JP2008182188A - Cleaning fluid for electronic material and cleaning method - Google Patents

Cleaning fluid for electronic material and cleaning method Download PDF

Info

Publication number
JP2008182188A
JP2008182188A JP2007277936A JP2007277936A JP2008182188A JP 2008182188 A JP2008182188 A JP 2008182188A JP 2007277936 A JP2007277936 A JP 2007277936A JP 2007277936 A JP2007277936 A JP 2007277936A JP 2008182188 A JP2008182188 A JP 2008182188A
Authority
JP
Japan
Prior art keywords
cleaning
hydrogen
liquid
electronic material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007277936A
Other languages
Japanese (ja)
Inventor
Teruo Shinbara
照男 榛原
Yoshihiro Mori
良弘 森
Takashi Mori
敬史 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Priority to JP2007277936A priority Critical patent/JP2008182188A/en
Priority to KR1020070121431A priority patent/KR20080061266A/en
Priority to SG200718144-9A priority patent/SG144040A1/en
Priority to EP07023561A priority patent/EP1950792A1/en
Priority to TW096148611A priority patent/TWI405621B/en
Priority to US11/959,772 priority patent/US8043435B2/en
Publication of JP2008182188A publication Critical patent/JP2008182188A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D2111/22
    • C11D2111/46

Abstract

<P>PROBLEM TO BE SOLVED: To provide cleaning liquid for electric materials and a cleaning method for efficiently cleaning and removing particle components or the like on a wafer surface, and for preventing re-contamination. <P>SOLUTION: This cleaning method is characterized to use cleaning liquid using ultra-pure water or hydrogen water as raw material water in combination with ultrasonic irradiation under the presence of hydrogen micro-bubbles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子材料、特にシリコンウエハ用の洗浄液およびそれを用いた洗浄方法に関する。   The present invention relates to a cleaning solution for an electronic material, particularly a silicon wafer, and a cleaning method using the same.

最近シリコンウエハを用いた半導体LSIの製造技術においては、より大口径のウエハの使用やより微細な加工技術が必要となってきている。さらに工程の複雑化に伴う製品の品質の維持向上、生産コストの低減等の問題の解決もまた必要となってきている。   In recent years, semiconductor LSI manufacturing technology using a silicon wafer requires the use of a larger diameter wafer and a finer processing technology. Furthermore, it is also necessary to solve problems such as maintenance and improvement of product quality and reduction of production cost due to complicated processes.

特にシリコンウエハを用いた半導体LSIの製造技術の多くの分野において、種々の溶液による処理を含むいわゆるウェット処理工程が必須の工程となっている。かかるウェット処理工程のうち特に重要な工程は洗浄工程である。従来の洗浄工程においては主に洗浄液の成分組成、又はそれらの濃度、洗浄温度、洗浄時間等の選択の点において改良が重ねられてきている(例えば、服部毅編著「新版シリコンウエハ表面のクリーン化技術」リアライズ社(2000))。しかしながら近年のさらなる微細な加工技術の必要性、工程の複雑化、高清浄化、低コスト化に伴う要求を満たすにはこれら従来技術では十分ではなかった。さらに近年では、環境保護対策の厳格化、廃液処理の低コスト化の要求により、希薄薬液洗浄、薬液レス洗浄などが望まれてきている。   In particular, in many fields of semiconductor LSI manufacturing technology using silicon wafers, so-called wet processing steps including processing with various solutions are indispensable steps. A particularly important step among such wet treatment steps is a cleaning step. In the conventional cleaning process, improvements have been made mainly in the selection of the component composition of the cleaning liquid, or their concentration, cleaning temperature, cleaning time, etc. Technology "Realize (2000)). However, these conventional techniques have not been sufficient to satisfy the demands associated with the recent need for finer processing techniques, complicated processes, higher cleaning, and lower costs. Furthermore, in recent years, due to demands for stricter environmental protection measures and lower costs for waste liquid treatment, dilute chemical cleaning, chemical-less cleaning, and the like have been desired.

これらの問題を解決する方法として、オゾン水や水素水に代表されるいわゆる機能水が精力的に研究開発され、実用化が進んできている。オゾン水は、金属不純物汚染や有機物汚染の除去に半導体洗浄の広い分野に実用化が進んでいる。水素水もパーティクル除去を目的として液晶ディスプレイのガラス基板洗浄に応用されている(例えば、都田昌之監修、日本産業洗浄協議会編「初歩から学ぶ機能水」工業調査会(2002))。   As a method for solving these problems, so-called functional water typified by ozone water and hydrogen water has been vigorously researched and developed, and its practical application is progressing. Ozone water has been put into practical use in a wide range of semiconductor cleaning to remove metal impurity contamination and organic contamination. Hydrogen water is also applied to glass substrate cleaning of liquid crystal displays for the purpose of particle removal (for example, supervised by Masayuki Toda, edited by Japan Industrial Cleaning Council, "Functional Water Learned from the Beginning" Industry Research Committee (2002)).

水素水は、半導体洗浄の分野でパーティクル除去用洗浄液として広く適用されているアンモニア+過酸化水素(以下「APM」と記述する)の代替として期待されている。水素水はAPMに比べて薬液コストの面で非常に有利であるが、パーティクル除去能力が劣る。水素水は、液晶ディスプレイ用ガラス基板の洗浄に関しては十分な洗浄レベルであるため実用化されているが、シリコンウエハ等半導体洗浄の分野では、洗浄能力が足りないため未だ実用化されていない。   Hydrogen water is expected as an alternative to ammonia + hydrogen peroxide (hereinafter referred to as “APM”), which is widely applied as a particle removal cleaning liquid in the field of semiconductor cleaning. Hydrogen water is very advantageous in terms of chemical cost compared to APM, but has poor particle removal capability. Hydrogen water has been put into practical use because it has a sufficient cleaning level for cleaning glass substrates for liquid crystal displays, but has not yet been put into practical use in the field of semiconductor cleaning such as silicon wafers due to lack of cleaning capability.

そこで、水素水の能力をさらにパワーアップし、半導体洗浄における低コストのAPM代替技術を開発する必要がある。   Therefore, it is necessary to further increase the capacity of hydrogen water and develop a low-cost APM alternative technology for semiconductor cleaning.

本発明は、シリコンウエハの洗浄処理全般に適用可能な全く新規な方法を提供する。   The present invention provides a completely new method applicable to all silicon wafer cleaning processes.

本発明者らは、シリコンウエハの洗浄処理に関する最近の強い要求を満たすことができる新たな洗浄液及びそれを用いた洗浄処理方法を鋭意研究開発した結果、意外なことに、超純水あるいは水素水を原料水とし、かつ水素マイクロバブルの存在下で、超音波照射を組み合わせた洗浄液を用いることにより解決できることを見いだし、本発明を完成するに至った。   As a result of earnest research and development of a new cleaning liquid and a cleaning processing method using the same that can meet the recent strong demands for cleaning processing of silicon wafers, the present inventors have surprisingly found that ultrapure water or hydrogen water. It was found that this can be solved by using a cleaning liquid combined with ultrasonic irradiation in the presence of hydrogen microbubbles in the presence of hydrogen microbubbles, and the present invention has been completed.

すなわち本発明の電子材料用洗浄液は、水素ガスによるマイクロバブルを含むことを特徴とし、かつ超音波振動を付与された水系液体であることを特徴とする。   That is, the cleaning liquid for electronic materials of the present invention is characterized by containing microbubbles by hydrogen gas, and is an aqueous liquid to which ultrasonic vibration is applied.

また本発明の電子材料用洗浄液は、前記水系液体が、超純水または水素水であることを特徴とする。   In the electronic material cleaning liquid of the present invention, the aqueous liquid is ultrapure water or hydrogen water.

本発明の洗浄方法は、かかる洗浄液を使用することを特徴とする方法であり、水素マイクロバブルの存在する水系液体中で、かつ超音波照射下で行うことを特徴とする。   The cleaning method of the present invention is a method characterized by using such a cleaning liquid, and is characterized by being performed in an aqueous liquid in which hydrogen microbubbles are present and under ultrasonic irradiation.

また本発明の洗浄方法は、前記水系液体が超純水であることを特徴とする。   In the cleaning method of the present invention, the aqueous liquid is ultrapure water.

また本発明の洗浄方法は、前記水系液体が水素水であることを特徴とする。   In the cleaning method of the present invention, the aqueous liquid is hydrogen water.

また本発明の洗浄方法は、前記水系液体に、さらにアルカリを添加することを特徴とする。   The cleaning method of the present invention is characterized in that an alkali is further added to the aqueous liquid.

また本発明の洗浄方法は、前記水系液体にアルカリと過酸化水素を添加することを特徴とする。   The cleaning method of the present invention is characterized in that alkali and hydrogen peroxide are added to the aqueous liquid.

また本発明の洗浄方法は、前記水系液体原料に界面活性剤を添加することを特徴とする。   The cleaning method of the present invention is characterized in that a surfactant is added to the aqueous liquid material.

また本発明の洗浄方法は、前記添加するアルカリが水酸化ナトリウム、水酸化カリウム、アンモニア、水酸化テトラメチルアンモニウム(以下「TMAH」と記述する)、コリンのうち少なくとも一つを含むことを特徴とする。   In the cleaning method of the present invention, the alkali to be added contains at least one of sodium hydroxide, potassium hydroxide, ammonia, tetramethylammonium hydroxide (hereinafter referred to as “TMAH”), and choline. To do.

さらには本発明の洗浄方法は、前記電子材料がシリコンウエハであることを特徴とする。   Furthermore, the cleaning method of the present invention is characterized in that the electronic material is a silicon wafer.

本発明の洗浄液を使用して洗浄処理することにより、ウエハ表面のパーティクル成分等を効率的に洗浄除去し、再汚染を防止することが可能となる。   By performing the cleaning process using the cleaning liquid of the present invention, it is possible to efficiently clean and remove particle components and the like on the wafer surface and prevent recontamination.

本発明の電子材料用洗浄液は、水素ガスによるマイクロバブルを含む水系液体であり、かつ超音波振動を付与された水系液体である。また前記水系液体が、超純水あるいは水素水であることを特徴とする。さらに本発明の電子材料用洗浄液は、望ましい特性を得るために種々の添加剤が添加されたものも含む。ここで本発明の洗浄液で洗浄可能な電子材料としては、特にシリコンウエハが挙げられる。   The cleaning liquid for electronic materials of the present invention is an aqueous liquid containing microbubbles by hydrogen gas, and is an aqueous liquid to which ultrasonic vibration is applied. The aqueous liquid is ultrapure water or hydrogen water. Further, the electronic material cleaning liquid of the present invention includes those to which various additives are added in order to obtain desirable characteristics. Here, as an electronic material that can be cleaned with the cleaning liquid of the present invention, a silicon wafer is particularly mentioned.

本発明の洗浄方法は上で説明した本発明の洗浄液を用いることを特徴とする。すなわち、電子材料を水素マイクロバブルの存在する水系液体中で、かつ超音波照射下で行うことを特徴とする。   The cleaning method of the present invention is characterized by using the cleaning liquid of the present invention described above. That is, the electronic material is performed in an aqueous liquid containing hydrogen microbubbles and under ultrasonic irradiation.

電子材料
本発明の洗浄方法で洗浄可能な電子材料は、材料、形状等において特に制限はない。従来の半導体製造で使用される種々の材料が含まれる。具体的にはSi、Ge,As、又はそれらの複合材料が挙げられる。また本発明においては電子材料の形状としても従来公知の種々の形状であって種々の製造工程中で形成される形状が含まれる。本発明においては特にウエハの形状が好ましく使用可能である。特に好ましくは通常のシリコンウエハ製造工程、シリコンウエハへの半導体製造工程の各段階のシリコンの洗浄工程で使用される各段階でのシリコンウエハが含まれる。
Electronic material The electronic material that can be cleaned by the cleaning method of the present invention is not particularly limited in material, shape, and the like. Various materials used in conventional semiconductor manufacturing are included. Specifically, Si, Ge, As, or a composite material thereof can be given. Further, in the present invention, the shape of the electronic material includes various conventionally known shapes and shapes formed in various manufacturing processes. In the present invention, the shape of the wafer is particularly preferably usable. Particularly preferred are silicon wafers at each stage used in a normal silicon wafer production process and a silicon cleaning process at each stage of the semiconductor production process to the silicon wafer.

水系液体
本発明の水系液体とは、水素ガスによるマイクロバブルを含むことができ、かつ超音波による振動が付与可能な液体であって水を少なくとも含む液体を意味する。また電子材料を洗浄するに際し不要な不純物を含まないことが好ましく、従来使用されている電子材料用洗浄液の液体が使用可能である。本発明においては特に超純水の使用が好ましい。さらにこの超純水をあらかじめ脱気して溶存ガスを除去しておいても良い。超純水の脱気方法としては、減圧膜脱気法などが適用できる。
Aqueous liquid The aqueous liquid of the present invention means a liquid that can contain microbubbles of hydrogen gas and can be vibrated by ultrasonic waves and contains at least water. Further, it is preferable that no unnecessary impurities are contained when cleaning the electronic material, and a conventionally used cleaning liquid for electronic material can be used. In the present invention, it is particularly preferable to use ultrapure water. Further, the ultrapure water may be degassed in advance to remove the dissolved gas. As a method for degassing ultrapure water, a vacuum membrane degassing method or the like can be applied.

