JP2008190920A - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP2008190920A
JP2008190920A JP2007023716A JP2007023716A JP2008190920A JP 2008190920 A JP2008190920 A JP 2008190920A JP 2007023716 A JP2007023716 A JP 2007023716A JP 2007023716 A JP2007023716 A JP 2007023716A JP 2008190920 A JP2008190920 A JP 2008190920A
Authority
JP
Japan
Prior art keywords
current
hall
magnetic
magnetic flux
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007023716A
Other languages
English (en)
Inventor
Takashi Kunimi
敬 国見
Toru Sekine
透 関根
Masato Noro
正人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Tokin Corp
Original Assignee
Akebono Brake Industry Co Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd, NEC Tokin Corp filed Critical Akebono Brake Industry Co Ltd
Priority to JP2007023716A priority Critical patent/JP2008190920A/ja
Publication of JP2008190920A publication Critical patent/JP2008190920A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】磁性体コアに生じる磁束のうち分割された一部をホールIC部で検出することで、電気接続ボックス内で占めるスペースを可及的に小さくすることができるとともに、大電流まで検出可能とする電流センサを提供する。
【解決手段】電源線2を囲むリング状の磁性体コア3の一部に形成されたギャップ4には、ホールIC部5と、ホールIC部5の透磁率よりも透磁率の高い高透磁率体6とが配置されている。磁性体コア3に生じる磁束は、ギャップ4においてはホールIC部5よりも高透磁率体6を通過し易いので、ホールIC部5を通過する磁束は少なく、ホールIC部5は磁束の検出を飽和領域で検出することなく定格領域で検出することができる。コア3全体の磁束に対するホールIC部5を通過する磁束の割合が判っていれば、磁性体コア3に全体の磁束を生じさせる大きな電流を精度良く検出することができる。
【選択図】図1

Description

この発明は、電流検知用センサ、特に電気自動車、ハイブリッド車、電動4WD車等、駆動に大電流を用いる車両に好適な大電流検知用の電流センサに関する。
従来、電気自動車(EV)、ハイブリッド車、電動4WD車等においては、エンジンで発電した電気或いはバッテリから供給される電力を用いてモータを駆動することで推進力を得ている。昨今の電気駆動式の車両においては、大電流化が進んでおり、モータ駆動用の電流はピーク時には略1000Aにも達する。モータの制御は、この電流の大きさを検出することで行われている。
電流により発生する磁界を測定することにより電流を検出するには、従来からホール素子を用いることが知られているが、ホール素子が良好な線形性を保って直接に計測できる磁界は、80000[A/m](≒1000[Oe])程度であり、ホール素子から約5[mm]の距離の電流線路に250[A]程度の電流が流れた場合に発生する磁界に相当する。それ以上の電流が流れた場合には発生する磁界の強さが強すぎるためにホール素子の定格検出範囲を超えた飽和範囲となり、電流の強さを正確に検出することができない。また、ホール素子自身の出力の調整のために後段で増幅する必要も生じている。そこで、現状では、ホール素子の定格検出範囲を超える磁界に相当する電流を検知するためには、リング状の磁性体コアの一部を切り欠いてギャップを形成し、そのギャップ内にホール素子を配置した構造の磁気比例式動作原理に基づいた電流センサが主に使用されている。
磁気比例式動作原理は、測定すべき電流が導体に流れると、その導体の周囲において、電流の向きを右ねじを回すときの進む方向に一致させるときにその右回りの方向の磁界が生じ、その磁界を測定することにより電流の大きさを間接的に測定するものである。導体の周囲にリング状の磁性体コアを配置すると、その磁性体コアの中に磁力線が生じる。リング状の磁性体コアの一部を切り欠いてギャップを形成し、そのギャップ内にホール素子を配置すると、そのコアギャップには被測定電流に比例した磁界が生じ、ホール素子はこの磁界を電圧信号に変換する。このホール素子からの出力電圧を増幅回路にて増幅し、被測定電流に比例した出力電圧を発生する。
このような磁気比例式電電流センサは、高範囲まで電流測定が可能であり、小型軽量であり、交流・直流・パルス電流のいずれも測定が可能であり、更に、低消費電力である、等の特長が挙げられる。
車両に適用される大電流検知用の電流センサとしては、電気接続ボックス内において、電流が流れる電源線(バスバー)に流れる負荷電流を検出する場合に、金属板からなるバスバーの一部を分岐させて、分岐した分流バスバーに流れる電流を小さくし、その小さくされた電流が発生させる磁界を検知することで、全電流を検出する分流バスバー構造を持つ電流センサが提案されている(特許文献1、特許文献2)。
この電流センサは、バスバーに磁性体コアとホール素子とを組み付けて構成されており、バスバーに流れる電流を2つの電流分流路により分流し、分流した一部の電流、すなわち電流分流路に流れる電流をホール素子からの出力により検出し、検出出力とバスバーの幅(断面積)とに基づいて予め知られている電流全体に対する分流の電流の比率から、バスバーに流れる総電流値を算出している。この電流センサによれば、バスバーを流れる電流が大きくても、分流した一部の電流に対してホール素子の線形領域を利用することでホール素子の検出精度を改善し、また、組み立てやレイアウトの自由度についても改善を図っている。
しかしながら、電気駆動式の自動車においては、大出力化・高性能化に伴って、取り扱う電流値が大きくなってきており、そのため大電流時の磁気飽和を回避する必要がある。そうした対策の一つとして磁性体コアを大きくすることが考えられるが、そうした対策では、電流センサ自体が大型化して電気接続ボックス内でスペースを大きく取ってしまう、大電流を流す銅製電流バスバーの幅が電流コアの形状にて制約されバスバーに直接にねじ止めする幅を確保することができない、更に、磁性コアが大きくなると、価格が高価になり、例えば大量に生産されているために価格が低下している電動パワーステアリング用電流センサの流用ができなくなるという問題がある。
光電流センサ及び光磁界センサが被測定電流や被測定磁界を計測するとき、近接する外部導電体が発生させる磁界の影響による測定誤差を低減し、被測定物の電流値や磁界強度を精度良く計測することを図り、ファラデー効果を用いた光磁界センサ及びそれを用いた光電流センサが提案されている(特許文献3)。
軸方向に磁化されたリング状永久磁石を上下からそれぞれ2枚の磁性板で挟み込み、上下の磁性板の間で磁性板の両端部に上下2個ずつ突起状磁性体を設け、それぞれ上下2個の突起状磁性体の間のエアギャップに磁気感応素子を挿入することで、リング状永久磁石からの磁束を概ね突起状磁性体に絞り込み、磁気感応素子を通過する磁束量がリング状永久磁石の回転角度にほぼ比例していることから、磁気感応素子にて検出される信号出力より、リング状永久磁石の回転位置、従って、リング状永久磁石を支持する回転シャフトの回転位置を非接触でセンシングする非接触式回転位置センサが提案されている(特許文献4)。
特開2002−267692号公報(段落[0002]〜[0004]、図16、図17) 特開平09−93771号公報 特開2000−230968号公報 特開2002−206913号公報
そこで、電流を分岐させる分岐バスバーの構造に代えて、電流に比例する磁界(磁束)を分けて磁束が通りやすい部分と通りにくい部分とを形成し、通過する磁束が少ない方の磁界の強さを検出することで大きな電流まで検出可能とする点で解決すべき課題がある。
この発明の目的は、電気接続ボックス内で占めるスペースを可及的に小さくすることができるとともに、大電流まで検出可能とする電流センサを提供することである。
上記の課題を解決するため、この発明による電流センサは、電流ケーブルを囲み且つ一部にギャップが形成されたリング状の磁性体コアと、前記ギャップ内に配置されているホールIC部とを備えた磁気式電流センサにおいて、前記ギャップに前記ホールIC部の透磁率よりも高い透磁率を有する高透磁率体を配置したことから成っている。
この電流センサによれば、リング状の磁性体コアの一部に形成されているギャップに、ホールIC部と、ホールIC部の透磁率よりも透磁率の高い高透磁率体とを配置しているので、磁性体コアに生じる磁束は、ギャップにおいては、ホールIC部よりも透磁率が比較的に高い高透磁率体を通過し易く、ホールIC部を通過する磁束は比較的少なくなる。したがって、ホールIC部は磁束の検出を飽和領域で検出することなく定格領域で検出することができる。全体の磁束に対するホールIC部を通過する磁束の割合が判っていれば、磁性体コアに全体の磁束を生じさせる大きな電流を精度良く検出することができる。
この電流センサにおいて、前記ホールIC部と前記高透磁率体とは、前記ギャップ内において前記磁性体コアの径方向の異なる位置に配置することができる。好ましくは、ホールIC部については、径方向外側に配置することができる。
この電流センサにおいて、前記ホールIC部と前記高透磁率体とは、前記ギャップ内において前記磁性体コアの軸方向の異なる位置に配置することができる。
この電流センサにおいて、前記高透磁率体の透磁率を変えることにより、前記電流ケーブルを流れる電流の検出範囲を調整することができる。また前記高透磁率体の断面積を変えることにより、前記電流ケーブルを流れる電流の検出範囲を調整することができる。
この電流センサにおいて、前記ホールIC部は、前記電流ケーブルを流れる電流の程度に応じて前記高透磁率体の透磁率又は断面積を変更することにより、前記電流の大小に関わらず共通化することができる。ホールIC部を共通化することにより、製造・保管すべきホールICの種類を減らして、取り扱いや管理がしやすくなり、また、電流センサの大きさ及び出力レベルが一定の範囲内に納められるので、電流センサのサイズが定型化し、検出信号の取り扱いも簡単になる。
この発明による電流センサは、上記のように構成されているので、磁束が通過する領域や割合を変更するのみで検出電流範囲を変更でき、磁性体コアの大きさを変更することがないので電流センサとしてのサイズが一定し、取り扱いが容易になる。また、測定したい電流範囲に合わせて、高透磁率体の形状や透磁率の違う材質を使用することで、電流検出範囲の調整が可能になる。更に、磁性体コアの共通化、ホールICの共通化、小型で大電流まで計測可能となる。
以下、添付した図面に基づいて、この発明による電流センサの実施例を説明する。図1はこの発明による電流センサの模式図、図2は図1に示す電流センサの磁束の分布状態を示す模式図である。
図1は、電流センサ1の斜視図(a)と正面図(b)とを示している。電流が流れる電源線2が筒状の磁性体コア(以下、「コア」と称する)3を同心状に貫通する態様で配置されている。コア3には、その一部に周方向の一部を母線に平行に切り欠いたギャップ(空隙)4が形成されており、ギャップ4内には、コア3の径方向の異なる位置に、ホールIC部5と透磁率が高い高透磁率体6とが配置されている。この例では、ホールIC部5がギャップ4内の径方向外側に配置されており、高透磁率体6がギャップ4内の径方向内側に配置されている。配置関係は、図に示した態様に限らず、内外逆でもよいが、センサ1への電源供給や信号取り出しの観点からすれば、図示の態様が好ましい。高透磁率体6は、例えば、パーマロイ、フェライト、或いはアモルファス合金のような材料から形成される。
図2(a)に示すように、電線2に電流が流れる場合、コア3を周方向に巡る磁束が生じる。流れる電流に応じて定まる全磁束Φは、ギャップ4の部分では、一方の壁から他方の壁へ渡るようにして通過する。ギャップ4内に高透磁率体6を配置した場合には、ホールIC部5を通過する磁束Φ5と高透磁率体6を通過する磁束Φ6とに分配される。高透磁率体6は磁性抵抗が小さいため、高透磁率体6を通過する磁束(密度)Φ6は、磁気抵抗が大きいホールIC部5を通過する磁束(密度)Φ5よりも十分多く(高く)なる。
これに対して図2(b)に示すように、ギャップ4内に高透磁率体6を配置せず、ホールIC部5のみを配置した場合には、ホールIC部に大きな磁束Φが流れる。
電流センサ1の起磁力は、Nをコイル巻き回数、Iを通電時の電流とすると、次の式で表される。
Vm=NI [式1]
ギャップ4以外での漏れ磁束を無視すると、ギャップ4に置かれたホールIC部5に生じる磁束Φ(air)は、次の式2のように求めることができる。
Φ(air)=[R6/(R6+Rair)]*Φ [式2]
ここで、R6は、高透磁率体6のリラクタンス、RairはホールIC部5のリラクタンスであり、実質的に空気のリラクタンスと等しい。Φは全体の磁束であり、式1で表される起磁力及び全リラクタンスRmを用いて、次の式3で表される。
Φ=Vm/Rm [式3]
高透磁率体6として、ギャップ4の断面積の半分の断面積の広さを持ち、且つエアの透磁率に対して100倍の透磁率を有するパーマロイ等の高透磁率の物質を使用した場合には、リラクタンスは、断面積と透磁率に反比例するので、全体の磁束に対するホールIC部に生じる磁束の割合は、式2から次のようになる。
Φ(air)/Φ=(Rair/100)/(Rair/100+Rair)
=1/(1+100)≒1/100
即ち、ホールIC部5に生じる磁束は全体の磁束の100分の1程度にまで小さくすることができる。換言すれば、ホールIC部5が検出する磁界により、実際には100倍の大きさの電流まで、飽和領域で検出することなく定格検出領域での検出が可能になる。
磁気抵抗、即ち、リラクタンスを変更するには、高透磁率体6の断面積又は透磁率を変えることによって達成し得る。図3には、高透磁率体6に透磁率の異なる材料を使用することにより、検出電流範囲を変更することができることが模式的に示されている。透磁率の異なる材料としては、材料それ自体が異なってもよく、また同じパーマロイであっても、成分調整による透磁率違いを利用することができる。透磁率の異なる材料を使用することにより、ホールIC部5における磁気抵抗のレベルを変化させることができ、ホールIC部5の磁束(密度)が変化して、電流センサとしての電流検出範囲を変化(調整)させることができる。例えば、図3(a)に示す透磁率が空気の100倍の材料6aに比べて、図3(b)に示すように透磁率が空気の200倍の材料6bを用いることにより、電流検出範囲を略2倍に広くすることができる。
図4には、高透磁率体6に断面積の異なる材料を使用することにより、検出電流範囲を変更することができることが模式的に示されている。ここでいう断面積は、磁束の流れる方向で見た磁束が貫く面積のことである。高透磁率体6に断面積の異なる材料を使用することにより、ホールIC部5における磁気抵抗のレベルを変化させることができ、ホールIC部5の磁束(密度)が変化して、電流センサとしての電流検出範囲を変化(調整)させることができる。例えば、図4(a)に示すようにギャップ部4の断面積の1/4の高透磁率体6cに比べて、図4(b)に示すように透磁率が同じでギャップ部4の断面積の1/2の高透磁率体6dを用いることにより、電流検出範囲を略2倍に広くすることができる。
図5は、本発明による電流センサの別の実施例を、その要部で示す斜視図である。この電流センサ10において、ホールIC部15と高透磁率体16とは、コア13のギャップ14内においてコア13の軸方向の異なる位置に配置されている。ギャップ14内を通過する磁束は高透磁率体16に吸い寄せられ(Φ16)、ホールIC部15を通過する磁束Φ15は少なくなっている。高透磁率体16の磁束通過断面積(コア軸方向長さ×厚さ)を変更することにより、ホールIC部15を通過する磁束(密度)を調整し、ホールIC部15による検出電流範囲を変更することができる。
この発明による電流センサの一実施例の模式図である。 図1に示す電流センサの磁束の分布状態を示す模式図である。 図1に示す電流センサにおいて、透磁率の異なる材料を使用することにより、検出電流範囲を変更することを説明する模式図である。 図1に示す電流センサにおいて、断面積の異なる材料を使用することにより、検出電流範囲を変更することを説明する模式図である。 この発明による電流センサの別の実施例の模式図である。
符号の説明
1,10 電流センサ 2 電源線
3,13 磁性体コア 4,14 ギャップ
5,15 ホールIC部 6,16 高透磁率体

Claims (6)

  1. 電流ケーブルを囲み且つ一部にギャップが形成されたリング状の磁性体コアと、前記ギャップ内に配置されているホールIC部とを備えた磁気式電流センサにおいて、
    前記ギャップに前記ホールIC部の透磁率よりも高い透磁率を有する高透磁率体を配置したことから成る電流センサ。
  2. 前記ホールIC部と前記高透磁率体とは、前記ギャップ内において前記磁性体コアの径方向の異なる位置に配置されていることから成る請求項1に記載の電流センサ。
  3. 前記ホールIC部と前記高透磁率体とは、前記ギャップ内において前記磁性体コアの軸方向の異なる位置に配置されていることから成る請求項1に記載の電流センサ。
  4. 前記高透磁率体の透磁率を変えることにより、前記電流ケーブルを流れる電流の検出範囲が調整されることから成る請求項1〜3のいずれか1項に記載の電流センサ。
  5. 前記高透磁率体の断面積を変えることにより、前記電流ケーブルを流れる電流の検出範囲が調整されることから成る請求項1〜3のいずれか1項に記載の電流センサ。
  6. 前記ホールIC部は、前記電流ケーブルを流れる電流の程度に応じて前記高透磁率体の透磁率又は断面積を変更することにより、前記電流の大小に関わらず共通化されていることから成る請求項1〜5のいずれか1項に記載の電流センサ。
JP2007023716A 2007-02-02 2007-02-02 電流センサ Pending JP2008190920A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023716A JP2008190920A (ja) 2007-02-02 2007-02-02 電流センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023716A JP2008190920A (ja) 2007-02-02 2007-02-02 電流センサ

Publications (1)

Publication Number Publication Date
JP2008190920A true JP2008190920A (ja) 2008-08-21

Family

ID=39751171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023716A Pending JP2008190920A (ja) 2007-02-02 2007-02-02 電流センサ

Country Status (1)

Country Link
JP (1) JP2008190920A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026509A1 (ja) * 2010-08-27 2012-03-01 株式会社オートネットワーク技術研究所 電流センサおよび組電池
JP2012163401A (ja) * 2011-02-04 2012-08-30 Aisan Ind Co Ltd 電流センサ
KR20170140002A (ko) * 2016-06-10 2017-12-20 주식회사 엘지화학 틸트 타입(tilt type) 홀 전류 센서 및 센싱 방법
US11506729B2 (en) 2020-11-10 2022-11-22 Tdk Corporation Current sensor and electric control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189038A (ja) * 2000-12-21 2002-07-05 Yazaki Corp 電流検出器付き電線、電流検出器及び電流検出器の電線への組付方法
JP2005221492A (ja) * 2004-01-08 2005-08-18 Fuji Electric Systems Co Ltd 電流センサおよび電力監視システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189038A (ja) * 2000-12-21 2002-07-05 Yazaki Corp 電流検出器付き電線、電流検出器及び電流検出器の電線への組付方法
JP2005221492A (ja) * 2004-01-08 2005-08-18 Fuji Electric Systems Co Ltd 電流センサおよび電力監視システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026509A1 (ja) * 2010-08-27 2012-03-01 株式会社オートネットワーク技術研究所 電流センサおよび組電池
JP2012049006A (ja) * 2010-08-27 2012-03-08 Auto Network Gijutsu Kenkyusho:Kk 電流センサおよび組電池
JP2012163401A (ja) * 2011-02-04 2012-08-30 Aisan Ind Co Ltd 電流センサ
KR20170140002A (ko) * 2016-06-10 2017-12-20 주식회사 엘지화학 틸트 타입(tilt type) 홀 전류 센서 및 센싱 방법
KR102086883B1 (ko) 2016-06-10 2020-04-23 주식회사 엘지화학 틸트 타입(tilt type) 홀 전류 센서 및 센싱 방법
US11506729B2 (en) 2020-11-10 2022-11-22 Tdk Corporation Current sensor and electric control device
US11852697B2 (en) 2020-11-10 2023-12-26 Tdk Corporation Current sensor and electric control device

Similar Documents

Publication Publication Date Title
US9074866B2 (en) Rotational angle measurement apparatus, control apparatus, and rotation-machine system
JP5604652B2 (ja) 電流センサ
JP5699301B2 (ja) 電流センサ
US6922052B2 (en) Measuring device for contactless detecting a ferromagnetic object
JP5531213B2 (ja) 電流センサ
US20110308330A1 (en) Dynamic Signal Torque Sensor
EP2397829B1 (en) Dynamic signal torque sensor
JP5584918B2 (ja) 電流センサ
US20140246958A1 (en) Rotating electric machine
US20100043570A1 (en) Shaft arrangement having a rolling bearing
WO2012005042A1 (ja) 電流センサ
JP5705705B2 (ja) 磁界角計測装置およびそれを用いた回転機
WO2012011306A1 (ja) 電流センサ
JP2008190920A (ja) 電流センサ
JP2007212306A (ja) 電流センサ
US20130063135A1 (en) Magnetic-field-angle measurement device and rotational-angle measurement apparatus using same
US7923986B2 (en) Device and method for measuring a current flowing in an electrical conductor
JP2010175276A (ja) 磁気比例式電流センサ
JP5855320B2 (ja) 電動機
JP2007212307A (ja) 電流センサ
JP5121679B2 (ja) フラックスゲート型磁気センサ
JP2017067773A (ja) 外部浮遊磁場を補償する装置または磁場勾配が磁場センサに及ぼす影響を補償する装置
US11391557B2 (en) Magnetic angular position sensor circuit
JP2008170244A (ja) 電流センサ
JPH07251305A (ja) チャック装置を備えた電動工具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108