JP2005276577A - Fusible alloy type thermal fuse - Google Patents

Fusible alloy type thermal fuse Download PDF

Info

Publication number
JP2005276577A
JP2005276577A JP2004086758A JP2004086758A JP2005276577A JP 2005276577 A JP2005276577 A JP 2005276577A JP 2004086758 A JP2004086758 A JP 2004086758A JP 2004086758 A JP2004086758 A JP 2004086758A JP 2005276577 A JP2005276577 A JP 2005276577A
Authority
JP
Japan
Prior art keywords
alloy
temperature
fusible alloy
weight
thermal fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004086758A
Other languages
Japanese (ja)
Other versions
JP2005276577A5 (en
Inventor
Kiyotomo Terasawa
精朋 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Original Assignee
NEC Schott Components Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp filed Critical NEC Schott Components Corp
Priority to JP2004086758A priority Critical patent/JP2005276577A/en
Publication of JP2005276577A publication Critical patent/JP2005276577A/en
Publication of JP2005276577A5 publication Critical patent/JP2005276577A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve high temperature storing characteristics of a fusible alloy type thermal fuse which does not contain environmentally problematic noxious metal and in which an operating temperature can be set in a high temperature region. <P>SOLUTION: This is the fusible alloy type thermal fuse free from noxious metal in which the operating temperature is set within a range of 214 to 222°C and of which the main component is Sn as a low melting point fusible alloy, and by using a binary alloy with Ag added, a ternary alloy further with Cu added, a quaternary alloy further with In added, and a heat-resistant sealing material composed of a resin material to which an inorganic additive is added, and after the low melting point fusible alloy 3 connected to a pair of reed members 1, 2 is covered by a flux 4, this is constituted by housing this in an insulation case 5, and by airtightly sealing and fixing it by the heat-resistant sealing materials 6, 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、周囲温度に感応して電気機器の損傷を防ぐ保護素子、特に所定温度で溶融する低融点可溶合金を用いた鉛フリーの可溶合金型温度ヒュ−ズに関する。   The present invention relates to a protective element that is sensitive to ambient temperature and prevents damage to electrical equipment, and more particularly to a lead-free fusible alloy type temperature fuse using a low melting point fusible alloy that melts at a predetermined temperature.

電気・電子機器等を過熱損傷から保護する保護素子として、特定温度で動作して回路を遮断する温度ヒューズが知られている。このうち、可溶合金型温度ヒューズは感温材として低融点可溶合金を用い、周囲温度の過昇により通電回路に設けた低融点可溶合金を溶融して回路遮断するものである。また、低融点合金は発熱抵抗体と併設して抵抗体の通電加熱により低融点可溶合金を強制的に溶断させることもあり、通常、抵抗内蔵型温度ヒューズと称して保護素子に利用されている。これら可溶合金型温度ヒューズは、保温コタツ、炊飯器等の家電製品、液晶テレビや複写機器等のOA機器、照明機器など機器の安全手段として広く利用されている。   As a protection element that protects electric and electronic devices from overheating damage, a thermal fuse that operates at a specific temperature and interrupts a circuit is known. Among them, the fusible alloy type thermal fuse uses a low melting point fusible alloy as a temperature sensitive material, and melts the low melting point fusible alloy provided in the energizing circuit due to an excessive rise in ambient temperature to interrupt the circuit. In addition, low melting point alloys are sometimes used together with heat generating resistors to forcibly blow low melting point soluble alloys by energizing and heating resistors, and are usually used as protective elements with built-in resistance type thermal fuses. Yes. These fusible alloy type thermal fuses are widely used as safety means for appliances such as heat insulation kotatsu, home appliances such as rice cookers, OA equipment such as liquid crystal televisions and copying machines, and lighting equipment.

一方、感温材としての低融点可溶合金は、従来、定格動作温度が最も高温の温度ヒューズでも共晶はんだ62Sn−38Pb(重量%)を用いて動作温度を183±2℃としており、使用上推奨されるヒューズ本体の温度も140℃程度が上限であった。これは主として可溶合金が収容される絶縁ケースからリードを導出する際の封着用樹脂材の耐熱温度を150℃程度に設定して設計されていた。それゆえ、古くから用いられてきたSn−Pb系合金を使用する場合、溶融特性上からもこの温度以上の熱定格を有する温度ヒューズを作ることは困難とされていた。   On the other hand, a low-melting-point fusible alloy as a temperature-sensitive material has conventionally been operated at a temperature of 183 ± 2 ° C. using eutectic solder 62Sn-38Pb (% by weight) even with a temperature fuse having the highest rated operating temperature. The upper limit of the recommended fuse body temperature is about 140 ° C. This was designed by setting the heat resistance temperature of the sealing resin material when the lead is led out from the insulating case in which the soluble alloy is mainly accommodated to about 150 ° C. Therefore, when using an Sn—Pb alloy that has been used for a long time, it has been difficult to produce a thermal fuse having a thermal rating equal to or higher than this temperature in terms of melting characteristics.

ところで、Sn−Pb系合金を用いる場合、組成物の鉛(Pb)が地下水に深刻な汚染をもたらしていることで問題となっている。そして、このような温度ヒューズを搭載した電気・電子機器の廃棄物から雨水などの作用によりPbが溶出し、長期にわたって有害金属を漏出させることから環境汚染が危惧される。それゆえに、鉛やカドミウム等の人体に有害な物質の使用が規制され、例えば、欧州における特定化学物質を規制するRoSH規制などの対応が求められている。こうした問題を回避するために、特許文献1および特許文献2に開示されるように、鉛フリーの温度ヒューズが提案されてきている。しかしながら、従来の鉛フリー可溶合金型温度ヒュ−ズは、その使用範囲がいずれも200℃以下にあるため適用分野での制限があった。たとえば、家庭電化製品としてのヘアカーラーはその電熱部を保護するには動作温度が215〜225℃の範囲の温度ヒューズが要求されている。しかし、このような動作温度の可溶合金型温度ヒューズがなく、通常は構造的により複雑でコスト的にも高価となる感温ペレットを感温材に用いた感温ペレット型温度ヒューズを使用せざるを得なかった。
特開2003−249155号公報 特開2003−147461号公報
By the way, when using a Sn-Pb type-alloy, it has become a problem because the lead (Pb) of a composition has caused serious pollution to groundwater. Then, Pb is eluted from the waste of electrical / electronic equipment equipped with such a thermal fuse by the action of rainwater and the like, and toxic metals are leaked over a long period of time. Therefore, the use of substances harmful to the human body such as lead and cadmium is regulated, and for example, measures such as RoSH regulations for regulating specific chemical substances in Europe are required. In order to avoid such a problem, as disclosed in Patent Document 1 and Patent Document 2, lead-free thermal fuses have been proposed. However, the conventional lead-free fusible alloy type temperature fuse has a limitation in the application field because its use range is 200 ° C. or less. For example, a hair curler as a home appliance is required to have a temperature fuse with an operating temperature in the range of 215 to 225 ° C. in order to protect the electric heating part. However, there is no fusible alloy type thermal fuse with such an operating temperature, and the use of a temperature sensitive pellet type thermal fuse that uses a temperature sensitive pellet, which is usually more structurally complicated and costly, as a temperature sensitive material. I had to.
JP 2003-249155 A JP 2003-147461 A

それゆえに、動作温度の高い可溶合金型温度ヒューズの提供が望まれている。本発明者の知見によれば、温度ヒューズに用いられる低融点可溶合金は、特定の温度で球状溶断させる必要上、できれば単一の溶融点を持つ共晶合金組成が好ましい。しかし、該当する高い温度帯の共晶組成が見当らない場合でも使用可能な合金を選択して使用できることが分かった。例えば、多元合金からなる低融点可溶合金は、固相線温度以上の温度で合金は溶け始め、液相線温度で完全に液状に溶融する。一般に固相線温度と液相線温度の差を固液共存域と言うが、この固液共存域が小さい合金ほど温度ヒューズでの溶断温度のバラツキは小さくなり、実用的温度ヒューズとしての固液共存域は10℃未満、好ましくは5℃未満であることが判明した。   Therefore, it is desired to provide a fusible alloy type thermal fuse having a high operating temperature. According to the knowledge of the present inventor, the low-melting-point soluble alloy used for the thermal fuse is preferably a eutectic alloy composition having a single melting point if possible, because it is necessary to make a spherical fusing at a specific temperature. However, it was found that usable alloys can be selected and used even when the corresponding eutectic composition in the high temperature range is not found. For example, a low melting point soluble alloy made of a multi-element alloy starts to melt at a temperature equal to or higher than the solidus temperature, and completely melts at a liquidus temperature. Generally, the difference between the solidus temperature and the liquidus temperature is called the solid-liquid coexistence zone, but the smaller the solid-liquid coexistence zone, the smaller the fusing temperature variation in the thermal fuse, and the solid-liquid as a practical temperature fuse. It has been found that the coexistence zone is below 10 ° C, preferably below 5 ° C.

さらに、電源回路に直列に実装される温度ヒューズの特性上から、こうした高温作動の温度ヒューズは内部抵抗値が長期の高温保管によっても変化せず、省エネルギーや動作温度の安定面から2.5x10−7Ω・m以下に維持されることが好ましく、加えて、温度ヒューズ組立品は所定以上の機械的強度が必要とされる。例えば、標準的温度ヒューズの可溶合金とリード線のそれぞれの線径φが0.6〜0.7mmである場合にリード線の引張強度は5.6N以上であることが必要とされる。こうした要求を満たすために、リード線を封着固着するために耐熱封着材の使用も必要とされる。すなわち、従来の可溶合金型温度ヒューズはその動作温度の最大値183℃を超える200℃以上で動作させるために、実際に使用する熱環境が180℃を上回る190℃から200℃の長期保管に耐えて安定動作を確保する必要がある。 Furthermore, the characteristics of the thermal fuse to be mounted in series to the power supply circuit, the temperature fuse these high-temperature operation without change the internal resistance due to the high temperature storage of long, from the stable surface of the energy saving and operating temperature 2.5 × 10 - Preferably, the temperature fuse assembly is maintained at 7 Ω · m or less, and in addition, the thermal fuse assembly requires a predetermined mechanical strength or more. For example, when the diameter φ of each of the fusible alloy and the lead wire of a standard temperature fuse is 0.6 to 0.7 mm, the tensile strength of the lead wire is required to be 5.6 N or more. In order to satisfy these requirements, it is also necessary to use a heat-resistant sealing material for sealing and fixing the lead wires. In other words, in order to operate the conventional fusible alloy type thermal fuse at 200 ° C. or more, which exceeds the maximum operating temperature of 183 ° C., the long-term storage at 190 ° C. to 200 ° C., where the actual thermal environment exceeds 180 ° C. It is necessary to endure and ensure stable operation.

したがって、本発明は上述の課題を解決するために、本発明者の知見に基づきPbやCd等の有害物質を含まずかつ比較的高い動作温度、例えば、動作温度215〜225℃の範囲内に設定できる低融点可溶合金を有する新規かつ改良された可溶合金型温度ヒューズの提供を目的とするものである。   Therefore, in order to solve the above-mentioned problems, the present invention does not contain harmful substances such as Pb and Cd and is within a relatively high operating temperature range, for example, an operating temperature range of 215 to 225 ° C., based on the inventors' knowledge. The object is to provide a new and improved fusible alloy type thermal fuse having a low melting point fusible alloy which can be set.

換言すると、絶縁ケースからのリード部材を導出する際に耐熱封着材を用いて高温保管に耐えると共に錫(Sn)を主成分とし、これに動作温度を微調整するための微量の銀(Ag)、銅(Cu)およびインジウム(In)を含有させた有害金属フリーの低融点可溶合金を用いた新規かつ改良された可溶合金型温度ヒューズを提供することにある。また、耐熱封着材は樹脂材に無機物を添加して高温保管特性を向上させる改良された可溶合金型温度ヒューズの提供にある。   In other words, when a lead member is derived from the insulating case, a heat-resistant sealing material is used to withstand high-temperature storage, and tin (Sn) is a main component, and a small amount of silver (Ag) for finely adjusting the operating temperature. ), Copper (Cu) and indium (In), and a new and improved fusible alloy type thermal fuse using a low melting point fusible alloy free of harmful metals. Another object of the present invention is to provide an improved fusible alloy type thermal fuse that improves the high-temperature storage characteristics by adding an inorganic substance to a resin material.

本発明によれば、一対のリ−ド部材の一端部間に低融点可溶合金を接続して絶縁ケ−スに収容し、リード部材の他端部を耐熱封着材で気密固着して導出端子とした温度ヒューズであって、耐熱封着材は樹脂材に無機物を添加してなり、低融点可溶合金は動作温度が200℃以上に設定できる主成分がSnからなる有害金属フリーの可溶合金型温度ヒューズが提供される。ここで、低融点可溶合金は、第一には2.0〜4.0重量%のAgと残部Snとからなる動作温度を220±2℃に設定するもの、第二にはさらに0.2〜2.5重量%のCuを含み動作温度を218±2℃に設定するもの、第三にはさらに0.5〜3.0重量%のInを含み、動作温度を216±2℃に設定する有害金属フリーの可溶合金型温度ヒュ−ズが開示される。   According to the present invention, a low melting point soluble alloy is connected between one end portions of a pair of lead members and accommodated in an insulating case, and the other end portion of the lead member is hermetically fixed with a heat-resistant sealing material. It is a thermal fuse used as a lead-out terminal. The heat-resistant sealing material is made by adding an inorganic substance to the resin material, and the low-melting-point soluble alloy is a harmful metal-free material whose main component can be set at an operating temperature of 200 ° C. or higher. A fusible alloy type thermal fuse is provided. Here, the low-melting-point soluble alloy has an operating temperature composed of 2.0 to 4.0% by weight of Ag and the balance Sn firstly set to 220 ± 2 ° C. 2 to 2.5 wt% Cu containing an operating temperature set to 218 ± 2 ° C., and third containing 0.5 to 3.0 wt% In and operating temperature to 216 ± 2 ° C. Disclosed is a fusible alloy-type temperature fuse that is free of harmful metals.

一方、高い動作温度に伴う高温保管での安定性を確保するために、本発明の可溶合金型温度ヒュ−ズでは封着用樹脂と無機物添加材からなる耐熱封着材の使用によりリード部材と絶縁ケースとが気密的に固着され、外部リードとして導出される。樹脂材に添加する無機物は樹脂材100重量部に対して0.01〜10.0重量部の範囲内であり、無機物添加材は平均粒径が0.5〜100nmの範囲内の無機系ナノ粒子であり、これにより高温保管特性を向上させている。   On the other hand, in order to ensure stability in high temperature storage accompanying a high operating temperature, the fusible alloy type temperature fuse of the present invention uses a heat-resistant sealing material made of a sealing resin and an inorganic additive to The insulating case is hermetically fixed and led out as an external lead. The inorganic material added to the resin material is in the range of 0.01 to 10.0 parts by weight with respect to 100 parts by weight of the resin material, and the inorganic material is inorganic nano particles having an average particle size in the range of 0.5 to 100 nm. This improves the high-temperature storage characteristics.

本発明の可溶合金型温度ヒューズは特定の低融点可溶合金と耐熱封着材とを用いて構成されるので動作温度が213〜222℃の比較的高い温度領域で使用できかつ感温ペレット型温度ヒューズに比べてローコストの保護素子となり、適用範囲を高温領域に拡大するなど工業的価値がある。また、無機物の超微粒子を添加する耐熱封着材の使用によって絶縁ケースとリード部材とを気密的に封着固定すると共に耐熱性を向上させて高温保管特性を改善して高信頼性の可溶合金型温度ヒューズを提供する。さらに、低融点可溶合金にはPbやCdなどの有害金属を含有しないので環境保全に役立つ有害金属フリーの可溶合金型温度ヒューズの提供を実現する。   Since the fusible alloy type thermal fuse of the present invention is constituted by using a specific low melting point fusible alloy and a heat-resistant sealing material, the fusible alloy type thermal fuse can be used in a relatively high temperature range of 213 to 222 ° C. and is a temperature sensitive pellet. Compared to a type thermal fuse, it is a low-cost protection element, and has industrial value such as expanding the application range to a high temperature region. Insulation case and lead member are hermetically sealed and fixed by using heat-resistant sealing material to which inorganic ultrafine particles are added, and heat resistance is improved to improve high-temperature storage characteristics and highly reliable and soluble An alloy-type thermal fuse is provided. Furthermore, since the low-melting-point fusible alloy does not contain harmful metals such as Pb and Cd, it is possible to provide a fusible alloy-type thermal fuse that is free from harmful metals and is useful for environmental conservation.

本発明の可溶合金型温度ヒューズは各種タイプの温度ヒューズとして利用可能であり、例えば、アキシャルタイプ、ラジアルタイプ、小型、薄型タイプ、および抵抗内蔵型タイプ等に利用でき、特定の型式タイプに限定されるものではない。以下、実施形態の一例としてはアキシャルタイプの可溶合金型温度ヒューズについて説明する。本発明の特徴とする耐熱封着材は、温度ヒューズの組立工程で公称動作温度以上に加熱できないので、常温硬化型エポキシ系樹脂が使用される。一般に常温硬化型の封止樹脂は、加熱して硬化を促進させないため、充分な3次元網状結合が完成しない状態で硬化が終了しており、加熱硬化型の樹脂に比べ耐熱性が劣るとされるが、本発明はこれを補うために無機系の超微粒子を添加して改善する。3次元網状結合の不完全な結合間隙を、耐熱性無機物添加材の粒子で埋め封着部の耐通気性と耐熱性を向上させる。無機物添加材としてはSiO、Al、SiC、BN、黒鉛など耐熱性物質が使用できる。これら無機物添加材の表面を化学的に修飾することで有機媒質中の分散を容易にし安定化することもできる。例えば、SiOはその粒子表面に水酸基(−OH)が配向しているが、これに−O−R(R=アルキル基)の形で表面をアルキル修飾した物も使用できる。上記アルキル基には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、2−エチルヘキシル基等が利用できる。一方、塗布作業性の観点から硬化前の樹脂流動性を大きく変化させてはならない必要性もあり、粒子径や添加量の適正範囲が決定された。すなわち、無機物添加材の粒径、添加量が本発明に定める上限を超えて添加された場合には、耐熱封着材のチクソ性が大きいため、塗布時のレベリング性が損なわれ碍管内部への封止材の浸透や湿潤が不充分となり、セラミックス碍管口の封止が不完全となった。また、塗布時に塗布具ばなれが悪く、耐熱封着材の表面に角状の突起が残り、製品の仕上がり形状を損ねてしまうことも判明した。同様に粒子径や添加量が下限未満の場合には、極微量のため添加の効果が得られないことが判明した。上記無機物質は、球状であるコロイダルシリカ、網状であるヒュームドシリカ、シリカゾルが望ましい。 The fusible alloy type thermal fuse of the present invention can be used as various types of thermal fuses. For example, it can be used for an axial type, a radial type, a small size, a thin type, and a type with a built-in resistor, and is limited to a specific type. Is not to be done. Hereinafter, as an example of the embodiment, an axial type fusible alloy type thermal fuse will be described. Since the heat-resistant sealing material, which is a feature of the present invention, cannot be heated above the nominal operating temperature in the assembly process of the thermal fuse, a room temperature curable epoxy resin is used. In general, a room temperature curing type sealing resin does not accelerate curing by heating, and therefore, curing is completed in a state where sufficient three-dimensional network bonding is not completed, and heat resistance is inferior to heat curing type resins. However, the present invention is improved by adding inorganic ultrafine particles to compensate for this. The imperfect bonding gap of the three-dimensional network bond is filled with particles of a heat-resistant inorganic material to improve the air resistance and heat resistance of the sealing portion. As the inorganic additive, heat resistant materials such as SiO 2 , Al 2 O 3 , SiC, BN, and graphite can be used. By chemically modifying the surface of these inorganic additives, dispersion in an organic medium can be facilitated and stabilized. For example, SiO 2 has a hydroxyl group (—OH) oriented on the particle surface, and a surface in which the surface is alkyl-modified in the form of —O—R (R = alkyl group) can also be used. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a 2-ethylhexyl group. On the other hand, from the viewpoint of coating workability, there is a necessity that the resin fluidity before curing should not be greatly changed, and the appropriate range of the particle diameter and the addition amount has been determined. That is, when the particle size and amount of the inorganic additive are added in excess of the upper limit stipulated in the present invention, the thixotropy of the heat-resistant sealing material is large, so that the leveling property at the time of application is impaired and the inside of the soot tube is damaged. The penetration and wetting of the sealing material became insufficient, and the sealing of the ceramic soot tube was incomplete. It was also found that the application tool was not good at the time of application, and angular projections remained on the surface of the heat-resistant sealing material, thereby damaging the finished shape of the product. Similarly, when the particle size or the amount added is less than the lower limit, it has been found that the effect of addition cannot be obtained due to a very small amount. The inorganic substance is preferably spherical colloidal silica, reticulated fumed silica, or silica sol.

次に、本発明の可溶合金型温度ヒューズは、動作温度に応じて感温素子の合金組成を選択する。例えば、Agを2.0〜4.0重量%で残部がSnの二元合金を使用することで220±2℃の動作温度を有する温度ヒューズを実現する。好ましくは、97Sn−3Ag(重量%)が好ましい。この場合に合金の融け始める温度、すなわち固相線温度は222℃であり、完全に融け終わる温度、すなわち、液相線温度は224℃である図2はこの場合のDSCチャートを示す。これ以外の場合、例えばAgの添加量が2.0重量%未満である99Sn−1Agの二元合金では溶融温度が231℃とSn単体の融点232℃とほとんど変らず、Ag添加による溶融温度低下の効果が充分では無かった。また、Snに対するAgの割合が5.0重量%を超えると急激に固液共存域が増大し、溶断動作の安定性が損なわれ製品化が困難であった。   Next, the fusible alloy type thermal fuse of the present invention selects the alloy composition of the temperature sensitive element according to the operating temperature. For example, a temperature fuse having an operating temperature of 220 ± 2 ° C. is realized by using a binary alloy of 2.0 to 4.0% by weight of Ag and the balance of Sn. 97Sn-3Ag (% by weight) is preferable. In this case, the temperature at which the alloy starts to melt, that is, the solidus temperature is 222 ° C., and the temperature at which the alloy completely melts, ie, the liquidus temperature is 224 ° C. FIG. 2 shows a DSC chart in this case. In other cases, for example, in the 99Sn-1Ag binary alloy in which the addition amount of Ag is less than 2.0% by weight, the melting temperature hardly changes between 231 ° C. and the melting point of Sn alone, 232 ° C., and the melting temperature decreases due to the addition of Ag. The effect of was not enough. Moreover, when the ratio of Ag with respect to Sn exceeded 5.0% by weight, the solid-liquid coexistence region increased rapidly, the stability of the fusing operation was impaired, and it was difficult to produce a product.

同様に、感温素子の合金組成がAgを2.0〜4.0重量%、Cuを0.2〜2.5重量%、残部Snの可溶合金を使用することで217±2℃の動作温度を有する温度ヒューズを実現する。この場合、Cuの適正量は0.2〜2.5重量%の範囲で、好ましくは96.5Sn−3Ag−0.5Cu(重量%)である。この三元合金の固相線温度は218℃であり、液相線温度は221℃である。図3はこの場合のDSCチャートを示す。それ以外の場合、例えばCuの添加量が0.2重量%未満の0.1重量%の場合、溶融温度が224℃となって所望する効果は得られず、前述の二元合金とほぼ同じ溶断温度となった。また、Cuの割合が2.5重量%を超えると急激に固液共存域が増大し、溶断動作の安定性が損なわれ製品化が困難であった。   Similarly, the alloy composition of the temperature sensitive element is 217 ± 2 ° C. by using a soluble alloy of 2.0 to 4.0% by weight of Ag, 0.2 to 2.5% by weight of Cu and the remaining Sn. A thermal fuse having an operating temperature is realized. In this case, the appropriate amount of Cu is in the range of 0.2 to 2.5% by weight, preferably 96.5Sn-3Ag-0.5Cu (% by weight). The ternary alloy has a solidus temperature of 218 ° C. and a liquidus temperature of 221 ° C. FIG. 3 shows a DSC chart in this case. In other cases, for example, when the addition amount of Cu is less than 0.2% by weight and 0.1% by weight, the melting temperature is 224 ° C. and the desired effect cannot be obtained, and is almost the same as the binary alloy described above. The fusing temperature was reached. Moreover, when the ratio of Cu exceeded 2.5 weight%, the solid-liquid coexistence area increased rapidly, the stability of fusing operation | movement was impaired, and product production was difficult.

さらに、感温材の合金組成がAgを2.0〜4.0重量%、Inを0.5〜3.0重量%、Cuを0.2〜0.8重量%、残部Snの四元合金を使用することで215±2℃の動作温度を有する温度ヒューズが実現できる。合金に対するInの適正量は0.5〜3.0重量%の範囲であり、好ましく、95.3Sn−3.0Ag−0.7Cu−1.0Inである。この合金の固相線温度は215℃であり、液相線温度は218℃である。図4にこの場合のDSCチャートを示す。それ以外の場合、例えば、Inの添加量が0.5重量%未満の0.4重量%の場合、溶融温度が220℃となって所望する効果が得られず、上記3元合金とほぼ同じ溶断温度となった。また、Inの割合が3.0重量%を超えると急激に固液共存域が増大し、溶断動作の安定性が損なわれ製品化が困難であった。   Further, the alloy composition of the temperature-sensitive material is Ag, which is 2.0 to 4.0% by weight, In is 0.5 to 3.0% by weight, Cu is 0.2 to 0.8% by weight, and the balance is Sn. By using an alloy, a thermal fuse having an operating temperature of 215 ± 2 ° C. can be realized. The appropriate amount of In for the alloy is in the range of 0.5 to 3.0 wt%, preferably 95.3Sn-3.0Ag-0.7Cu-1.0In. The alloy has a solidus temperature of 215 ° C. and a liquidus temperature of 218 ° C. FIG. 4 shows a DSC chart in this case. In other cases, for example, when the amount of In added is 0.4 wt%, which is less than 0.5 wt%, the melting temperature is 220 ° C. and the desired effect cannot be obtained, which is almost the same as the above ternary alloy. The fusing temperature was reached. In addition, when the In ratio exceeds 3.0% by weight, the solid-liquid coexistence region suddenly increases, the stability of the fusing operation is impaired, and it is difficult to produce a product.

以下、本発明の実施例であるアキシャルタイプ可溶合金型温度ヒューズについて図面を参照しつつ説明する。この可溶合金型温度ヒューズは、図1に示すように、Sn−Cuめっき銅線からなる一対のリ−ド部材1、2に、本発明の特徴とする後述の低融点可溶合金3が抵抗溶接により接合される。低融点可溶合金3の表面にはロジン、ワックスおよび活性剤からなるフラックス4を被覆する。その後、アルミナ等のセラミック碍管の絶縁容器またはケース5に収容され、エポキシ樹脂と少量の無機物添加材からなる耐熱封着材6、7によりリード部材1、2の導出部を残して絶縁ケース5の両端部を封着して構成される。このような構成の可溶合金型温度ヒューズにおいて、次のような変形例も可能である。先ず、低融点可溶合金3の形状に関し、通常、φ0.3〜0.7mm線を使用するが、必要に応じて同一の断面積を有するテープ状合金の平角片も使用できるほか、要求に応じてφ0.3mm以下とするやφ0.7mm以上に変更することもできる。また、低融点可溶合金は合金鋳塊の押出し加工及び引抜き加工により製造されるが、その後加工処理として必要に応じてテープ状に圧延加工することもできる。   Hereinafter, an axial type fusible alloy type thermal fuse which is an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the fusible alloy type thermal fuse has a pair of lead members 1 and 2 made of Sn—Cu plated copper wire and a low melting point fusible alloy 3 which is a feature of the present invention. Joined by resistance welding. The surface of the low melting point soluble alloy 3 is coated with a flux 4 composed of rosin, wax and an activator. Thereafter, the insulating case 5 is accommodated in an insulating container or case 5 made of a ceramic soot tube such as alumina, and the lead members 1 and 2 are left by the heat-resistant sealing materials 6 and 7 made of an epoxy resin and a small amount of an inorganic additive. Constructed by sealing both ends. In the fusible alloy type thermal fuse having such a configuration, the following modifications are possible. First, regarding the shape of the low melting point soluble alloy 3, a wire of φ0.3 to 0.7 mm is usually used. However, a flat piece of a tape-like alloy having the same cross-sectional area can be used as required, and as required. Accordingly, it can be changed to φ0.7 mm or more when φ0.3 mm or less. In addition, the low melting point soluble alloy is manufactured by extruding and drawing an alloy ingot, but it can be rolled into a tape shape as necessary after that.

一方、耐熱封着材6、7は樹脂材にエポキシ樹脂を無機物添加材にBET法による比表面積300m/gで平均粒径7nmのヒュームドシリカ(SiO2)を用いて樹脂材の2液常温硬化型エポキシ樹脂の硬化前主剤100重量部に対して無機物添加材2.5重量部を均一に混ぜ合わせて準備した。さらに、リ−ド部材1、2は必要に応じてAgめっき銅線、Snめっき銅線、Niめっき銅線等に変更してもよく、Sn−Cuめっき銅線に限定されるものではない。なお、アキシャルタイプ以外のラジアルタイプ、小型薄型のチップタイプ、抵抗内蔵タイプ、絶縁容器使用のパッケージタイプなど各種タイプの可溶合金型温度ヒューズにも絶縁容器またはケースとリード部材とを気密的に封着固定する場合、上述する低融点可溶合金と耐熱封着材を用いて適用できるのは勿論である。 On the other hand, the heat-resistant sealing materials 6 and 7 are two liquids of resin material using fumed silica (SiO 2) having a specific surface area of 300 m 2 / g and an average particle diameter of 7 nm by BET method as an epoxy resin as a resin material and as an inorganic additive. The mixture was prepared by uniformly mixing 2.5 parts by weight of the inorganic additive with 100 parts by weight of the main agent before curing of the room temperature curing type epoxy resin. Furthermore, the lead members 1 and 2 may be changed to Ag-plated copper wire, Sn-plated copper wire, Ni-plated copper wire, or the like as required, and are not limited to Sn-Cu plated copper wires. In addition, the insulation container or case and the lead member are hermetically sealed even in various types of fusible alloy type thermal fuses such as radial type other than axial type, small and thin chip type, built-in resistor type, and package type using an insulation container. Needless to say, in the case of fixing by fixing, the above-described low melting point soluble alloy and heat-resistant sealing material can be used.

次に低融点可溶合金の具体例について詳述する。低融点可溶合金はSnを96.5重量%とAgを3.5重量%の組成とした二元合金をφ0.7mmの線材にして使用し可溶合金型温度ヒューズを作製した。この実施例1について、30個を10mAの検知電流を通電しながら1℃/分の割合で温度上昇する恒温槽の気相中で動作させたところすべてが220±2℃の動作温度範囲内にあった。また、実施例1の各10個を200℃の高温中でそれぞれ500時間、1000時間、2000時間および3000時間保管してそれぞれの比抵抗を試験したところ4.0×10−3〜4.3×10−3Ω・mの範囲内に維持されていた。さらに、それぞれの時間にわたり高温保管した経過後の動作温度を測定して220±5℃の範囲内にあることを確認した。この実施例1は後述する比較例と比べて高温保管寿命において大幅な改善がみとめられた。 Next, specific examples of the low melting point soluble alloy will be described in detail. A low-melting-point fusible alloy was prepared by using a binary alloy having a Sn composition of 96.5% by weight and Ag of 3.5% by weight as a wire having a diameter of 0.7 mm. In Example 1, when 30 pieces were operated in the gas phase of a thermostatic chamber that was heated at a rate of 1 ° C./min while applying a detection current of 10 mA, all were within the operating temperature range of 220 ± 2 ° C. there were. Moreover, when each 10 pieces of Example 1 were stored at a high temperature of 200 ° C. for 500 hours, 1000 hours, 2000 hours and 3000 hours, respectively, and each specific resistance was tested, 4.0 × 10 −3 to 4.3. It was maintained within the range of × 10 −3 Ω · m. Furthermore, the operating temperature after the high temperature storage for each time was measured and confirmed to be in the range of 220 ± 5 ° C. In Example 1, a significant improvement in the high-temperature storage life was observed as compared with Comparative Examples described later.

上述する実施例1と同様の耐熱封着材を用いて第2の低融点可溶合金を使用した可溶合金型温度ヒューズを作製した。この実施例2はSnを96重量%、Agを3.5重量%、Cuを0.5重量%の組成とした三元合金をφ0.7mmの線材として可溶合金がT温度ヒューズにした。この実施例2について、30個を10mAの検知電流を通電しながら1℃/分の割合で温度上昇する恒温槽の気相中で動作させたところすべてが218±2℃の動作温度範囲内にあった。また、実施例2の各10個を200℃の高温中でそれぞれ500時間、1000時間、2000時間および3000時間保管してそれぞれの比抵抗を試験したところ4.0×10−3〜4.4×10−3Ω・mの範囲内に維持されていた。さらに、それぞれの時間にわたり高温保管した経過後の動作温度を測定して218±5℃の範囲内にあることを確認した。この実施例2は後述する比較例と比べて高温保管寿命において大幅な改善がみとめられた。 A fusible alloy type thermal fuse using the second low melting point fusible alloy was produced using the same heat resistant sealing material as in Example 1 described above. In Example 2, a ternary alloy having a composition of 96% by weight of Sn, 3.5% by weight of Ag, and 0.5% by weight of Cu was used as a wire having a diameter of 0.7 mm, and the fusible alloy was used as a T-temperature fuse. In Example 2, when 30 pieces were operated in the gas phase of a thermostatic chamber that was heated at a rate of 1 ° C./min while applying a detection current of 10 mA, all were within the operating temperature range of 218 ± 2 ° C. there were. Moreover, when 10 each of Example 2 was stored in high temperature of 200 degreeC for 500 hours, 1000 hours, 2000 hours, and 3000 hours, respectively, and each specific resistance was tested, 4.0 * 10 < -3 > -4.4. It was maintained within the range of × 10 −3 Ω · m. Further, the operating temperature after the high temperature storage for each time was measured, and it was confirmed that it was within the range of 218 ± 5 ° C. In Example 2, a significant improvement in the high-temperature storage life was found compared to the comparative example described later.

さらに、実施例2と同様の耐熱封着材を用いて第3の低融点可溶合金を使用した可溶合金型温度ヒューズを作製した。この実施例3はSnを95.3重量%、Agを3.5重量%、Cuを0.7重量%、Inを1.0重量%の組成とした四元合金をφ0.7mmの線材として可溶合金がT温度ヒューズにした。この実施例3について、30個を10mAの検知電流を通電しながら1℃/分の割合で温度上昇する恒温槽の気相中で動作させたところすべてが216±2℃の動作温度範囲内にあった。また、実施例3の各10個を200℃の高温中でそれぞれ500時間、1000時間、2000時間および3000時間保管してそれぞれの比抵抗を試験したところ4.0×10−3〜4.4×10−3Ω・mの範囲内に維持されていた。さらに、それぞれの時間にわたり高温保管した経過後の動作温度を測定して218±5℃の範囲内にあることを確認した。この実施例3は後述する比較例と比べて高温保管寿命において大幅な改善がみとめられた。 Further, a fusible alloy type thermal fuse using the third low melting point fusible alloy was produced using the same heat resistant sealing material as in Example 2. In Example 3, a quaternary alloy having a composition of 95.3% by weight of Sn, 3.5% by weight of Ag, 0.7% by weight of Cu, and 1.0% by weight of In is used as a wire having a diameter of 0.7 mm. The fusible alloy made a T temperature fuse. In Example 3, when 30 pieces were operated in the gas phase of a constant temperature bath that was heated at a rate of 1 ° C./min while applying a detection current of 10 mA, all were within the operating temperature range of 216 ± 2 ° C. there were. Further, when 10 of each of Example 3 were stored at a high temperature of 200 ° C. for 500 hours, 1000 hours, 2000 hours and 3000 hours, respectively, and the specific resistance was tested, 4.0 × 10 −3 to 4.4. It was maintained within the range of × 10 −3 Ω · m. Further, the operating temperature after the high temperature storage for each time was measured, and it was confirmed that it was within the range of 218 ± 5 ° C. In Example 3, a significant improvement in the high-temperature storage life was observed as compared with Comparative Examples described later.

以下、本発明の各実施例と比較するために本発明の特定範囲から逸脱する場合の比較例について説明する。先ず、比較例1は、低融点可溶合金が実施例1と同じSnを96.5重量%、Agを3.5重量%とした組成の2元合金でφ0.7mmの線材を使用したが、封着材が従来の常温硬化型エポキシ樹脂を用いて可溶合金型温度ヒューズを作製した。この比較例1を200℃で高温保管して500時間、1000時間、2000時間および3000時間それぞれ保管した各10個を試験した。結果は高温保管1000時間までは動作温度220±5℃の範囲を維持できたが、2000時間以上の保管では動作せず不具合品であった。   Hereinafter, in order to compare with each Example of this invention, the comparative example in the case of deviating from the specific range of this invention is demonstrated. First, Comparative Example 1 is a binary alloy having a composition in which the low melting point soluble alloy is the same as Example 1 in which Sn is 96.5% by weight and Ag is 3.5% by weight. A fusible alloy type thermal fuse was produced by using a conventional room temperature curing type epoxy resin as a sealing material. The comparative example 1 was stored at a high temperature of 200 ° C. and 10 pieces each stored for 500 hours, 1000 hours, 2000 hours and 3000 hours were tested. As a result, the operating temperature range of 220 ± 5 ° C. could be maintained up to 1000 hours of high-temperature storage, but it did not operate in storage for 2000 hours or more and was a defective product.

同様に比較例2として、実施例2と同様にSnを96重量%、Agを3.5重量%、Cuを0.5重量%とした組成の三元合金でφ0.7mm線材を使用するが、封着材に従来の常温硬化型エポキシ樹脂を用いて比較例2の可溶合金型温度ヒューズを作製した。この比較例2を200℃で高温保管して500時間、1000時間、2000時間および3000時間それぞれ保管した各10個を試験した。結果は高温保管1000時間までは動作温度218±5℃の範囲を維持できたが、2000時間以上の保管では動作せず不具合品であった。   Similarly, as Comparative Example 2, a φ0.7 mm wire is used as a ternary alloy having a composition of 96 wt% Sn, 3.5 wt% Ag, and 0.5 wt% Cu as in the second embodiment. A fusible alloy type thermal fuse of Comparative Example 2 was prepared using a conventional room temperature curing type epoxy resin as a sealing material. The comparative example 2 was stored at a high temperature of 200 ° C. and 10 pieces each stored for 500 hours, 1000 hours, 2000 hours and 3000 hours were tested. As a result, the operating temperature range of 218 ± 5 ° C. could be maintained up to 1000 hours of high-temperature storage, but it did not operate in storage for 2000 hours or more and was a defective product.

次に、比較例3として、実施例3と同様なSnを95.3重量%、Agを3.0重量%、Cuを0.7重量%、Inを1.0重量%とした組成の四元合金をφ0.7mmの線材として使用するが、封着材に従来の常温硬化型エポキシ樹脂を用いて、比較例3の可溶合金型温度ヒューズを作製した。この比較例3を200℃で高温保管し500時間、1000時間、2000時間および3000時間それぞれ保管した各10個を試験した。結果は高温保管1000時間までは動作温度216±5℃の範囲を維持できたが、2000時間以上の保管では動作せず不具合品であった。   Next, as Comparative Example 3, four compositions having the same composition as in Example 3 in which Sn was 95.3% by weight, Ag was 3.0% by weight, Cu was 0.7% by weight, and In was 1.0% by weight. Although the original alloy was used as a wire having a diameter of 0.7 mm, a fusible alloy type thermal fuse of Comparative Example 3 was produced using a conventional room temperature curing type epoxy resin as a sealing material. The comparative example 3 was stored at a high temperature of 200 ° C. and tested for 10 pieces each stored for 500 hours, 1000 hours, 2000 hours and 3000 hours. As a result, the operating temperature range of 216 ± 5 ° C. could be maintained up to 1000 hours of high-temperature storage, but it did not operate in storage for 2000 hours or more and was a defective product.

さらに、比較例4として、Sn−Ag二元合金において、その組成のAgを4重量%以上の5重量%にして95Sn−5Ag合金について試験した。この場合に合金は固液共存域が28.2℃と著しく増加し、動作温度範囲も221〜249℃とばらつきが大きく実用化不可能であることが分かった。   Further, as Comparative Example 4, a Sn-Ag binary alloy was tested for a 95Sn-5Ag alloy with an Ag content of 5% by weight of 4% by weight or more. In this case, it was found that the solid-liquid coexistence region of the alloy was remarkably increased to 28.2 ° C., and the operating temperature range was 221 to 249 ° C., showing a large variation and impractical.

また、比較例5として、Sn−Ag−Cu三元合金において、その組成のCuの量を2.5重量%以上の3重量%にした94Sn−3Ag−3Cu合金について試験した。結果は固液共存域が33.7℃と著しく増加し、動作温度範囲も220〜247℃とばらつきが大きく実用化不可能であった。   Further, as Comparative Example 5, a 94Sn-3Ag-3Cu alloy in which the amount of Cu of the composition in the Sn-Ag-Cu ternary alloy was 3% by weight of 2.5% by weight or more was tested. As a result, the solid-liquid coexistence region was remarkably increased to 33.7 ° C., and the operating temperature range was 220 to 247 ° C., and the variation was not practical.

さらにまた、Sn−Ag−Cu−In四元合金において、その組成のInの量を3重量%以上の4重量%にした92.5Sn−3Ag−0.5Cu−4In合金を用いた、比較例6を試験した。この場合には低融点のγ‐Sn‐In相が生成し動作温度範囲が205〜216℃とばらつきが大きく実用化不可能であることが分かった。   Furthermore, in the Sn-Ag-Cu-In quaternary alloy, a comparative example using a 92.5Sn-3Ag-0.5Cu-4In alloy in which the amount of In in the composition was 3 wt% or more was 4 wt%. 6 was tested. In this case, it was found that a γ-Sn-In phase having a low melting point was generated, and the operating temperature range was 205 to 216 ° C., which showed a large variation and was not practical.

上述する3つの実施例と6つ比較例の熱保管に関する諸特性値を表にして示す。表1は本発明に係る実施例の可溶合金型温度ヒューズで3つの実施例の特性表である。また、表2は表1に示す実施例と対比する比較例で6種類の可溶合金型温度ヒューズの特性表である。   Various characteristic values relating to thermal storage in the above-described three examples and six comparative examples are shown in a table. Table 1 is a characteristic table of three examples of the fusible alloy type thermal fuse of the example according to the present invention. Table 2 is a comparative table for comparison with the examples shown in Table 1, and is a characteristic table of six types of fusible alloy type thermal fuses.

Figure 2005276577
Figure 2005276577

Figure 2005276577
Figure 2005276577

本発明の耐熱封着材と200℃以上で動作温度を設定した可溶合金型温度ヒューズは家庭用および産業用電気機器類で安全性を保証するための保護素子として広く利用され、機器類の過熱時に電気回路を遮断するなどして機器の損傷を防ぎ安全運転を確保する。   The heat-resistant sealing material of the present invention and a fusible alloy type thermal fuse whose operating temperature is set at 200 ° C. or more are widely used as a protective element for guaranteeing safety in household and industrial electrical equipment. Prevents equipment damage by shutting down the electrical circuit when overheating, etc., and ensures safe operation.

本発明に係る実施例の可溶合金型温度ヒューズの断面図である。It is sectional drawing of the fusible alloy type | mold thermal fuse of the Example which concerns on this invention. 図1の可溶合金型温度ヒューズに使用した二元合金のDSCチャートである。It is a DSC chart of the binary alloy used for the fusible alloy type thermal fuse of FIG. 図1の可溶合金型温度ヒューズに使用した三元合金のDSCチャートである。It is a DSC chart of the ternary alloy used for the fusible alloy type thermal fuse of FIG. 図1の可溶合金型温度ヒューズに使用した四元合金のDSCチャートである。It is a DSC chart of the quaternary alloy used for the fusible alloy type thermal fuse of FIG.

符号の説明Explanation of symbols

1、2;リード部材
3;低融点可溶合金
4;フラックス
5;絶縁ケ−ス(容器)
6、7;耐熱封着材



1, 2; Lead member 3; Low melting point soluble alloy 4; Flux 5; Insulation case (container)
6, 7; heat-resistant sealing material



Claims (6)

一対のリ−ド部材の一端部間に低融点可溶合金を接続して絶縁ケ−スに収容し、前記リード部材の他端部を耐熱封着材で気密固着して導出端子とした温度ヒューズであって、前記耐熱封着材は樹脂材と無機物添加材とを有し、前記低融点可溶合金は有害金属を含まずSnを主成分に含み動作温度200℃以上に設定の合金である可溶合金型温度ヒューズ。 A temperature at which a low melting point soluble alloy is connected between one end of a pair of lead members and accommodated in an insulating case, and the other end of the lead member is hermetically fixed with a heat-resistant sealing material to form a lead-out terminal. The heat-resistant sealing material includes a resin material and an inorganic additive, and the low-melting-point soluble alloy is an alloy containing Sn as a main component and having an operating temperature of 200 ° C. or higher. There is a fusible alloy type thermal fuse. 前記低融点可溶合金は2.0〜4.0重量%のAgと残部がSnとからなる二元合金であり、動作温度を略220℃に設定したことを特徴とする請求項1に記載の可溶合金型温度ヒュ−ズ。 The low-melting-point soluble alloy is a binary alloy composed of 2.0 to 4.0% by weight of Ag and the balance being Sn, and the operating temperature is set at about 220 ° C. A fusible alloy type temperature fuse. 前記低融点可溶合金はさらに0.2〜2.5重量%のCuを含む三元合金であり、動作温度を略218℃に設定したことを特徴とする請求項2に記載の可溶合金型温度ヒュ−ズ。 The fusible alloy according to claim 2, wherein the low-melting-point fusible alloy is a ternary alloy containing 0.2 to 2.5% by weight of Cu, and the operating temperature is set to approximately 218 ° C. Mold temperature fuse. 前記低融点可溶合金はさらに0.5〜3.0重量%のInを含む四元合金であり、動作温度を略216℃に設定したことを特徴とする請求項3に記載の可溶合金型温度ヒュ−ズ。 The fusible alloy according to claim 3, wherein the low-melting-point fusible alloy is a quaternary alloy containing 0.5 to 3.0% by weight of In, and the operating temperature is set to approximately 216 ° C. Mold temperature fuse. 前記耐熱封着材の前記無機物添加材は前記樹脂材100重量部に対して0.01〜10.0重量部の範囲内であることを特徴とする請求項1に記載の可溶合金型温度ヒュ−ズ。 The fusible alloy mold temperature according to claim 1, wherein the inorganic additive of the heat-resistant sealing material is in a range of 0.01 to 10.0 parts by weight with respect to 100 parts by weight of the resin material. Fuse. 前記無機物添加材は平均粒径が0.5〜100nmであることを特徴とする請求項5に記載の可溶合金型温度ヒュ−ズ。

6. The fusible alloy type temperature fuse according to claim 5, wherein the inorganic additive has an average particle diameter of 0.5 to 100 nm.

JP2004086758A 2004-03-24 2004-03-24 Fusible alloy type thermal fuse Pending JP2005276577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086758A JP2005276577A (en) 2004-03-24 2004-03-24 Fusible alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086758A JP2005276577A (en) 2004-03-24 2004-03-24 Fusible alloy type thermal fuse

Publications (2)

Publication Number Publication Date
JP2005276577A true JP2005276577A (en) 2005-10-06
JP2005276577A5 JP2005276577A5 (en) 2007-03-15

Family

ID=35176018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086758A Pending JP2005276577A (en) 2004-03-24 2004-03-24 Fusible alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JP2005276577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455486A (en) * 2008-03-05 2009-06-17 Quantum Chem Tech Singapore A sputtered film, solder spheres and solder paste formed from an Sn-Ag-Cu-In alloy
JP2012186169A (en) * 2012-04-05 2012-09-27 Nec Schott Components Corp Fusible alloy type thermal fuse
JP2015079608A (en) * 2013-10-16 2015-04-23 エヌイーシー ショット コンポーネンツ株式会社 Fuse element material for protection element and circuit protection element using the same
CN115404368A (en) * 2022-08-30 2022-11-29 日升集团有限公司 Preparation method of low-melting-point tin-based alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455486A (en) * 2008-03-05 2009-06-17 Quantum Chem Tech Singapore A sputtered film, solder spheres and solder paste formed from an Sn-Ag-Cu-In alloy
JP2012186169A (en) * 2012-04-05 2012-09-27 Nec Schott Components Corp Fusible alloy type thermal fuse
JP2015079608A (en) * 2013-10-16 2015-04-23 エヌイーシー ショット コンポーネンツ株式会社 Fuse element material for protection element and circuit protection element using the same
CN115404368A (en) * 2022-08-30 2022-11-29 日升集团有限公司 Preparation method of low-melting-point tin-based alloy

Similar Documents

Publication Publication Date Title
JP5807969B2 (en) Flux composition for protective element and circuit protective element using the same
JP2005276577A (en) Fusible alloy type thermal fuse
JP2003328066A (en) Alloy-type thermal fuse
JP2007207558A (en) Fusible alloy type thermal fuse and circuit protection element
JP2020140845A (en) Protective element
CN102284810A (en) Soldering flux for diode
JP3885995B2 (en) Thermal fuse
JP2007113024A (en) Fusible alloy type thermal fuse
JP2006287064A (en) Semiconductor device and its manufacturing method
JP2006299289A (en) Alloy type temperature-sensitive element material, and temperature fuse using the same
JP4338377B2 (en) Lead-free alloy type thermal fuse
WO2002099146A1 (en) Novel high-temperature laed-free solders
TW200403124A (en) Tin-zinc system lead-free solder alloy, its mixture, and solder junction portion
JP5234902B2 (en) Fusible alloy type thermal fuse
CN1222956C (en) Protection element
JP2003034831A (en) Thermal fuse and fusible alloy therefor
JP2005150075A (en) Alloy type thermal fuse and protecting device using it
TWI236395B (en) Tin-zinc system lead-free solder alloy, and solder junction portion
JP3901028B2 (en) Lead-free thermal fuse
JP4375713B2 (en) Thermal fuse
JP4488586B2 (en) Flux, fluxed low melting point alloy and protective element using the same
JP2007031775A (en) Lead-free fusible alloy type thermal fuse
JP4946419B2 (en) Thermal fuse and manufacturing method thereof
JP2005276577A5 (en)
JPH1173869A (en) Temperature fuse

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

A131 Notification of reasons for refusal

Effective date: 20091109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100127

Free format text: JAPANESE INTERMEDIATE CODE: A02