本発明においてはさらに水系液体として水素水を使用することが好ましい。本発明で使用可能な水素水の調製方法については特に制限はなく、公知の水素水製造装置により製造された水素水を使用することができる。ここで公知の水素水製造装置としては具体的には減圧膜脱気した超純水に、気体透過膜を介して水素ガス溶解させる方法で製造する方法が挙げられる(例えば、都田昌之監修、日本産業洗浄協議会編「初歩から学ぶ機能水」工業調査会(2002))。   In the present invention, it is preferable to use hydrogen water as the aqueous liquid. There is no restriction | limiting in particular about the preparation method of the hydrogenous water which can be used by this invention, The hydrogenous water manufactured with the well-known hydrogen water manufacturing apparatus can be used. Here, as a known hydrogen water production apparatus, there is specifically a method of producing hydrogen gas dissolved in ultrapure water degassed through a gas permeable membrane (eg, supervised by Masayuki Toda, Japan). Industrial Cleaning Council, “Functional Water Learned from the Beginning” Industry Research Committee (2002)).

さらに本発明の洗浄液中の水素濃度についても特に限定はなく、洗浄装置の容積、形状、シリコンウエハの枚数、設置方法、洗浄液温度、洗浄時間、洗浄液の他の添加剤、以下説明する同時に使用する水素マイクロバブル、若しくは超音波照射条件に基づいて適宜好ましい範囲の濃度に選択することができる。   Further, the hydrogen concentration in the cleaning liquid of the present invention is not particularly limited, and the volume and shape of the cleaning apparatus, the number of silicon wafers, the installation method, the cleaning liquid temperature, the cleaning time, other additives for the cleaning liquid, and the simultaneous use described below. The concentration can be appropriately selected within a preferable range based on hydrogen microbubbles or ultrasonic irradiation conditions.

水素マイクロバブル
本発明の洗浄方法において使用する水素マイクロバブルの調製方法については特に制限はなく、公知のマイクロバブル発生方法、又は発生装置を用いて水素ガスを導入し、洗浄液中にマイクロバブルを発生させることができる。公知のマイクロバブル発生方法は、文献に記載された各種方法を適用することができる(たとえば、上山智嗣、宮本誠著、「マイクロバブルの世界」工業調査会(2006))。また公知のマイクロバブル発生装置については高速せん断流式マイクロバブル発生装置が挙げられる。
Hydrogen microbubbles There are no particular restrictions on the method of preparing hydrogen microbubbles used in the cleaning method of the present invention, and hydrogen gas is introduced using a known microbubble generation method or generator to generate microbubbles in the cleaning liquid. Can be made. Various methods described in the literature can be applied to known methods for generating microbubbles (for example, Tomoaki Kamiyama and Makoto Miyamoto, “World of Microbubbles” Industrial Research Committee (2006)). Moreover, about a well-known microbubble generator, a high-speed shear flow type microbubble generator is mentioned.

本発明の洗浄方法において使用する水素マイクロバブルの発生条件及び発生する水素マイクロバブルの量についても特に制限は無い。使用する洗浄装置の容積、形状、シリコンウエハの枚数、設置方法、洗浄液温度、洗浄時間、洗浄液の他の添加剤、以下説明する同時に使用する超音波照射条件に基づいて適宜好ましい範囲の水素マイクロバブル発生量を選択することができる。   There are no particular restrictions on the conditions for generating hydrogen microbubbles and the amount of hydrogen microbubbles generated in the cleaning method of the present invention. Hydrogen microbubbles in a preferable range as appropriate based on the volume, shape, number of silicon wafers used, installation method, cleaning liquid temperature, cleaning time, other additives for cleaning liquid, and ultrasonic irradiation conditions used simultaneously described below. The generation amount can be selected.

また本発明の水素マイクロバブルの水素については、水素のみならず水素に他の成分が含まれる場合も含む。他の成分としては具体的には、空気、ヘリウム、窒素、酸素、アルゴンが挙げられる。   Further, the hydrogen of the hydrogen microbubble of the present invention includes not only hydrogen but also cases where other components are contained in hydrogen. Specific examples of other components include air, helium, nitrogen, oxygen, and argon.

また水素マイクロバブルを発生させる位置についても特に制限はなく、水素マイクロバブルのノズル部を洗浄容器のいかなる位置にも設けることができる。使用する洗浄装置の容積、形状、シリコンウエハの枚数、設置方法、洗浄液温度、洗浄時間、洗浄液の他の添加剤、以下説明する同時に使用する超音波照射条件に基づいて適宜好ましい位置を選択することができる。具体的に洗浄容器の底部、側面部、上部、またはそれらの複数の部分が挙げられる。   Further, the position where hydrogen microbubbles are generated is not particularly limited, and the nozzle part of hydrogen microbubbles can be provided at any position of the cleaning container. Select a preferred position as appropriate based on the volume and shape of the cleaning device used, the number of silicon wafers, the installation method, the cleaning liquid temperature, the cleaning time, other additives for the cleaning liquid, and the ultrasonic irradiation conditions used at the same time described below. Can do. Specifically, the bottom part, the side part, the upper part of the cleaning container, or a plurality of parts thereof can be mentioned.

また、洗浄容器とは別の容器内で水素マイクロバブルを発生させてから送水ポンプを使って洗浄容器に導入する方法も可能である。また、洗浄容器と水素マイクロバブル水製造用容器を循環配管でつなぎ、送水ポンプで循環し続ける方法も可能である。また、送水配管途中に水素マイクロバブル発生装置を設置し、水素マイクロバブル水を洗浄容器に導入する方法も可能である。   It is also possible to generate hydrogen microbubbles in a container different from the cleaning container and then introduce the hydrogen microbubbles into the cleaning container using a water pump. Further, it is possible to connect the cleaning container and the hydrogen microbubble water production container with a circulation pipe and continue the circulation with the water pump. Further, it is possible to install a hydrogen microbubble generator in the middle of the water supply pipe and introduce hydrogen microbubble water into the cleaning container.

超音波照射
本発明の超音波振動を付与するための超音波照射方法及び装置については特に制限はなく、公知の超音波照射方法、又は超音波照射装置を用いて洗浄液中に超音波を照射することができる。
Ultrasonic irradiation The ultrasonic irradiation method and apparatus for applying ultrasonic vibration of the present invention are not particularly limited, and the cleaning liquid is irradiated with ultrasonic waves using a known ultrasonic irradiation method or ultrasonic irradiation apparatus. be able to.

本発明の洗浄方法において使用する超音波の発生条件、例えば、周波数や発生するパワーについても特に制限は無い。使用する洗浄装置の容積、形状、シリコンウエハの枚数、対象とする洗浄工程、設置方法、洗浄液温度、洗浄時間、洗浄液の他の添加剤に基づいて適宜好ましい範囲に選択することができる。   There are no particular restrictions on the generation conditions of ultrasonic waves used in the cleaning method of the present invention, such as frequency and generated power. A preferable range can be appropriately selected based on the volume and shape of the cleaning device to be used, the number of silicon wafers, the target cleaning process, the installation method, the cleaning liquid temperature, the cleaning time, and other additives of the cleaning liquid.

使用する超音波の周波数は、使用する洗浄工程、除去対象のパーティクルサイズなどにより適宜好ましい範囲のものを選択すればよい。具体的には超音波周波数は20〜2000kHzの範囲であることが好ましい。かかる範囲よりも周波数が低い場合はいわゆる超音波の領域を外れてしまいその効果が低下する恐れがある。またかかる範囲よりも高い場合は十分な洗浄効果が得られない。なお上記周波数範囲であっても超音波周波数が低い場合は、超音波照射により洗浄対象物に傷が発生する恐れがある。超音波照射による傷発生が問題となる工程、たとえば研磨処理以降のシリコンウエハの洗浄工程では、700kHz以上の周波数であることが好ましい。出力は、100〜1000Wのものが挙げられるが特に制限されるものではなく、設置する振動素子の数量も洗浄装置の大きさやデザインごと、洗浄処理の目的ごとに選択されれば良い。   What is necessary is just to select the thing of the preferable range suitably for the frequency of the ultrasonic wave to be used by the washing | cleaning process to be used, the particle size of the removal object, etc. Specifically, the ultrasonic frequency is preferably in the range of 20 to 2000 kHz. If the frequency is lower than this range, the so-called ultrasonic region may be deviated and the effect may be reduced. Moreover, when it is higher than this range, a sufficient cleaning effect cannot be obtained. In addition, even if it is the said frequency range, when an ultrasonic frequency is low, there exists a possibility that a damage | wound may generate | occur | produce in a washing | cleaning target object by ultrasonic irradiation. In a process where generation of scratches due to ultrasonic irradiation becomes a problem, for example, in a silicon wafer cleaning process after the polishing process, the frequency is preferably 700 kHz or more. The output may be 100 to 1000 W, but is not particularly limited, and the number of vibration elements to be installed may be selected for each size and design of the cleaning device and each purpose of the cleaning process.

また超音波を照射する位置についても特に制限はなく、超音波の発生方向を洗浄容器のいかなる位置にも設けることができる。使用する洗浄装置の容積、形状、シリコンウエハの枚数、設置方法、洗浄液温度、洗浄時間、洗浄液の他の添加剤に基づいて適宜好ましい位置を選択することができる。具体的に洗浄容器の底部、側面部、上部、またはそれらの複数の部分から照射する方法が挙げられる。   Also, there is no particular limitation on the position where the ultrasonic wave is irradiated, and the ultrasonic wave generation direction can be provided at any position of the cleaning container. A preferable position can be selected as appropriate based on the volume and shape of the cleaning apparatus to be used, the number of silicon wafers, the installation method, the cleaning liquid temperature, the cleaning time, and other additives of the cleaning liquid. Specifically, a method of irradiating from the bottom part, the side part, the upper part, or a plurality of parts of the cleaning container can be mentioned.

その他の添加成分
本発明の洗浄方法で使用する洗浄液はさらに他の成分を添加することも可能である。例えば、アルカリや界面活性剤が挙げられる。アルカリで特に好ましい添加剤は水酸化ナトリウム、水酸化カリウム、アンモニア、TMAH、コリンが挙げられる。これらの添加剤の種類、添加量については特に制限は無い。使用する洗浄装置の容積、形状、シリコンウエハの枚数、設置方法、洗浄液温度、洗浄時間、水素マイクロバブル、超音波照射等に基づいて適宜選択することができる。
Other Additive Components Other components may be added to the cleaning liquid used in the cleaning method of the present invention. For example, alkali and surfactant are mentioned. Particularly preferred additives for alkali include sodium hydroxide, potassium hydroxide, ammonia, TMAH and choline. There is no restriction | limiting in particular about the kind of these additives, and addition amount. The volume and shape of the cleaning apparatus to be used, the number of silicon wafers, the installation method, the cleaning liquid temperature, the cleaning time, hydrogen microbubbles, ultrasonic irradiation, and the like can be selected as appropriate.

アルカリに適量の過酸化水素を添加することで、パーティクル除去能力を向上させたり、ウエハ表面を親水性に仕上げたり、面荒れ(ヘイズ)を防止したりすることが可能となる。   By adding an appropriate amount of hydrogen peroxide to the alkali, it is possible to improve the particle removal capability, to make the wafer surface hydrophilic, and to prevent surface roughness (haze).

洗浄中のシリコンウエハ
本発明の洗浄方法はシリコンウエハの表面のパーティクル汚染を極めて効率的に除去することが可能であり、特に意想外なことにパーティクル等による再汚染が防止される。
Silicon wafer during cleaning The cleaning method of the present invention can very effectively remove particle contamination on the surface of a silicon wafer, and, surprisingly, recontamination due to particles or the like is prevented.

以下本発明の洗浄方法を、具体的な実施例に基づいてさらに詳しく説明するが、本発明がこれらの例に限定されるものではない。   Hereinafter, the cleaning method of the present invention will be described in more detail based on specific examples, but the present invention is not limited to these examples.

(実施例1−1)
試料:希フッ酸洗浄した後スピン乾燥して自然酸化皮膜を除去し疎水性表面を有する直径200mmのP型ミラーシリコンウエハ表面に、研磨剤入溶液(フジミ化学 GLANZOX3900を1000万倍希釈した液)を10mLスピンコートして研磨剤にて汚染させた。ここで、パーティクル汚染量は、0.13μmφ以上のパーティクル数5000〜10000個付着であった。パーティクル数測定は、KLA−テンコール社製Surfscan6220を使用した。
(Example 1-1)
Sample: diluted with hydrofluoric acid, spin-dried to remove natural oxide film, and a hydrophobic solution containing abrasive solution (Fujimi Chemical GLANZOX3900 diluted 10 million times) on the surface of a P-type mirror silicon wafer 10 mL was spin-coated and contaminated with an abrasive. Here, the amount of particle contamination was adhesion of 5000 to 10000 particles having a diameter of 0.13 μmφ or more. The number of particles was measured using Surfscan 6220 manufactured by KLA-Tencor.

原料液:超純水
洗浄方法:40Lの洗浄槽内に洗浄液を6L/minで導入し続け、オーバーフローさせ続けた。マイクロバブル発生装置(ナノプラネット研究所製M2−MS/PTFE型)のノズル部を洗浄槽の底の位置に1個設け、1L/minのマイクロバブルを発生させ続けた。バブル用気体には水素ガスを用いた。ウエハを洗浄槽に導入する前に5分間マイクロバブルを発生させ、洗浄中もマイクロバブルを発生させ続けた。また、洗浄の間中周波数1MHz、出力1kWの超音波を照射した。洗浄中の洗浄液の溶存水素濃度は0.5ppmであった。
Raw material liquid: ultrapure water Cleaning method: The cleaning liquid was continuously introduced into the 40 L cleaning tank at 6 L / min and continued to overflow. One nozzle part of a microbubble generator (M2-MS / PTFE type manufactured by Nano Planet Research Laboratories) was provided at the bottom of the washing tank, and 1 L / min microbubbles were continuously generated. Hydrogen gas was used as the bubble gas. Microbubbles were generated for 5 minutes before introducing the wafer into the cleaning tank, and the microbubbles were continuously generated during the cleaning. In addition, ultrasonic waves having a frequency of 1 MHz and an output of 1 kW were applied throughout the cleaning. The dissolved hydrogen concentration of the cleaning liquid during cleaning was 0.5 ppm.

ここへ試料を液温20℃にて5分間浸漬した。後試料を取り出し、超純水槽に入れて20℃で5分間オーバーフローリンスした。その後試料をスピン乾燥した。   The sample was immersed here at a liquid temperature of 20 ° C. for 5 minutes. Thereafter, the sample was taken out, put into an ultrapure water tank, and rinsed at 20 ° C. for 5 minutes. The sample was then spin dried.

洗浄後の試料ウエハのパーティクル数測定は、KLA−テンコール社製Surfscan6220を使用した。洗浄前後のパーティクル付着数から0.13μmφ以上のパーティクル除去率を求めた。   For the measurement of the number of particles of the sample wafer after cleaning, Surfscan 6220 manufactured by KLA-Tencor Corporation was used. A particle removal rate of 0.13 μmφ or more was determined from the number of adhered particles before and after cleaning.

(実施例1−2)
原料液が1.4ppm水素水であること以外は実施例と同様である。水素水は、減圧膜脱気した超純水に、気体透過膜を介して水素ガス溶解させる方法で製造した。洗浄中の洗浄液の溶存水素濃度は1.5ppmであった。
(Example 1-2)
It is the same as that of an Example except a raw material liquid being 1.4 ppm hydrogen water. Hydrogen water was produced by dissolving hydrogen gas in ultrapure water degassed under reduced pressure through a gas permeable membrane. The dissolved hydrogen concentration in the cleaning liquid during cleaning was 1.5 ppm.

(比較例1−1)
水素マイクロバブルを導入しないこと以外は実施例1−2と同様である。洗浄中の洗浄液の溶存水素濃度は1.4ppmであった。
(Comparative Example 1-1)
Example 1-2 is the same as Example 1-2 except that hydrogen microbubbles are not introduced. The dissolved hydrogen concentration in the cleaning liquid during cleaning was 1.4 ppm.

(比較例1−2)
超音波を照射しないこと以外は実施例1−1と同様である。洗浄中の洗浄液の溶存水素濃度は0.5ppmであった。
(Comparative Example 1-2)
It is the same as that of Example 1-1 except not irradiating an ultrasonic wave. The dissolved hydrogen concentration of the cleaning liquid during cleaning was 0.5 ppm.

(実施例2−1)
原料液に15mM−アンモニアと30mM−過酸化水素が含まれていること以外は実施例1−1と同様である。
(Example 2-1)
Example 1-1 is the same as Example 1-1 except that the raw material solution contains 15 mM ammonia and 30 mM hydrogen peroxide.

(実施例2−2)
原料液に15mM−アンモニアと30mM−過酸化水素が含まれていること以外は実施例1−2と同様である。
(Example 2-2)
Example 1-2 is the same as Example 1-2 except that the raw material solution contains 15 mM ammonia and 30 mM hydrogen peroxide.

(比較例2)
原料液に15mM−アンモニアと30mM−過酸化水素が含まれていること以外は比較例1−1と同様である。
(Comparative Example 2)
The same as Comparative Example 1-1 except that the raw material solution contains 15 mM ammonia and 30 mM hydrogen peroxide.

(実施例3−1)
試料がCMP直後のシリコンウエハ(0.13μmφ以上のパーティクル200万個以上付着)であり、原料液に10mM−TMAHと30mM−過酸化水素が含まれていること以外は実施例1−1と同様である。
(Example 3-1)
The sample was a silicon wafer immediately after CMP (more than 2 million particles of 0.13 μmφ or larger), and the same as Example 1-1 except that the raw material liquid contained 10 mM-TMAH and 30 mM-hydrogen peroxide. It is.

(実施例3−2)
試料がCMP直後のシリコンウエハ(0.13μmφ以上のパーティクル200万個以上付着)であり、原料液に10mM−TMAHと30mM−過酸化水素が含まれていること以外は実施例1−2と同様である。
(Example 3-2)
The sample is a silicon wafer immediately after CMP (more than 2 million particles having a diameter of 0.13 μmφ or more), and is similar to Example 1-2 except that the raw material liquid contains 10 mM-TMAH and 30 mM-hydrogen peroxide. It is.

(比較例3)
試料がCMP直後のシリコンウエハ(0.13μmφ以上のパーティクル200万個以上付着)であり、原料液に10mM−TMAHと30mM−過酸化水素が含まれていること以外は比較例1−1と同様である。
(Comparative Example 3)
Similar to Comparative Example 1-1, except that the sample is a silicon wafer immediately after CMP (more than 2 million particles having a diameter of 0.13 μmφ or more), and the raw material solution contains 10 mM-TMAH and 30 mM-hydrogen peroxide. It is.

(実施例4−1)
除去したパーティクルの再付着挙動を確認するために、実施例3−1の洗浄試験の際に、清浄な表面のシリコンウエハ(あらかじめ希フッ酸洗浄後乾燥して自然酸化膜を除去し疎水性表面としたもの)を同じ洗浄キャリアに入れた。洗浄後のパーティクル付着数を測定した。
(Example 4-1)
In order to confirm the re-adhesion behavior of the removed particles, in the cleaning test of Example 3-1, a silicon wafer with a clean surface (previously dried with dilute hydrofluoric acid and dried to remove the natural oxide film and remove the hydrophobic surface In the same washing carrier. The number of adhered particles after washing was measured.

(実施例4−2)
除去したパーティクルの再付着挙動を確認するために、実施例3−2の洗浄試験の際に、清浄な表面のシリコンウエハ(あらかじめ希フッ酸洗浄後乾燥して自然酸化膜を除去し疎水性表面としたもの)を同じ洗浄キャリアに入れた。洗浄後のパーティクル付着数を測定した。
(Example 4-2)
In order to confirm the re-adhesion behavior of the removed particles, in the cleaning test of Example 3-2, a silicon wafer with a clean surface (previously dried with dilute hydrofluoric acid and dried to remove the natural oxide film and remove the hydrophobic surface In the same washing carrier. The number of adhered particles after washing was measured.

(比較例4)
除去したパーティクルの再付着挙動を確認するために、比較例3の洗浄試験の際に、清浄な表面のシリコンウエハ(あらかじめ希フッ酸洗浄後乾燥して自然酸化膜を除去し疎水性表面としたもの)を同じ洗浄キャリアに入れた。洗浄後のパーティクル付着数を測定した。
(Comparative Example 4)
In order to confirm the re-adhesion behavior of the removed particles, in the cleaning test of Comparative Example 3, a silicon wafer with a clean surface (previously dried with dilute hydrofluoric acid and dried to remove the natural oxide film to obtain a hydrophobic surface) In the same washing carrier. The number of adhered particles after washing was measured.

(実施例5−1〜5−12)
試料:希フッ酸洗浄した後スピン乾燥して自然酸化膜を除去し疎水性表面を有する直径200mmのP型ミラーシリコンウエハを、窒化ケイ素粉末(粒度分布ピーク500nm)を分散させた1N−塩酸溶液中に浸漬し、窒化ケイ素パーティクルを付着させた。
(Examples 5-1 to 5-12)
Sample: 1N-hydrochloric acid solution in which silicon nitride powder (particle size distribution peak: 500 nm) is dispersed in a 200 mm diameter P-type mirror silicon wafer having a hydrophobic surface after washing with diluted hydrofluoric acid and spin drying to remove a natural oxide film It was immersed in and silicon nitride particles were adhered.

ここで、パーティクル汚染量は、0.1μmφ以上のパーティクル数5000〜10000個付着であった。パーティクル数測定には、日立ハイテクノロジーズ製LS6500を使用した。   Here, the amount of particle contamination was adhesion of 5000 to 10,000 particles having a size of 0.1 μmφ or more. Hitachi High-Technologies LS6500 was used for the particle number measurement.

洗浄液:各実施例において、表3に示した濃度のTMAHと過酸化水素を含むように調製した洗浄液を使用した。   Cleaning solution: In each example, a cleaning solution prepared to contain TMAH and hydrogen peroxide having the concentrations shown in Table 3 was used.

洗浄方法:40Lの洗浄槽内に表3に示した所定の濃度のTMAHと過酸化水素を含む液を満たし、マイクロバブル発生装置(ナノプラネット研究所製M2−MS/PTFE型)のノズル部を洗浄槽の底の位置に1個設け、1L/minのマイクロバブルを発生させ続けた。バブル用気体には水素ガスを用いた。ウエハを洗浄槽に導入する前に5分間マイクロバブルを発生させ、洗浄中もマイクロバブルを発生させ続けた。洗浄中の洗浄液の溶存水素濃度は0.5ppmであった。また、洗浄の間中周波数1MHz、出力1kWの超音波を照射した。   Cleaning method: A 40 L cleaning tank is filled with a liquid containing TMAH and hydrogen peroxide having a predetermined concentration shown in Table 3, and the nozzle part of the microbubble generator (M2-MS / PTFE type manufactured by Nano Planet Research Laboratories) is installed. One was installed at the bottom of the washing tank, and 1 L / min microbubbles were continuously generated. Hydrogen gas was used as the bubble gas. Microbubbles were generated for 5 minutes before introducing the wafer into the cleaning tank, and the microbubbles were continuously generated during the cleaning. The dissolved hydrogen concentration of the cleaning liquid during cleaning was 0.5 ppm. In addition, ultrasonic waves having a frequency of 1 MHz and an output of 1 kW were applied throughout the cleaning.

ここへ試料を液温60℃にて5分間浸漬した。後試料を取り出し、超純水槽に入れて20℃で5分間オーバーフローリンスした。その後試料をスピン乾燥した。   The sample was immersed here at a liquid temperature of 60 ° C. for 5 minutes. Thereafter, the sample was taken out, put into an ultrapure water tank, and rinsed at 20 ° C. for 5 minutes. The sample was then spin dried.

洗浄前後の試料ウエハのパーティクル測定には、日立ハイテクノロジーズ製LS6500を使用した。洗浄前後のパーティクル付着数から0.1μmφ以上のパーティクル除去率を求めた。   LS6500 manufactured by Hitachi High-Technologies was used for particle measurement of the sample wafer before and after cleaning. The particle removal rate of 0.1 μmφ or more was determined from the number of particles attached before and after cleaning.

(比較例5)
洗浄液にAPM(アンモニア4700ppm、過酸化水素31000ppm)を使用し、水素マイクロバブルを使用しない以外は実施例5−1〜5−12と同様である。
(Comparative Example 5)
The same as Examples 5-1 to 5-12, except that APM (ammonia 4700 ppm, hydrogen peroxide 31000 ppm) was used as the cleaning liquid, and hydrogen microbubbles were not used.

Figure 2008182188
Figure 2008182188

Figure 2008182188
Figure 2008182188

Figure 2008182188
Figure 2008182188

(結果)
表1〜表3に実施条件及び得られた結果をまとめた。
(result)
Tables 1 to 3 summarize the implementation conditions and the results obtained.

表1〜表3から次のことが分かる。   The following can be understood from Tables 1 to 3.

水素マイクロバブルの存在下、超音波照射下で洗浄することにより、表面汚れは著しく除去されることが分かる。実施例1−1では溶存水素濃度が比較例1−1よりも低いにもかかわらず、洗浄能力が高いことから、マイクロバブルの効果が現れていることがわかる。また、液をアルカリ性に保つことにより除去能力はさらに向上する。また、過酸化水素を添加することにより面荒れ(ヘイズ)を防げることがわかる。   It can be seen that the surface contamination is remarkably removed by washing under ultrasonic irradiation in the presence of hydrogen microbubbles. In Example 1-1, although the concentration of dissolved hydrogen is lower than that of Comparative Example 1-1, it can be seen that the effect of microbubbles appears because the cleaning ability is high. Moreover, the removal capability is further improved by keeping the solution alkaline. Moreover, it turns out that surface roughness (haze) can be prevented by adding hydrogen peroxide.

表3より、TMAH800ppm、過酸化水素500ppmに水素マイクロバブルを導入することで、一般的な水素マイクロバブルなしのAPM(アンモニア4700ppm、過酸化水素31000ppm)と同等の洗浄能力があることがわかる。すなわち、水素マイクロバブルを導入することによって薬液濃度を大幅に下げることが可能であることがわかる。また、TMAH濃度を上げることによって、洗浄能力も上がることがわかる。   It can be seen from Table 3 that by introducing hydrogen microbubbles into TMAH 800 ppm and hydrogen peroxide 500 ppm, there is a cleaning ability equivalent to that of APM without ammonia microbubbles (ammonia 4700 ppm, hydrogen peroxide 31000 ppm). That is, it can be seen that the chemical concentration can be significantly reduced by introducing hydrogen microbubbles. It can also be seen that increasing the TMAH concentration improves the cleaning ability.

実施例4−1、4−2、比較例4の結果から、水素マイクロバブルを添加することにより、ウエハ表面から除去されて水槽内の洗浄液中に存在するパーティクルの再付着を著しく抑制していることがわかる。   From the results of Examples 4-1 and 4-2 and Comparative Example 4, by adding hydrogen microbubbles, reattachment of particles that are removed from the wafer surface and exist in the cleaning liquid in the water tank is remarkably suppressed. I understand that.

これにより、ウエハ表面のパーティクルの除去能力向上が期待できる。   Thereby, the removal capability of the particle | grains on a wafer surface can be expected.

本発明に係るシリコンウエハの洗浄液及び洗浄方法はこれまで行われてきたシリコンウエハの洗浄処理全般に適用することが可能である。   The silicon wafer cleaning liquid and cleaning method according to the present invention can be applied to all silicon wafer cleaning processes that have been performed so far.

Claims (11)

水素ガスによるマイクロバブルを含み、かつ超音波振動を付与された水系液体であることを特徴とする、電子材料用洗浄液。   A cleaning liquid for electronic materials, characterized in that it is a water-based liquid containing microbubbles by hydrogen gas and imparted with ultrasonic vibration. 前記水系液体が、超純水であることを特徴とする、請求項1に記載の電子材料用洗浄液。   The cleaning liquid for electronic materials according to claim 1, wherein the aqueous liquid is ultrapure water. 前記水系液体が、水素水であることを特徴とする、請求項1に記載の電子材料用洗浄液。   The cleaning liquid for electronic materials according to claim 1, wherein the aqueous liquid is hydrogen water. 水素マイクロバブルの存在する水系液体中で、かつ超音波照射下で行うことを特徴とする、電子材料の洗浄方法。   A method for cleaning an electronic material, which is performed in an aqueous liquid containing hydrogen microbubbles and under ultrasonic irradiation. 前記水系液体が超純水であることを特徴とする、請求項4記載の電子材料の洗浄方法。   The method for cleaning an electronic material according to claim 4, wherein the aqueous liquid is ultrapure water. 前記水系液体が水素水であることを特徴とする、請求項4記載の電子材料の洗浄方法。   5. The electronic material cleaning method according to claim 4, wherein the aqueous liquid is hydrogen water. 前記水系液体に、さらにアルカリを添加することを特徴とする、請求項4〜6のいずれかに記載の電子材料の洗浄方法。   The method for cleaning an electronic material according to any one of claims 4 to 6, wherein an alkali is further added to the aqueous liquid. 前記水系液体にアルカリと過酸化水素を添加することを特徴とする、請求項4〜6のいずれかに記載の電子材料の洗浄方法。   The method for cleaning an electronic material according to claim 4, wherein alkali and hydrogen peroxide are added to the aqueous liquid. 前記水系液体に界面活性剤を添加することを特徴とする、請求項4〜8のいずれかに記載の電子材料の洗浄方法。   The method for cleaning an electronic material according to claim 4, wherein a surfactant is added to the aqueous liquid. 前記添加するアルカリが水酸化ナトリウム、水酸化カリウム、アンモニア、水酸化テトラメチルアンモニウム(TMAH)、コリンのうち少なくとも一つを含むことを特徴とする、請求項7又は8に記載の電子材料の洗浄方法。   9. The electronic material cleaning according to claim 7, wherein the alkali to be added contains at least one of sodium hydroxide, potassium hydroxide, ammonia, tetramethylammonium hydroxide (TMAH), and choline. Method. 前記電子材料がシリコンウエハであることを特徴とする、請求項4〜10記載の電子材料の洗浄方法。   The method for cleaning an electronic material according to claim 4, wherein the electronic material is a silicon wafer.
JP2007277936A 2006-12-27 2007-10-25 Cleaning fluid for electronic material and cleaning method Pending JP2008182188A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007277936A JP2008182188A (en) 2006-12-27 2007-10-25 Cleaning fluid for electronic material and cleaning method
KR1020070121431A KR20080061266A (en) 2006-12-27 2007-11-27 Cleaning liquid and cleaning method for electronic material
SG200718144-9A SG144040A1 (en) 2006-12-27 2007-11-28 Cleaning liquid and cleaning method for electronic material
EP07023561A EP1950792A1 (en) 2006-12-27 2007-12-05 Cleaning liquid and cleaning method for electronic material
TW096148611A TWI405621B (en) 2006-12-27 2007-12-19 Cleaning liquid and cleaning method for electronic material
US11/959,772 US8043435B2 (en) 2006-12-27 2007-12-19 Cleaning liquid and cleaning method for electronic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006352730 2006-12-27
JP2007277936A JP2008182188A (en) 2006-12-27 2007-10-25 Cleaning fluid for electronic material and cleaning method

Publications (1)

Publication Number Publication Date
JP2008182188A true JP2008182188A (en) 2008-08-07

Family

ID=39725832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277936A Pending JP2008182188A (en) 2006-12-27 2007-10-25 Cleaning fluid for electronic material and cleaning method

Country Status (4)

Country Link
JP (1) JP2008182188A (en)
KR (1) KR20080061266A (en)
CN (1) CN101226874A (en)
TW (1) TWI405621B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001253A (en) * 2009-05-18 2011-01-06 Nipro Corp Glass vessel for medical use and method for producing glass vessel for medical use
JP2012089679A (en) * 2010-10-20 2012-05-10 National Institute Of Advanced Industrial & Technology Method of cleaning semiconductor wafer
JP2013045961A (en) * 2011-08-25 2013-03-04 Dainippon Screen Mfg Co Ltd Substrate cleaning method, substrate cleaning liquid and substrate processing apparatus
KR20230038319A (en) * 2015-12-09 2023-03-17 에이씨엠 리서치 (상하이), 인코포레이티드 Method and apparatus for cleaning substrates using high temperature chemicals and ultrasonic device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135525A (en) * 2008-12-04 2010-06-17 Siltronic Ag Method of cleaning semiconductor wafer
CN102074460B (en) * 2010-07-21 2012-05-23 河北工业大学 Method for cleaning surface after chemically mechanical polishing of tungsten-molybdenum alloy
CN102956450B (en) * 2011-08-16 2015-03-11 中芯国际集成电路制造(北京)有限公司 Method for manufacturing semiconductor devices
CN103311093B (en) * 2012-03-12 2016-06-08 上海凯世通半导体有限公司 The adulterating method of PN
CN103464413A (en) * 2013-09-10 2013-12-25 无锡荣能半导体材料有限公司 Silicon material washing method
KR102468949B1 (en) * 2016-09-28 2022-11-21 동우 화인켐 주식회사 Cleaning solution composition and cleaning method using the same
CN107088552B (en) * 2017-04-26 2019-05-31 上海申和热磁电子有限公司 A kind of method of middle low temperature removal precise ceramic component inside foreign atom
CN110711745A (en) * 2018-07-12 2020-01-21 天津市优尼迪科技有限公司 Ultrasonic cleaning process
CN109166815A (en) * 2018-09-18 2019-01-08 福建闽芯科技有限公司 A kind of cleaning device and its cleaning method for CMP processing procedure
CN110591832A (en) * 2019-09-26 2019-12-20 嘉兴瑞智光能科技有限公司 Efficient environment-friendly pollution-free silicon wafer cleaning agent and preparation method thereof
CN110670141A (en) * 2019-11-13 2020-01-10 云南北方驰宏光电有限公司 Surface treatment device and method for high-purity germanium crystal material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007073A (en) * 1999-06-21 2001-01-12 Kurita Water Ind Ltd Cleaning method
JP2005039002A (en) * 2003-07-18 2005-02-10 Hitachi Plant Eng & Constr Co Ltd Washing apparatus and method therefor
JP2005045159A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Method of cleaning and method of preparing cleaning water
JP2006310456A (en) * 2005-04-27 2006-11-09 Dainippon Screen Mfg Co Ltd Particle removing method and substrate processing equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590470B2 (en) * 1996-03-27 2004-11-17 アルプス電気株式会社 Cleaning water generation method and cleaning method, and cleaning water generation device and cleaning device
KR100389917B1 (en) * 2000-09-06 2003-07-04 삼성전자주식회사 Wet process for fabrication of semiconductor device using electrolytically ionized anode water and/or cathod water and electrolytically ionized anode water and/or cathode water used therein
JP4505560B2 (en) * 2003-12-15 2010-07-21 宮崎県 Generation method of monodisperse bubbles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007073A (en) * 1999-06-21 2001-01-12 Kurita Water Ind Ltd Cleaning method
JP2005039002A (en) * 2003-07-18 2005-02-10 Hitachi Plant Eng & Constr Co Ltd Washing apparatus and method therefor
JP2005045159A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Method of cleaning and method of preparing cleaning water
JP2006310456A (en) * 2005-04-27 2006-11-09 Dainippon Screen Mfg Co Ltd Particle removing method and substrate processing equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001253A (en) * 2009-05-18 2011-01-06 Nipro Corp Glass vessel for medical use and method for producing glass vessel for medical use
JP2012089679A (en) * 2010-10-20 2012-05-10 National Institute Of Advanced Industrial & Technology Method of cleaning semiconductor wafer
JP2013045961A (en) * 2011-08-25 2013-03-04 Dainippon Screen Mfg Co Ltd Substrate cleaning method, substrate cleaning liquid and substrate processing apparatus
KR20230038319A (en) * 2015-12-09 2023-03-17 에이씨엠 리서치 (상하이), 인코포레이티드 Method and apparatus for cleaning substrates using high temperature chemicals and ultrasonic device
KR102637965B1 (en) 2015-12-09 2024-02-20 에이씨엠 리서치 (상하이), 인코포레이티드 Method and apparatus for cleaning substrates using high temperature chemicals and ultrasonic device

Also Published As

Publication number Publication date
TW200827048A (en) 2008-07-01
CN101226874A (en) 2008-07-23
KR20080061266A (en) 2008-07-02
TWI405621B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP2008182188A (en) Cleaning fluid for electronic material and cleaning method
US8043435B2 (en) Cleaning liquid and cleaning method for electronic material
EP0860866A1 (en) Cleaning of semiconductor wafers and microelectronics substrates
JP2009021419A (en) Method and device for cleaning substrate
JPH08187474A (en) Washing method
TW201235464A (en) Cleansing liquid and cleansing method
CN1351523A (en) Temperature controlled gassication of deionized water for megasonic cleaning of semiconductor wafers
JP2008103701A (en) Wet treatment method of silicon wafer
CN112673458A (en) Cleaning processing device and cleaning method for semiconductor silicon wafer
CN109326501B (en) Cleaning method for semiconductor wafer after final polishing
US6946036B2 (en) Method and device for removing particles on semiconductor wafers
JPH1022246A (en) Cleaning method
JP4482844B2 (en) Wafer cleaning method
JP2010135525A (en) Method of cleaning semiconductor wafer
JP2007214412A (en) Semiconductor substrate cleaning method
KR20090030204A (en) Process for cleaning a semiconductor wafer
US20040266191A1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
JPH07283182A (en) Cleaning method of semiconductor substrate
JP2001054768A (en) Cleaning method and cleaning device
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
JP2008166404A (en) Wash water for hydrophobic silicon wafer, and cleaning method using the same
KR20140091327A (en) Method for cleaning wafer
JP2002045806A (en) Cleaning device
JP2002261063A (en) Method and device for removing particle on semiconductor wafer
JP7193026B1 (en) Cleaning liquid and wafer cleaning method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126