
に出力可能な状態にする。これにより、太陽電池パネル
11を発電状態にする発電制御が自動的に行われるよう
になっている。
The power supply control unit 23 has a built-in voltage-current characteristic database obtained by converting the graph shown in FIG. 2 into a database. The voltage-current database, the current value input from the current detection unit 22, and a timer 24 described later Thus, the control of the inverter 14 and the power generation control are performed. Specifically, the power supply control unit 23
2, when a predetermined voltage is applied to the solar cell panel 11 from the inverter 14, the surface temperature becomes zero.
C. (approximately −5 ° C. to + 5 ° C., more preferably −3 ° C. to + 3 ° C., even more preferably −2 ° C.)
If the set current value (current value in the area P1 in FIG. 2) flows when the temperature is out of the range from (° C. to + 2 ° C.), it is determined that there is no snow on the solar cell panel 11 and the inverter 14
Is stopped. Then, the power control unit 23
Outputs the inverter 14 stop signal and the power generation control start signal of the solar cell panel 11 to the photovoltaic power generation device 10 after stopping the application of the voltage by the inverter 14 (not shown). In other words, the conversion and output directions of the inverter 14 are reversed, so that the inverter 14 converts the DC power converted by each solar cell panel 11 into AC power and outputs the AC power to the distribution board 15 and the like. As a result, power generation control for bringing the solar cell panel 11 into a power generation state is automatically performed.

【0018】一方、電源制御部23は、電流検出部22
から入力された電流値が、インバータ14から太陽電池
パネル11に所定の電圧を印加した際、表面温度が0℃
近傍(具体的には、−5℃〜+5℃が好ましく、より好
ましくは−3℃〜+3℃、さらにより好ましくは−2℃
〜+2℃)とされた場合に流れる電流値(図2の領域P
2の電流値)であれば、太陽電池パネル11上に雪が積
もっている状態と判断し、インバータ14による電圧の
印加を継続させておくようになっている。
On the other hand, the power supply control unit 23
When a predetermined voltage is applied to the solar cell panel 11 from the inverter 14 when the surface temperature is 0 ° C.
Near (specifically, -5 ° C to + 5 ° C is preferable, more preferably -3 ° C to + 3 ° C, and still more preferably -2 ° C.
To + 2 ° C.) (the region P in FIG. 2).
(Current value of 2), it is determined that snow is piled up on the solar cell panel 11, and the application of the voltage by the inverter 14 is continued.

【0019】タイマ24は、設定時刻に応じて動作切替
を行うものであり、電源制御部23に接続されている。
このタイマ24は、融雪運転の開始時刻のみ、または開
始時刻および終了時刻が設定されている。つまり、開始
時刻が来ると、タイマ24は、電源制御部23に開始信
号を出力し、当該電源制御部23は、この開始信号に基
づいてインバータ14による電圧の印加を開始させる。
一方、終了時刻が来ると、タイマ24は、電源制御部2
3に終了信号を出力し、当該電源制御部23は、この終
了信号に基づいてインバータ14による電圧の印加を停
止する。なお、タイマ24の設定時間が開始時刻のみの
場合は、電流検出部22から電源制御部23に入力され
た電流値が、前述の設定電流値となった場合に、インバ
ータ14による電圧の印加が自動的に停止する。ここ
で、タイマ24に設定されている開始時刻および終了時
刻は、日が昇り、太陽電池パネル11上に積もった雪が
融けやすくなるとともに、太陽光発電装置10で発電す
るに至っていない太陽光の強度とされた時間帯が好まし
く、具体的には、朝7時〜9時頃に設定するのがよい。
言い換えれば、この時間帯の2時間程度の融雪運転で太
陽電池パネル11上に積もった雪を融かすことが可能と
なっている。また、落雪防止等により、屋根2上に雪を
積もらせたくない場合は、ある時間毎に融雪運転を行う
方法もある。この場合も、融雪運転は、電流検出部22
で検出された電流値によって制御される。
The timer 24 switches the operation in accordance with the set time, and is connected to the power control unit 23.
In the timer 24, only the start time of the snow melting operation or the start time and the end time are set. That is, when the start time comes, the timer 24 outputs a start signal to the power supply control unit 23, and the power supply control unit 23 starts the application of the voltage by the inverter 14 based on the start signal.
On the other hand, when the end time comes, the timer 24 sets the power control unit 2
Then, the power control unit 23 stops the application of the voltage by the inverter 14 based on the end signal. When the set time of the timer 24 is only the start time, when the current value input from the current detection unit 22 to the power control unit 23 becomes the above-described set current value, the application of the voltage by the inverter 14 is stopped. Stop automatically. Here, the start time and the end time set in the timer 24 indicate that the sun rises, the snow accumulated on the solar cell panel 11 is easily melted, and the intensity of sunlight that has not yet been generated by the solar power generation device 10. It is preferable that the time zone is set to be around 7:00 to 9:00 in the morning.
In other words, it is possible to melt the snow accumulated on the solar cell panel 11 by the snow melting operation for about 2 hours in this time zone. When it is not desired to allow snow to be piled on the roof 2 due to prevention of falling snow, etc., there is a method of performing a snow melting operation every certain time. Also in this case, the snow melting operation is performed by the current detection unit 22.
It is controlled by the current value detected at.

【0020】次に、太陽電池付屋根2の融雪制御手順
を、図3のフローチャートに従って説明する。ここで、
この住宅1は、昼間、太陽光発電装置10で発電を行
い、夜中に、屋根2の太陽電池パネル11上に雪が積も
った状態とする。1)まず、タイマ24は、設定されてい
る開始時間になると、電源制御部23に開始信号を出力
する(処理S1)。2)電源制御部23は、タイマ24か
らの開始信号が入力されると、インバータ14によって
太陽電池パネル11への電圧の印加を開始させる(処理
S2)。なお、電圧印加開始時点では、電流値が設定電
流値となる場合があるので、開始後一定の時間は、当該
電流値が設定電流値であっても融雪運転を行うように制
御するようになっている。3)電流検出部22は、インバ
ータ14によって印可された電圧に応じて、太陽電池パ
ネル11に流れる電流値を検出する(処理S3)。
Next, the procedure for controlling snow melting of the roof with solar cells 2 will be described with reference to the flowchart of FIG. here,
In the house 1, power is generated by the photovoltaic power generator 10 in the daytime, and snow is piled up on the solar panel 11 of the roof 2 at night. 1) First, when the set start time comes, the timer 24 outputs a start signal to the power control unit 23 (process S1). 2) When the start signal is input from the timer 24, the power control unit 23 causes the inverter 14 to start applying a voltage to the solar cell panel 11 (process S2). At the time of starting the voltage application, the current value may become the set current value. Therefore, for a certain time after the start, the control is performed so that the snow melting operation is performed even if the current value is the set current value. ing. 3) The current detector 22 detects the value of the current flowing through the solar cell panel 11 according to the voltage applied by the inverter 14 (process S3).

【0021】4)電源制御部23は、電流検出部22で検
出された検出電流が、図2に示される領域P1の電流
値、つまり設定電流値であれば(処理S4)、太陽電池
パネル11上に雪がない状態と判断し、インバータ14
による電圧の印加を停止し(処理S5)、この後、太陽
光発電装置10に、インバータ14停止信号および太陽
電池パネル11の発電制御開始信号を出力する(処理S
6)。太陽光発電装置10は、この信号を受けて、発電
を開始する。5)一方、電源制御部23は、電流検出部2
2で検出された検出電流が、図2に示される領域P2の
電流値である場合で(処理S4)、電源制御部23にタ
イマ24からの終了信号が入力していなければ(処理S
7)、太陽電池パネル11上に雪が積もっている状態と
判断し、インバータ14による電圧の印加を継続させ、
引き続き電流検出部22で電流を検出する。6)電源制御
部23にタイマ24からの終了信号が入力したら(処理
S7)、当該電源制御部23は、インバータ14による
電圧の印加を停止し(処理S5)、この後、太陽光発電
装置10に、インバータ14停止信号および太陽電池パ
ネル11の発電制御開始信号を出力する(処理S6)。
このようにして、太陽電池付屋根2の融雪制御を行う。
4) If the detected current detected by the current detector 22 is the current value in the area P1 shown in FIG. 2, that is, the set current value (step S4), the power supply controller 23 Judging that there is no snow above, the inverter 14
Is stopped (process S5), and thereafter, the inverter 14 stop signal and the power generation control start signal of the solar cell panel 11 are output to the photovoltaic power generator 10 (process S5).
6). The photovoltaic power generator 10 receives this signal and starts power generation. 5) On the other hand, the power supply control unit 23
2 is the current value of the area P2 shown in FIG. 2 (process S4), and if the end signal from the timer 24 is not input to the power control unit 23 (process S4).
7), it is determined that snow has accumulated on the solar cell panel 11, and the application of the voltage by the inverter 14 is continued;
Subsequently, the current detection unit 22 detects the current. 6) When the end signal from the timer 24 is input to the power control unit 23 (process S7), the power control unit 23 stops the application of the voltage by the inverter 14 (process S5). Then, an inverter 14 stop signal and a power generation control start signal for the solar cell panel 11 are output (process S6).
In this manner, the snow melting control of the roof with solar cells 2 is performed.

【0022】このような本実施形態によれば、次のよう
な効果が得られる。すなわち、インバータ14と、電流
検出部22と、電源制御部23とを備えた融雪装置20
を用いたので、太陽電池パネル11に流れる電流値によ
って当該太陽電池パネル11上の積雪状態を判断するこ
とができ、太陽電池パネル11上に積もっていた雪がな
くなると、自動的に太陽電池パネル11への電圧の印加
を停止することができる。このため、既に太陽電池付屋
根2に雪がないにも関わらず、太陽電池パネル11を発
熱させていることがなく、融雪効率および発電効率を向
上させることができる。
According to this embodiment, the following effects can be obtained. That is, the snow melting apparatus 20 including the inverter 14, the current detecting unit 22, and the power control unit 23
Is used, the state of snow on the solar cell panel 11 can be determined based on the value of the current flowing through the solar cell panel 11, and when the snow accumulated on the solar cell panel 11 disappears, the solar cell panel 11 is automatically It is possible to stop the application of the voltage to. For this reason, the solar cell panel 11 does not generate heat even though the roof 2 with solar cells does not already have snow, and the snow melting efficiency and the power generation efficiency can be improved.

【0023】また、電源制御部23は、インバータ14
による太陽電池パネル11への電圧の印加を停止した
後、自動的に太陽電池パネル11を発電状態にすること
ができるので、融雪状態から発電状態に切り替える際の
時間等のロスをほとんどなくすことができ、これによ
り、融雪効率および発電効率を一層向上させることがで
きる。
The power supply control unit 23 includes an inverter 14
After the application of the voltage to the solar cell panel 11 is stopped, the solar cell panel 11 can be automatically set to the power generation state, so that loss such as time when switching from the snow melting state to the power generation state can be almost eliminated. Accordingly, snow melting efficiency and power generation efficiency can be further improved.

【0024】さらに、融雪装置20は、タイマを有して
いるので、太陽電池付屋根2の融雪運転の開始および終
了を自動的に行うことができるうえ、発電制御を行うこ
とで、融雪運転と発電運転の自動切替運転を行うことが
できる。これにより、融雪効率および発電効率をより一
層向上させることができる。
Further, since the snow melting apparatus 20 has a timer, the snow melting operation of the roof with solar cells 2 can be automatically started and ended, and the snow melting operation can be performed by controlling the power generation. Automatic switching operation of the power generation operation can be performed. Thereby, snow melting efficiency and power generation efficiency can be further improved.

【0025】また、融雪装置20の電源部として、太陽
光発電装置10のインバータ14を利用するようにした
ので、融雪装置20を住宅に取り付ける際は、融雪コン
トローラ部20Aのみ取り付ければよく、これにより、
融雪装置の取付作業を容易に行うことができる。
Further, since the inverter 14 of the photovoltaic power generator 10 is used as the power supply unit of the snow melting device 20, when the snow melting device 20 is installed in the house, only the snow melting controller 20A needs to be installed. ,
Installation work of the snow melting device can be easily performed.

【0026】なお、本発明は前記実施の形態に限定され
るものではなく、本発明の目的を達成できる他の構成等
を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態では、融雪装置は、タイマを備え
ていたが、これに限らず、例えば、融雪運転の開始およ
び終了を作業者が手動で行えば、なくてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, but includes other configurations that can achieve the object of the present invention, and also includes the following modifications and the like.
For example, in the above-described embodiment, the snow melting apparatus is provided with the timer. However, the present invention is not limited to this. For example, the snow melting operation may be omitted if the operator manually starts and ends the snow melting operation.

【0027】また、前記実施形態では、融雪装置は、太
陽光発電装置の発電制御が行えるようになっていたが、
これに限らず、例えば、融雪運転が終了した後、作業者
が手動で太陽光発電装置の発電制御を行えば、融雪装置
にその機能がなくてもよい。
In the above-described embodiment, the snow melting device can control the power generation of the solar power generation device.
The present invention is not limited to this. For example, if the operator manually controls the power generation of the photovoltaic power generation device after the snow melting operation is completed, the snow melting device may not have the function.

【0028】さらに、前記実施形態では、インバータに
よる電圧の印加の停止を、図2の電圧電流特性から判断
していたが、これに限らず、例えば、温度特性等、その
他の特性から判断してもよく、実施に当たって適宜選択
すればよい。
Further, in the above-described embodiment, the stop of the application of the voltage by the inverter is determined from the voltage-current characteristics shown in FIG. 2. However, the present invention is not limited to this. For example, it is determined from other characteristics such as temperature characteristics. And it may be appropriately selected in implementation.

【0029】また、インバータによる所定の電圧として
は、前記実施形態に記載した数値に限らず、実施に当た
って適宜決めればよい。
Further, the predetermined voltage by the inverter is not limited to the numerical value described in the above-described embodiment, but may be appropriately determined in the implementation.

【0030】さらに、前記実施形態では、融雪装置の電
源部として、太陽光発電装置のインバータを利用した
が、これに限らず、例えば、図4に示されるように、融
雪装置を構成する専用の電源部21を別途用意してもよ
い。このようにすれば、通常の太陽光発電装置を有する
既存の住宅にも取り付けることができ、融雪装置の利用
範囲を広げることができる。
Further, in the above-described embodiment, the inverter of the photovoltaic power generator is used as the power supply unit of the snow melting apparatus. However, the present invention is not limited to this. For example, as shown in FIG. The power supply unit 21 may be separately prepared. In this way, it can be attached to an existing house having a normal solar power generation device, and the range of use of the snow melting device can be expanded.

【0031】[0031]

【発明の効果】以上に述べたように、本発明の太陽電池
付屋根の融雪装置および融雪制御方法によれば、次のよ
うな効果がある。すなわち、請求項1、2、5、6に記
載の太陽電池付屋根の融雪装置および融雪制御方法によ
れば、太陽電池パネルに流れる電流値によって当該太陽
電池パネル上の積雪状態を判断することができ、太陽電
池パネル上に積もっていた雪がなくなると、自動的に太
陽電池パネルへの電圧の印加を停止することができるの
で、既に太陽電池付屋根に雪がないにも関わらず、太陽
電池パネルを発熱させていることがなく、これにより、
融雪効率および発電効率を向上させることができる。
As described above, according to the snow melting apparatus for a roof with a solar cell and the snow melting control method of the present invention, the following effects can be obtained. That is, according to the snow melting apparatus and the snow melting control method for a roof with a solar cell according to the first, second, fifth, and sixth aspects, it is possible to determine the snow accumulation state on the solar cell panel based on the current value flowing through the solar cell panel. When the snow accumulated on the solar panel disappears, the application of voltage to the solar panel can be automatically stopped. Without causing fever,
Snow melting efficiency and power generation efficiency can be improved.

【0032】また、請求項3、7に記載の太陽電池付屋
根の融雪装置および融雪制御方法によれば、太陽電池パ
ネルへの電圧の印加を停止した後、自動的に太陽電池パ
ネルを発電状態にすることができるので、融雪状態から
発電状態に切り替える際の時間等のロスをほとんどなく
すことができ、これにより、融雪効率および発電効率を
一層向上させることができる。
Further, according to the snow melting apparatus and the snow melting control method for a roof with a solar cell according to the third and seventh aspects, after the application of the voltage to the solar cell panel is stopped, the solar cell panel is automatically turned into a power generation state. Therefore, it is possible to substantially eliminate loss such as time when switching from the snow melting state to the power generation state, and thereby further improve the snow melting efficiency and the power generation efficiency.

【0033】さらに、請求項4、8に記載の太陽電池付
屋根の融雪装置および融雪制御方法によれば、太陽電池
付屋根の融雪運転の開始および終了を自動的に行うこと
ができるうえ、発電制御を行うことで、融雪運転と発電
運転の自動切替運転を行うことができるので、融雪効率
および発電効率をより一層向上させることができる。
Further, according to the snow melting apparatus and the snow melting control method for a roof with a solar cell according to the fourth and eighth aspects, the snow melting operation of the roof with a solar cell can be automatically started and terminated, and the power generation can be performed. By performing the control, the automatic switching operation between the snow melting operation and the power generation operation can be performed, so that the snow melting efficiency and the power generation efficiency can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における住宅を示す概略構
成図である。
FIG. 1 is a schematic configuration diagram showing a house according to an embodiment of the present invention.

【図2】前記実施形態における太陽電池パネルの電圧電
流特性を示す図である。
FIG. 2 is a diagram showing voltage-current characteristics of the solar cell panel in the embodiment.

【図3】前記実施形態における融雪運転の手順を示すフ
ローチャートである。
FIG. 3 is a flowchart showing a procedure of a snow melting operation in the embodiment.

【図4】本発明の変形例であって、住宅を示す概略構成
図である。
FIG. 4 is a modification of the present invention, and is a schematic configuration diagram showing a house.

【符号の説明】[Explanation of symbols]

2 屋根 2A 屋根面 11 太陽電池パネル 20 融雪装置 21 電源部 22 電流検出部 23 電源制御部 24 タイマ 2 Roof 2A Roof surface 11 Solar panel 20 Snow melting device 21 Power supply unit 22 Current detection unit 23 Power supply control unit 24 Timer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井田 浩文 東京都杉並区高井戸東2丁目4番5号 ミ サワホーム株式会社内 (72)発明者 飯島 雅人 東京都杉並区高井戸東2丁目4番5号 ミ サワホーム株式会社内 (72)発明者 坂井 則和 東京都杉並区高井戸東2丁目4番5号 ミ サワホーム株式会社内 (72)発明者 久志 博信 京都府京都市下京区塩小路通堀川東入南不 動堂町801番地 オムロン株式会社内 (72)発明者 馬渕 雅夫 京都府京都市下京区塩小路通堀川東入南不 動堂町801番地 オムロン株式会社内 (72)発明者 伊藤 隆 東京都新宿区西新宿1丁目24番1号 エス テック情報ビル19F 株式会社エム・エ ス・ケイ内 (72)発明者 若林 賢吾 東京都新宿区西新宿1丁目24番1号 エス テック情報ビル19F 株式会社エム・エ ス・ケイ内 Fターム(参考) 2E108 AA02 GG12 GG18 KK04 LL01 MM00 NN07 5F051 BA03 JA11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirofumi Ida 2-4-5 Takaido Higashi, Suginami-ku, Tokyo Inside Misawa Homes Co., Ltd. (72) Inventor Masato Iijima 2-4-5 Takaido Higashi, Suginami-ku, Tokyo Misawa Home Co., Ltd. (72) Inventor Norikazu Sakai 2-45-5 Takaido Higashi, Suginami-ku, Tokyo Misawa Home Co., Ltd. (72) Inventor Hironobu Hisashi 801 Domachi Omron Co., Ltd. (72) Masao Mabuchi Inventor Masao Mabuchi 801 Shimogyo, Shimogyo-ku, Kyoto Shimogyo Horikawa Higashi-iri Minami Fudomachi Omron Co., Ltd. (72) Inventor Takashi Ito 1 Nishishinjuku, Shinjuku-ku, Tokyo 24F, S-Tech Information Building 19F, M.S.K. Co., Ltd. (72) Inventor Kengo Wakabayashi West of Shinjuku-ku, Tokyo 1-24-1, Shinjuku S-Tech Information Building 19F M-S-K Co., Ltd. F-term (reference) 2E108 AA02 GG12 GG18 KK04 LL01 MM00 NN07 5F051 BA03 JA11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】太陽光を受光して電力に変換する複数の太
陽電池パネルが屋根面に縦横に配列された太陽電池付屋
根の融雪装置であって、 前記太陽電池パネルに所定の電圧を印加する電源部と、 前記太陽電池パネルに所定の電圧が印加された際の当該
太陽電池パネルに流れる電流値を検出する電流検出部
と、 この電流検出部で検出された電流値が予め設定された設
定電流値となった場合に、前記電源部による電圧の印加
を停止する電源制御部とを備えていることを特徴とする
太陽電池付屋根の融雪装置。
1. A snow melting device for a roof with solar cells, wherein a plurality of solar cell panels for receiving sunlight and converting it into electric power are arranged vertically and horizontally on a roof surface, wherein a predetermined voltage is applied to the solar cell panels. A power supply unit, a current detection unit that detects a current value flowing through the solar cell panel when a predetermined voltage is applied to the solar cell panel, and a current value detected by the current detection unit is set in advance. A power control unit for stopping application of a voltage by the power supply unit when the current value reaches a set current value.
【請求項2】請求項1に記載の太陽電池付屋根の融雪装
置において、 前記所定の電圧を印加した際の前記太陽電池パネルに流
れる電流値は、表面温度が0℃近傍とされた太陽電池パ
ネルの電圧電流特性から得られる値であることを特徴と
する太陽電池付屋根の融雪装置。
2. The solar cell with a solar cell according to claim 1, wherein a current value flowing through the solar cell panel when the predetermined voltage is applied has a surface temperature of about 0 ° C. A snow melting device for a roof with solar cells, wherein the value is obtained from the voltage-current characteristics of the panel.
【請求項3】請求項1または請求項2に記載の太陽電池
付屋根の融雪装置において、 前記太陽電池パネルを発電状態にする発電制御が行える
ようになっており、 前記電源制御部は、前記電源部による電圧印加の停止
後、前記太陽電池パネルの発電制御に切り替えることを
特徴とする太陽電池付屋根の融雪装置。
3. The snow melting device for a roof with a solar cell according to claim 1, wherein power generation control for bringing the solar cell panel into a power generation state can be performed. After the voltage application by the power supply unit is stopped, the control is switched to the power generation control of the solar cell panel.
【請求項4】請求項1〜請求項3のいずれかに記載の太
陽電池付屋根の融雪装置において、 設定時刻に応じて動作切替を行うためのタイマを有し、 前記電源制御部は、前記タイマによって、前記電源部の
制御を自動的に行うことを特徴とする太陽電池付屋根の
融雪装置。
4. The snow melting device for a roof with a solar cell according to claim 1, further comprising a timer for switching an operation according to a set time, wherein the power control unit includes: A snow melting device for a roof with a solar cell, wherein the timer automatically controls the power supply unit.
【請求項5】太陽光を受光して電力に変換する複数の太
陽電池パネルが屋根面に縦横に配列された太陽電池付屋
根の融雪制御方法であって、 前記太陽電池パネルに所定の電圧を印加する電圧印加工
程と、 前記太陽電池パネルに所定の電圧が印加された際の当該
太陽電池パネルに流れる電流を検出する電流検出工程
と、 この電流検出工程で検出された電流が予め設定された設
定電流値となった場合に、前記電圧印加工程を停止する
電源制御工程とを備えていることを特徴とする太陽電池
付屋根の融雪制御方法。
5. A snow melting control method for a roof with solar cells, wherein a plurality of solar cell panels for receiving sunlight and converting it into electric power are arranged vertically and horizontally on a roof surface, wherein a predetermined voltage is applied to the solar cell panels. A voltage application step of applying, a current detection step of detecting a current flowing through the solar cell panel when a predetermined voltage is applied to the solar cell panel, and a current detected in the current detection step is set in advance. A power control step of stopping the voltage application step when the current value reaches a set current value.
【請求項6】請求項5に記載の太陽電池付屋根の融雪制
御方法において、 前記所定の電圧を印加した際の前記太陽電池パネルに流
れる電流値は、表面温度が0℃近傍とされた太陽電池パ
ネルの電圧電流特性から得られる値であることを特徴と
する太陽電池付屋根の融雪制御方法。
6. The method for controlling snow melting of a roof with solar cells according to claim 5, wherein the current value flowing through the solar cell panel when the predetermined voltage is applied is a solar current whose surface temperature is set to near 0 ° C. A snow melting control method for a roof with solar cells, characterized in that the value is obtained from the voltage-current characteristics of the battery panel.
【請求項7】請求項5または請求項6に記載の太陽電池
付屋根の融雪制御方法において、 前記太陽電池パネルを発電状態にする発電制御を行うた
めに、前記電源制御工程によって前記電圧印加工程の停
止後、前記太陽電池パネルの発電制御に切り替える発電
制御工程を備えていることを特徴とする太陽電池付屋根
の融雪制御方法。
7. The method for controlling snow melting of a roof with solar cells according to claim 5 or 6, wherein the voltage applying step is performed by the power supply control step in order to perform power generation control for bringing the solar cell panel into a power generation state. A power generation control step of switching to power generation control of the solar cell panel after the stop of the operation.
【請求項8】請求項5〜請求項7のいずれかに記載の太
陽電池付屋根の融雪制御方法において、 前記電源制御工程は、設定時刻に応じて動作切替を行う
タイマによって、自動的に行われることを特徴とする太
陽電池付屋根の融雪制御方法。
8. The method for controlling snow melting of a roof with a solar cell according to claim 5, wherein the power control step is automatically performed by a timer that switches operation according to a set time. A method for controlling snow melting on a roof with solar cells, characterized in that:
JP2001149255A 2001-05-18 2001-05-18 Snow melting apparatus for roof with solar cell and snow melting control method Expired - Fee Related JP3884627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149255A JP3884627B2 (en) 2001-05-18 2001-05-18 Snow melting apparatus for roof with solar cell and snow melting control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149255A JP3884627B2 (en) 2001-05-18 2001-05-18 Snow melting apparatus for roof with solar cell and snow melting control method

Publications (2)

Publication Number Publication Date
JP2002339591A true JP2002339591A (en) 2002-11-27
JP3884627B2 JP3884627B2 (en) 2007-02-21

Family

ID=18994452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149255A Expired - Fee Related JP3884627B2 (en) 2001-05-18 2001-05-18 Snow melting apparatus for roof with solar cell and snow melting control method

Country Status (1)

Country Link
JP (1) JP3884627B2 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191056A (en) * 2007-02-06 2008-08-21 Sumai Kankyo Planning:Kk Snowfall sensor
WO2009064683A3 (en) * 2007-11-14 2009-08-27 Tigo Energy, Inc., Method and system for connecting solar cells or slices in a panel system
EP2601684A1 (en) * 2010-08-03 2013-06-12 Gisle Innovations AB Device at solar panel
KR101397678B1 (en) 2013-10-02 2014-05-23 윤창복 Solarwall with snow melting function
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
JP2016079805A (en) * 2014-10-15 2016-05-16 株式会社環境システムヤマノ Snow melter
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
CN106196637A (en) * 2016-07-18 2016-12-07 宝钢建筑系统集成有限公司 A kind of solar energy snow melting vehicle
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices

Cited By (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12068599B2 (en) 2006-12-06 2024-08-20 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US12046940B2 (en) 2006-12-06 2024-07-23 Solaredge Technologies Ltd. Battery power control
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US12032080B2 (en) 2006-12-06 2024-07-09 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US12027849B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US12027970B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
JP2008191056A (en) * 2007-02-06 2008-08-21 Sumai Kankyo Planning:Kk Snowfall sensor
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
CN101842912B (en) * 2007-11-14 2013-04-03 迭戈能源有限公司 Method and system for connecting solar cells or slices in a panel system
US9218013B2 (en) 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
WO2009064683A3 (en) * 2007-11-14 2009-08-27 Tigo Energy, Inc., Method and system for connecting solar cells or slices in a panel system
US11329599B2 (en) 2007-11-14 2022-05-10 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US12055647B2 (en) 2007-12-05 2024-08-06 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
EP2601684A1 (en) * 2010-08-03 2013-06-12 Gisle Innovations AB Device at solar panel
EP2601684A4 (en) * 2010-08-03 2014-11-05 Gisle Innovations Ab Device at solar panel
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
KR101397678B1 (en) 2013-10-02 2014-05-23 윤창복 Solarwall with snow melting function
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
JP2016079805A (en) * 2014-10-15 2016-05-16 株式会社環境システムヤマノ Snow melter
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
CN106196637B (en) * 2016-07-18 2017-12-12 宝钢建筑系统集成有限公司 A kind of solar energy snow melting vehicle
CN106196637A (en) * 2016-07-18 2016-12-07 宝钢建筑系统集成有限公司 A kind of solar energy snow melting vehicle

Also Published As

Publication number Publication date
JP3884627B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP2002339591A (en) Snow-melting device for solar cell attached roof and snow-melting controlling method
JP3393191B2 (en) Control method of snow melting device using solar cell
JP5246239B2 (en) Power supply
CN109818565B (en) Device and method for automatically removing accumulated snow of photovoltaic cell panel
JP3521993B2 (en) Roof with solar cells
JP2007272639A (en) Photovoltaic power generator
JPH118976A (en) Inverter device and starting thereof
JP2001223377A (en) Snow-melting controlling method for photovoltaic power generation apparatus
CN109802632A (en) Snow melting method, solar junction box, solar power generation system, medium and equipment
KR101777230B1 (en) Inverter system for photovoltaic power generation
JPH10173215A (en) Photovoltaic power generation apparatus snow-melting device
CN103633724A (en) Solar energy air-conditioner power supply system
JPH10284746A (en) Sunlight power generation system having snow-melting function
KR101020751B1 (en) Snow removal apparatus for photovoltaic system
JP3362633B2 (en) Control method of snow melting device using solar cell
JP3406124B2 (en) Photovoltaic power generation system with snow melting function
WO2022177453A1 (en) The technique of snow and ice removal from photo-voltaic (pv)panels
JP3781538B2 (en) Solar power plant
CN107707019A (en) A kind of method that inverter automatic detection switching civil power, the diesel engine band of no means of communication carry
JPS5833934A (en) Solar battery power source
JP4123673B2 (en) Snow melting control device and solar power generation system
JP2749559B2 (en) Control method of snow melting device using solar cell
JP2004296547A (en) Solar energy power generation system with melting snow function
JPH08340649A (en) Generator and heater using solar cell module
JP2010245203A (en) Photovoltaic power generation system and method for controlling photovoltaic power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees