JP4338377B2 - Lead-free alloy type thermal fuse - Google Patents

Lead-free alloy type thermal fuse Download PDF

Info

Publication number
JP4338377B2
JP4338377B2 JP2002310685A JP2002310685A JP4338377B2 JP 4338377 B2 JP4338377 B2 JP 4338377B2 JP 2002310685 A JP2002310685 A JP 2002310685A JP 2002310685 A JP2002310685 A JP 2002310685A JP 4338377 B2 JP4338377 B2 JP 4338377B2
Authority
JP
Japan
Prior art keywords
alloy
thermal fuse
temperature
lead
type thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002310685A
Other languages
Japanese (ja)
Other versions
JP2004146228A (en
JP2004146228A5 (en
Inventor
精朋 寺澤
清仁 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002310685A priority Critical patent/JP4338377B2/en
Publication of JP2004146228A publication Critical patent/JP2004146228A/en
Publication of JP2004146228A5 publication Critical patent/JP2004146228A5/ja
Application granted granted Critical
Publication of JP4338377B2 publication Critical patent/JP4338377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、保護素子に関するもので、詳しくは、電気・電子機器等に使用され、特定温度で溶融する可溶合金を用いた温度ヒューズに関する。
【0002】
【従来の技術】
電気・電子機器等を過熱損傷から保護する保護素子として、特定温度で動作して回路を遮断する温度ヒューズが用いられている。可溶合金型温度ヒューズは、感温素子として特定温度で溶融する可溶合金を用いて、この可溶合金に通電し、周囲温度の上昇により可溶合金が溶融して回路を遮断するものである。
【0003】
さらに、可溶合金と抵抗体とを具備し、抵抗体の通電過熱により可溶合金を強制的に溶断させる抵抗内蔵型温度ヒューズと称される保護素子もある。
【0004】
【発明が解決しようとする課題】
上記の可溶合金型温度ヒューズは、保温コタツ、炊飯器等の家電製品、液晶テレビや複写機器等のOA機器、照明機器などに保護素子として用いられている。このうち98〜88℃の範囲の動作温度を有する可溶合金には、従来52Bi−32Pb−16Sn(重量%)三元合金(98℃)、42.5In−38.6Sn−12.4Cd−6.5Ag(重量%)四元合金(94℃)、44In−42Sn−14Cd(重量%)三元合金(93℃)、50.5Bi−31Pb−15.5Sn−3In(重量%)四元合金(90℃)、48Bi−30Pb−15Sn−7In(重量%)四元合金(84℃)、42〜50In−10〜15Cd−0.8〜5Zn−残Sn(重量%)四元合金(85℃)など人体に有害な重金属である鉛やカドミウムを10重量%以上含有するものがあった。最近、廃棄された電気・電子機器から雨水などの作用により有害金属が溶出し、地下水に深刻な汚染をもたらしていることが、地球環境上の問題となり、可溶合金の改良が必要とされている。
【0005】
また、可溶合金型温度ヒューズの可溶合金は、特定の温度で液状化を進行させ球状化に導き溶断させる必要上、できれば単一の溶融点を持つ共晶合金組成が好ましい。さらに、電源回路に直列に実装される温度ヒューズの特性上から、かかる温度ヒューズの内部抵抗値は長期の高温保管によっても変化せず比抵抗が0.79mΩ・mm以下であることが、省エネルギーの面や動作温度の安定性に上からも望ましい。
【0006】
PbやCdを含まず、溶融温度が110℃以下の合金を設計する場合、Bi−In二元合金系が良く知られているが、(例えば67.4Bi−32.6In(重量%)の109.7℃組成、50Bi−50In(重量%)の88.7℃組成、33.3Bi−66.7In(重量%)の72.7℃組成)これらの既存組成は何れも、BiIn、Bi5In3、BiIn2の金属間化合物との共晶組成であるため機械強度が弱く、また温度ヒューズに組み込んだ場合の比抵抗が0.79mΩ・mm以上あるため、温度ヒューズに実用できる可溶合金としてはそのまま利用し難い欠点がある。
【0007】
