JP2002045806A - Cleaning device - Google Patents
Cleaning deviceInfo
- Publication number
- JP2002045806A JP2002045806A JP2000233298A JP2000233298A JP2002045806A JP 2002045806 A JP2002045806 A JP 2002045806A JP 2000233298 A JP2000233298 A JP 2000233298A JP 2000233298 A JP2000233298 A JP 2000233298A JP 2002045806 A JP2002045806 A JP 2002045806A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- gas
- cleaned
- water
- dissolved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、洗浄装置に関す
る。さらに詳しくは、本発明は、半導体用シリコン基
板、液晶用ガラス基板などの高い清浄度を要求される電
子材料の洗浄に適した洗浄装置に関する。[0001] The present invention relates to a cleaning apparatus. More specifically, the present invention relates to a cleaning apparatus suitable for cleaning electronic materials that require high cleanliness, such as silicon substrates for semiconductors and glass substrates for liquid crystals.
【0002】[0002]
【従来の技術】高度に清浄な表面が要求される電子材料
の洗浄には、従来からRCA洗浄と呼ばれる、高濃度の
薬液を高温で用いる洗浄技術が適用されてきた。また、
高濃度の薬液を用いる洗浄において、紫外線照射を併用
することにより、洗浄効果を高め得ることも知られてお
り、例えば、特開平4−179225号公報には、硫酸
と過酸化水素と水の3:1:1混合液、水酸化アンモニ
ウムと過酸化水素と水の1:1:5混合液などを用い、
低圧水銀ランプによる紫外線照射を行いつつ、レジスト
を塗布した被洗浄物を洗浄する例が報告されている。近
年にいたり、洗浄工程のコスト低減や、環境負荷低減が
求められるようになり、希薄な洗浄液を利用した室温洗
浄技術の実用化が検討されるようになった。このような
状況の中で、本発明者らによって特定の気体を溶解した
超純水を用いる超音波洗浄技術が開発された。とりわけ
水素ガスを高濃度に溶解したいわゆる水素水は、超音波
との併用によって従来の高濃度薬液洗浄をもしのぐ、き
わめて高い微粒子除去効果を発揮することが見いだされ
た。さらに、水素水は基板表面の自然酸化防止にも効果
的であり、被洗浄物がベアシリコン基板の場合には、そ
の最表面の水素終端化を促進する効果もあることが分か
ってきた。洗浄後のリンスに使われる純水又は超純水
に、わずかに数ppmオーダーの水素ガスを溶解させただ
けの水が、なぜこれほどの洗浄効果を発揮するのか、そ
のメカニズムに関して本発明者らは鋭意研究を重ねた。
その結果、微粒子除去や水素終端化の主要因になってい
るものは、超音波照射を受けた水素水中に発生する水素
ラジカルであることが分かった。一方、超音波を洗浄に
適用すると、微細加工を施したパターンを損傷する可能
性があることが指摘されるようになった。このために、
加工微細化が今後一層進む電子産業においては、水素水
による超音波洗浄は、被洗浄物表面によって適用の是非
を見極めることが必要になると考えられる。このため
に、微細加工を施した表面を有する被洗浄物に対して
も、損傷を与えるおそれなく水素水による洗浄を行うこ
とができる洗浄装置が求められるようになった。2. Description of the Related Art Conventionally, a cleaning technique using a high concentration chemical solution at a high temperature, which is called RCA cleaning, has been applied to the cleaning of electronic materials requiring a highly clean surface. Also,
It is also known that the cleaning effect can be enhanced by using ultraviolet irradiation in combination with cleaning using a high concentration chemical solution. For example, Japanese Patent Application Laid-Open No. 4-179225 discloses that sulfuric acid, hydrogen peroxide and water are used. Using a 1: 1 mixed solution, a 1: 1: 5 mixed solution of ammonium hydroxide, hydrogen peroxide and water,
There has been reported an example of cleaning an object to be cleaned coated with a resist while irradiating an ultraviolet ray with a low-pressure mercury lamp. In recent years, there has been a demand for a reduction in the cost of the cleaning process and a reduction in the environmental load, and the practical application of a room temperature cleaning technology using a dilute cleaning solution has been studied. Under such circumstances, the present inventors have developed an ultrasonic cleaning technique using ultrapure water in which a specific gas is dissolved. In particular, it has been found that so-called hydrogen water in which hydrogen gas has been dissolved at a high concentration exhibits an extremely high particulate removal effect when used in combination with ultrasonic waves, surpassing conventional high-concentration chemical solution cleaning. Furthermore, it has been found that hydrogen water is also effective in preventing natural oxidation of the substrate surface, and when the object to be cleaned is a bare silicon substrate, it also has an effect of promoting hydrogen termination on the outermost surface. The present inventors have discussed the mechanism of why only water obtained by dissolving only a few ppm of hydrogen gas in pure water or ultrapure water used for rinsing after cleaning exhibits such a cleaning effect, and the mechanism thereof. Conducted intensive research.
As a result, it was found that the main factor for removing fine particles and terminating hydrogen was hydrogen radicals generated in hydrogen water subjected to ultrasonic irradiation. On the other hand, it has been pointed out that the application of ultrasonic waves to cleaning may damage micropatterned patterns. For this,
In the electronics industry, in which processing miniaturization is further advanced in the future, it is necessary to determine whether ultrasonic cleaning using hydrogen water is appropriate or not depending on the surface to be cleaned. For this reason, there has been a demand for a cleaning apparatus capable of performing cleaning with hydrogen water without fear of damaging an object to be cleaned having a finely processed surface.
【0003】[0003]
【発明が解決しようとする課題】本発明は、半導体用シ
リコン基板、液晶用ガラス基板などの高い清浄度を要求
される電子材料を、表面に損傷を与えるおそれなく洗浄
することができる洗浄装置を提供することを目的として
なされたものである。SUMMARY OF THE INVENTION The present invention provides a cleaning apparatus for cleaning electronic materials requiring high cleanliness, such as silicon substrates for semiconductors and glass substrates for liquid crystals, without fear of damaging the surface. It was made for the purpose of providing.
【0004】[0004]
【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、被洗浄物をガス溶
解水と接触させて洗浄する際に、ガス溶解水に紫外線を
照射することにより、水分子の一部が分解して水素ラジ
カルとヒドロキシルラジカルが生成し、きわめて高い洗
浄効果が発現することを見いだし、この知見に基づいて
本発明を完成するに至った。すなわち、本発明は、
(1)被洗浄物を保持する保持部を有し、被洗浄物をガ
ス溶解水と接触させて洗浄する洗浄装置において、保持
部に近接して紫外線照射装置を有することを特徴とする
洗浄装置、(2)保持部近傍のガス溶解水に振動を付与
する振動付与装置を有する第1項記載の洗浄装置、
(3)ガス溶解水が、水素ガス、酸素ガス又は希ガスを
溶解した純水である第1項又は第2項記載の洗浄装置、
及び、(4)保持部と紫外線照射装置が相対的に可動で
ある第1項、第2項又は第3項記載の洗浄装置、を提供
するものである。さらに、本発明の好ましい態様とし
て、(5)被洗浄物が、板状物である第1項記載の洗浄
装置、(6)板状物が、半導体用シリコン基板、液晶用
ガラス基板又はフォトマスク用石英基板である第5項記
載の洗浄装置、(7)保持部に保持された被洗浄物の表
面と、紫外線照射装置の紫外線照射管の距離が、10mm
以下である第1項記載の洗浄装置、(8)ガス溶解水
が、飽和溶解度の30%以上のガスを溶解した純水であ
る第1項記載の洗浄装置、(9)紫外線照射装置が発す
る紫外線の波長が、100〜280nmである第1項記
載の洗浄装置、及び、(10)振動付与装置が、超音波照
射装置である第2項記載の洗浄装置、を挙げることがで
きる。Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that when cleaning an object to be cleaned by contacting the same with gas-dissolved water, ultraviolet light is applied to the gas-dissolved water. It has been found that by irradiation, a part of water molecules is decomposed to generate hydrogen radicals and hydroxyl radicals, and an extremely high cleaning effect is exhibited. Based on this finding, the present invention has been completed. That is, the present invention
(1) A cleaning apparatus having a holding unit for holding an object to be cleaned and cleaning the object to be cleaned by contacting the object with gas-dissolved water, comprising an ultraviolet irradiation device close to the holding unit. (2) The cleaning device according to (1), further including a vibration imparting device that imparts vibration to the gas-dissolved water in the vicinity of the holding unit.
(3) The cleaning device according to (1) or (2), wherein the gas-dissolved water is pure water in which hydrogen gas, oxygen gas, or a rare gas is dissolved.
(4) The cleaning device according to the above (1), (2) or (3), wherein the holding unit and the ultraviolet irradiation device are relatively movable. Further, as a preferred embodiment of the present invention, (5) the cleaning apparatus according to item 1, wherein the object to be cleaned is a plate-like object, and (6) the plate-like object is a silicon substrate for semiconductor, a glass substrate for liquid crystal, or a photomask. (7) The distance between the surface of the object to be cleaned held by the holding portion and the ultraviolet irradiation tube of the ultraviolet irradiation device is 10 mm.
The cleaning device according to item 1, wherein the (8) gas-dissolved water is pure water in which a gas having a saturation solubility of 30% or more is dissolved, and (9) the ultraviolet irradiation device emits. The cleaning device according to item 1, wherein the ultraviolet light has a wavelength of 100 to 280 nm, and (10) the cleaning device according to item 2, wherein the vibration imparting device is an ultrasonic irradiation device.
【0005】[0005]
【発明の実施の形態】本発明の洗浄装置は、被洗浄物を
保持する保持部を有し、被洗浄物をガス溶解水と接触さ
せて洗浄する洗浄装置において、保持部に近接して紫外
線照射装置を有する洗浄装置である。本発明の洗浄装置
は、高い清浄度が要求される板状物の洗浄に好適に適用
することができ、特に、半導体用シリコン基板、液晶用
ガラス基板、フォトマスク用石英基板などの洗浄に適し
ている。本発明装置に用いる被洗浄物を保持する保持部
に特に制限はなく、例えば、枚葉式スピン洗浄装置のチ
ャック、回分式洗浄槽の固定具などを挙げることができ
る。本発明装置に用いるガス溶解水に特に制限はない
が、水素ガス、酸素ガス又はヘリウム、ネオン、アルゴ
ン、クリプトン、キセノンなどの希ガスを溶解した純水
を好適に用いることができる。本発明装置においては、
これらのガスの1種を溶解したガス溶解水を用いること
ができ、あるいは、これらのガスの2種以上を組み合わ
せて溶解したガス溶解水を用いることもできる。水素ガ
ス、酸素ガス又は希ガスを溶解したガス溶解水を用いて
洗浄することにより、被洗浄物の表面に付着した微粒子
を効果的に除去することができる。本発明装置に用いる
ガス溶解水の溶存ガス濃度に特に制限はないが、それぞ
れのガスの飽和溶解度の30%以上の濃度であることが
好ましい。例えば、20℃において、水への飽和溶解度
は、水素ガス1.63mg/L、酸素ガス44.0mg/L、
アルゴン60.8mg/Lなので、飽和溶解度の30%
は、水素ガス0.49mg/L、酸素ガス13.2mg/L、
アルゴン18.2mg/Lとなる。ガス溶解水の溶存ガス
濃度が飽和溶解度の30%未満であると、洗浄効果が不
十分となるおそれがある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cleaning apparatus according to the present invention has a holding section for holding an object to be cleaned, and in a cleaning apparatus for cleaning the object to be cleaned by bringing the object into contact with gas-dissolved water. This is a cleaning device having an irradiation device. INDUSTRIAL APPLICABILITY The cleaning apparatus of the present invention can be suitably applied to cleaning of a plate-like object requiring high cleanliness, and is particularly suitable for cleaning a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, a quartz substrate for a photomask, and the like. ing. There is no particular limitation on the holding unit that holds the object to be cleaned used in the apparatus of the present invention, and examples thereof include a chuck of a single-wafer spin cleaning apparatus and a fixture of a batch cleaning tank. The gas-dissolved water used in the apparatus of the present invention is not particularly limited, but pure water in which hydrogen gas, oxygen gas, or a rare gas such as helium, neon, argon, krypton, or xenon is dissolved can be suitably used. In the device of the present invention,
Gas-dissolved water in which one of these gases is dissolved can be used, or gas-dissolved water in which two or more of these gases are dissolved can be used. By cleaning using hydrogen gas, oxygen gas or gas-dissolved water in which a rare gas is dissolved, fine particles adhering to the surface of the object to be cleaned can be effectively removed. The concentration of the dissolved gas in the gas-dissolved water used in the apparatus of the present invention is not particularly limited, but is preferably 30% or more of the saturation solubility of each gas. For example, at 20 ° C., the saturated solubility in water is 1.63 mg / L of hydrogen gas, 44.0 mg / L of oxygen gas,
30% of saturated solubility because argon is 60.8mg / L
Is 0.49 mg / L of hydrogen gas, 13.2 mg / L of oxygen gas,
It becomes 18.2 mg / L of argon. If the dissolved gas concentration of the gas-dissolved water is less than 30% of the saturation solubility, the cleaning effect may be insufficient.
【0006】本発明装置に用いるガス溶解水は、溶存ガ
スの濃度を高めるほど洗浄効果が大きくなるが、飽和濃
度を超えると気泡が発生し、被洗浄物表面に付着して洗
浄むらを起こすおそれがある。そのために、ガス溶解水
の溶存ガス濃度は、飽和濃度を超えないことが好まし
い。加圧可能な密閉容器を洗浄部として使用する場合に
は、その容器内圧力での飽和濃度以下になるようなガス
溶解水を用いることができる。洗浄に用いるガス溶解水
の温度に特に制限はないが、一般に高温であるほど洗浄
効果が大きくなる。本発明装置に用いるガス溶解水に
は、必要に応じて洗浄効果を高めるための補助物質を微
量添加することができる。洗浄効果を高める補助物質と
しては、例えば、アルカリ性試薬、界面活性剤などを挙
げることができる。これらの補助物質を添加することに
より、被洗浄物から脱離した異物の再付着を防止するゼ
ータ電位制御効果が発現する。本発明装置において、被
洗浄物をガス溶解水と接触させる方法に特に制限はな
く、例えば、枚葉式スピン洗浄装置を用いて、ノズルよ
りガス溶解水を被洗浄物に噴射して接触させることがで
き、あるいは、回分式洗浄槽を用いて、ガス溶解水中に
被洗浄物を浸漬して接触させることもできる。本発明の
洗浄装置は、被洗浄物を保持する保持部に近接して、紫
外線照射装置を有する。本発明装置に用いる紫外線照射
装置に特に制限はなく、例えば、水素放電管、キセノン
放電管、水銀ランプ、レーザーなどを備えた装置を挙げ
ることができる。保持部に近接して紫外線照射装置を設
け、洗浄中のガス溶解水に紫外線を照射することによ
り、洗浄効果を高めることができる。[0006] The gas-dissolved water used in the apparatus of the present invention has a greater cleaning effect as the concentration of the dissolved gas is increased. However, if the concentration exceeds the saturation concentration, bubbles may be generated and adhere to the surface of the object to be cleaned, causing uneven cleaning. There is. Therefore, it is preferable that the dissolved gas concentration of the gas-dissolved water does not exceed the saturated concentration. When a pressurized airtight container is used as the washing unit, gas-dissolved water having a saturation concentration or less at the pressure in the container can be used. The temperature of the gas-dissolved water used for cleaning is not particularly limited, but generally, the higher the temperature, the greater the cleaning effect. A small amount of an auxiliary substance for improving the cleaning effect can be added to the gas-dissolved water used in the apparatus of the present invention, if necessary. Examples of the auxiliary substance that enhances the cleaning effect include an alkaline reagent and a surfactant. By adding these auxiliary substances, a zeta potential control effect of preventing reattachment of foreign substances detached from the object to be cleaned is exhibited. In the apparatus of the present invention, there is no particular limitation on the method of bringing the object to be cleaned into contact with the gas-dissolved water. Alternatively, an object to be cleaned can be immersed in gas-dissolved water and brought into contact with the solution using a batch-type cleaning tank. The cleaning device of the present invention has an ultraviolet irradiation device near the holding unit that holds the object to be cleaned. The ultraviolet irradiation apparatus used in the apparatus of the present invention is not particularly limited, and examples thereof include an apparatus equipped with a hydrogen discharge tube, a xenon discharge tube, a mercury lamp, a laser, and the like. By providing an ultraviolet irradiation device near the holding unit and irradiating the gas-dissolved water under cleaning with ultraviolet light, the cleaning effect can be enhanced.
【0007】すでに提案された水素水洗浄では、メガソ
ニックなどの超音波が適用されている。これは、もとも
と超音波由来の物理的効果による微粒子の脱離促進が期
待されたからである。確かに超音波がもたらすマイクロ
キャビテーションに起因するマイクロバブルの発生、成
長や、加速度の大きな振動などの物理力は、被洗浄物表
面からの異物の剥離に効果を発揮する。しかし、水素水
が普通の超純水と決定的に異なる点は、効果的に水素ラ
ジカルを発生させ、それが被洗浄物や異物の表面と化学
反応を起こすことであり、それによって、きわめて高い
洗浄効果が発現する。水素水でなくても、超音波を照射
した水中には水素ラジカルが発生するが、水素水が特に
効果的なのは、超音波の作用によって水分子の一部が分
解して生成する水素ラジカル(・H)とヒドロキシルラ
ジカル(・OH)のうち、ヒドロキシルラジカルの一部
が溶存水素ガスと反応して水になるために、水素ラジカ
ルが相対的に過剰となった状態になるためと考えられ
る。しかし、洗浄水に強い超音波を照射すると、水中に
キャビテーションが発生し、被洗浄物の表面に損傷を生
ずるおそれがある。被洗浄物が、表面に微細なパターン
加工を行った半導体用シリコン基板などである場合に
は、キャビテーションによる損傷の発生が特に大きい問
題となる。[0007] In the proposed hydrogen water cleaning, ultrasonic waves such as megasonics are applied. This is because the promotion of the desorption of the fine particles by the physical effect derived from the ultrasonic wave was originally expected. Certainly, physical force such as generation and growth of microbubbles due to microcavitation caused by ultrasonic waves and vibration with large acceleration exerts an effect on separation of foreign matter from the surface of the object to be cleaned. However, the decisive difference of hydrogen water from ordinary ultrapure water is that it effectively generates hydrogen radicals, which cause a chemical reaction with the surface of the object to be cleaned or foreign matter, thereby making it extremely expensive. A cleaning effect is exhibited. Hydrogen radicals are generated in water irradiated with ultrasonic waves even if they are not hydrogen water. Hydrogen water is particularly effective because hydrogen radicals generated by the decomposition of some water molecules by the action of ultrasonic waves (・It is considered that, among H) and the hydroxyl radical (.OH), a part of the hydroxyl radical reacts with the dissolved hydrogen gas to become water, so that the hydrogen radical becomes relatively excessive. However, when the cleaning water is irradiated with strong ultrasonic waves, cavitation occurs in the water, and the surface of the object to be cleaned may be damaged. When the object to be cleaned is a silicon substrate for a semiconductor whose surface has been subjected to fine pattern processing, damage due to cavitation is a particularly large problem.
【0008】本発明装置によれば、被洗浄物をガス溶解
水と接触させて洗浄する際に、紫外線照射装置を用いて
ガス溶解水に紫外線を照射することにより、紫外線エネ
ルギーにより水分子が励起されて水素ラジカルとヒドロ
キシルラジカルに分解し、超音波を照射した場合と同様
に優れた洗浄効果が得られるものと考えられる。しか
も、紫外線照射による場合は、超音波のような物理的な
力が作用しないのでキャビテーションが発生せず、被洗
浄物の表面に損傷を生ずるおそれがない。本発明装置に
おいては、保持部に保持された被洗浄物の表面と、紫外
線照射装置の紫外線照射管の距離が10mm以下であるこ
とが好ましく、2mm以下であることがより好ましい。被
洗浄物の表面と紫外線照射管の距離が10mmを超える
と、ガス溶解水に伝達される紫外線エネルギーが不足し
て、洗浄効果が不十分となるおそれがある。本発明装置
において、紫外線照射装置が発する紫外線の波長に特に
制限はないが、100〜280nmであることが好まし
い。波長100nm未満の極端紫外線は、光源、透過
窓、反射鏡などに特殊な材料を用いた紫外線照射装置が
必要となり、経済性が損なわれるおそれがある。紫外線
の波長が280nmを超えると、紫外線エネルギーが不
足して洗浄効果が不十分となるおそれがある。According to the apparatus of the present invention, when the object to be cleaned is washed by bringing it into contact with the gas-dissolved water, water molecules are excited by ultraviolet energy by irradiating the gas-dissolved water with ultraviolet rays using an ultraviolet irradiation device. It is considered that they are decomposed into hydrogen radicals and hydroxyl radicals, and an excellent cleaning effect can be obtained as in the case of irradiating ultrasonic waves. In addition, in the case of ultraviolet irradiation, since no physical force such as an ultrasonic wave acts, cavitation does not occur and there is no possibility that the surface of the object to be cleaned is damaged. In the apparatus of the present invention, the distance between the surface of the object to be cleaned held by the holding portion and the ultraviolet irradiation tube of the ultraviolet irradiation device is preferably 10 mm or less, more preferably 2 mm or less. If the distance between the surface of the object to be cleaned and the ultraviolet irradiation tube exceeds 10 mm, the ultraviolet energy transmitted to the gas-dissolved water will be insufficient, and the cleaning effect may be insufficient. In the apparatus of the present invention, the wavelength of the ultraviolet light emitted from the ultraviolet irradiation device is not particularly limited, but is preferably 100 to 280 nm. Extreme ultraviolet light having a wavelength of less than 100 nm requires an ultraviolet irradiation device using a special material for a light source, a transmission window, a reflecting mirror, and the like, and may possibly reduce economic efficiency. When the wavelength of the ultraviolet ray exceeds 280 nm, the ultraviolet ray energy may be insufficient and the cleaning effect may be insufficient.
【0009】本発明装置においては、保持部近傍のガス
溶解水に振動を付与する振動付与装置を設けることが好
ましい。設置する振動付与装置に特に制限はなく、例え
ば、超音波照射装置、ジェット流体用ノズルなどを挙げ
ることができる。超音波照射装置は、例えば、枚葉式ス
ピン洗浄装置のノズルとして、メガソニック照射ノズル
を用いてガス溶解水に超音波を照射することができ、あ
るいは、回分式洗浄槽に超音波を照射することもでき
る。照射する超音波の周波数に特に制限はないが、20
kHz以上であることが好ましく、400kHz以上であるこ
とがより好ましく、0.8MHz以上であることがさらに好
ましい。ただし、微細加工表面にも損傷を与えないよう
に、超音波の出力を通常の超音波洗浄の場合より抑えて
使うことが望ましい。ジェット流体用ノズルてしては、
例えば、枚葉式スピン洗浄装置のノズルとして、高圧で
送られるガス溶解水と高圧で送られる気体を、ノズル中
で混合するバブルジェット流体用ノズルや、高圧のガス
溶解水をノズル中央の小面積の開口部より噴射し、低圧
のガス溶解水をノズル周辺の大面積の開口部より噴射す
るキャビテーションジェット流体用ノズルなどを用いる
ことができる。超音波の出力とジェット流体の強さは、
被洗浄物の表面に損傷を与えない範囲で適宜選択するこ
とができる。本発明の洗浄装置においては、保持部と紫
外線照射装置が相対的に可動であることが好ましい。保
持部と紫外線照射装置を相対的に可動にする方法に特に
制限はなく、例えば、固定された紫外線照射装置に対し
て、被洗浄物を保持する保持具を可動とすることがで
き、被洗浄物を保持する保持具を固定して、紫外線照射
装置を可動とすることもでき、あるいは、被洗浄物を保
持する保持具と紫外線照射装置の両者を可動とすること
もできる。保持部と紫外線照射装置を相対的に可動とす
ることにより、被洗浄物の表面全体にほぼ均一に紫外線
を照射することができ、あるいは、特に洗浄を必要とす
る部分に重点的に紫外線を照射することもできる。In the apparatus of the present invention, it is preferable to provide a vibration applying device for applying vibration to the gas-dissolved water near the holding section. The vibration imparting device to be installed is not particularly limited, and examples thereof include an ultrasonic irradiation device and a jet fluid nozzle. The ultrasonic irradiation apparatus can irradiate ultrasonic waves to gas-dissolved water using a megasonic irradiation nozzle, for example, as a nozzle of a single-wafer spin cleaning apparatus, or irradiate ultrasonic waves to a batch-type cleaning tank. You can also. There is no particular limitation on the frequency of the ultrasonic waves to be irradiated,
kHz or higher, preferably 400 kHz or higher, and more preferably 0.8 MHz or higher. However, it is desirable that the ultrasonic output be used at a lower level than in the case of ordinary ultrasonic cleaning so as not to damage the micromachined surface. As a jet fluid nozzle,
For example, as a nozzle of a single wafer spin cleaning apparatus, a nozzle for a bubble jet fluid in which gas-dissolved water sent at a high pressure and a gas sent at a high pressure are mixed in the nozzle, or a high-pressure gas-dissolved water with a small area at the center of the nozzle And a nozzle for cavitation jet fluid that jets low-pressure gas-dissolved water from a large-area opening around the nozzle. The output of ultrasonic waves and the strength of the jet fluid
It can be appropriately selected within a range that does not damage the surface of the object to be cleaned. In the cleaning device of the present invention, it is preferable that the holding unit and the ultraviolet irradiation device are relatively movable. There is no particular limitation on the method of making the holding unit and the ultraviolet irradiation device relatively movable. For example, the holder for holding the object to be cleaned can be made movable with respect to the fixed ultraviolet irradiation device, The holder for holding the object may be fixed and the ultraviolet irradiation device may be movable, or both the holder for holding the object to be cleaned and the ultraviolet irradiation device may be movable. By making the holding unit and the ultraviolet irradiation device relatively movable, the entire surface of the object to be cleaned can be almost uniformly irradiated with the ultraviolet light, or the ultraviolet light is focused particularly on a portion requiring cleaning. You can also.
【0010】図1(a)は、本発明の洗浄装置の一態様の
平面図であり、図1(b)は、その側面図であり、図1
(c)は、紫外線照射管の他の態様の平面図である。本態
様の装置においては、半導体用シリコン基板1が3個の
チャック2によって保持されている。紫外線照射管3を
半導体用シリコン基板に近づけて固定し、半導体用シリ
コン基板を回転させるとともに、ガス溶解水ノズル4か
らガス溶解水5を半導体用シリコン基板上に噴射する。
半導体用シリコン基板の回転とガス溶解水の噴射を所定
の時間継続して洗浄したのち、ガス溶解水の噴射を止
め、紫外線照射管を離し、半導体用シリコン基板の回転
速度を上げて、スピン乾燥することができる。紫外線照
射管の形状に特に制限はなく、図1(a)に示す棒状の形
状のほかに、図1(c)に示す屈曲した形状などとするこ
ともできる。図2(a)は、本発明の洗浄装置の他の態様
の平面図であり、図2(b)は、その断面図である。本態
様の装置においては、半導体用シリコン基板1が洗浄槽
6中に設けられた保持台7により保持され、ガス溶解水
5中に浸漬されている。紫外線照射管3が、図1(a)の
実線で示された位置と点線で示された位置の間をスイン
グし、半導体用シリコン基板の表面上のガス溶解水に紫
外線を照射する。ガス溶解水中に所定の時間浸漬し、洗
浄が終了した半導体用シリコン基板は、洗浄槽から取り
出されて乾燥される。本発明の洗浄装置においては、被
洗浄物の表面から脱離した異物が被洗浄物に再付着しな
いように、ガス溶解水に適当な流れがあることが好まし
い。図1に示す態様においては、ノズルから噴射される
ガス溶解水が、被洗浄物の表面に接触したのち一過式に
系外に排出される。また、図2示す態様においては、ガ
ス溶解水は流入口8から洗浄槽内に流入し、溢流口9か
ら流出する。本発明の洗浄装置を用いることにより、従
来の超音波を用いるメガソニック洗浄に匹敵する高い微
粒子除去効果が得られ、しかも、超音波を用いない洗浄
と同様に被洗浄物の表面の損傷を防ぐことができる。FIG. 1A is a plan view of one embodiment of the cleaning apparatus of the present invention, and FIG. 1B is a side view thereof.
(c) is a plan view of another embodiment of the ultraviolet irradiation tube. In the apparatus of the present embodiment, the semiconductor silicon substrate 1 is held by three chucks 2. The ultraviolet irradiation tube 3 is fixed close to the semiconductor silicon substrate, the semiconductor silicon substrate is rotated, and gas-dissolved water 5 is jetted from the gas-dissolved water nozzle 4 onto the semiconductor silicon substrate.
After continuously cleaning the rotation of the semiconductor silicon substrate and the injection of the gas-dissolved water for a predetermined time, stop the injection of the gas-dissolved water, release the ultraviolet irradiation tube, increase the rotation speed of the silicon substrate for the semiconductor, and spin dry. can do. There is no particular limitation on the shape of the ultraviolet irradiation tube, and in addition to the rod shape shown in FIG. 1A, a bent shape shown in FIG. FIG. 2A is a plan view of another embodiment of the cleaning apparatus of the present invention, and FIG. 2B is a sectional view thereof. In the apparatus of this embodiment, the semiconductor silicon substrate 1 is held by a holding table 7 provided in a cleaning tank 6 and immersed in gas-dissolved water 5. The ultraviolet irradiation tube 3 swings between the position shown by the solid line and the position shown by the dotted line in FIG. 1A, and irradiates the gas-dissolved water on the surface of the silicon substrate for semiconductor with ultraviolet light. The silicon substrate for semiconductor which has been immersed in the gas-dissolved water for a predetermined time and cleaned has been taken out of the cleaning tank and dried. In the cleaning apparatus of the present invention, it is preferable that the gas-dissolved water has an appropriate flow so that foreign substances detached from the surface of the object to be cleaned do not adhere to the object to be cleaned again. In the embodiment shown in FIG. 1, gas-dissolved water injected from a nozzle comes into contact with the surface of an object to be cleaned and is then discharged out of the system in a transient manner. In the embodiment shown in FIG. 2, the gas-dissolved water flows into the cleaning tank from the inflow port 8 and flows out from the overflow port 9. By using the cleaning apparatus of the present invention, it is possible to obtain a high particulate removal effect comparable to conventional megasonic cleaning using ultrasonic waves, and to prevent damage to the surface of the object to be cleaned as in the case of cleaning without ultrasonic waves. be able to.
【0011】[0011]
【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例及び比較例におい
ては、平均粒径0.3μmのアルミナ研磨剤微粒子で強
制的に汚染した6インチのシリコンウェハ及び最小線幅
0.25μmのパターンをつけた6インチのシリコンウ
ェハを被洗浄物として用いた。汚染ウェハの初期汚染状
態は、粒径0.2μm以上の微粒子が5,000〜7,0
00個/ウェハであった。微粒子数は、レーザー散乱異
物検査装置[トプコン(株)、WM−1500]を用いて
測定した。ウェハの洗浄には、スピン洗浄機を用い、ウ
ェハを500rpmで回転し、水素ガス1.2mg/Lを溶解
した水素水を1.5L/分ノズルより噴射し、ノズルを
ウェハ中心とエッジの間を10秒周期でスイングさせな
がら、30秒間洗浄した。超音波を照射する場合は、メ
ガソニックノズルを用い、周波数1.0MHzの超音波を照
射した。洗浄工程終了後、ウェハの回転速度を1,50
0rpmに上げて、20秒間乾燥した。洗浄、乾燥後のウ
ェハ表面の微粒子数と、洗浄前のウェハ表面の微粒子か
ら、微粒子除去率を計算した。また、パターンをつけた
ウェハについて、走査型電子顕微鏡を用いて、パターン
損傷の有無を観察した。 比較例1 水素水を通常のノズルを通してそのまま使用する単純な
スピン洗浄を行った。微粒子除去率は、20%であっ
た。パターンの損傷は、認められなかった。 比較例2 メガソニックノズルを用い、出力15W/cm2の超音波
を照射しつつ水素水をウェハに注ぐメガソニック併用ス
ピン洗浄を行った。微粒子除去率は、99%であった。
また、わずかながらパターン倒れを起こしていた。 比較例3 超音波の出力を5W/cm2に下げた以外は、比較例2と
同様にして、メガソニック併用スピン洗浄を行った。微
粒子除去率は、35%であった。パターンの損傷は、認
められなかった。 実施例1 中心波長185nmの紫外線照射管(長さ150mm)を
比較例1で用いた通常のノズルに固定して、ノズルと一
緒にウェハ上をスイングさせながら、スピン洗浄を行っ
た。紫外線照射管とウェハの間隔は、2mmに調整した。
微粒子除去率は、96%であった。パターンの損傷は、
認められなかった。 実施例2 実施例1と同じ紫外線照射管を、比較例2で用いたメガ
ソニックノズルに固定して、出力5W/cm2の超音波を
照射しつつ水素水をウェハに注ぐメガソニック併用スピ
ン洗浄を行った。微粒子除去率は、99%であった。パ
ターンの損傷は、認められなかった。比較例1〜3及び
実施例1〜2の結果を、第1表に示す。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In Examples and Comparative Examples, a 6-inch silicon wafer forcibly contaminated with alumina abrasive particles having an average particle diameter of 0.3 μm and a 6-inch silicon wafer with a pattern having a minimum line width of 0.25 μm were used. It was used as an object to be cleaned. The initial contamination state of the contaminated wafer is as follows: fine particles having a particle size of 0.2 μm or more
00 / wafer. The number of fine particles was measured using a laser scattering foreign matter inspection apparatus [Topcon Corporation, WM-1500]. To wash the wafer, spin the wafer at 500 rpm using a spin washer, and spray hydrogen gas containing 1.2 mg / L of hydrogen gas from the nozzle at 1.5 L / min. Was washed for 30 seconds while swinging at a cycle of 10 seconds. When irradiating ultrasonic waves, ultrasonic waves having a frequency of 1.0 MHz were irradiated using a megasonic nozzle. After the completion of the cleaning process, the rotation speed of the wafer is set to 1,50.
Increased to 0 rpm and dried for 20 seconds. The fine particle removal rate was calculated from the number of fine particles on the wafer surface after cleaning and drying and the fine particles on the wafer surface before cleaning. In addition, the presence or absence of pattern damage was observed on the patterned wafer using a scanning electron microscope. Comparative Example 1 A simple spin cleaning using hydrogen water as it is through a normal nozzle was performed. The fine particle removal rate was 20%. No pattern damage was observed. Comparative Example 2 Using a megasonic nozzle, spin cleaning with megasonic was performed, in which hydrogen water was poured onto the wafer while irradiating ultrasonic waves with an output of 15 W / cm 2 . The fine particle removal rate was 99%.
Also, the pattern collapsed slightly. Comparative Example 3 Megasonic spin cleaning was performed in the same manner as in Comparative Example 2 except that the output of the ultrasonic wave was reduced to 5 W / cm 2 . The fine particle removal rate was 35%. No pattern damage was observed. Example 1 An ultraviolet irradiation tube (150 mm in length) having a center wavelength of 185 nm was fixed to the ordinary nozzle used in Comparative Example 1, and spin cleaning was performed while swinging on the wafer together with the nozzle. The distance between the ultraviolet irradiation tube and the wafer was adjusted to 2 mm.
The fine particle removal rate was 96%. Pattern damage
I was not able to admit. Example 2 The same ultraviolet irradiating tube as in Example 1 was fixed to the megasonic nozzle used in Comparative Example 2, and the megasonic combined spin cleaning in which hydrogen water was poured onto the wafer while irradiating ultrasonic waves with an output of 5 W / cm 2 was used. Was done. The fine particle removal rate was 99%. No pattern damage was observed. Table 1 shows the results of Comparative Examples 1 to 3 and Examples 1 and 2.
【0012】[0012]
【表1】 [Table 1]
【0013】第1表に見られるように、水素水を用いて
スピン洗浄を行った比較例1では、微粒子除去率が低
い。比較例2のように、強い超音波を照射すると微粒子
除去率は向上するが、わずかながらパターン倒れを生じ
てウェハ表面が損傷する。比較例3のように超音波を弱
めると、ウェハ表面の損傷はなくなるが、微粒子除去率
が低下する。これに対して、本発明装置を用い、紫外線
を照射しながら水素水を用いてスピン洗浄を行った実施
例1では、微粒子除去率が高く、ウェハ表面の損傷も生
じていない。さらに、弱い超音波の照射を併用し、紫外
線を照射しながら水素水を用いてスピン洗浄を行った実
施例2では、ウェハ表面の損傷はなく、微粒子除去率が
さらに向上している。これらの結果から、紫外線を照射
しつつ水素水洗浄すると、超音波を照射しつつ水素水洗
浄する場合とほぼ同等の微粒子除去効果が得られ、しか
もウェハ表面に損傷を生じないことが分かる。As shown in Table 1, in Comparative Example 1 in which spin cleaning was performed using hydrogen water, the fine particle removal rate was low. Irradiation with strong ultrasonic waves improves the particle removal rate as in Comparative Example 2, but slightly collapses the pattern and damages the wafer surface. When the ultrasonic waves are weakened as in Comparative Example 3, the damage on the wafer surface is eliminated, but the particle removal rate decreases. On the other hand, in Example 1 in which spin cleaning was performed using hydrogen water while irradiating ultraviolet rays using the apparatus of the present invention, the fine particle removal rate was high, and the wafer surface was not damaged. Further, in Example 2, in which spin cleaning was performed using hydrogen water while irradiating ultraviolet rays while using weak ultrasonic irradiation, the wafer surface was not damaged, and the fine particle removal rate was further improved. From these results, it can be seen that cleaning with hydrogen water while irradiating with ultraviolet rays can obtain almost the same effect of removing fine particles as cleaning with hydrogen water while irradiating ultrasonic waves, and does not cause damage to the wafer surface.
【0014】[0014]
【発明の効果】本発明の洗浄装置を用いることにより、
従来のメガソニック洗浄に匹敵する高い微粒子除去効果
と、メガソニックを使わない洗浄と同様の被洗浄物表面
保護を両立することができる。By using the cleaning device of the present invention,
It is possible to achieve both a high particulate removal effect comparable to conventional megasonic cleaning and the same protection of the surface of the object to be cleaned as in cleaning without using megasonic.
【図1】図1は、本発明の洗浄装置の一態様の平面図、
側面図及び紫外線照射管の他の態様の平面図である。FIG. 1 is a plan view of one embodiment of a cleaning device of the present invention;
It is a side view and a top view of other modes of an ultraviolet irradiation tube.
【図2】図2は、本発明の洗浄装置の他の態様の平面図
及び断面図である。FIG. 2 is a plan view and a cross-sectional view of another embodiment of the cleaning device of the present invention.
1 半導体用シリコン基板 2 チャック 3 紫外線照射管 4 ガス溶解水ノズル 5 ガス溶解水 6 洗浄槽 7 保持台 8 流入口 9 溢流口 DESCRIPTION OF SYMBOLS 1 Silicon substrate for semiconductors 2 Chuck 3 Ultraviolet irradiation tube 4 Gas dissolved water nozzle 5 Gas dissolved water 6 Cleaning tank 7 Holder 8 Inlet 9 Overflow port
Claims (4)
物をガス溶解水と接触させて洗浄する洗浄装置におい
て、保持部に近接して紫外線照射装置を有することを特
徴とする洗浄装置。1. A cleaning apparatus having a holding section for holding an object to be cleaned and cleaning the object to be cleaned by contacting the object with gas-dissolved water, comprising an ultraviolet irradiation device close to the holding section. Cleaning equipment.
振動付与装置を有する請求項1記載の洗浄装置。2. The cleaning apparatus according to claim 1, further comprising a vibration applying device for applying vibration to the gas-dissolved water near the holding section.
ガスを溶解した純水である請求項1又は請求項2記載の
洗浄装置。3. The cleaning apparatus according to claim 1, wherein the gas-dissolved water is pure water in which hydrogen gas, oxygen gas or rare gas is dissolved.
ある請求項1、請求項2又は請求項3記載の洗浄装置。4. The cleaning device according to claim 1, wherein the holding portion and the ultraviolet irradiation device are relatively movable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000233298A JP4683314B2 (en) | 2000-08-01 | 2000-08-01 | Cleaning method for silicon substrate for semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000233298A JP4683314B2 (en) | 2000-08-01 | 2000-08-01 | Cleaning method for silicon substrate for semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002045806A true JP2002045806A (en) | 2002-02-12 |
JP4683314B2 JP4683314B2 (en) | 2011-05-18 |
Family
ID=18725836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000233298A Expired - Fee Related JP4683314B2 (en) | 2000-08-01 | 2000-08-01 | Cleaning method for silicon substrate for semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4683314B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006066571A (en) * | 2004-08-26 | 2006-03-09 | Renesas Technology Corp | Cleaning method of semiconductor substrate and semiconductor substrate processing device used therefor |
WO2006040993A1 (en) * | 2004-10-12 | 2006-04-20 | Hitachi Plant Engineering & Construction Co., Ltd. | Ultrasonic cleaner |
JP2007294822A (en) * | 2006-04-27 | 2007-11-08 | Alps Electric Co Ltd | Apparatus and method for ultrasonic cleaning |
JP2009021419A (en) * | 2007-07-12 | 2009-01-29 | Renesas Technology Corp | Method and device for cleaning substrate |
KR20210025936A (en) * | 2019-08-28 | 2021-03-10 | 한국기계연구원 | Si WAFER NOZZLE, MANUFACTURING METHOD OF THE SAME, AND MEGASONIC CLEANING MODULE |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129794A (en) * | 1997-07-08 | 1999-02-02 | Kurita Water Ind Ltd | Cleaning water for electronic material its reparation, and cleaning of electronic material |
JP2000070885A (en) * | 1998-09-01 | 2000-03-07 | Ultla Clean Technology Kaihatsu Kenkyusho:Kk | Device and method for cleaning substrate |
JP2000107716A (en) * | 1998-09-30 | 2000-04-18 | Shimada Phys & Chem Ind Co Ltd | Ultraviolet washing apparatus |
-
2000
- 2000-08-01 JP JP2000233298A patent/JP4683314B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129794A (en) * | 1997-07-08 | 1999-02-02 | Kurita Water Ind Ltd | Cleaning water for electronic material its reparation, and cleaning of electronic material |
JP2000070885A (en) * | 1998-09-01 | 2000-03-07 | Ultla Clean Technology Kaihatsu Kenkyusho:Kk | Device and method for cleaning substrate |
JP2000107716A (en) * | 1998-09-30 | 2000-04-18 | Shimada Phys & Chem Ind Co Ltd | Ultraviolet washing apparatus |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006066571A (en) * | 2004-08-26 | 2006-03-09 | Renesas Technology Corp | Cleaning method of semiconductor substrate and semiconductor substrate processing device used therefor |
JP4493444B2 (en) * | 2004-08-26 | 2010-06-30 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor device |
WO2006040993A1 (en) * | 2004-10-12 | 2006-04-20 | Hitachi Plant Engineering & Construction Co., Ltd. | Ultrasonic cleaner |
JP2006110418A (en) * | 2004-10-12 | 2006-04-27 | Univ Of Tokyo | Ultrasonic cleansing apparatus |
JP2007294822A (en) * | 2006-04-27 | 2007-11-08 | Alps Electric Co Ltd | Apparatus and method for ultrasonic cleaning |
JP4599323B2 (en) * | 2006-04-27 | 2010-12-15 | アルプス電気株式会社 | Ultrasonic cleaning apparatus and ultrasonic cleaning method |
JP2009021419A (en) * | 2007-07-12 | 2009-01-29 | Renesas Technology Corp | Method and device for cleaning substrate |
KR20210025936A (en) * | 2019-08-28 | 2021-03-10 | 한국기계연구원 | Si WAFER NOZZLE, MANUFACTURING METHOD OF THE SAME, AND MEGASONIC CLEANING MODULE |
KR102304312B1 (en) * | 2019-08-28 | 2021-09-23 | 한국기계연구원 | Si WAFER NOZZLE, MANUFACTURING METHOD OF THE SAME, AND MEGASONIC CLEANING MODULE |
Also Published As
Publication number | Publication date |
---|---|
JP4683314B2 (en) | 2011-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5019370B2 (en) | Substrate cleaning method and cleaning apparatus | |
JP3185753B2 (en) | Method for manufacturing semiconductor device | |
TWI405621B (en) | Cleaning liquid and cleaning method for electronic material | |
US20060207629A1 (en) | Method and apparatus for an in-situ ultraviolet cleaning tool | |
JP2002543976A (en) | Method for cleaning microelectronic substrates using ultra-dilute cleaning solution | |
JPH1027771A (en) | Cleaning method and device | |
US7682457B2 (en) | Frontside structure damage protected megasonics clean | |
JP4088810B2 (en) | Substrate cleaning apparatus and substrate cleaning method | |
US7754019B2 (en) | Method for removing particles from a semiconductor surface | |
US20030000548A1 (en) | Method and device for removing particles on semiconductor wafers | |
JP4482844B2 (en) | Wafer cleaning method | |
JP4683314B2 (en) | Cleaning method for silicon substrate for semiconductor | |
JPH1022246A (en) | Cleaning method | |
JPH01111337A (en) | Wafer cleaning apparatus | |
JP2006272069A (en) | Washing device | |
JPH1129794A (en) | Cleaning water for electronic material its reparation, and cleaning of electronic material | |
JP2004296463A (en) | Cleaning method and cleaning device | |
JP3445765B2 (en) | Substrate surface treatment method for semiconductor element formation | |
JP5736567B2 (en) | Semiconductor wafer cleaning method | |
JP4519234B2 (en) | Article surface cleaning method and cleaning apparatus therefor | |
JP2001054768A (en) | Cleaning method and cleaning device | |
JP2002001243A (en) | Method for cleaning electronic material | |
JP6020626B2 (en) | Device Ge substrate cleaning method, cleaning water supply device and cleaning device | |
US20030041876A1 (en) | Method and device for removing particles on semiconductor wafers | |
KR100190081B1 (en) | Cleaning apparatus for removing organic matter of semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110114 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4683314 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |