JP2008103701A - Wet treatment method of silicon wafer - Google Patents
Wet treatment method of silicon wafer Download PDFInfo
- Publication number
- JP2008103701A JP2008103701A JP2007241474A JP2007241474A JP2008103701A JP 2008103701 A JP2008103701 A JP 2008103701A JP 2007241474 A JP2007241474 A JP 2007241474A JP 2007241474 A JP2007241474 A JP 2007241474A JP 2008103701 A JP2008103701 A JP 2008103701A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- silicon wafer
- microbubbles
- wet processing
- wet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
本発明は、シリコンウェハのウェット処理方法に関する。 The present invention relates to a wet processing method for a silicon wafer.
最近シリコンウェハを用いた半導体LSIの製造技術においては、より大口径のウェハの使用やより微細な加工技術が必要となってきている。さらに工程の複雑化に伴う製品の品質の維持向上、生産コストの低減等の問題の解決もまた必要となってきている。 In recent years, semiconductor LSI manufacturing technology using silicon wafers requires the use of larger diameter wafers and finer processing technology. Furthermore, it is also necessary to solve problems such as maintenance and improvement of product quality and reduction of production cost due to complicated processes.
特にシリコンウェハを用いた半導体LSIの製造技術の多くの分野において、種々の溶液による処理を含むいわゆるウェット処理工程が必須の工程となっている。かかるウェット処理工程のうち特に重要な工程は洗浄工程、エッチング工程等である。従来これらのウェット処理工程においては主に溶液の種類、濃度、又は処理温度、時間等の選択の点において改良が重ねられてきている(例えば、服部毅編著「新版シリコンウェハ表面のクリーン化技術」リアライズ社(2000))。しかしながら近年のさらなる微細な加工技術の必要性、工程の複雑化、高清浄化、低コスト化に伴う要求を満たすにはこれら従来技術では十分ではなかった。さらに近年では、環境保護対策の厳格化、廃液処理の低コスト化の要求により、希薄薬液洗浄、薬液レス洗浄などが望まれてきている。 In particular, in many fields of semiconductor LSI manufacturing technology using silicon wafers, so-called wet processing steps including processing with various solutions are indispensable steps. Among such wet processing steps, particularly important steps are a cleaning step, an etching step, and the like. Conventionally, in these wet processing steps, improvements have been repeated mainly in terms of selection of the type, concentration, processing temperature, time, etc. of the solution (for example, edited by Hajime Hattori, “New Silicon Wafer Surface Cleaning Technology”). Realize (2000)). However, these conventional techniques have not been sufficient to satisfy the demands associated with the recent need for finer processing techniques, complicated processes, higher cleaning, and lower costs. Furthermore, in recent years, due to demands for stricter environmental protection measures and lower costs for waste liquid treatment, dilute chemical cleaning, chemical-less cleaning, and the like have been desired.
本発明は、シリコンウェハのウェット処理全般に適用可能な全く新規な方法を提供する。 The present invention provides a completely new method applicable to all wet processing of silicon wafers.
本発明者らは、シリコンウェハのウェット処理に関する最近の強い要求を満たすことができる新たな処理方法を鋭意研究開発した結果、意外なことに従来のシリコンウェット処理工程を、マイクロバブルの存在下で実施することにより解決できることを見いだし、本発明を完成するに至った。 As a result of earnest research and development of a new processing method capable of satisfying the recent strong demand for wet processing of silicon wafers, the present inventors surprisingly changed the conventional silicon wet processing process in the presence of microbubbles. It has been found that the problem can be solved by carrying out the invention, and the present invention has been completed.
すなわち、本発明は、シリコンウェハをウェット処理する方法において、マイクロバブルの存在下で行うことを特徴とする、シリコンウェハのウェット処理方法に関する。 That is, the present invention relates to a method for wet-treating a silicon wafer, which is performed in the presence of microbubbles in a method for wet-treating a silicon wafer.
また、本発明のシリコンウェハのウェット処理方法は、特に前記ウェット処理がスライス後洗浄処理であることを特徴とする。 The wet processing method for a silicon wafer according to the present invention is particularly characterized in that the wet processing is post-slice cleaning processing.
また、本発明のシリコンウェハのウェット処理方法は、特に前記ウェット処理がシリコンウェハのAPM(アンモニア+過酸化水素)によるパーティクル除去洗浄処理であることを特徴とする。 The wet processing method for a silicon wafer according to the present invention is particularly characterized in that the wet processing is a particle removal cleaning process using APM (ammonia + hydrogen peroxide) of the silicon wafer.
また、本発明のシリコンウェハのウェット処理方法は、特に前記ウェット処理がシリコンウェハの水素水によるパーティクル除去洗浄処理であることを特徴とする。 The wet processing method for a silicon wafer according to the present invention is particularly characterized in that the wet processing is a particle removal cleaning process with hydrogen water of the silicon wafer.
また、本発明のシリコンウェハのウェット処理方法は、特に前記ウェット処理がラッピング処理後の残渣の除去洗浄処理であることを特徴とする。 The wet processing method for a silicon wafer according to the present invention is particularly characterized in that the wet processing is a residue removal cleaning processing after lapping processing.
また、本発明のシリコンウェハのウェット処理方法は、特に前記ウェット処理が油性インクの除去洗浄処理であることを特徴とする。 The wet processing method for a silicon wafer according to the present invention is particularly characterized in that the wet processing is oil-based ink removal cleaning processing.
また、本発明のシリコンウェハのウェット処理方法は、特に前記ウェット処理がシリコンのエッチングをともなう洗浄処理であることを特徴とする。 The wet processing method for a silicon wafer according to the present invention is particularly characterized in that the wet processing is a cleaning processing accompanied with etching of silicon.
本発明の方法で、マイクロバブル存在下でシリコンウェハをウェット処理することにより、ウェハ表面の有機物成分、パーティクル成分等を効率的に洗浄除去することが可能となる。さらに本発明の方法で、マイクロバブル存在下でシリコンのエッチングをともなう洗浄処理を行う際に、エッチング速度を自在に制御することが可能となる。 By wet-treating a silicon wafer in the presence of microbubbles with the method of the present invention, it becomes possible to efficiently clean and remove organic components, particle components and the like on the wafer surface. Furthermore, the etching rate can be freely controlled by the method of the present invention when performing a cleaning process with silicon etching in the presence of microbubbles.
(シリコンウェット処理)
本発明の処理方法の特徴は、シリコンウェハウェット処理において、マイクロバブルの存在下で行うことが特徴である。従って本発明の処理方法を適用可能なシリコンウェハウェット処理の種類については何ら制限はなく、シリコンウェハをウェット処理するための従来公知の種々の処理工程が含まれる。具体的には種々の段階での洗浄工程、また種々の目的、条件を用いたエッチング工程が含まれる。またこれらの工程の条件は、特に変更する必要はない。
(Silicon wet processing)
The processing method of the present invention is characterized in that the silicon wafer wet processing is performed in the presence of microbubbles. Therefore, there is no limitation on the type of silicon wafer wet processing to which the processing method of the present invention can be applied, and various conventionally known processing steps for wet processing of silicon wafers are included. Specifically, cleaning processes at various stages and etching processes using various purposes and conditions are included. Further, the conditions for these steps do not need to be changed.
洗浄工程には、シリコンインゴットからウェハを切り出した後の洗浄工程、ラッピング処理した後の洗浄工程、粗研磨処理の後の洗浄工程、エッジポリッシュ処理後の洗浄工程、エッチング処理工程の後の洗浄工程、仕上げ研磨処理後の洗浄工程、各種アニール処理前後の洗浄工程、エピタキシャル層堆積前後の洗浄工程、出荷前最終洗浄工程、その他各種工程間の洗浄工程が挙げられる。 The cleaning process includes a cleaning process after cutting a wafer from a silicon ingot, a cleaning process after lapping, a cleaning process after rough polishing, a cleaning process after edge polishing, and a cleaning process after etching. The cleaning process after the finish polishing process, the cleaning process before and after the various annealing processes, the cleaning process before and after the epitaxial layer deposition, the final cleaning process before shipment, and the cleaning process between various other processes are included.
本発明の方法の適用がより好ましい洗浄工程は、前記ウェット処理がスライス後洗浄処理、シリコンウェハのAPM(アンモニア+過酸化水素)によるパーティクル除去洗浄処理、水素水によるパーティクル除去洗浄処理、ラッピング処理後の残渣の除去洗浄処理である。 The cleaning process to which the method of the present invention is more preferably applied is that the wet process is a cleaning process after slicing, a particle removing cleaning process using APM (ammonia + hydrogen peroxide) of a silicon wafer, a particle removing cleaning process using hydrogen water, and a lapping process. This is a cleaning process for removing the residue.
さらにシリコンのエッチングをともなう洗浄処理については、アンモニア、水酸化テトラメチルアンモニウム、水酸化ナトリウム、水酸化カリウムなどの各種アルカリを含む洗浄液、フッ化水素酸やフッ化アンモニウムなどのフッ素を含む各種洗浄液を利用する洗浄処理工程が挙げられる。 Furthermore, for cleaning treatments involving silicon etching, cleaning solutions containing various alkalis such as ammonia, tetramethylammonium hydroxide, sodium hydroxide and potassium hydroxide, and various cleaning solutions containing fluorine such as hydrofluoric acid and ammonium fluoride are used. Examples of the cleaning process to be used.
(マイクロバブル)
本発明の処理方法の特徴は、従来のシリコンウェハウェット処理をマイクロバブルの存在下で行うことが特徴である。ここでマイクロバブルとは一般的に、直径がマイクロメータのオーダーである微細な泡を意味し、公知である(例えば上山智嗣、宮本誠著、「マイクロバブルの世界」、工業調査会出版(2006)参照)。特に直径のサイズで10〜数百μmの範囲である。特に、直径60μm以下の気泡は液中での浮上速度が遅く長時間存在する。またこのサイズの気泡では膨張力よりも表面張力のほうが強いため徐々に収縮することが知られており、最終的には液中に溶解してしまうものもある。また、収縮の最終段階では内部が高温高圧になり特殊な化学種が生じたり破裂時に衝撃波が発生したりする可能性も指摘されている。また、本発明は泡のサイズの分布の程度には特に限定されない。ほぼ単一の分布を有する微細な泡、種々のサイズの複数の分布を有する微細な泡をも含む。また処理工程の間に泡のサイズが変動する場合も含む。またマイクロバブル中の気体についても特に限定されない。マイクロバブルの気体は単一の成分でも混合成分の気体でもよい。マイクロバブル発生装置により適宜選択することができる。具体的な気体には、溶液の成分気体、空気、水素、酸素、窒素、二酸化炭素、オゾン、フッ素、塩素、臭素、ヨウ素、アルゴン、ヘリウムが挙げられる。
(Micro bubble)
A feature of the processing method of the present invention is that the conventional silicon wafer wet processing is performed in the presence of microbubbles. Here, the microbubble generally means a fine bubble having a diameter of the order of micrometers, and is well known (for example, Tomoaki Kamiyama and Makoto Miyamoto, “The World of Microbubble”, published by the Industrial Research Society (2006). )reference). In particular, the diameter is in the range of 10 to several hundred μm. In particular, bubbles with a diameter of 60 μm or less exist for a long time with a low floating speed in the liquid. In addition, it is known that bubbles of this size gradually contract because the surface tension is stronger than the expansion force, and some bubbles eventually dissolve in the liquid. In addition, it has been pointed out that at the final stage of shrinkage, the inside becomes high temperature and high pressure, and special chemical species are generated or a shock wave is generated at the time of rupture. Further, the present invention is not particularly limited to the degree of bubble size distribution. Also included are fine bubbles having a substantially single distribution and fine bubbles having a plurality of distributions of various sizes. It also includes the case where the bubble size varies during the processing step. Further, the gas in the microbubbles is not particularly limited. The microbubble gas may be a single component or a mixed component gas. It can be appropriately selected depending on the microbubble generator. Specific gases include component gases of solution, air, hydrogen, oxygen, nitrogen, carbon dioxide, ozone, fluorine, chlorine, bromine, iodine, argon, and helium.
本発明の処理方法で好ましく使用できるマイクロバブルの発生方法、装置についても特に限定はない。上で説明した性質を有するマイクロバブルを発生可能な方法、装置であれば使用可能である。具体的には再公表00−69550に記載された方法及び装置を使用することができる。 There are no particular limitations on the method and apparatus for generating microbubbles that can be preferably used in the treatment method of the present invention. Any method and apparatus capable of generating microbubbles having the above-described properties can be used. Specifically, the method and apparatus described in Republication 00-69550 can be used.
(超音波処理)
本発明の処理方法の特徴は、従来のシリコンウェハウェット処理をマイクロバブルの存在下で行うことであるが、超音波処理を併用することにより好ましい結果が得られる場合もある。ここで超音波処理の方法及び装置については特に制限はなく、従来シリコンウェハのウェット処理に使用可能な方法及び装置を好ましく使用することができる。具体的には、周波数10kHz〜2MHz、出力100〜1000Wのものが挙げられるが特に制限されるものではなく、設置する振動素子の数量も洗浄装置ごと、洗浄処理の目的ごとに選択されれば良い。
(Sonication)
The feature of the treatment method of the present invention is that the conventional silicon wafer wet treatment is performed in the presence of microbubbles, but a preferable result may be obtained by using ultrasonic treatment together. Here, the ultrasonic processing method and apparatus are not particularly limited, and a conventional method and apparatus usable for wet processing of a silicon wafer can be preferably used. Specific examples include a frequency of 10 kHz to 2 MHz and an output of 100 to 1000 W, but there is no particular limitation. The number of vibration elements to be installed may be selected for each cleaning device and each purpose of the cleaning process. .
(処理方法)
本発明の処理方法は、通常公知のシリコンウェハのウェット処理工程において、マイクロバブル存在下であればよい。マイクロバブルの存在態様については制限はなく、ウェット処理工程の溶液にあらかじめマイクロバブルを存在させておく方法、ウェット処理工程中に溶液中にマイクロバブルを連続的(又は断続的に)導入する方法、ウェット処理工程の溶液にあらかじめマイクロバブルを存在させておくとともにウェット処理工程中にも溶液中にマイクロバブルを連続的(又は断続的に)導入する方法、が可能である。また、洗浄槽とは別にマイクロバブル発生槽を設け、マイクロバブル発生槽で作製したマイクロバブルを含有する洗浄液を配管等により洗浄槽に導入することも可能である。
(Processing method)
The treatment method of the present invention may be performed in the presence of microbubbles in a commonly known silicon wafer wet treatment step. There are no restrictions on the presence of microbubbles, a method of pre-existing microbubbles in the solution of the wet treatment step, a method of continuously (or intermittently) introducing microbubbles into the solution during the wet treatment step, A method in which microbubbles are previously present in the solution of the wet treatment step and the microbubbles are continuously (or intermittently) introduced into the solution also during the wet treatment step is possible. Moreover, it is also possible to provide a microbubble generating tank separately from the cleaning tank and introduce a cleaning liquid containing microbubbles produced in the microbubble generating tank into the cleaning tank through a pipe or the like.
また、洗浄方法については、洗浄槽に洗浄対象のシリコンウェハを浸漬する方法だけでなく、マイクロバブルを含む処理液をスプレーやシャワーにより吹き付けて枚葉処理する方法も可能である。 As a cleaning method, not only a method of immersing a silicon wafer to be cleaned in a cleaning tank, but also a method of performing single wafer processing by spraying a processing liquid containing microbubbles by spraying or showering is possible.
また存在するマイクロバブルの種類、量についても特に制限はなく、処理工程の種類により適宜選択して最適化することができる。具体的には、好ましい種類の気体を含むマイクロバブルを、好ましい時間、好ましい量で存在させることが可能である。 There are no particular restrictions on the type and amount of microbubbles present, and the microbubbles can be appropriately selected and optimized depending on the type of processing step. Specifically, microbubbles containing a preferred type of gas can be present in a preferred amount for a preferred time.
また、ウェット処理工程において使用される装置の形状に応じて、マイクロバブルの導入場所を適宜選択することが可能である。装置の形状により、装置内の特定の場所において好ましい種類、量のマイクロバブルが存在するようにすることができる。具体的には、マイクロバブル発生部を装置内の好ましい箇所に、好ましい数設けることが可能である。 In addition, it is possible to appropriately select the introduction location of the microbubbles according to the shape of the apparatus used in the wet treatment process. Depending on the shape of the device, a preferred type and amount of microbubbles can be present at a specific location within the device. Specifically, it is possible to provide a preferred number of microbubble generators at preferred locations in the apparatus.
また本発明の処理方法は、超音波処理を併用することも可能である。超音波処理は従来のウェット処理で使用される態様で好ましく使用可である。例えば超音波発生装置をウェット処理装置の中若しくは外部に設けることができる。また超音波の波長及び出力も適宜選択することができる。ただし、マイクロバブルと超音波処理の併用は、必ずしもプラスの効果を示すとは限らず、洗浄能力を低下させてしまう場合もある。 In addition, the treatment method of the present invention can be used in combination with ultrasonic treatment. The ultrasonic treatment can be preferably used in the mode used in the conventional wet treatment. For example, an ultrasonic generator can be provided inside or outside the wet processing apparatus. The wavelength and output of the ultrasonic wave can also be selected as appropriate. However, the combined use of microbubbles and sonication does not necessarily show a positive effect, and may reduce the cleaning ability.
以下本発明の処理方法を、具体的な実施例に基づいてさらに詳しく説明するが、本発明がこれらの例に限定されるものではない。 Hereinafter, although the processing method of this invention is demonstrated in more detail based on a specific Example, this invention is not limited to these examples.
以下で用いたマイクロバブル装置はナノプラネット研究所社製M2−MS型を使用した。またマイクロバブル発生量及びガスの種類は、マイクロバブル装置に供給する気体の種類及び流量により制御した。また、以下の実施例で発生した気泡のサイズは、90%以上が直径60μm以下であり、直径約30μmに頻度ピークを持つものであった。 The microbubble device used below was M2-MS type manufactured by Nano Planet Research Laboratories. The amount of microbubbles generated and the type of gas were controlled by the type and flow rate of gas supplied to the microbubble device. Moreover, 90% or more of the bubbles generated in the following examples had a diameter of 60 μm or less, and had a frequency peak at a diameter of about 30 μm.
(実施例1)スライス後洗浄
試料:CZ法により製造したシリコンインゴッドを円筒研削して直径200mmにしたものをマルチワイヤーソーを用いてスライスして厚さ約800μmのシリコンウェハを得た。試料表面には汚れとして、シリコンの切り屑(粉)、グリコール、研磨剤(SIC粉末)の混合物がスラリー状で付着していた。
(Example 1) Cleaning after slicing Sample: A silicon wafer having a diameter of 200 mm obtained by cylindrical grinding of a silicon ingot manufactured by the CZ method was sliced using a multi-wire saw to obtain a silicon wafer having a thickness of about 800 μm. A mixture of silicon chips (powder), glycol, and abrasive (SIC powder) was adhered as a slurry on the sample surface.
洗浄薬液:カストロールNo.200(0.1〜1wt%―KOH+界面活性剤(2〜5wt%−ポリオキシエチレンノニルフェニルエーテル)を、超純水にて20倍希釈、および200倍希釈の2水準の濃度で使用した。 Cleaning chemical: Castrol No. 200 (0.1-1 wt% -KOH + surfactant (2-5 wt% -polyoxyethylene nonylphenyl ether)) was used at two levels of concentration: 20-fold diluted with ultrapure water and 200-fold diluted.
洗浄方法:洗浄槽内に薬液を6L入れ、マイクロバブル装置(ナノプラネット研究所製M2−MS/SUS型)のマイクロバブル発生部を洗浄槽の底の位置に1個設け、1L/分マイクロバブルを発生させた。バブル用気体は空気を用いた。 Cleaning method: Put 6 L of chemical in the cleaning tank, and provide one microbubble generating part of the microbubble device (M2-MS / SUS type manufactured by Nano Planet Research Laboratories) at the bottom of the cleaning tank, 1 L / min microbubble Was generated. Air was used as the bubble gas.
ウェハを洗浄槽に導入する前に5分間マイクロバブルを発生させ、洗浄中もマイクロバブルを発生させ続けた。 Microbubbles were generated for 5 minutes before introducing the wafer into the cleaning tank, and the microbubbles continued to be generated during cleaning.
ここへ試料を液温20℃にて1分間浸漬した。後試料を取り出し、超純水槽に入れて液温20℃で1分間リンスした。その後試料をドライエアー吹付けで乾燥した。
薬液槽、薬液組成、薬液量、洗浄時間、リンス時間、乾燥方法等を実施例と同様にし、マイクロバブルを発生させない条件を比較例として実施した。
結果:試料表面の汚れの程度を目視若しくは写真により判断した。結果を表1にまとめた。
The sample was immersed here at a liquid temperature of 20 ° C. for 1 minute. Thereafter, the sample was taken out, placed in an ultrapure water tank, and rinsed at a liquid temperature of 20 ° C. for 1 minute. Thereafter, the sample was dried by spraying with dry air.
The chemical solution tank, the chemical solution composition, the chemical solution amount, the washing time, the rinsing time, the drying method, and the like were the same as in the examples, and the conditions that did not generate microbubbles were carried out as comparative examples.
Result: The degree of contamination on the sample surface was judged visually or by a photograph. The results are summarized in Table 1.
表1から、マイクロバブルの存在により、表面汚れは著しく除去されることが分かる。 From Table 1, it can be seen that surface contamination is remarkably removed by the presence of microbubbles.
(実施例2)APM(アンモニア+過酸化水素)によるパーティクル除去
試料:表面をAPM処理、DHF処理した後スピン乾燥して疎水性表面を有するミラーシリコンウェハ表面に、研磨剤入り溶液(フジミ化学 GLANZOX3900を1000万倍に希釈した液)を10mLスピンコートして研磨剤にて汚染させた。ここでパーティクル汚染量は、0.13μmφ以上のパーティクル数3000〜5000個付着であった。
(Example 2) Particle removal by APM (ammonia + hydrogen peroxide) Sample: APM-treated surface, DHF-treated surface, spin-dried, and a mirror-containing silicon wafer surface having a hydrophobic surface (Fujimi Chemical GLANZOX3900) The solution was diluted 10 million times with 10 mL of spin coating and contaminated with an abrasive. Here, the amount of particle contamination was adhesion of 3000 to 5000 particles having a particle size of 0.13 μmφ or more.
パーティクル数測定:KLA−テンコール社製Surfscan6220を使用した。 Particle number measurement: Surfscan 6220 manufactured by KLA-Tencor Corporation was used.
洗浄液:APM洗浄液(29%アンモニア:31%過酸化水素水:超純水=1:1:5(容量比))。液温60℃。
Cleaning solution: APM cleaning solution (29% ammonia: 31% hydrogen peroxide solution: ultrapure water = 1: 1: 5 (volume ratio)).
洗浄方法:洗浄槽内に薬液を40L入れ、マイクロバブル装置(ナノプラネット研究所製M2−MS/PTFE型)のノズル部を洗浄槽の底の位置に1個設け、1L/分のマイクロバブルを発生させた。バブル用気体は空気を用いた。 Cleaning method: 40L of chemical solution is put in the cleaning tank, one nozzle part of the microbubble device (M2-MS / PTFE type manufactured by Nano Planet Research Laboratories) is provided at the bottom of the cleaning tank, and 1L / min microbubbles are placed. Generated. Air was used as the bubble gas.
ウェハを洗浄槽に導入する前に5分間マイクロバブルを発生させ、洗浄中もマイクロバブルを発生させ続けた。 Microbubbles were generated for 5 minutes before introducing the wafer into the cleaning tank, and the microbubbles continued to be generated during cleaning.
ここへ試料を60℃にて2分間浸漬した。後試料を取り出し、20℃超純水槽に入れて5分間リンスした。その後試料をスピン乾燥した。
薬液槽、薬液組成、薬液量、洗浄時間、リンス時間、乾燥方法等を実施例と同様にし、マイクロバブルを発生させない条件を比較例として実施した。
The sample was immersed here at 60 ° C. for 2 minutes. After that, the sample was taken out, placed in a 20 ° C. ultrapure water tank, and rinsed for 5 minutes. The sample was then spin dried.
The chemical solution tank, the chemical solution composition, the chemical solution amount, the washing time, the rinsing time, the drying method, and the like were the same as in the examples, and the conditions that did not generate microbubbles were carried out as comparative examples.
結果:パーティクル除去率は図1に示した。 Result: The particle removal rate is shown in FIG.
図1からマイクロバブルの存在でパーティクル除去率が著しく改善させることが分かる。 It can be seen from FIG. 1 that the presence of microbubbles significantly improves the particle removal rate.
(実施例3)水素水によるパーティクル除去
試料:表面をAPM処理した後スピン乾燥して親水性表面を有するミラーシリコンウェハ表面に、研磨剤入り溶液(フジミ化学 GLANZOX3900を1000万倍に希釈した液)を10mLスピンコートして研磨剤にて汚染させた。ここでパーティクル汚染量は、0.13μmφ以上のパーティクル数500〜800個付着であった。
パーティクル数測定:KLA−テンコール社製Surfscan6220を使用した。
(Example 3) Particle removal with hydrogen water Sample: APM treatment of the surface followed by spin drying, and a mirror silicon wafer surface having a hydrophilic surface. A solution containing an abrasive (Fujimi Chemical GLANZOX3900 diluted 10 million times) 10 mL was spin-coated and contaminated with an abrasive. Here, the amount of particle contamination was adhesion of 500 to 800 particles having a diameter of 0.13 μmφ or more.
Particle number measurement: Surfscan 6220 manufactured by KLA-Tencor Corporation was used.
洗浄液:溶存水素1〜1.4ppm、アンモニア5ppmを含む水素水洗浄液を用いた。 Cleaning liquid: A hydrogen water cleaning liquid containing 1 to 1.4 ppm of dissolved hydrogen and 5 ppm of ammonia was used.
洗浄方法:40Lの洗浄槽内に薬液を6L/minで導入し続け、オーバーフローさせた。マイクロバブル装置(ナノプラネット研究所製M2−MS/PTFE型)のノズル部を洗浄槽の底の位置に1個設け、1L/分のマイクロバブルを発生させた。バブル用気体は水素を用いた。ウェハを洗浄槽に導入する前に5分間マイクロバブルを発生させ、洗浄中もマイクロバブルを発生させ続けた。また、洗浄の間中周波数1MHz、出力1kWの超音波を照射した。 Cleaning method: The chemical solution was continuously introduced into the 40 L cleaning tank at 6 L / min to overflow. One nozzle part of a microbubble device (M2-MS / PTFE type manufactured by Nano Planet Research Laboratories) was provided at the bottom position of the washing tank to generate 1 L / min microbubbles. Hydrogen was used as the bubble gas. Microbubbles were generated for 5 minutes before introducing the wafer into the cleaning tank, and the microbubbles continued to be generated during cleaning. In addition, ultrasonic waves having a frequency of 1 MHz and an output of 1 kW were applied throughout the cleaning.
ここへ試料を液温20℃にて2分間浸漬した。後試料を取り出し、超純水槽に入れて液温20℃で5分間リンスした。その後試料をスピン乾燥した。
薬液槽、薬液組成、薬液流量、洗浄時間、洗浄時の超音波照射条件、リンス時間、乾燥方法等を実施例と同様にし、マイクロバブルを発生させない条件を比較例として実施した。
結果:パーティクル除去率は図2に示した。
The sample was immersed here at a liquid temperature of 20 ° C. for 2 minutes. Thereafter, the sample was taken out, placed in an ultrapure water tank, and rinsed at a liquid temperature of 20 ° C. for 5 minutes. The sample was then spin dried.
The chemical solution tank, the chemical solution composition, the chemical solution flow rate, the washing time, the ultrasonic irradiation conditions during washing, the rinse time, the drying method, and the like were the same as in the examples, and the conditions that did not generate microbubbles were carried out as comparative examples.
Result: The particle removal rate is shown in FIG.
図2からマイクロバブルの存在でパーティクル除去率が著しく改善させることが分かる。 From FIG. 2, it can be seen that the presence of microbubbles significantly improves the particle removal rate.
(実施例4)ラッピング処理後の残渣の除去
試料:ラッピング処理して調製した直径200mmシリコンウェハを用いた。ラッピング処理後の残渣を除去する能力を評価するために、ラップオイルの成分を混合した液をウェハ表面に約0.1mlずつ数箇所に滴下して乾燥させた。滴下した液は、水100mLに防錆剤(シュレックECO#500)約1mLと分散剤(シュレック#600A−90)約1mLを添加したものに、研磨剤(フジミFO#1200MR)約100gを懸濁させたものである。
(Example 4) Removal of residue after lapping treatment Sample: A 200 mm diameter silicon wafer prepared by lapping treatment was used. In order to evaluate the ability to remove the residue after the lapping treatment, about 0.1 ml of a liquid in which the components of the wrap oil were mixed was dropped on several portions of the wafer surface and dried. The dripped liquid is obtained by suspending about 100 g of an abrasive (Fujimi FO # 1200MR) in 100 mL of water with about 1 mL of a rust inhibitor (Shrek ECO # 500) and about 1 mL of a dispersant (Shrek # 600A-90) added. It has been made.
洗浄薬液:カストロールNo.200(0.1〜1wt%の水酸化カリウム+界面活性剤(2〜5wt%−ポリオキシエチレンノニルフェニルエーテル)を20〜200倍に希釈して使用した。 Cleaning chemical: Castrol No. 200 (0.1-1 wt% potassium hydroxide + surfactant (2-5 wt% -polyoxyethylene nonylphenyl ether)) was diluted 20-200 times and used.
洗浄方法:洗浄槽内に薬液を4L入れ、マイクロバブル装置(ナノプラネット研究所製M2−MS/PTFE型)のノズル部を洗浄槽の底の位置に1個設け、1L/分のマイクロバブルを発生させた。バブル用気体は空気を用いた。ウェハを洗浄槽に導入する前に5分間マイクロバブルを発生させ、洗浄中もマイクロバブルを発生させ続けた。 Cleaning method: 4L of chemical solution is put in the cleaning tank, and one nozzle part of the microbubble device (M2-MS / PTFE type manufactured by Nano Planet Research Laboratories) is installed at the bottom of the cleaning tank, and 1L / min microbubbles are placed. Generated. Air was used as the bubble gas. Microbubbles were generated for 5 minutes before introducing the wafer into the cleaning tank, and the microbubbles continued to be generated during cleaning.
ここへ試料を液温20℃にて5分間浸漬した。後試料を取り出し、20℃超純水槽に入れて10分間リンスした。その後試料にドライエアーを吹き付け乾燥した。
薬液槽、薬液組成、薬液量、洗浄時間、リンス時間、乾燥方法等を実施例と同様にし、マイクロバブルを発生させない条件を比較例として実施した。
結果:ラップオイル残渣の除去を目視、写真により評価した。その結果マイクロバブルの洗浄に対する効果があることが分かった。
The sample was immersed here at a liquid temperature of 20 ° C. for 5 minutes. After the sample was taken out, it was placed in a 20 ° C. ultrapure water bath and rinsed for 10 minutes. Thereafter, the sample was dried by blowing dry air.
The chemical solution tank, the chemical solution composition, the chemical solution amount, the washing time, the rinsing time, the drying method, and the like were the same as in the examples, and the conditions that did not generate microbubbles were carried out as comparative examples.
Result: The removal of the wrapping oil residue was evaluated visually and by a photograph. As a result, it was found that there was an effect on the cleaning of microbubbles.
(実施例5)油性インクの除去
試料:ラッピング処理直後ウェハ、エッチング処理直後ウェハ、ミラーウェハの3種類の直径200mmシリコンウェハを用いた。ウェハ表面に油性インク(青)を塗布して、乾燥させた。
(Example 5) Removal of oil-based ink Sample: Three types of 200 mm diameter silicon wafers were used: wafers immediately after lapping, wafers immediately after etching, and mirror wafers. Oil-based ink (blue) was applied to the wafer surface and dried.
洗浄薬液:カストロールNo.200(0.1〜1wt%―KOH+界面活性剤(2〜5wt%−ポリオキシエチレンノニルフェニルエーテル)を20〜200倍に希釈して使用した。 Cleaning chemical: Castrol No. 200 (0.1-1 wt% -KOH + surfactant (2-5 wt% -polyoxyethylene nonylphenyl ether)) was diluted 20-200 times and used.
洗浄方法:洗浄槽内に薬液を4L入れ、マイクロバブル装置(ナノプラネット研究所製M2−MS/PTFE型)のノズル部を洗浄槽の底の位置に1個設け、1L/分のマイクロバブルを発生させた。バブル用気体は空気を用いた。ウェハを洗浄槽に導入する前に5分間マイクロバブルを発生させ、洗浄中もマイクロバブルを発生させ続けた。 Cleaning method: 4L of chemical solution is put in the cleaning tank, and one nozzle part of the microbubble device (M2-MS / PTFE type manufactured by Nano Planet Research Laboratories) is installed at the bottom of the cleaning tank, and 1L / min microbubbles are placed. Generated. Air was used as the bubble gas. Microbubbles were generated for 5 minutes before introducing the wafer into the cleaning tank, and the microbubbles continued to be generated during cleaning.
ここへ試料を液温20℃にて5分間浸漬した。後試料を取り出し、20℃超純水槽に入れて10分間リンスした。その後試料にドライエアーを吹き付け乾燥した。
薬液槽、薬液組成、薬液量、洗浄時間、リンス時間、乾燥方法等を実施例と同様にし、マイクロバブルを発生させない条件を比較例として実施した。
The sample was immersed here at a liquid temperature of 20 ° C. for 5 minutes. After the sample was taken out, it was placed in a 20 ° C. ultrapure water bath and rinsed for 10 minutes. Thereafter, the sample was dried by blowing dry air.
The chemical solution tank, the chemical solution composition, the chemical solution amount, the washing time, the rinsing time, the drying method, and the like were the same as in the examples, and the conditions that did not generate microbubbles were carried out as comparative examples.
結果:油性インクの除去程度を目視、写真により評価した。その結果を表2に示した。マイクロバブルの洗浄に対する効果があることが分かった。特に、表面状態が平滑なミラーウェハではマイクロバブルなしの条件でも除去可能であったが、表面状態が比較的粗いラッピング処理直後ウェハおよびエッチング処理直後ウェハではマイクロバブルなしでは十分に除去できず、マイクロバブルを使用することによって顕著な洗浄効果が現れることがわかった。 Result: The degree of oil-based ink removal was evaluated visually and by photographs. The results are shown in Table 2. It has been found that it has an effect on the cleaning of microbubbles. In particular, a mirror wafer with a smooth surface state can be removed even under conditions without microbubbles, but a wafer with a relatively rough surface state immediately after lapping processing and a wafer immediately after etching processing cannot be sufficiently removed without microbubbles. It has been found that a significant cleaning effect appears by using bubbles.
表2からマイクロバブルの存在で油性インク除去が著しく改善させることが分かる。
(実施例6)洗浄におけるシリコンウェハエッチング速度
試料:直径200mmシリコンウェハのミラー面に、CVDによりポリシリコン層を厚さ約1μm堆積させて評価用試料を作製した。
Table 2 shows that oil-based ink removal is significantly improved by the presence of microbubbles.
Example 6 Silicon Wafer Etching Rate in Cleaning Sample: An evaluation sample was prepared by depositing a polysilicon layer with a thickness of about 1 μm by CVD on a mirror surface of a 200 mm diameter silicon wafer.
測定:洗浄処理前後のポリシリコン層の厚さをエリプソメーターで測定した。 Measurement: The thickness of the polysilicon layer before and after the cleaning treatment was measured with an ellipsometer.
洗浄液:カストロールNo.200(0.1〜1wt%―KOH+界面活性剤(2〜5wt%−ポリオキシエチレンノニルフェニルエーテル)を20〜200倍に希釈して使用した。 Cleaning fluid: Castrol No. 200 (0.1-1 wt% -KOH + surfactant (2-5 wt% -polyoxyethylene nonylphenyl ether)) was diluted 20-200 times and used.
洗浄方法:洗浄槽内に薬液を80L入れ、マイクロバブル装置(ナノプラネット研究所製M2−MS/PTFE型)のノズル部を洗浄槽の底の位置に1個設け、1L/分のマイクロバブルを発生させた。その中に試料を50℃、12分間浸漬した。また超音波処理を適用した例では、周波数28kHz、出力1kWの条件を使用した。後試料を取り出し、20℃超純水槽に入れて10分間リンスした。その後試料にドライエアーを吹き付け乾燥した。
薬液槽、薬液組成、薬液量、洗浄時間、リンス時間、乾燥方法等を実施例と同様にし、
(1)超音波なし、マイクロバブルなし、
(2)超音波あり、マイクロバブルなし、
(3)超音波なし、マイクロバブルあり、
(4)超音波あり、マイクロバブルあり
の4条件で試験を実施した。
Cleaning method: Put 80 L of chemical in the cleaning tank, and provide one micro bubble device (M2-MS / PTFE type manufactured by Nano Planet Research Laboratories) at the bottom of the cleaning tank. Generated. The sample was immersed in it at 50 ° C. for 12 minutes. In the example in which ultrasonic treatment was applied, the conditions of a frequency of 28 kHz and an output of 1 kW were used. After the sample was taken out, it was placed in a 20 ° C. ultrapure water bath and rinsed for 10 minutes. Thereafter, the sample was dried by blowing dry air.
The chemical tank, chemical composition, chemical amount, cleaning time, rinse time, drying method, etc. are the same as in the examples,
(1) No ultrasound, no microbubbles,
(2) Ultrasound, no microbubbles,
(3) Without ultrasonic waves, with microbubbles,
(4) The test was performed under four conditions with ultrasonic waves and microbubbles.
結果:洗浄処理前後のポリシリコン層の厚さをエリプソメーターで測定してエッチングレートを求めた。結果を図3に示した。 Result: The thickness of the polysilicon layer before and after the cleaning treatment was measured with an ellipsometer to obtain the etching rate. The results are shown in FIG.
図3からマイクロバブルの存在で洗浄処理の際のエッチングレートを向上できることが分かる。これにより、ウェハ表面の各種汚染(パーティクル、イオン、メタル、有機物等)の除去能力向上が期待できる。 From FIG. 3, it can be seen that the presence of microbubbles can improve the etching rate during the cleaning process. As a result, the ability to remove various contaminants (particles, ions, metals, organic substances, etc.) on the wafer surface can be expected.
本発明に係るシリコンウェハのウェット処理方法は、全く新規な方法であって、これまでのシリコンウェハのウェット処理全般に適用することができる処理方法である。特に本発明に係る方法は、スライス後の洗浄処理、APMによるパーティクルの除去洗浄処理、水素水を含有する洗浄液を用いたパーティクル除去洗浄処理、ラッピング処理後の残渣洗浄処理、油性インク除去洗浄処理、又はエッチングを伴う洗浄処理において優れた効果を奏する。 The silicon wafer wet processing method according to the present invention is a completely new method and can be applied to all conventional silicon wafer wet processing. In particular, the method according to the present invention includes a cleaning process after slicing, a particle removing and cleaning process using APM, a particle removing and cleaning process using a cleaning liquid containing hydrogen water, a residue cleaning process after a lapping process, an oily ink removing and cleaning process, Or, it has an excellent effect in a cleaning process involving etching.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241474A JP2008103701A (en) | 2006-09-19 | 2007-09-18 | Wet treatment method of silicon wafer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006253244 | 2006-09-19 | ||
JP2007241474A JP2008103701A (en) | 2006-09-19 | 2007-09-18 | Wet treatment method of silicon wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008103701A true JP2008103701A (en) | 2008-05-01 |
Family
ID=39437757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007241474A Pending JP2008103701A (en) | 2006-09-19 | 2007-09-18 | Wet treatment method of silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008103701A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010103379A (en) * | 2008-10-24 | 2010-05-06 | Shindengen Electric Mfg Co Ltd | Wet etching method and wet etching apparatus |
JP2010135525A (en) * | 2008-12-04 | 2010-06-17 | Siltronic Ag | Method of cleaning semiconductor wafer |
US20100224214A1 (en) * | 2009-03-04 | 2010-09-09 | Ngk Insulators, Ltd. | Ultrasonic cleaning method, and ultrasonic cleaning apparatus |
JP2012089679A (en) * | 2010-10-20 | 2012-05-10 | National Institute Of Advanced Industrial & Technology | Method of cleaning semiconductor wafer |
CN102725824A (en) * | 2009-12-31 | 2012-10-10 | 朗姆研究公司 | Improved ultrasonic cleaning fluid, method and apparatus |
JP2012250299A (en) * | 2011-05-31 | 2012-12-20 | Kyocera Crystal Device Corp | Method for polishing wafer, and nano-bubble circulation type polishing device |
US8408221B2 (en) | 2008-12-25 | 2013-04-02 | Siltronic Ag | Micro bubble generating device and silicon wafer cleaning apparatus |
US8833380B2 (en) | 2009-03-31 | 2014-09-16 | Lam Research Ag | Device for treating disc-like articles |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179765A (en) * | 2004-12-24 | 2006-07-06 | Dainippon Screen Mfg Co Ltd | Substrate processing apparatus and particle removing method |
-
2007
- 2007-09-18 JP JP2007241474A patent/JP2008103701A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179765A (en) * | 2004-12-24 | 2006-07-06 | Dainippon Screen Mfg Co Ltd | Substrate processing apparatus and particle removing method |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010103379A (en) * | 2008-10-24 | 2010-05-06 | Shindengen Electric Mfg Co Ltd | Wet etching method and wet etching apparatus |
JP2010135525A (en) * | 2008-12-04 | 2010-06-17 | Siltronic Ag | Method of cleaning semiconductor wafer |
US10121649B2 (en) | 2008-12-04 | 2018-11-06 | Siltronic Ag | Cleaning method of semiconductor wafer |
TWI409863B (en) * | 2008-12-04 | 2013-09-21 | Siltronic Ag | Cleaning method of semiconductor wafer |
US8408221B2 (en) | 2008-12-25 | 2013-04-02 | Siltronic Ag | Micro bubble generating device and silicon wafer cleaning apparatus |
US8512476B2 (en) * | 2009-03-04 | 2013-08-20 | Ngk Insulators, Ltd. | Ultrasonic cleaning method, and ultrasonic cleaning apparatus |
US20100224214A1 (en) * | 2009-03-04 | 2010-09-09 | Ngk Insulators, Ltd. | Ultrasonic cleaning method, and ultrasonic cleaning apparatus |
US8833380B2 (en) | 2009-03-31 | 2014-09-16 | Lam Research Ag | Device for treating disc-like articles |
CN102725824A (en) * | 2009-12-31 | 2012-10-10 | 朗姆研究公司 | Improved ultrasonic cleaning fluid, method and apparatus |
EP2519966A4 (en) * | 2009-12-31 | 2014-01-22 | Lam Res Ag | Improved ultrasonic cleaning fluid, method and apparatus |
EP2519966A2 (en) * | 2009-12-31 | 2012-11-07 | Lam Research AG | Improved ultrasonic cleaning fluid, method and apparatus |
US9044794B2 (en) | 2009-12-31 | 2015-06-02 | Lam Research Ag | Ultrasonic cleaning fluid, method and apparatus |
CN102725824B (en) * | 2009-12-31 | 2016-01-06 | 朗姆研究公司 | The supersonic cleaning liquid, method and the equipment thereof that improve |
KR101819246B1 (en) * | 2009-12-31 | 2018-01-17 | 램 리서치 아게 | Improved ultrasonic cleaning fluid, method and apparatus |
JP2012089679A (en) * | 2010-10-20 | 2012-05-10 | National Institute Of Advanced Industrial & Technology | Method of cleaning semiconductor wafer |
JP2012250299A (en) * | 2011-05-31 | 2012-12-20 | Kyocera Crystal Device Corp | Method for polishing wafer, and nano-bubble circulation type polishing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008103701A (en) | Wet treatment method of silicon wafer | |
JP2008182188A (en) | Cleaning fluid for electronic material and cleaning method | |
TW409305B (en) | Control of gas content process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates | |
US5954885A (en) | Cleaning method | |
US8043435B2 (en) | Cleaning liquid and cleaning method for electronic material | |
JPH1027771A (en) | Cleaning method and device | |
JP2005244179A (en) | Wet cleaning method of material surface and manufacturing process of electronic, optical or optoelectronic device using the same | |
KR20050061381A (en) | Processing of semiconductor components with dense processing fluids and ultrasonic energy | |
EP0936268B1 (en) | Cleaning solution for electromaterials and method for using the same | |
US20220059343A1 (en) | Apparatus for cleaning semiconductor silicon wafer and method for cleaning semiconductor silicon wafer | |
KR20100138998A (en) | Method for manufacturing a silicon surface with pyramidal structure | |
JP4817887B2 (en) | Semiconductor substrate cleaning method | |
JP4482844B2 (en) | Wafer cleaning method | |
CN113690128A (en) | Method for cleaning indium phosphide wafer | |
US20040266191A1 (en) | Process for the wet-chemical surface treatment of a semiconductor wafer | |
WO2013159943A1 (en) | Method for cleaning photomasks using megasonic energy | |
JP2006188419A (en) | Method for cleaning quartz glass tool or member and ultrasonic cleaning device | |
JPH11162953A (en) | Etching of silicon wafer | |
JP2012009722A (en) | Cleaning method of semiconductor wafer for solar cell substrate | |
KR20090030204A (en) | Process for cleaning a semiconductor wafer | |
JPH07283182A (en) | Cleaning method of semiconductor substrate | |
JP6020626B2 (en) | Device Ge substrate cleaning method, cleaning water supply device and cleaning device | |
KR20090048715A (en) | Cleaning solution for removing impurity and method of removing impurity using the same | |
JP2008166404A (en) | Wash water for hydrophobic silicon wafer, and cleaning method using the same | |
JPH11265870A (en) | Cleaning of electronic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080826 |
|
A621 | Written request for application examination |
Effective date: 20100622 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20100823 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101228 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120312 |
|
A602 | Written permission of extension of time |
Effective date: 20120315 Free format text: JAPANESE INTERMEDIATE CODE: A602 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120626 |