本発明は、PbやCdによる問題を生じないように、上記した可溶合金にPbおよびCdを使用しない環境対応型の鉛フリー合金型温度ヒューズを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明による鉛フリー合金型温度ヒューズにおける可溶合金組成は、Bi−In二元合金系に、適量のAgを加えて結晶組織の微細化を図って機械的強度を改善すると共に、温度ヒューズの比抵抗を0.79mΩ・mm以下に抑えたBi−In−Ag三元合金である。Agの添加量については、Agを過剰に添加することでAgIn2が生成し固液共存域が増大し、またAgの添加量が少なすぎるとAg添加の効果が得られないため、Ag添加量をBi−Inの構成組成に対して好適な範囲を定めたものである。すなわち、両端にリード部材を接続した可溶合金と、この可溶合金を挿入する絶縁性のケースとを具備し、リード部材が導出するケース端部を封止した温度ヒューズにおいて、前記可溶合金はBiを32重量%〜69重量%、Agを0.01重量%〜0.3重量%、残部Inの組成範囲内からなることを特徴とする鉛フリー合金型温度ヒューズを提供する。
【0009】
本発明に係る第一の鉛フリー合金型温度ヒューズは、感温素子にBiを64重量%〜69重量%、Agを0.05重量%〜0.3重量%、残部がInからなる可溶合金を使用することで107〜109℃の動作温度を有する温度ヒューズを可能としたものである。
【0010】
本発明に係る第二の鉛フリー合金型温度ヒューズは、感温素子にBiを47重量%〜55重量%、Agを0.05重量%〜0.2重量%、残部がInからなる可溶合金を使用することで87〜97℃の動作温度を有する温度ヒューズを可能としたものである。
【0011】
本発明に係る第三の鉛フリー合金型温度ヒューズは、感温素子にBiを32重量%〜37重量%、Agを0.01重量%〜0.1重量%、残部がInからなる可溶合金を使用することで70〜73℃の動作温度を有する温度ヒューズを可能としたものである。
【0012】
【発明の実施の形態】
本発明による実施の形態について図1を用いて説明する。図1は、本発明による鉛フリー合金型温度ヒューズを示し、アキシャル型温度ヒューズと称される温度ヒューズの縦断面図である。
【0013】
図1に示すアキシャル型温度ヒューズは、Sn−Cuめっき銅線からなる端子リード1、2間に、可溶合金3を抵抗溶接により接合した後、可溶合金3をロジン、ワックス、活性剤からなるフラックス4で被覆し、アルミナセラミック碍管5中に挿入して、エポキシ系封止樹脂6、7によりケース端部をそれぞれ封止して形成したものである。なお、端子リード1、2のSn−Cuめっき銅線は、必要に応じてAgめっき銅線、Snめっき銅線、Niめっき銅線等に変更でき、Sn−Cuめっき銅線に限定されるものではない。
【0014】
このような構成の温度ヒューズにおいて、可溶合金3にφ0.4〜0.7mm線のものを使用でき、また必要に応じて同一断面積を有するテープ状合金の平角片も使用できる。
【0015】
本発明の温度ヒューズに用いられる可溶合金は、合金鋳塊の押出し加工により製造され、その後必要に応じてテープ状に圧延加工することもできる。
【0016】
また、将来本発明の趣旨を逸脱しない範囲において、可溶合金3の線径は要求に応じてφ0.4mm以下とすることができ、さらにまた、要求に応じてφ0.7mm以上に変更することもできる。
【0017】
また、本発明による鉛フリー合金型温度ヒューズは、アキシャル型温度ヒューズに限定されるものではなく、ラジアル型温度ヒューズ、薄型温度ヒューズ、抵抗内蔵型温度ヒューズと称される温度ヒューズに使用することができ、特定の形式に限定されるものではない。
【0018】
【実施例】
本発明の実施例と比較例を表1に示す。表1はそれぞれの実施例と比較例における可溶合金組成とその固相温度、液相温度、固液共存域を示したもので、表中の固相、液相はそれぞれ合金の固相温度(℃)、液相温度(℃)を示し、液相温度と固相温度の差を固液共存域(℃)という。固液共存域が10℃未満である時、その可溶合金を温度ヒューズの感温素子として使用できる。従って固液共存域が10℃未満である実施例の可溶合金は、実施形態の温度ヒューズにおいて良好な動作特性を有する。以下実施例と比較例についての動作特性を説明する。
【表1】

Figure 0004338377
【0019】
(実施例1−4)Biを66.70重量%、Inを33.07重量%、Agを0.23重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例1−4の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は108±2℃であった。また、88℃で500時間、1000時間、2000時間それぞれ保管した実施例1−4の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.63±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度108±2℃の初期範囲を維持できることがわかった。
【0020】
(実施例2−2)Biを53.00重量%、Inを46.86重量%、Agを0.14重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−2の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は96±2℃であった。また、76℃で500時間、1000時間、2000時間それぞれ保管した実施例2−2の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.55±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度96±2℃の初期範囲を維持できることがわかった。
【0021】
(実施例2−5)Biを49.70重量%、Inを50.22重量%、Agを0.08重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−5の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は89±2℃であった。また、69℃で500時間、1000時間、2000時間それぞれ保管した実施例2−5の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.55±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度89±2℃の初期範囲を維持できることがわかった。
【0022】
(実施例2−9)Biを48.50重量%、Inを51.43重量%、Agを0.07重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに提供した。実施例2−2の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は88±2℃であった。また、68℃で500時間、1000時間、2000時間それぞれ保管した実施例2−9の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.47±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度88±2℃の初期範囲を維持できることがわかった。
【0023】
(実施例3−2)Biを34.20重量%、Inを65.78重量%、Agを0.02重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに提供した。実施例3−2の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は73±2℃であった。また、53℃で500時間、1000時間、2000時間それぞれ保管した実施例3−2の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.32±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度73±2℃の初期範囲を維持できることがわかった。
【0024】
【比較例】
(比較例1−1)Agの量を0.4重量%にした合金組成(66.53Bi−33.07In−0.4Ag(重量%))は、固液共存域が26.7℃と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.5重量%にした合金組成(66.43Bi−33.07In−0.5Ag(重量%))の固液共存域も37.3℃もあり温度ヒューズとして実用できなかった。また、Agの量を0.05重量%以下とした合金組成(66.92Bi−33.07In−0.01Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金強度が劣り脆すぎるため作製できなかった。
【0025】
(比較例2‐1)Agの量を0.3重量%にした合金組成(52.84Bi−46.86In−0.3Ag(重量%))は、固液共存域が、10.1℃以上と10℃以上有し溶融会しから溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.4重量%にした合金組成(52.74Bi−46.86In−0.4Ag(重量%))の固液共存域は23.1℃であり温度ヒューズとして実用できなかった。また、Agの量を0.05重量%以下とした組成(53.13Bi−46.86In−0.01Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金強度が劣り脆すぎるため作製できなかった。
【0026】
(比較例3−1)Agの量を0.2重量%にした合金組成(32.4Bi−65.6In−0.2Ag(重量%))は、固液共存域が21.7℃と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒュ−スとして実用に至らなかった。同様にAgの量を0.3重量%にした合金組成(34.2Bi−65.5In−0.3Ag(重量%))の固液共存域は31℃あり温度ヒューズとして実用できなかった。また、Agの量を0.01重量%以下とした組成(34.200Bi−65.795In−0.005Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金が軟らかすぎるため組立時の変形が大きく温度ヒューズを作製できなかった。
【0027】
【発明の効果】
以上に説明したように本発明は、70〜109℃で動作可能な信頼性に優れた鉛フリー合金型温度ヒューズをPbやCdを含有しないBi−In−Ag三元合金により実現するものである。
【図面の簡単な説明】
【図1】 本発明の実施形態であるアキシャル型温度ヒューズの縦断面図
【符号の説明】
1、2 端子リード
3 可溶合金
4 フラックス
5 絶縁性のケース
6、7 封止樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a protection element, and more particularly, to a thermal fuse using a fusible alloy that is used in electric / electronic devices and melts at a specific temperature.
[0002]
[Prior art]
A thermal fuse that operates at a specific temperature and shuts off a circuit is used as a protective element that protects electrical and electronic devices from overheating damage. A fusible alloy type thermal fuse uses a fusible alloy that melts at a specific temperature as a temperature-sensitive element, energizes the fusible alloy, melts the fusible alloy due to an increase in ambient temperature, and interrupts the circuit. is there.
[0003]
Further, there is a protective element called a resistance built-in type thermal fuse that includes a fusible alloy and a resistor and forcibly blows the fusible alloy by energization overheating of the resistor.
[0004]
[Problems to be solved by the invention]
The above-mentioned fusible alloy type thermal fuse is used as a protective element in home appliances such as heat insulation kotatsu and rice cookers, OA equipment such as liquid crystal televisions and copying machines, lighting equipment, and the like. Of these, soluble alloys having an operating temperature in the range of 98 to 88 ° C include the conventional 52Bi-32Pb-16Sn (wt%) ternary alloy (98 ° C), 42.5In-38.6Sn-12.4Cd-6. .5Ag (wt%) quaternary alloy (94 ° C.), 44In-42Sn-14Cd (wt%) ternary alloy (93 ° C.), 50.5 Bi-31Pb-15.5Sn-3In (wt%) quaternary alloy ( 90 ° C), 48Bi-30Pb-15Sn-7In (wt%) quaternary alloy (84 ° C), 42-50In-10-15Cd-0.8-5Zn-residual Sn (wt%) quaternary alloy (85 ° C) Some of them contain 10% by weight or more of lead and cadmium, which are heavy metals harmful to the human body. Recently, it has become a global environmental problem that hazardous metals are leached from waste electrical and electronic equipment by the action of rainwater, etc., causing serious pollution in groundwater, and improvement of soluble alloys is required. Yes.
[0005]
Further, the fusible alloy of the fusible alloy type thermal fuse is preferably a eutectic alloy composition having a single melting point if possible because it is necessary to cause liquefaction at a specific temperature to cause spheroidization and fusing. Furthermore, due to the characteristics of the thermal fuse mounted in series in the power supply circuit, the internal resistance value of the thermal fuse does not change even after long-term high-temperature storage, and the specific resistance is 0.79 mΩ · mm or less. It is desirable from the viewpoint of stability of surface and operating temperature.
[0006]
When designing an alloy that does not contain Pb or Cd and has a melting temperature of 110 ° C. or lower, a Bi—In binary alloy system is well known. For example, 109 of 67.4 Bi-32.6 In (weight%) is used. .7 ° C. composition, 50 Bi-50 In (wt%) 88.7 ° C. composition, 33.3 Bi-66.7 In (wt%) 72.7 ° C. composition) These existing compositions are all BiIn, Bi 5 In 3 、 Because it is a eutectic composition with BiIn 2 intermetallic compound, its mechanical strength is weak, and since it has a specific resistance of 0.79mΩ ・ mm or more when incorporated in a thermal fuse, Has a drawback that is difficult to use as is.
[0007]
An object of the present invention is to provide an environmentally friendly lead-free alloy type thermal fuse that does not use Pb and Cd in the above-described soluble alloy so as not to cause problems due to Pb and Cd.
[0008]
[Means for Solving the Problems]
The fusible alloy composition in the lead-free alloy type thermal fuse according to the present invention improves the mechanical strength by adding an appropriate amount of Ag to the Bi-In binary alloy system to refine the crystal structure and improve the mechanical strength of the thermal fuse. A Bi-In-Ag ternary alloy having a specific resistance of 0.79 mΩ · mm or less. Regarding the addition amount of Ag, AgIn2 is produced by adding Ag excessively, and the solid-liquid coexistence area increases. If the addition amount of Ag is too small, the effect of Ag addition cannot be obtained. A suitable range is defined for the constituent composition of Bi-In. That is, in the temperature fuse having a fusible alloy having lead members connected to both ends and an insulating case into which the fusible alloy is inserted, and sealing the case end portion led out by the lead member, the fusible alloy Provides a lead-free alloy type thermal fuse characterized by comprising Bi in the range of 32 wt% to 69 wt%, Ag in the range of 0.01 wt% to 0.3 wt%, and the balance In.
[0009]
The first lead-free alloy type thermal fuse according to the present invention is a fusible element in which Bi is 64 wt% to 69 wt%, Ag is 0.05 wt% to 0.3 wt%, and the balance is In. By using an alloy, a thermal fuse having an operating temperature of 107 to 109 ° C. is made possible.
[0010]
The second lead-free alloy type thermal fuse according to the present invention is a fusible element in which Bi is 47 wt% to 55 wt%, Ag is 0.05 wt% to 0.2 wt%, and the balance is In. The use of an alloy enables a thermal fuse having an operating temperature of 87 to 97 ° C.
[0011]
The third lead-free alloy type thermal fuse according to the present invention is a fusible element in which Bi is 32 wt% to 37 wt%, Ag is 0.01 wt% to 0.1 wt%, and the balance is In. The use of an alloy enables a thermal fuse having an operating temperature of 70 to 73 ° C.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described with reference to FIG. FIG. 1 shows a lead-free alloy type thermal fuse according to the present invention, and is a longitudinal sectional view of a thermal fuse called an axial type thermal fuse.
[0013]
The axial type thermal fuse shown in FIG. 1 is formed by joining a fusible alloy 3 between a terminal lead 1 and 2 made of Sn—Cu plated copper wire by resistance welding, and then bonding the fusible alloy 3 from rosin, wax, and activator. It is formed by covering with a flux 4 and inserting it into an alumina ceramic soot tube 5 and sealing the case ends with epoxy-based sealing resins 6 and 7, respectively. In addition, the Sn-Cu plated copper wire of the terminal leads 1 and 2 can be changed to an Ag plated copper wire, a Sn plated copper wire, a Ni plated copper wire or the like as required, and is limited to the Sn-Cu plated copper wire. is not.
[0014]
In the temperature fuse having such a configuration, a fusible alloy 3 having a diameter of 0.4 to 0.7 mm can be used, and a rectangular piece of a tape-like alloy having the same cross-sectional area can be used if necessary.
[0015]
The fusible alloy used in the thermal fuse of the present invention is manufactured by extruding an alloy ingot, and can then be rolled into a tape if necessary.
[0016]
In addition, the wire diameter of the fusible alloy 3 can be set to φ0.4 mm or less as required in the range not departing from the gist of the present invention in the future, and further changed to φ0.7 mm or more as required. You can also.
[0017]
Further, the lead-free alloy type thermal fuse according to the present invention is not limited to the axial type thermal fuse, but may be used for a thermal fuse called a radial type thermal fuse, a thin type thermal fuse, or a built-in type thermal fuse. And is not limited to a particular format.
[0018]
【Example】
Examples and comparative examples of the present invention are shown in Table 1. Table 1 shows the composition of the soluble alloy and the solid phase temperature, liquid phase temperature, and solid-liquid coexistence area in each example and comparative example. The solid phase and liquid phase in the table are the solid phase temperature of the alloy, respectively. (° C.) indicates the liquid phase temperature (° C.), and the difference between the liquid phase temperature and the solid phase temperature is referred to as a solid-liquid coexistence region (° C.). When the solid-liquid coexistence region is less than 10 ° C., the soluble alloy can be used as a temperature sensitive element of a thermal fuse. Therefore, the fusible alloy of the example whose solid-liquid coexistence region is less than 10 ° C. has good operating characteristics in the thermal fuse of the embodiment. The operating characteristics of the examples and comparative examples will be described below.
[Table 1]
Figure 0004338377
[0019]
(Example 1-4) A φ0.6 mm wire having a composition of 66.70 wt% Bi, 33.07 wt% In, and 0.23% wt Ag was produced by extrusion, and this alloy wire was carried out. Applied to the form of thermal fuse. When operating in a thermostatic chamber (gas phase) where the temperature rises at a rate of 1 ° C./min while supplying a detection current of 10 mA to 30 temperature fuses of Example 1-4, the operating temperature range is 108 ± 2 ° C. Met. In addition, 10 temperature fuses of Example 1-4 stored at 88 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, were connected so as to remove contact resistance by the voltage drop method, and between the leads at a point of 25 mm including the main body. Was measured at a measuring current of 100 mA, and it was found that the specific resistance range of 0.63 ± 0.2 mΩ · mm could be maintained. Furthermore, when each of these 10 pieces was operated in a thermostatic chamber (gas phase) whose temperature rose at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 108 ± 2 ° C. could be maintained even after high temperature storage.
[0020]
(Example 2-2) A φ0.6 mm wire having a composition of Bi of 53.00% by weight, In of 46.86% by weight and Ag of 0.14% by weight was produced by extrusion, and this alloy wire was carried out. Applied to the form of thermal fuse. When operating in a thermostatic chamber (gas phase) where the temperature rises at a rate of 1 ° C./min while supplying a detection current of 10 mA to 30 temperature fuses of Example 2-2, the operating temperature range is 96 ± 2 ° C. Met. In addition, 10 thermal fuses of Example 2-2 stored at 76 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, were connected so as to remove contact resistance by the voltage drop method, and between the leads at a point of 25 mm including the main body. Was measured at a measurement current of 100 mA, and it was found that the specific resistance range of 0.55 ± 0.2 mΩ · mm could be maintained. Furthermore, when each of these 10 pieces was operated in a thermostatic chamber (gas phase) whose temperature rose at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 96 ± 2 ° C. could be maintained even after high temperature storage.
[0021]
(Example 2-5) A φ0.6 mm wire having a composition of Bi of 49.70% by weight, In of 50.22% by weight, and Ag of 0.08% by weight was produced by extrusion, and this alloy wire was carried out. Applied to the form of thermal fuse. When operating in a thermostatic chamber (gas phase) where the temperature rises at a rate of 1 ° C./min while supplying a detection current of 10 mA to 30 temperature fuses of Example 2-5, the operating temperature range is 89 ± 2 ° C. Met. In addition, 10 thermal fuses of Example 2-5 stored at 69 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, were connected so as to eliminate contact resistance by the voltage drop method, and the distance between the leads was 25 mm including the main body. Was measured at a measurement current of 100 mA, and it was found that the specific resistance range of 0.55 ± 0.2 mΩ · mm could be maintained. Furthermore, when each of these 10 pieces was operated in a thermostatic chamber (gas phase) in which the temperature increased at a rate of 1 ° C./min, it was found that the initial range of operating temperature 89 ± 2 ° C. could be maintained even after high temperature storage.
[0022]
(Example 2-9) A φ0.6 mm wire having a composition of Bi of 48.50% by weight, In of 51.43% by weight and Ag of 0.07% by weight was produced by extrusion, and this alloy wire was carried out. Provided in form thermal fuse. When operating in a thermostatic chamber (gas phase) where the temperature rises at a rate of 1 ° C./min while supplying a detection current of 10 mA to 30 temperature fuses of Example 2-2, the operating temperature range is 88 ± 2 ° C. Met. In addition, 10 thermal fuses of Example 2-9 stored at 68 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, were connected so as to eliminate contact resistance by the voltage drop method, and between the leads at a point of 25 mm including the main body. Was measured at a measuring current of 100 mA, and it was found that the specific resistance range of 0.47 ± 0.2 mΩ · mm could be maintained. Furthermore, when each of the 10 pieces was operated in a thermostatic chamber (gas phase) whose temperature rose at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 88 ± 2 ° C. could be maintained even after high temperature storage.
[0023]
(Example 3-2) A φ0.6 mm wire having a composition of Bi of 34.20% by weight, In of 65.78% by weight and Ag of 0.02% by weight was produced by extrusion, and this alloy wire was carried out. Provided in form thermal fuse. When operating in a thermostatic chamber (gas phase) where the temperature rises at a rate of 1 ° C./min while supplying a detection current of 10 mA to 30 temperature fuses of Example 3-2, the operating temperature range is 73 ± 2 ° C. Met. In addition, 10 thermal fuses of Example 3-2 stored at 53 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, were connected so as to eliminate contact resistance by the voltage drop method, and between the leads at a point of 25 mm including the main body. Was measured at a measuring current of 100 mA, and it was found that the specific resistance range of 0.32 ± 0.2 mΩ · mm could be maintained. Furthermore, when each of these 10 pieces was operated in a thermostatic chamber (gas phase) whose temperature rose at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 73 ± 2 ° C. could be maintained even after high temperature storage.
[0024]
[Comparative example]
(Comparative Example 1-1) The alloy composition (66.53 Bi-33.07 In-0.4 Ag (wt%)) in which the amount of Ag was 0.4 wt% had a solid-liquid coexistence region of 26.7 ° C. and 10 Since the temperature range from the start of melting to the completion of melting was too wide, it was not practical as a thermal fuse. Similarly, the solid-liquid coexistence region of the alloy composition (66.43Bi-33.07In-0.5Ag (wt%)) with an Ag content of 0.5 wt% is also 37.3 ° C and cannot be used as a thermal fuse. It was. In addition, an attempt was made to extrude a φ0.6 mm wire of an alloy composition (66.92 Bi-33.07 In-0.01 Ag (wt%)) with an Ag amount of 0.05 wt% or less. However, since it was inferior and too brittle, it could not be produced.
[0025]
(Comparative Example 2-1) The alloy composition (52.84Bi-46.86In-0.3Ag (% by weight)) in which the amount of Ag is 0.3% by weight has a solid-liquid coexistence region of 10.1 ° C. or higher. Since the temperature range from melting to completion of melting was too wide, it was not practical as a thermal fuse. Similarly, the solid-liquid coexistence region of the alloy composition (52.74 Bi-46.86 In-0.4 Ag (wt%)) in which the Ag amount is 0.4 wt% is 23.1 ° C. and cannot be used as a thermal fuse. It was. In addition, an attempt was made to extrude a φ0.6 mm wire having a composition (53.13Bi-46.86In-0.01Ag (wt%)) with an Ag content of 0.05 wt% or less. Since it was inferior and too brittle, it could not be produced.
[0026]
(Comparative Example 3-1) The alloy composition (32.4Bi-65.6In-0.2Ag (% by weight)) in which the amount of Ag is 0.2% by weight has a solid-liquid coexistence region of 21.7 ° C. and 10%. Since the temperature range from the start of melting to the completion of melting was too wide, it was not practical as a temperature fuse. Similarly, the solid-liquid coexistence region of the alloy composition (34.2 Bi-65.5 In-0.3 Ag (wt%)) in which the amount of Ag was 0.3 wt% was 31 ° C. and could not be put into practical use as a thermal fuse. In addition, an attempt was made to extrude a φ0.6 mm wire having a composition (34.200 Bi-65.795 In—0.005 Ag (wt%)) with an Ag amount of 0.01 wt% or less, but the alloy was soft. For this reason, the thermal fuse could not be manufactured due to large deformation during assembly.
[0027]
【The invention's effect】
As described above, the present invention realizes a lead-free alloy-type thermal fuse excellent in reliability operable at 70 to 109 ° C. by a Bi—In—Ag ternary alloy containing no Pb or Cd. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an axial type thermal fuse according to an embodiment of the present invention.
1, 2 Terminal lead 3 Soluble alloy 4 Flux 5 Insulating case 6, 7 Sealing resin

Claims (2)

両端にリード部材を接続した可溶合金と、この可溶合金を挿入する絶縁性のケースとを具備し、リード部材が導出するケース端部を封止した温度ヒューズにおいて、前記可溶合金の組成はBiが47重量%〜55重量%、Agが0.05重量%〜0.2重量%および残部がInであることを特徴とするPbフリー合金型温度ヒューズ。A composition of the fusible alloy comprising a fusible alloy having lead members connected to both ends and an insulating case into which the fusible alloy is inserted and sealing the end of the case led out by the lead member. Is a Pb-free alloy type thermal fuse characterized in that Bi is 47 wt% to 55 wt%, Ag is 0.05 wt% to 0.2 wt%, and the balance is In. 両端にリード部材を接続した可溶合金と、この可溶合金を挿入する絶縁性のケースとを具備し、リード部材が導出するケース端部を封止した温度ヒューズにおいて、前記可溶合金の組成はBiが48.50重量%、Inが51.43重量%およびAgが0.07重量%であることを特徴とするPbフリー合金型温度ヒューズ。A composition of the fusible alloy comprising a fusible alloy having lead members connected to both ends and an insulating case into which the fusible alloy is inserted and sealing the end of the case led out by the lead member. Is a Pb-free alloy type thermal fuse characterized in that Bi is 48.50 wt%, In is 51.43 wt% and Ag is 0.07 wt%.
JP2002310685A 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse Expired - Fee Related JP4338377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310685A JP4338377B2 (en) 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310685A JP4338377B2 (en) 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse

Publications (3)

Publication Number Publication Date
JP2004146228A JP2004146228A (en) 2004-05-20
JP2004146228A5 JP2004146228A5 (en) 2005-05-26
JP4338377B2 true JP4338377B2 (en) 2009-10-07

Family

ID=32456113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310685A Expired - Fee Related JP4338377B2 (en) 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JP4338377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283522B2 (en) * 2009-01-27 2013-09-04 エヌイーシー ショット コンポーネンツ株式会社 Temperature-sensitive material and method for manufacturing the same, thermal fuse, circuit protection element
JP5469922B2 (en) * 2009-06-02 2014-04-16 株式会社不二工機 Fusible stopper

Also Published As

Publication number Publication date
JP2004146228A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
CN108971793B (en) Low-temperature lead-free solder
JP2019520985A (en) Highly reliable lead-free solder alloy
JP4001757B2 (en) Alloy type temperature fuse
JP2004176106A (en) Alloy type thermal fuse, and material for thermal fuse element
JP3990169B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP2819408B2 (en) Alloy type temperature fuse
JP4338377B2 (en) Lead-free alloy type thermal fuse
JP3885995B2 (en) Thermal fuse
JP4297431B2 (en) Alloy-type thermal fuse and protective device using the same
JP3901028B2 (en) Lead-free thermal fuse
JP4375713B2 (en) Thermal fuse
KR101711411B1 (en) Solder alloy for die bonding
JP2005276577A (en) Fusible alloy type thermal fuse
US10014754B2 (en) Rotary device
CN1219742A (en) Protection element
JP2004035929A (en) Lead-free alloy type thermal fuse
JP2516469B2 (en) Alloy type temperature fuse
JP2007113024A (en) Fusible alloy type thermal fuse
JP2006299289A (en) Alloy type temperature-sensitive element material, and temperature fuse using the same
JP2003249155A (en) Thermal fuse composed of lead-free alloy
JP2003217415A (en) Lead-free alloy thermal fuse
JP2007031775A (en) Lead-free fusible alloy type thermal fuse
JP2002150906A (en) Alloy-type thermal fuse
EP1343186B1 (en) Alloy type thermal fuse and fuse element thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080814

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Ref document number: 4338377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees