JP3901028B2 - Lead-free thermal fuse - Google Patents

Lead-free thermal fuse Download PDF

Info

Publication number
JP3901028B2
JP3901028B2 JP2002172764A JP2002172764A JP3901028B2 JP 3901028 B2 JP3901028 B2 JP 3901028B2 JP 2002172764 A JP2002172764 A JP 2002172764A JP 2002172764 A JP2002172764 A JP 2002172764A JP 3901028 B2 JP3901028 B2 JP 3901028B2
Authority
JP
Japan
Prior art keywords
mass
alloy
lead
temperature
fusible alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002172764A
Other languages
Japanese (ja)
Other versions
JP2004018900A5 (en
JP2004018900A (en
Inventor
精朋 寺澤
Original Assignee
エヌイーシー ショット コンポーネンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌイーシー ショット コンポーネンツ株式会社 filed Critical エヌイーシー ショット コンポーネンツ株式会社
Priority to JP2002172764A priority Critical patent/JP3901028B2/en
Publication of JP2004018900A publication Critical patent/JP2004018900A/en
Publication of JP2004018900A5 publication Critical patent/JP2004018900A5/ja
Application granted granted Critical
Publication of JP3901028B2 publication Critical patent/JP3901028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、保護素子に関するもので、詳しくは、電気・電子機器等に使用され、特定温度で溶融する低融点可溶合金を用いた温度ヒュ−ズに関する。
【0002】
【従来の技術】
電気・電子機器等を過熱損傷から保護する保護素子として、特定温度で動作して回路を遮断する温度ヒューズが用いられている。可溶合金型温度ヒューズは、感温材として特定温度で溶融する低融点合金を用いて、この低融点合金に通電し、周囲温度の過昇により低融点合金が溶融して回路を遮断するものである。
【0003】
通常、従来の可溶合金型温度ヒューズは両端に端子リードを接続した低融点可溶合金を絶縁ケースに収納して端子リードの導出部を封止して構成される。さらに、低融点可溶合金と抵抗体とを具備し、抵抗体への通電加熱により低融点可溶合金を強制的に溶断させる抵抗内蔵型温度ヒューズと称される保護素子もある。
【0004】
上記の可溶合金型温度ヒュ−ズは、保温コタツ、炊飯器等の家電製品、液晶テレビや複写機等のOA機器、照明機器などに保護素子として用いられている。この内80〜89℃の範囲の動作温度を有する可溶合金には、従来48Bi−30Pb−15Sn−7In(質量%)四元合金(84℃)42〜50In,10〜15Cd,0.8〜5Zn,残Sn(質量%)四元合金(85℃)など人体に有害な重金属である鉛やカドミウムを10質量%以上含有する物であった。最近、廃棄された電気・電子機器から雨水などの作用により有害金属が溶出し、地下水に深刻な汚染をもたらしていることが、地球環境上の問題となり改良が必要とされている。
【0005】
温度ヒューズの可溶合金は、特定の温度で液状化を進行させ球状化に導き溶断させる必要上、できれば単一の溶融点を持つ共晶合金組成が好ましい。さらに、電源回路に直列に実装される温度ヒューズの特性上から、かかる温度ヒューズの内部抵抗値は長期の高温保管によっても変化せず10mΩ以下であることが、省エネルギーの面や動作温度の安定性の上からも望ましい。
【0006】
【発明が解決しようとする課題】
本発明は、PbやCdによる問題を生じないように、上記した可溶合金にPb及びCdを使用しない環境対応型の可溶合金型温度ヒューズを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の請求項1に関る可溶合金型温度ヒュ−ズは、感温素子にBiが57質量%、Inが26質量%、残部Snが17質量%の組成からなる可溶合金を使用するものである。すなわち、Biを50〜60質量%、Inが20〜30質量%、残部Snであって、上記特定の組成からなる可溶合金を使用することで75〜85℃の動作温度を有する可溶合金型温度ヒュ−ズを可能としたものである。
【0008】
上記の可溶合金には、Bi−In−Snの三元合金よりも一段と、線の塑性加工性を向上させる目的で動作温度に支障をきたすことなく請求項2に記載する範囲でCuを添加することもできる。
【0009】
上記の可溶合金には、Bi−In−Snの三元合金よりも一段と、内部抵抗を低減させる目的で動作温度に支障をきたすことなく請求項3に記載する範囲でAgを添加することもできる。
【0010】
請求項1の母材合金に対するCuとAgの添加効果を比較すると、共に母材合金の塑性向上させ、内部抵抗を低減させ得るが、Cuは線の塑性加工性を向上させる効果が顕著であり、一方、Agについては線の内部抵抗を低減させる効果により優れていることがわかった。
【0011】
【発明の実施の形態】
本発明はアキシャル型温度ヒューズ、ラジアル型温度ヒューズ、薄型温度ヒューズ、抵抗内型ヒューズ等に使用でき、特定の型式に限定されるものではないが、以下に実施形態の一例としてアキシャル型温度ヒューズの実施を用いて説明する。
【0012】
図1は、温度ヒューズの実施形態を示し、アキシャル型温度ヒューズの断面図である。
1,2:端子リード(Sn-Cuめっき銅線)
3:可溶合金
4:フラックス(ロジン、ワックス、活性剤)
5:絶縁物のケース(アルミナセラミック碍管)
6,7:封止樹脂(エポキシ樹脂)
【0016】
実施形態は、Sn-Cuめっき銅線からなる端子リ−ド1,2に、可溶合金3を抵抗溶接により接合した後、可溶合金4をロジン、ワックス、活性剤からなるフラックス4で被覆し、アルミナセラミック碍管5中に挿入して、エポキシ系封止樹脂6,7によりケース端部を封止して形成できる。なお、端子リ−ド1,2のSn-Cuめっき銅線は、必要に応じてAgめっき銅線、Snめっき銅線、Niめっき銅線等に変更でき、Sn-Cuめっき銅線に限定されるものではない。
【0017】
上記実施形態の温度ヒューズにおいて、可溶合金3にφ0.3〜0.7mm線を使用でき、また必要に応じて同一の断面積を有するテープ状合金の平角片も使用できる。
【0018】
本発明の温度ヒューズ可溶合金は、合金鋳塊の押出し加工により製造され、その後必要に応じてテープ状に圧延加工することもできる。
【0019】
また、将来本発明の趣旨を逸脱しない範囲において、可溶合金3の線径は要求に応じてφ0.3以下とすることができ、さらにまた、要求に応じてφ0.7mm以上に変更することもできる。
【0020】
【実施例】
(実施例1)端子リ−ド1、2に可溶合金3を接合し、この可溶合金3をフラックス4で被覆し、絶縁物のケ−ス5に挿入し、前記端子リ−ド1、2を導出する前記ケ−ス5の端部を封止樹脂6、7により封止してなる温度ヒュ−ズにおいて、前記可溶合金はBiを57質量%、Inを26質量%、Snを17質量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒュ−ズに適用した。実施例1の温度ヒュ−ズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は81±2℃であった。また、71℃で500時間、1000時間、2000時間それぞれ保管した実施例1の温度ヒュ−ズ各10個を試験したところ内部抵抗値9±2mΩの範囲を保持でき、高温保管後も動作温度81±2℃の初期範囲を維持できる事がわかった。
【0021】
(実施例2)実施例1の三合金100質量部に対してCuを1質量部添加した組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒュ−ズに適用した。この温度ヒュ−ズ30個を実施例1と同様の方法で評価ところ動作温度範囲85±5℃に内部抵抗値を7±2mΩと低くできることがわかった。さらにCuの添加量を詳細に検討した結果、望ましくは実施例1の合金100質量部に対してCuの添加量が0.1〜1.5質量部の範囲内にあるとき目的の範囲の動作温度で合金の線加工性を向上させることができた。
【0022】
(実施例3)実施例1の三合金100質量部に対してAgを0.5質量部添加した組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒュ−ズに適用した。この温度ヒュ−ズ30個を実施例1と同様の方法で評価したところ動作温度範囲を変化させずに内部抵抗値を5±2mΩと低くできることがわかった。さらにAgの添加量を詳細に検討した結果、望ましくは実施例1の合金100質量部に対してAgの添加量が0.1〜2.5質量部の範囲内にあるとき動作温度を変化させずに内部抵抗値を低下させることができた。
【0023】
【比較例】
Biの量を49質量%以下にした合金組成:48Bi−30In−22Snを用いた実施形態の温度ヒュ−ズは、動作温度範囲が75〜90℃と安定せず実用の温度ヒュ−ズに至らなかった。また、Biの量を61質量%以上とした組成:62Bi−30In−8Snのφ0.6mm線を押出し加工により作製を試みたが、合金強度が劣り脆すぎるため作製できなかった。
【0024】
【発明の効果】
以上に説明したように本発明は、75〜85℃で動作可能な信頼性の優れた鉛フリー温度ヒューズをPbやCdを含有しない三合金或いは更にCu、Agを添加させることにより、実現するものである。
【0025】
【図面の簡単な説明】
【図1】本発明の実施形態であるアキシャル型温度ヒューズの断面図
【符号の説明】
1、2 端子リ−ド
3 可溶合金
4 フラックス
5 絶縁物のケ−ス
6、7 封止樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a protective element, and more particularly to a temperature fuse using a low melting point soluble alloy that is used in electric / electronic devices and melts at a specific temperature.
[0002]
[Prior art]
A thermal fuse that operates at a specific temperature and shuts off a circuit is used as a protective element that protects electrical and electronic devices from overheating damage. A fusible alloy type thermal fuse uses a low-melting-point alloy that melts at a specific temperature as a temperature-sensitive material, energizes this low-melting-point alloy, and melts the low-melting-point alloy due to excessive ambient temperature, thereby interrupting the circuit. It is.
[0003]
Usually, a conventional fusible alloy type thermal fuse is constructed by housing a low melting point fusible alloy having terminal leads connected to both ends in an insulating case and sealing the lead-out portion of the terminal lead. Further, there is a protective element called a resistance built-in type thermal fuse that includes a low melting point soluble alloy and a resistor and forcibly blows off the low melting point soluble alloy by energization heating to the resistor.
[0004]
The above-mentioned fusible alloy type temperature fuse is used as a protective element in home appliances such as heat insulation kotatsu and rice cookers, OA equipment such as liquid crystal televisions and copiers, and lighting equipment. Among these, soluble alloys having an operating temperature in the range of 80 to 89 ° C include conventional 48Bi-30Pb-15Sn-7In (mass%) quaternary alloy (84 ° C) , 42-50In, 10-15Cd, 0.8 -5Zn, residual Sn (mass%) A material containing 10 mass% or more of lead or cadmium, which is a heavy metal harmful to the human body, such as a quaternary alloy (85 ° C.). Recently, the fact that hazardous metals are eluted from discarded electrical and electronic equipment by the action of rainwater and the like has caused serious pollution in groundwater has become a global environmental problem and needs to be improved.
[0005]
The fusible alloy of the thermal fuse is preferably a eutectic alloy composition having a single melting point if possible, because it requires liquefaction at a specific temperature to cause spheroidization and fusing. Furthermore, due to the characteristics of thermal fuses mounted in series in the power supply circuit, the internal resistance value of such thermal fuses does not change even after long-term high-temperature storage, and is 10 mΩ or less. Also desirable from above.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an environment-friendly fusible alloy type thermal fuse that does not use Pb and Cd in the above-described fusible alloy so as not to cause problems due to Pb and Cd.
[0007]
[Means for Solving the Problems]
The fusible alloy type temperature fuse according to claim 1 of the present invention uses a fusible alloy having a composition of Bi of 57 mass%, In of 26 mass%, and the balance of Sn of 17 mass% for the temperature sensitive element. To do. Namely, Bi is 50 to 60% by mass, In is 20 to 30% by mass, and the balance is Sn, and a soluble alloy having an operating temperature of 75 to 85 ° C. by using a soluble alloy having the above specific composition. The mold temperature fuse is made possible.
[0008]
In order to improve the plastic workability of the wire, Cu is added to the fusible alloy within the range described in claim 2 for the purpose of improving the plastic workability of the wire. You can also
[0009]
In addition to the Bi-In-Sn ternary alloy, Ag may be added to the above-mentioned fusible alloy within the range described in claim 3 without affecting the operating temperature for the purpose of reducing internal resistance. it can.
[0010]
Comparing the effects of adding Cu and Ag to the base metal alloy of claim 1, both can improve the plasticity of the base metal alloy and reduce the internal resistance, but Cu has a remarkable effect of improving the plastic workability of the wire. On the other hand, it was found that Ag is superior in the effect of reducing the internal resistance of the wire.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is axial type thermal fuse, radial type thermal fuse, thin thermal fuse, can be used for resistance built - in fuse or the like, but are not limited to a particular type, axial type thermal fuse as an example of an embodiment below This will be described using the example .
[0012]
FIG. 1 shows an embodiment of a thermal fuse, and is a cross-sectional view of an axial type thermal fuse.
1, 2: Terminal lead (Sn-Cu plated copper wire)
3: Soluble alloy 4: Flux (rosin, wax, activator)
5: Insulator case (alumina ceramic tube)
6, 7: Sealing resin (epoxy resin)
[0016]
In the embodiment, after the fusible alloy 3 is joined to the terminal leads 1 and 2 made of Sn—Cu plated copper wire by resistance welding, the fusible alloy 4 is covered with the flux 4 made of rosin, wax and activator. Then, it can be formed by being inserted into the alumina ceramic soot tube 5 and sealing the case end with the epoxy-based sealing resins 6 and 7. The Sn-Cu plated copper wires of the terminal leads 1 and 2 can be changed to Ag plated copper wires, Sn plated copper wires, Ni plated copper wires, etc. as required, and are limited to Sn-Cu plated copper wires. It is not something.
[0017]
In the thermal fuse of the above embodiment, a φ0.3 to 0.7 mm wire can be used for the fusible alloy 3, and a rectangular strip of a tape-like alloy having the same cross-sectional area can be used if necessary.
[0018]
The temperature fuse fusible alloy of the present invention can be manufactured by extruding an alloy ingot and then rolled into a tape shape as necessary.
[0019]
In addition, the wire diameter of the fusible alloy 3 can be reduced to φ0.3 or less as required in the range not departing from the gist of the present invention in the future, and further changed to φ0.7 mm or more as required. You can also.
[0020]
【Example】
(Embodiment 1) A fusible alloy 3 is joined to terminal leads 1 and 2, this fusible alloy 3 is covered with a flux 4, inserted into an insulator case 5, and the terminal lead 1 2 in a temperature fuse formed by sealing the ends of the case 5 with sealing resins 6 and 7, the fusible alloy contains 57% by mass of Bi, 26% by mass of In, Sn A φ0.6 mm wire having a composition of 17 mass% was prepared by extrusion, and this alloy wire was applied to the temperature fuse of the embodiment. When operating in a thermostatic chamber (gas phase) where the temperature rises at a rate of 1 ° C./min while supplying a detection current of 10 mA to 30 temperature fuses of Example 1, the operating temperature range is 81 ± 2 ° C. Met. In addition, when 10 temperature fuses of Example 1 stored at 71 ° C. for 500 hours, 1000 hours, and 2000 hours were tested, the internal resistance range of 9 ± 2 mΩ could be maintained, and the operating temperature was 81 after high temperature storage. It was found that the initial range of ± 2 ° C can be maintained.
[0021]
(Example 2) A φ0.6 mm wire having a composition in which 1 part by mass of Cu is added to 100 parts by mass of the three alloys of Example 1 is produced by extrusion, and this alloy wire is applied to the temperature fuse of the embodiment. did. Evaluation of 30 temperature fuses in the same manner as in Example 1 revealed that the internal resistance value could be lowered to 7 ± 2 mΩ in the operating temperature range of 85 ± 5 ° C. Furthermore, as a result of examining the addition amount of Cu in detail, when the addition amount of Cu is preferably within the range of 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the alloy of Example 1, the operation in the target range Temperature could improve the wire workability of the alloy.
[0022]
(Example 3) A φ0.6 mm wire having a composition in which 0.5 parts by mass of Ag was added to 100 parts by mass of the three alloys of Example 1 was produced by extrusion, and this alloy wire was used as the temperature fuse of the embodiment. Applied to. When 30 temperature fuses were evaluated in the same manner as in Example 1, it was found that the internal resistance value could be lowered to 5 ± 2 mΩ without changing the operating temperature range. Furthermore, as a result of examining the addition amount of Ag in detail, when the addition amount of Ag is preferably in the range of 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the alloy of Example 1, the operating temperature is changed. The internal resistance value was able to be lowered.
[0023]
[Comparative example]
Alloy composition in which the amount of Bi is 49% by mass or less: The temperature fuse of the embodiment using 48Bi-30In-22Sn does not stabilize the operating temperature range of 75 to 90 ° C., leading to a practical temperature fuse. There wasn't. In addition, an attempt was made to extrude a composition of 62Bi-30In-8Sn having a Bi content of 61% by mass or more by extrusion, but the alloy strength was too poor and could not be produced.
[0024]
【The invention's effect】
As described above, the present invention realizes a reliable lead-free thermal fuse operable at 75 to 85 ° C. by adding three alloys not containing Pb or Cd, or further adding Cu or Ag. It is.
[0025]
[Brief description of the drawings]
FIG. 1 is a sectional view of an axial type thermal fuse according to an embodiment of the present invention.
1, 2 Terminal lead 3 Soluble alloy 4 Flux 5 Insulator case 6, 7 Sealing resin

Claims (3)

端子リ−ドに可溶合金を接合し、この可溶合金をフラックスで被覆し、絶縁物のケ−スに挿入し、前記端子リ−ドを導出する前記ケ−スの端部を封止樹脂により封止してなる75〜85℃の動作温度を有する温度ヒュ−ズであって、前記可溶合金はBiが57質量%、Inが26質量%、残部Snが17質量%の組成合金からなることを特徴とする鉛フリ−温度ヒュ−ズ。A fusible alloy is joined to the terminal lead, the fusible alloy is coated with a flux, inserted into an insulator case, and the end of the case leading out the terminal lead is sealed. A temperature fuse having an operating temperature of 75 to 85 ° C. encapsulated with a resin, wherein the fusible alloy is 57% by mass of Bi, 26% by mass of In, and 17% by mass of the remaining Sn. A lead-free temperature fuse characterized by comprising: 前記可溶合金100質量部に対してCuを0.1〜1.5質量部を添加して合金の線加工性を向上することを特徴とする請求項1に記載の鉛フリ−温度ヒュ−ズ。The lead-free temperature fuse according to claim 1, wherein 0.1 to 1.5 parts by mass of Cu is added to 100 parts by mass of the fusible alloy to improve the wire workability of the alloy. . 前記可溶合金100質量部に対してAgを0.1〜2.5質量部を添加して内部抵抗値を低くすることを特徴とする請求項1に記載の鉛フリ−温度ヒュ−ズ。2. The lead-free temperature fuse according to claim 1, wherein 0.1 to 2.5 parts by mass of Ag is added to 100 parts by mass of the fusible alloy to lower the internal resistance value.
JP2002172764A 2002-06-13 2002-06-13 Lead-free thermal fuse Expired - Lifetime JP3901028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172764A JP3901028B2 (en) 2002-06-13 2002-06-13 Lead-free thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172764A JP3901028B2 (en) 2002-06-13 2002-06-13 Lead-free thermal fuse

Publications (3)

Publication Number Publication Date
JP2004018900A JP2004018900A (en) 2004-01-22
JP2004018900A5 JP2004018900A5 (en) 2005-05-12
JP3901028B2 true JP3901028B2 (en) 2007-04-04

Family

ID=31172236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172764A Expired - Lifetime JP3901028B2 (en) 2002-06-13 2002-06-13 Lead-free thermal fuse

Country Status (1)

Country Link
JP (1) JP3901028B2 (en)

Also Published As

Publication number Publication date
JP2004018900A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4230194B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4001757B2 (en) Alloy type temperature fuse
EP1343187B1 (en) Alloy type thermal fuse and fuse element thereof
JP2001266724A (en) Alloy-type thermal fuse
JP2819408B2 (en) Alloy type temperature fuse
EP1383149B1 (en) Alloy type thermal fuse and wire member for a thermal fuse element
JP2001291459A (en) Alloy temperature fuse
JP3885995B2 (en) Thermal fuse
JP3901028B2 (en) Lead-free thermal fuse
JPH06325670A (en) Alloy type temperature fuse
JP2004043894A (en) Alloy type thermal fuse and wire member for thermal fuse element
JP4338377B2 (en) Lead-free alloy type thermal fuse
JP4375713B2 (en) Thermal fuse
JP4488586B2 (en) Flux, fluxed low melting point alloy and protective element using the same
JP2004035929A (en) Lead-free alloy type thermal fuse
JP2006299289A (en) Alloy type temperature-sensitive element material, and temperature fuse using the same
JP2516469B2 (en) Alloy type temperature fuse
JP2005276577A (en) Fusible alloy type thermal fuse
JP2001143592A (en) Fuse alloy
JP2007113024A (en) Fusible alloy type thermal fuse
JP4101536B2 (en) Alloy type thermal fuse
JP2001195963A (en) Alloy temperature fuse
JP2007031775A (en) Lead-free fusible alloy type thermal fuse
JP2003249155A (en) Thermal fuse composed of lead-free alloy
JP4946419B2 (en) Thermal fuse and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Ref document number: 3901028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term