JP2008187199A - Method of manufacturing composite material - Google Patents

Method of manufacturing composite material Download PDF

Info

Publication number
JP2008187199A
JP2008187199A JP2008105216A JP2008105216A JP2008187199A JP 2008187199 A JP2008187199 A JP 2008187199A JP 2008105216 A JP2008105216 A JP 2008105216A JP 2008105216 A JP2008105216 A JP 2008105216A JP 2008187199 A JP2008187199 A JP 2008187199A
Authority
JP
Japan
Prior art keywords
composite material
alloy
metal
pbo
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008105216A
Other languages
Japanese (ja)
Other versions
JP4433072B2 (en
Inventor
Shinsuke Haruta
慎輔 治田
Hiroshi Oda
大 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008105216A priority Critical patent/JP4433072B2/en
Publication of JP2008187199A publication Critical patent/JP2008187199A/en
Application granted granted Critical
Publication of JP4433072B2 publication Critical patent/JP4433072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PTC thermister material having a sufficiently low resistance value at normal condition, a wide range in variation of resistance, and a thermally stable property. <P>SOLUTION: In the method of manufacturing a composite material, at least a kind of Bi metal and/or its alloy decreasing its volume by fusion with an average particle size of 0.5 to 500 μm is compounded with 10 to 90 wt.% contents in an SiO<SB>2</SB>-PbO-B<SB>2</SB>O<SB>3</SB>system glass or a B<SB>2</SB>O<SB>3</SB>-ZnO-PbO system glass and mixed. The mixed powder is compressed and molded. The mold thus obtained is heated at 400 to 450°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性または半導性の複合材料に関するもので、また正の抵抗温度特性(以下PTCR特性という)を有する複合材料の製造方法に関するものである。   The present invention relates to a conductive or semiconductive composite material, and also relates to a method for manufacturing a composite material having positive resistance temperature characteristics (hereinafter referred to as PTCR characteristics).

PTCサーミスタ材料は、正の抵抗温度特性を示す材料として、モーター起動素子、ヒーター素子、温度補償素子として広く利用されている。代表的な材料としては、チタン酸バリウムを主成分として、Bi、Sb、TaまたはLaなどの希土類元素などのうち少なくとも一種類を含有させた、チタン酸バリウム系半導体磁器材料が知られている。この材料のPTCR特性は、Heywangモデルによるとキュリー点での誘電率の急激な減少により、粒界障壁ポテンシャルが増大するためと説明されている。   The PTC thermistor material is widely used as a motor starting element, a heater element, and a temperature compensating element as a material exhibiting positive resistance temperature characteristics. As a typical material, a barium titanate-based semiconductor ceramic material containing barium titanate as a main component and containing at least one kind of rare earth elements such as Bi, Sb, Ta or La is known. According to the Heywang model, the PTCR characteristic of this material is explained by the fact that the grain boundary barrier potential increases due to a rapid decrease in the dielectric constant at the Curie point.

しかしながら、大電流が流れる保護回路素子として利用する場合、定常状態において比抵抗が十分に低いことが要求されるが、実用化されているチタン酸バリウム系半導体材料の比抵抗値は10Ωcmと高く、そのため大電力では使用できないという欠点があった。また、チタン酸バリウム系材料を改良したものとして、例えば特開昭60−59702号公報にBaPbO3にソルダーガラスを添加したPTCサーミスタが開示されている。このPTC材料は10-2〜10-4Ωcmほどの室温抵抗率を示し、動作温度は約750℃である。しかし、室温抵抗率は低抵抗ではあるが、添加したガラスの影響で特性が不安定となったり、抵抗変化幅が1〜2桁程度と実用に際しては不十分であった。 However, when used as a protective circuit element through which a large current flows, the specific resistance is required to be sufficiently low in a steady state, but the specific resistance value of a barium titanate-based semiconductor material that has been put to practical use is as high as 10 Ωcm, Therefore, there was a drawback that it could not be used with high power. As an improved barium titanate-based material, for example, Japanese Patent Application Laid-Open No. 60-59702 discloses a PTC thermistor in which solder glass is added to BaPbO 3 . This PTC material exhibits a room temperature resistivity of about 10 −2 to 10 −4 Ωcm and an operating temperature of about 750 ° C. However, the room temperature resistivity is low, but the characteristics become unstable due to the effect of the added glass, and the resistance change width is about 1 to 2 digits, which is insufficient for practical use.

本発明の目的は、前記の問題点を解決し、定常時の抵抗値が十分に低く大きな抵抗変化幅を有し、かつ熱的に安定なPTCサーミスタを提供するものである。   An object of the present invention is to provide a PTC thermistor that solves the above-mentioned problems, has a sufficiently low resistance value in a steady state, has a large resistance change width, and is thermally stable.

本発明者らは、ガラスに特定の金属または合金を分散させた複合構造をとることにより、従来のチタン酸バリウム系PTCサーミスタとは異なる新しい原理でPTCR特性を発現することを見出した。すなわち、本発明は、SiO−PbO−B系ガラスまたはB−ZnO−PbO系ガラスに、溶融によって体積減少する平均粒子径0.5〜500μmのBi金属および/またはその合金の少なくとも一種を10〜90重量%含有するように調整・混合し、その混合粉を加圧・成形し、得られた成形体を400〜450℃で加熱することを特徴とする複合材料の製造方法に関する。前記合金は、Bi−Pb−Sn−Sb合金であることが好ましい。また、前記複合材料は、PTCサーミスタ用の複合材料であることが好ましい。 The inventors of the present invention have found that by taking a composite structure in which a specific metal or alloy is dispersed in glass, PTCR characteristics are developed based on a new principle different from that of a conventional barium titanate PTC thermistor. That is, the present invention relates to SiO 2 —PbO—B 2 O 3 glass or B 2 O 3 —ZnO—PbO glass, Bi metal having an average particle diameter of 0.5 to 500 μm and / or its A composite material characterized by adjusting and mixing at least one kind of alloy so as to contain 10 to 90% by weight, pressurizing and forming the mixed powder, and heating the obtained molded body at 400 to 450 ° C. It relates to a manufacturing method. The alloy is preferably a Bi—Pb—Sn—Sb alloy. The composite material is preferably a composite material for a PTC thermistor.

本発明によると、ガラスに、溶融によって体積減少する金属および/または合金を分散させた複合構造をとることで、定常時に低抵抗でかつ大きな抵抗変化幅を有するPTCサーミスタ材料を得ることができる。その結果、さらに大きな負荷に対する過電流保護素子を実用化でき、その利用価値は極めて高いものである。   According to the present invention, it is possible to obtain a PTC thermistor material having a low resistance and a large resistance change width in a steady state by taking a composite structure in which a metal and / or alloy whose volume is reduced by melting is dispersed in glass. As a result, an overcurrent protection element for a larger load can be put into practical use, and its utility value is extremely high.

(作用)本発明の複合構造により、定常時に低抵抗で優れたPTCR特性を有するPTCサーミスタ材料が得られる。その発現機構は未だ明らかにされていないが、以下のように推察される。   (Operation) With the composite structure of the present invention, a PTC thermistor material having a low resistance and excellent PTCR characteristics in a steady state can be obtained. The expression mechanism has not been clarified yet, but is presumed as follows.

本発明の複合材料は、低温時には金属および/または合金粒子がガラスに分散した複合構造をしており、その金属粒子は適度な割合で接触してネットワーク構造を形成している。この状態では、金属粒子間に伝導パスが形成されるために低抵抗を示す。次に高温になると、分散している金属または合金粒子が融点で急激な体積減少を起こし、金属または合金のネットワークが切断される。その結果として、金属および/または合金の融点で伝導パスが遮断され、複合材料の抵抗が急激に増大する。すなわち複合材料のPTCR特性は、金属および/または合金の融解現象に起因する。このようなことから、公知のBaPbO3系PTCサーミスタにくらべ、低抵抗の場合でも大きな抵抗変化幅が得られ、かつ急峻なPTCR特性が実現される。 The composite material of the present invention has a composite structure in which metal and / or alloy particles are dispersed in glass at a low temperature, and the metal particles are in contact with each other at an appropriate ratio to form a network structure. In this state, since a conduction path is formed between the metal particles, the resistance is low. Next, when the temperature rises, the dispersed metal or alloy particles undergo a rapid volume decrease at the melting point, and the metal or alloy network is cut. As a result, the conduction path is blocked at the melting point of the metal and / or alloy, and the resistance of the composite material increases rapidly. That is, the PTCR characteristics of the composite material are due to the melting phenomenon of the metal and / or alloy. For this reason, compared with the known BaPbO 3 PTC thermistor, a large resistance change width can be obtained even when the resistance is low, and a steep PTCR characteristic is realized.

本発明における溶融によって体積が減少する金属および/または合金としては、Bi、Sb、Ga、Ge、Siなどの金属やBi−Pb−Sn、Bi−Pb−Sn−Sbなどの合金等、動作原理を満足するものであれば良い。本発明の複合材料において、前記金属および/または合金の分散量は、過度に少ない場合にはPTCR特性を示さないことがあり、過度に多い場合には抵抗変化幅が小さくなる。また、前記金属または合金粒子の平均粒子径は、0.5μmよりも過度に小さい場合には急峻な抵抗増加が得られず、500μmよりも過度に大きい場合には、動作後に初期抵抗が増加してしまいサイクル特性が劣化する。   Examples of the metal and / or alloy whose volume is reduced by melting in the present invention include metals such as Bi, Sb, Ga, Ge, Si, and alloys such as Bi—Pb—Sn and Bi—Pb—Sn—Sb. Anything that satisfies the above is acceptable. In the composite material of the present invention, when the amount of the metal and / or alloy dispersed is excessively small, the PTCR characteristic may not be exhibited, and when the amount is excessively large, the resistance change width becomes small. In addition, when the average particle diameter of the metal or alloy particles is excessively smaller than 0.5 μm, a steep increase in resistance cannot be obtained. When the average particle diameter is excessively larger than 500 μm, the initial resistance increases after operation. As a result, the cycle characteristics deteriorate.

ガラスの組成は、前記金属および/または合金の融点よりも高い溶融温度または分解温度を有するものであれば、その組み合わせは特に限定されず、所望の性能、用途等に応じて適宜選択することができる。例えば、SiO2−PbO−B23、B23−ZnO−PbO等のSiO2系酸化物ガラス、B23系酸化物ガラスなどを挙げることができる。 The composition of the glass is not particularly limited as long as it has a melting temperature or decomposition temperature higher than the melting point of the metal and / or alloy, and can be appropriately selected according to desired performance, application, and the like. it can. Examples thereof include SiO 2 -based oxide glasses such as SiO 2 —PbO—B 2 O 3 and B 2 O 3 —ZnO—PbO, and B 2 O 3 based oxide glasses.

また、ガラス粉末の平均粒子径は特に限定されないが、通常0.1〜100μmであるのが好ましい。   The average particle size of the glass powder is not particularly limited, but it is usually preferably 0.1 to 100 μm.

以下に実施例を示し、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

[実施例1]
SiO2−PbO−B23系ガラス粉末(平均粒子径10μm)にBi金属(平均粒子径10μm)を複合材料中に30重量%分散、含有するように調整・混合した。その混合粉を1000Kg/cm2の圧力で所定の形状に加圧し、ガラス複合成形体を得た。次にこれを大気中、450℃、約10分の条件で加熱した。このようにして得られた複合体に、Ag電極を形成してPTC素子を得た。このPTC素子の室温抵抗率は0.78Ωcmであり、金属の融点である270℃付近からPTCR特性を示した。
[Example 1]
The SiO 2 —PbO—B 2 O 3 glass powder (average particle size 10 μm) was adjusted and mixed so that Bi metal (average particle size 10 μm) was dispersed and contained in the composite material by 30% by weight. The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body. Next, this was heated in air at 450 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. The room temperature resistivity of this PTC element was 0.78 Ωcm, and PTCR characteristics were exhibited from around 270 ° C., which is the melting point of the metal.

図1に、SiO2−PbO−B23系ガラス粉末にBi金属を30重量%混合したPTC素子における抵抗の温度依存性を示す。図から明らかなように、Bi金属の融点である270℃付近から急激に抵抗が増加した。この時の最大抵抗値は108Ωcmになり、抵抗変化率は108以上の高い値になった。さらに、ヒートサイクルによる抵抗の変化も見られなかった。 FIG. 1 shows the temperature dependence of resistance in a PTC element in which 30 wt% of Bi metal is mixed with SiO 2 —PbO—B 2 O 3 glass powder. As is apparent from the figure, the resistance increased rapidly from around 270 ° C., which is the melting point of Bi metal. The maximum resistance value at this time was 10 8 Ωcm, and the resistance change rate was a high value of 10 8 or more. Furthermore, no change in resistance due to heat cycling was observed.

[実施例2]
23−ZnO−PbO系ガラス粉末(平均粒子径10μm)にBi金属(平均粒子径10μm)を複合材料中に30重量%分散、含有するように調整・混合した。その混合粉を1000Kg/cm2の圧力で所定の形状に加圧し、ガラス複合成形体を得た。次にこれを大気中、400℃、約10分の条件で加熱した。このようにして得られた複合体に、Ag電極を形成してPTC素子を得た。このPTC素子の室温抵抗率は0.85Ωcmであり、金属の融点である270℃付近からPTCR特性を示した。
[Example 2]
B 2 O 3 —ZnO—PbO-based glass powder (average particle size 10 μm) was adjusted and mixed so that Bi metal (average particle size 10 μm) was dispersed and contained in the composite material by 30% by weight. The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body. Next, this was heated in air at 400 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. This PTC element had a room temperature resistivity of 0.85 Ωcm, and exhibited PTCR characteristics from around 270 ° C., which is the melting point of the metal.

[実施例3]
23−ZnO−PbO系ガラス粉末(平均粒子径10μm)にBi−Pb−Sn−Sb合金(平均粒子径10μm)を複合材料中に30重量%分散、含有するように調整・混合した。その混合粉を1000Kg/cm2の圧力で所定の形状に加圧し、ガラス複合成形体を得た。次にこれを大気中、400℃、約10分の条件で加熱した。このようにして得られた複合体に、Ag電極を形成してPTC素子を得た。このPTC素子の室温抵抗率は0.98Ωcmであり、合金の融点である100℃付近からPTCR特性を示した。
[Example 3]
B 2 O 3 —ZnO—PbO-based glass powder (average particle size 10 μm) was prepared and mixed so that Bi—Pb—Sn—Sb alloy (average particle size 10 μm) was dispersed and contained in the composite material by 30% by weight. . The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body. Next, this was heated in air at 400 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. This PTC element had a room temperature resistivity of 0.98 Ωcm, and exhibited PTCR characteristics from around 100 ° C., which is the melting point of the alloy.

以上のべたように、本発明はPTC素子において、10-1Ωcm程度の低抵抗を実現し、抵抗変化幅や特性の安定性を格段に改良することができる。 As described above, the present invention achieves a low resistance of about 10 −1 Ωcm in the PTC element, and can greatly improve the resistance change width and the stability of characteristics.

抵抗−温度特性を示す図である。It is a figure which shows resistance-temperature characteristics.

Claims (3)

SiO−PbO−B系ガラスまたはB−ZnO−PbO系ガラスに、溶融によって体積減少する平均粒子径0.5〜500μmのBi金属および/またはその合金の少なくとも一種を10〜90重量%含有するように調整・混合し、その混合粉を加圧・成形し、得られた成形体を400〜450℃で加熱することを特徴とする複合材料の製造方法。 At least one of Bi metal and / or its alloy having an average particle diameter of 0.5 to 500 μm that decreases in volume by melting is added to SiO 2 —PbO—B 2 O 3 glass or B 2 O 3 —ZnO—PbO glass. A method for producing a composite material, comprising adjusting and mixing so as to contain ˜90% by weight, pressing and molding the mixed powder, and heating the obtained molded body at 400 to 450 ° C. 前記合金は、Bi−Pb−Sn−Sb合金である請求項1記載の複合材料の製造方法。 The method for producing a composite material according to claim 1, wherein the alloy is a Bi—Pb—Sn—Sb alloy. 前記複合材料は、PTCサーミスタ用の複合材料である請求項1または2記載の複合材料の製造方法。 The method for producing a composite material according to claim 1, wherein the composite material is a composite material for a PTC thermistor.
JP2008105216A 2008-04-15 2008-04-15 Manufacturing method of composite material Expired - Fee Related JP4433072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105216A JP4433072B2 (en) 2008-04-15 2008-04-15 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105216A JP4433072B2 (en) 2008-04-15 2008-04-15 Manufacturing method of composite material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20008398A Division JP4134386B2 (en) 1998-07-15 1998-07-15 Composite material for PTC thermistor, manufacturing method thereof, and use thereof

Publications (2)

Publication Number Publication Date
JP2008187199A true JP2008187199A (en) 2008-08-14
JP4433072B2 JP4433072B2 (en) 2010-03-17

Family

ID=39729983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105216A Expired - Fee Related JP4433072B2 (en) 2008-04-15 2008-04-15 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP4433072B2 (en)

Also Published As

Publication number Publication date
JP4433072B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP6827749B2 (en) Encapsulant
JP5045804B2 (en) Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof
US6358436B2 (en) Inorganic-metal composite body exhibiting reliable PTC behavior
TWI711059B (en) A polymer positive temperature coefficient (pptc) material and a fuse device including the same
JP4433072B2 (en) Manufacturing method of composite material
JP4134386B2 (en) Composite material for PTC thermistor, manufacturing method thereof, and use thereof
JP6848327B2 (en) A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor.
JPH10233303A (en) Ntc thermistor
JP3301312B2 (en) PTC material composition and PTC material
JPH11111507A (en) Composite material
JP2017108087A (en) Composite material and PTC thermistor
JP3775003B2 (en) Conductive paste for semiconductor ceramic and semiconductor ceramic component
JP2010010009A (en) Method of flattening of resistance temperature curve of molten silicon electrical heating alloy
JPH1131603A (en) Ptc resistant element for protecting electric circuit and manufacture thereof
JP3334264B2 (en) Semiconductor ceramic element
JPH11329675A (en) Ptc composition
JP2005183750A (en) Ptc element and switch using the same
JP2000294405A (en) Low resistance ptc material composition and manufacture thereof
JP2000173804A (en) Composit ptc material
JP3901028B2 (en) Lead-free thermal fuse
JPH11121203A (en) Manufacture of current-limiting element
TWI529743B (en) A high conductive polymer positive temperature coefficient composition and a circuit protection device
JP2004269341A (en) Zinc oxide-based sintered compact, its manufacturing method, and zinc oxide varistor
JP2004303912A (en) Ptc element
JPH04365B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees