JP2008178283A - 交流電源装置及び交流電源装置用集積回路 - Google Patents

交流電源装置及び交流電源装置用集積回路 Download PDF

Info

Publication number
JP2008178283A
JP2008178283A JP2007150334A JP2007150334A JP2008178283A JP 2008178283 A JP2008178283 A JP 2008178283A JP 2007150334 A JP2007150334 A JP 2007150334A JP 2007150334 A JP2007150334 A JP 2007150334A JP 2008178283 A JP2008178283 A JP 2008178283A
Authority
JP
Japan
Prior art keywords
circuit
signal
power supply
voltage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007150334A
Other languages
English (en)
Other versions
JP4289422B2 (ja
Inventor
Toru Ashikaga
亨 足利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007150334A priority Critical patent/JP4289422B2/ja
Priority to KR1020087026520A priority patent/KR101022613B1/ko
Priority to CN2007800115535A priority patent/CN101411246B/zh
Priority to US12/295,363 priority patent/US7839659B2/en
Priority to PCT/JP2007/072281 priority patent/WO2008078473A1/ja
Publication of JP2008178283A publication Critical patent/JP2008178283A/ja
Application granted granted Critical
Publication of JP4289422B2 publication Critical patent/JP4289422B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

【課題】ループゲインの過大設定などによる不安定な制御をなくし、負荷に流れる出力電流の変動を防止できる交流電源装置を提供する。
【解決手段】直流電源Vinの直流電力を交流電力に交換するスイッチ素子Q1,Q2と、スイッチ素子で変換された交流電力の電圧を別の電圧に変換するトランスT1と、トランスの出力端子に接続された負荷20と、負荷に供給される電力を表す第1電気信号を検出する第1検出回路30と、直流電源の電圧を表す第2電気信号を検出する第2検出回路40と、第1検出回路で検出された第1電気信号と第2検出回路で検出された第2電気信号とに基づいて帰還信号を生成する帰還回路50と、帰還回路からの帰還信号に基づき制御信号を生成し制御信号により負荷に供給される電力が所定値になるようにスイッチ素子のオン/オフを制御する制御回路10と備える。
【選択図】図1

Description

本発明は、負荷に交流電力を供給する交流電源装置及び交流電源装置用集積回路に関し、特に、負荷としての放電灯に交流電力を供給して点灯させる放電灯点灯装置に関する。
交流電源装置であるインバータは、一般的に、数10kHzの周波数で数百V〜千数百Vの電圧を発生させて、この電圧を放電灯、例えば、冷陰極管であるCCFL(Cold Cathode Fluorescent Lamp)に印加して点灯させる。このため、放電灯とインバータとはセットで用いられる。
インバータは、直流電源と、直流電源の直流を交流に変換するスイッチ素子からなるブリッジ回路と、ブリッジ回路で変換された交流を昇圧して放電灯を点灯させる昇圧トランスと、放電灯に流れる電流を検出する電流検出回路と、電流検出回路で検出された電流に基づき該電流が所定値になるようにスイッチ素子をオン/オフさせる制御回路とそのフィードバックループとで構成される。
なお、昇圧トランスの1次及び2次巻線間に絶縁機能を持たせる場合と持たせない場合があり、前者は絶縁型システム、後者は非絶縁システムと呼ばれる。
非絶縁システムは、システム全体を2次側として動作させる。一般的に、インバータの入力電源としてその前段のDC/DCコンバータの電圧が用いられる。この電圧は、DC/DCコンバータにより既に絶縁されているので、2次側電圧である。また、DC/DCコンバータにより既に制御された電圧が入力されるので、インバータから見ると入力電圧は略一定値であり、入力変動範囲を広く考える必要はない。また、昇圧トランスに絶縁機能を持たせる必要がないので、安全規格上の制約が少なく、非絶縁システムを小型で安価に実現できる。
しかし、DC/DCコンバータが必要であるので、電力変換ステージが2段(DC/DCコンバータとインバータ)であり、非絶縁システムは、効率面で不利であり、DC/DCコンバータの価格面でも不利である。
一方、絶縁システムでは、インバータの入力電源として、交流電圧を整流した電圧をそのまま用いることができる。電力変換ステージが1段であるので、絶縁システムは、効率面で有利であり、また、DC/DCコンバータを削除できるため、価格面でも有利である。しかし、インバータの入力電圧が交流電圧を整流した電圧そのものであるため、電圧変動範囲が大きい。このため、放電灯に流れる出力電流を一定値に制御することが難しい。
また、放電灯、特に、冷陰極管のインピーダンスは一般的に負性抵抗特性を有する。また、冷陰極管の輝度特性は、冷陰極管に流れる電流により大きく支配されるため、通常では、冷陰極管に流れる電流値を制御する。例えば、ブリッジ回路のスイッチ素子の周波数やオン/オフのデューティ比(以下、単にデューティと称する。)を調整してトランスに送る電力を可変することにより、冷陰極管の電流値を制御する。
しかし、最近の液晶TVなどでは、インバータの駆動周波数とTV装置内の制御部のクロック周波数との干渉が問題になることが多い。このため、この干渉を起こさない周波数に固定した制御が求められる。この場合、ブリッジ回路のスイッチ素子の制御方法としてPWM制御が用いられる。PWM制御は、直流電源の両端に直列接続されたハイサイドのスイッチ素子とローサイドのスイッチ素子とを交互にオン/オフさせつつ、そのオン幅を変化させて(即ち、オンデューティを可変)出力電力を制御する。オン幅が大きいほど出力電力は大きくなる。
一方、インバータの入力電圧である直流電圧の値が変化する場合がある。例えば、ノートパソコンなどではバッテリー駆動とアダプタ駆動により入力電圧が大きく変化し、8V〜20V程度の電圧変動もある。また、液晶TV、液晶モニタなどで、交流を整流した電圧をそのまま使用するシステムなどの場合も、大きな電圧変動が在り得る。交流の広範囲入力仕様などの場合には、さらに大きな電圧変動が在り得る。
このように入力電圧に変動があっても、ブリッジ回路のPWM制御により、入力電圧が小さい場合にデューティを広くし、入力電圧が大きい場合にはデューティを小さくすることで、理想的には、放電灯の電流を一定に制御させる。しかし、入力電圧の変化により放電灯の電流にも変化が生じてしまうことがある。その原因としては、主に、以下の点が考えられる。第1は、フィードバックループのゲインが小さい。第2は、検出する放電灯の電流の波形が変化し、結果として検出値が変わってしまう。このように放電灯の電流の変化により、放電灯の輝度が変化してしまう。
また、特許文献1には、入力電圧の変動等により点灯回路に供給する電圧が変動しても、常に安定した明るさの放電灯の点灯を保つ放電灯点灯装置が開示されている。この放電灯点灯装置は、スイッチング回路を流れる電流を検出し、検出した電流値と放電灯の調光値を定める電流値とを比較しその電流値の差に応じた電圧を出力する比較器と、比較器からの電圧に応じて発振周波数が変化する発振回路と、発振回路の発振周波数に応じてスイッチ素子をオン/オフさせる制御回路とを設け、負荷に所定の電流を供給する。この装置では、電源電圧の変動により、負荷に流れる電流が変化しないようにするために、上記構成のフィードバックのループゲイン(比較器のゲインに相当)を大きくする必要がある。
特開平6−68979号公報
しかしながら、特許文献1の技術では、ループゲインを大きくすると、位相余裕や利得余裕を確保するのが困難になり、負荷の変動や電源電圧の変動に対し制御が不安定になることが多い。特に、調光のためにバーストを行なうと制御が著しく不安定になる。
本発明は、ループゲインの過大設定などによる不安定な制御をなくし、負荷に流れる出力電流の変動を防止できる交流電源装置及び交流電源装置用集積回路を提供することにある。
前記課題を解決するために、本発明の請求項1の交流電源装置は、直流電源と、前記直流電源の直流電力を交流電力に交換するスイッチ素子と、前記スイッチ素子で変換された交流電力の電圧を別の電圧に変換するトランスと、前記トランスの出力端子に接続された負荷と、前記負荷に供給される電力を表す第1電気信号を検出する第1検出回路と、前記直流電源の電圧を表す第2電気信号を検出する第2検出回路と、前記第1検出回路で検出された前記第1電気信号と前記第2検出回路で検出された前記第2電気信号とに基づいて帰還信号を生成する帰還回路と、前記帰還回路からの帰還信号に基づき制御信号を生成し、該制御信号により前記負荷に供給される電力が所定値になるように前記スイッチ素子のオン/オフを制御する制御回路と備えることを特徴とする。ここで、本願の負荷に供給される電力とは、点灯後の負荷端子電圧や負荷を流れる電流や、それらの積を示すものとする。
請求項2の発明は、請求項1記載の交流電源装置において、前記第2検出回路は、前記第2電気信号として前記直流電源の電圧又は前記スイッチ素子の端子電圧を検出することを特徴とする。
請求項3の発明は、請求項1記載の交流電源装置において、前記第2検出回路は、前記制御回路の制御信号を平均することにより生成された平均値信号を前記第2電気信号として処理する平均値信号生成回路からなることを特徴とする。
請求項4の発明は、請求項1記載の交流電源装置において、前記第2検出回路は、前記制御回路の制御信号を反転する反転器と、この反転器で反転された制御信号を平均することにより生成された平均値信号を前記第2電気信号として処理する平均値信号生成回路とを有することを特徴とする。
請求項5の発明は、請求項1記載の交流電源装置において、前記第2検出回路は、前記制御回路の制御信号を平均することにより平均値信号を生成する平均値信号生成回路と、この平均値信号生成回路で生成された平均値信号を反転することにより得られた反転信号を前記第2電気信号として処理する反転器とを有することを特徴とする。
請求項6の発明は、請求項3記載の交流電源装置において、前記スイッチ素子は、前記直流電源の両端にローサイド用の第1スイッチ素子とハイサイド用で且つ前記第1スイッチ素子とは異質の第2スイッチ素子とが直列に接続され、前記制御回路は、前記制御信号としてローサイド用信号を前記第1スイッチ素子に出力し、前記ローサイド用信号と180°の位相で、かつ反転した反転信号を前記第2スイッチ素子に出力するとともに、前記反転信号を前記平均値信号生成回路に出力することを特徴とする。
請求項7の発明は、請求項1記載の交流電源装置において、前記制御回路は、前記帰還回路からの帰還信号と基準電圧信号との差を増幅して誤差電圧信号を生成する誤差増幅回路を備え、前記第2検出回路は、前記誤差増幅回路からの誤差電圧信号を反転することにより生成された反転信号を前記第2電気信号として処理する反転信号生成回路からなることを特徴とする。
請求項8の発明は、請求項1記載の交流電源装置において、前記制御回路は、前記帰還回路からの帰還信号と基準電圧信号との差を増幅して誤差電圧信号を生成する誤差増幅回路を備え、前記第2検出回路は、前記誤差増幅回路からなり、該誤差増幅回路からの誤差電圧信号を前記第2電気信号とすることを特徴とする。
本発明の請求項9の交流電源装置用集積回路は、請求項1乃至8のいずれか1項記載の交流電源装置の前記制御回路と前記帰還回路と前記第2検出回路との少なくとも1つを同一の半導体基板上に設けることを特徴とする。
請求項1の発明によれば、直流電源の電圧を表す第2電気信号を第2検出回路で検出し、第1検出回路で検出された第1電気信号と第2検出回路で検出された第2電気信号とに基づいて帰還回路で帰還信号を生成し、帰還回路からの帰還信号に基づき制御回路で制御信号を生成する。即ち、入力電圧の変動を制御回路に入力することにより、帰還回路のループゲインを小さくしても入力電圧の変動により出力電流が変動することを防止できる。これにより、ループゲインの増大による不安定な制御(発振、ハンチング、オーバーシュート等)がなくなり、制御が安定する。
請求項2の発明によれば、請求項1の効果と同様な効果が得られ、入力電圧の検出を直流電源の電圧又はスイッチ素子の端子電圧から検出するため、検出回路が簡単になる。
請求項3乃至請求項5の発明によれば、請求項1の効果と同様な効果が得られ、制御回路の制御信号のデューティを平均化して入力電圧に対応する電圧を検出することにより、制御系と同じ電圧レベルでの処理が行えるため、帰還回路を含めた制御回路の製造が容易になる。
請求項6の発明によれば、制御回路からの反転信号は、ローサイド用信号と180°の位相で、かつ反転した信号であるため、そのまま第2検出回路に出力できることから、反転器が不要となり、第2検出回路の構成が簡単になる。
請求項7の発明によれば、誤差増幅回路からの誤差電圧信号を反転することにより生成された反転信号を補正信号とすることができるので、第2検出回路の構成が簡単になる。
請求項8の発明によれば、第2検出回路は、制御回路内の誤差増幅回路で構成できるので、安価になる。
請求項9の発明によれば、請求項3乃至請求項5と同様に、同じ電圧レベルの信号処理を行えば良いため、集積回路に容易に集積できる。制御回路、帰還回路、第2検出回路を同一の半導体基板上に設けることにより入出力のピン数の増加が必要ない、或いは最小の数で良いため、集積回路上に構成する場合にコストを低減できる。
以下、本発明の交流電源装置の実施の形態を図面を参照しながら詳細に説明する。
(本発明の基本原理の構成)
図1は本発明の交流電源装置の基本原理回路図である。ここでは、交流電源装置の一例として、負荷が冷陰極管からなる放電灯であり、この放電灯を点灯させる放電灯点灯装置を例示して説明する。
図1に示す放電灯点灯装置において、直流電源Vinの両端には、N型のMOSFETからなるスイッチ素子Q1とN型のMOSFETからなるスイッチ素子Q2との直列回路が接続されている。スイッチ素子Q1及びスイッチ素子Q2は、直流電源Vinの直流電力を交流電力に変換する。スイッチ素子Q1は、制御回路10から送られてくる制御信号によりレベルシフト回路19を介してオン/オフされる。スイッチ素子Q2は、制御回路10から送られてくる制御信号によりオン/オフされる。
スイッチ素子Q2のドレイン−ソース間には、トランスT1の1次巻線P1とリーケージインダクタンスからなるリアクトルLr1(図示せず)と電流共振用のコンデンサC1とが直列に接続された直接回路が接続されている。
なお、図1では、リアクトルLr1は、トランスT1の1次巻線P1と2次巻線S1との間のリーケージインダクタンスからなり、共振動作を司るためのインダクタンスである。トランスT1の2次巻線S1の両端には、放電灯20と放電灯20に流れる電流を検出する電流検出回路30が直列に接続されている。トランスT1は、変換された交流電圧を昇圧して放電灯20を点灯させる。
電流検出回路30は、本発明の第1検出回路に対応し、放電灯20に直列に接続されたダイオードD1と抵抗R1との直列回路と、この直列回路に並列に接続されたダイオードD2とからなり、放電灯20に流れる電流を検出して加算回路50に出力する。補正信号生成回路40は、本発明の第2検出回路に対応し、直流電源Vinの電圧変動に対して放電灯20に流れる出力電流を一定値に制御するための補正信号を生成して、この補正信号を加算回路50に出力する。
加算回路50は、本発明の帰還回路に対応し、電流検出回路30で検出された電流値に基づく電圧に補正信号生成回路40からの補正信号に基づく電圧を加算して制御回路10の誤差増幅器11の反転端子に出力する。制御回路10は、誤差増幅器11、比較回路13とを備え、加算回路50からの電圧に基づき放電灯20に流れる電流が所定値になるようにスイッチ素子Q1,Q2をオン/オフさせる。
誤差増幅器11は、非反転端子の基準電圧Vrと反転端子の加算回路50からの電圧との誤差電圧を増幅して、誤差電圧信号を比較回路13に出力する。比較回路13は、誤差増幅器11からの誤差電圧信号(フィードバック信号)と三角波信号とを比較し、所定のデッドタイムを有し、位相が180°の2つのPWM信号を生成し、一方のPWM信号をレベルシフト回路19に出力し、他方のPWM信号をスイッチ素子Q2に出力する。
次に、補正信号生成回路40による、放電灯20の電流のレギュレーション特性の改善方法について詳細に説明する。図2(a)に示すレギュレーション特性の補正前では、入力電圧Vinが大きくなるに従ってスイッチ素子Q1,Q2のゲート信号のデューティを小さくし、入力電圧が小さくなるとゲート信号のデューティを大きくする動作になっている。これは正しい動作である。
しかし、このデューティを「小さく」、「大きく」する動作が足りないために、放電灯20の電流を一定値に保持できない。このため、図2(b)に示すレギュレーション特性(補正後)のように、デューティが小さいときにはもっと「小さく」、デューティが大きいときにはもっと「大きく」すればよい。
ここでは、加算回路50は、電流検出回路30で検出された放電灯20の電流検出値に、補正信号生成回路40からの正の補正値を加算する。
制御回路10は、放電灯20の電流が増加したと認識してデューティを小さくして放電灯20の電流を減少させようとするので、この特性を利用する。即ち、補正信号生成回路40は、入力電圧が小さいとき(即ちデューティが大きいとき)に小さな補正値を加算回路50に出力し、加算回路50は、放電灯20の電流検出値に、補正信号生成回路40からの小さな補正値を加算して、誤差増幅器11の反転端子に出力する。このため、誤差増幅器11の出力が上昇するので、デューティがさらに大きくなる。
一方、補正信号生成回路40は、入力電圧が大きいとき(即ちデューティが小さいとき)に大きな補正値を加算回路50に出力し、加算回路50は、放電灯20の電流検出値に、補正信号生成回路40からの大きな補正値を加算して、誤差増幅器11の反転端子に出力する。このため、誤差増幅器11の出力が減少するので、デューティがさらに小さくなる。
このように実施例1の交流電源装置によれば、補正信号生成回路40で生成された補正信号を加算回路50を介して制御回路10に入力する。即ち、直流電源Vinの入力電圧の変動を制御回路10に入力することにより、誤差増幅器11のループゲインを小さくしても入力電圧の変動により出力電流が変動することを防止できる。これにより、ループゲインの増大による不安定な制御(発振、ハンチング、オーバーシュート等)がなくなり、制御が安定する。
図3は本発明の交流電源装置の実施例1の回路図である。図4は本発明の交流電源装置の実施例1の補正信号生成回路によるレギュレーション特性の補正方法を示す図である。実施例1の交流電源装置は、補正信号生成回路40aが反転器41と平均値電圧生成回路43とで構成されることを特徴とする。その他の構成は、図1に示す同一構成であるので、同一部分には同一符号を付する。
反転器41は、スイッチ素子Q2用のゲート信号を入力し該ゲート信号を反転させる。なお、スイッチ素子Q2用のゲート信号の代わりに、スイッチ素子Q1用のゲート信号を反転させても良い。反転器41は、例えば、図4(a)に示すようなデューティが50%又は20%のゲート信号を反転させることにより、図4(b)に示すようなデューティが反転されたパルス信号を得る。
平均値電圧生成回路43は、反転器41で反転されたスイッチ素子Q2用のゲート信号の平均値電圧を求める。平均値電圧生成回路43は、例えば、図4(b)に示すようなデューティが50%又は20%ゲート信号を反転したパルス信号の平均値電圧を求める。このため、図4(c)に示すようにデューティが小さいときには平均値電圧は大きい値になり、デューティが大きいときには平均値電圧は小さい値になる。この平均値電圧は補正信号として加算回路50に送られる。
加算回路50は、平均値電圧生成回路43からの平均値電圧を放電灯20の電流の検出値に加算して制御回路10の誤差増幅器11の反転端子に出力する。即ち、フィードバック制御を行う。
これにより、デューティが小さいとき(入力電圧が大きいとき)にはさらにデューティを小さくし、デューティが大きいとき(入力電圧が小さいとき)にはさらにデューティを大きくすることができる。従って、図2(b)に示すように、入力電圧が変動しても放電灯20の出力電流が一定値となる。即ち、放電灯20の電流のレギュレーション特性が改善できる。
このように、直流電源Vinの入力電圧の変動を制御回路10に入力することにより、誤差増幅器11のループゲインを小さくしても入力電圧の変動により出力電流が変動することを防止できる。これにより、ループゲインの増大による不安定な制御がなくなり、制御が安定する。
(実施例1の変形例)
図5は本発明の交流電源装置の実施例1の変形例の回路図である。図5に示す実施例1の変形例の交流電源装置は、図3に示す実施例1の交流電源装置に対して、さらに、制御回路10とレベルシフト回路19との間に絶縁回路61を設け、制御回路10とスイッチ素子Q2との間に絶縁回路62を設けたことを特徴とする。
これにより、実施例1の交流電源装置の効果が得られるとともに、トランスT1の入力側と2次側の制御回路10の間の絶縁を図ることができる。
図6は実施例2の交流電源装置のデューティの平均値及びその反転特性を示す図である。図7は本発明の交流電源装置の実施例2の回路図である。実施例2の交流電源装置は、補正信号生成回路40bが平均値電圧生成回路43と反転器41とで構成されることを特徴とする。その他の構成は、図1に示す同一構成であるので、同一部分には同一符号を付する。
平均値電圧生成回路43は、スイッチ素子Q2用のゲート信号の平均値電圧を求める。この平均値電圧は、図6(a)に示すように、デューティの大きさに正比例して大きくなる。反転器41は、平均値電圧生成回路43からの平均値電圧を反転して反転された平均値電圧を補正信号として加算回路50に送る。反転された平均値電圧は、図6(b)に示すように、デューティが小さいときには反転された平均値電圧は、大きい値になり、デューティが大きいときには反転された平均値電圧は、小さい値になる。
加算回路50は、反転器41からの平均値電圧を放電灯20の電流の検出値に加算して制御回路10の誤差増幅器11の反転端子に出力する。即ち、フィードバック制御を行う。従って、実施例1の交流電源装置の効果と同様な効果が得られる。
(実施例2の変形例)
図8は本発明の交流電源装置の実施例2の変形例の回路図である。図8に示す実施例2の変形例の交流電源装置は、図7に示す実施例2の交流電源装置に対して、さらに、制御回路10とレベルシフト回路19との間に絶縁回路61を設け、制御回路10とスイッチ素子Q2との間に絶縁回路62を設けたことを特徴とする。
これにより、実施例2の交流電源装置の効果が得られるとともに、トランスT1の入力側と2次側の制御回路10の間の絶縁を図ることができる。
(実施例2の変形例の具体例)
図9は本発明の交流電源装置の実施例2の変形例の具体的な回路図である。図9において、制御回路10とスイッチ素子Q1との間には絶縁回路としてのフォトカプラPC61aが設けられ、制御回路10とスイッチ素子Q2との間には絶縁回路としてのフォトカプラPC62aが設けられている。
平均値電圧生成回路43は、抵抗R2とコンデンサC2とからなる積分回路を有し、抵抗R2とコンデンサC2とによりスイッチ素子Q2用のゲート信号に対して平均処理を施して平均値電圧を出力する。
反転器41において、反転部42の非反転端子とグランドとの間には抵抗R4が接続され、また、反転部42の非反転端子とグランドとの間には抵抗R3と基準電圧Veとの直列回路が接続されている。反転部42の反転端子は、抵抗R5を介して抵抗R2とコンデンサC2との接続点に接続されている。反転部42の反転端子と出力端子との間には抵抗R6が接続されている。反転器41は、反転部42の非反転端子に基準電圧Veを抵抗R3と抵抗R4とで分圧した電圧が印加され、反転端子に抵抗R5を介して平均値電圧生成回路43からの平均値電圧が印加され、平均値電圧を反転して出力する。
加算回路50は、反転部42の出力端子に接続された抵抗R7と、電流検出回路30の出力端子(抵抗R1とダイオードD1との接続点)に接続された抵抗R8と、抵抗R7と抵抗R8との接続点とグランドとの間に接続された抵抗R9とで構成され、抵抗R7を介する反転器41からの平均値電圧と抵抗R8を介する電流検出回路30からの電流検出値に基づく電圧とを加算して抵抗R10を介して誤差増幅器11の反転端子に出力する。
図10は本発明の交流電源装置の実施例2の変形例の具体的な回路において入力電圧を変動させたときの補正信号生成回路による実際のレギュレーション特性を示す図である。図10(a)は入力電圧[V]と補正前後のデューティ[%]と補正前後の出力電流iout[mA]とを表で示している。図10(b)は入力電圧[V]と補正前後のデューティ[%]と補正前後の出力電流iout[mA]とをグラフで示している。入力電圧の変動は150V、220V、265Vであり、rmsは実効値を示す。
補正前のデューティが小さいときには補正後のデューティはさらに小さく、補正前のデューティが大きいときには補正後のデューティはさらに大きくなっていることが図10からわかる。また、放電灯20の出力電流も入力電圧が変動しても一定値であり、理想的なレギュレーションであることが図10からわかる。
上述した実施例1及び実施例2の交流電源装置では、スイッチ素子Q1,Q2として例えばN型のMOSFETやNPNトランジスタなどのように、ゲートやベースにHレベルを入力したときにオンする素子が用いられた。
これに対して、P型のMOSFETやPNPトランジスタなどのように、逆ロジックのスイッチ素子もある。これらの素子は、ゲート信号がLレベルのときにオンし、レベルシフト回路を容易に構成できるため、ハイサイド用のスイッチ素子として用いられることが多い。
そこで、実施例3では、図11に示すように、スイッチ素子Q2をローサイド用のN型のMOSFETで構成し、スイッチ素子Q1をハイサイド用のP型のMOSFETで構成したことを特徴とする。
また、制御回路10aは、制御信号としてN型のMOSFET用のゲート信号をスイッチ素子Q2に出力し、N型のMOSFET用のゲート信号と180°の位相を有し、かつ反転したP型MOSFET用のゲート信号をスイッチ素子Q1に出力するとともに、P型のMOSFET用のゲート信号を平均値信号生成回路43に出力することを特徴とする。
このように実施例3の交流電源装置によれば、N型のMOSFET用のゲート信号と180°の位相を有し、かつ反転したP型のMOSFET用のゲート信号を平均値信号生成回路43に出力するので、ゲート信号を反転させる必要はなくなり、平均値信号生成回路43はゲート信号を平均するのみで補正信号として加算回路50に出力できる。このため、反転器41が不要となり、構成が簡単になる。
(実施例3の変形例)
図11に示す実施例3の交流電源装置に対して、さらに、制御回路10とレベルシフト回路19との間に絶縁回路61を設け、制御回路10とスイッチ素子Q2との間に絶縁回路62を設けても良い。
これにより、実施例3の交流電源装置の効果が得られるとともに、トランスT1の入力側と2次側の制御回路10の間の絶縁を図ることができる。
以上の実施例1乃至3の交流電源装置によれば、直流電源Vinの入力電圧の変化とスイッチ素子Q1,Q2のゲート信号のデューティの変化とが相似形であることに着目し、入力電圧を検出することなく、ゲート信号のみで出力電流の補正を行うことができる。
即ち、全て2次側(制御側)のみで出力電流の補正を行うことができる。従って、特に絶縁型システムの場合、1次側及び2次側間での信号のやり取りを行うことなく補正を行うことができる。また、入力電圧のリップルに起因する出力電流のリップルを低減することができる。
図12は本発明の交流電源装置の実施例4の回路図である。実施例4の交流電源装置は、直流電源Vinの入力電圧を1次側で検出して、2次側に設けられた補正信号生成回路45及び制御回路10により出力電流の補正を行い、レギュレーション特性を改善したことを特徴とする。
図12に示す交流電源装置は、図1に示す交流電源装置に対して、電圧検出回路31と絶縁トランス又はフォトカプラ等からなる絶縁回路61〜63とを設けるとともに、補正信号生成回路40に代えて補正信号生成回路45を設けたことを特徴とする。その他の構成は、図1に示す構成と同一であり、同一部分には同一符号を付する。
電圧検出回路31は、トランスT1の1次側に設けられ、直流電源Vinの電圧を検出する。絶縁回路63は、電圧検出回路31で検出された直流電源Vinの電圧を絶縁して補正信号生成回路45に出力する。
補正信号生成回路45は、絶縁回路63を介して電圧検出回路31で検出された直流電源Vinの電圧に基づき補正信号を生成する。加算回路50は、電流検出回路30で検出された電流検出値と補正信号生成回路45からの補正信号とを加算して制御回路10の誤差増幅器11の反転端子に出力する。
このように実施例4の交流電源装置によれば、直流電源Vinの入力電圧を1次側で検出して、2次側に設けられた補正信号生成回路45及び制御回路10により出力電流の補正を行い、レギュレーション特性を改善することができる。
図13は本発明の交流電源装置の実施例5の回路図である。図13に示す交流電源装置は、図1に示す交流電源装置の補正信号生成回路40に代えて、制御回路10b内の誤差増幅器11の出力電圧を反転してこの反転信号を加算回路50に出力する反転器41(反転信号生成回路)を設けていることを特徴とする。その他の構成は、図1に示す構成と同一であり、同一部分には同一符号を付する。
反転器41は、誤差増幅器11の出力電圧を反転してこの反転信号を加算回路50に出力する。加算回路50は、電流検出回路30で検出された電流検出値と反転器41からの反転信号である補正信号とを加算して制御回路10bの誤差増幅器11の反転端子に出力する。
このように実施例5の交流電源装置によれば、制御回路10b内の誤差増幅器11の出力電圧を用いて、出力電流の補正を行い、レギュレーション特性を改善することができる。
(実施例5の具体例)
図14は本発明の交流電源装置の実施例5の具体的な回路図である。図14に示す反転器41において、反転部42の非反転端子とグランドとの間には抵抗R4が接続され、また、反転部42の非反転端子とグランドとの間には抵抗R3と基準電圧Veとの直列回路が接続されている。反転部42の反転端子は、抵抗R5を介してコンデンサC3の一端と誤差増幅器11の出力端子に接続されている。コンデンサC3の他端は誤差増幅器11の反転端子に接続されている。反転部42の反転端子と出力端子との間には抵抗R6が接続されている。反転器41は、反転部42の非反転端子に基準電圧Veを抵抗R3と抵抗R4とで分圧した電圧が印加され、反転端子に抵抗R5を介して誤差増幅器11からの出力電圧が印加され、出力電圧を反転して出力する。
加算回路50は、反転部42の出力端子に接続された抵抗R7と、電流検出回路30の出力端子(抵抗R1とダイオードD1との接続点)に接続された抵抗R8と、抵抗R7と抵抗R8との接続点とグランドとの間に接続された抵抗R9とで構成され、抵抗R7を介する反転器41からの反転電圧と抵抗R8を介する電流検出回路30からの電流検出値に基づく電圧とを加算して抵抗R10を介して誤差増幅器11の反転端子に出力する。
図15は図14に示す実施例5の具体的な回路のIC化の例である。図15に示す例では、誤差増幅器11と比較回路13と反転器41とを有する制御回路10cを同一半導体基板上に設けて集積回路化したことを特徴とする。
このように集積回路上に構成することで、コストを低減できる。
図16は本発明の交流電源装置の実施例6の回路図である。図16に示す交流電源装置は、図13に示す交流電源装置に対して、反転器41を削除し、制御回路10b内に誤差増幅器11aを設けたことを特徴とする。その他の構成は、図13に示す構成と同一であり、同一部分には同一符号を付する。
誤差増幅器11a(第2検出回路)は、反転端子の基準電圧Vrと非反転端子の加算回路50からの電圧との誤差電圧を増幅して、誤差電圧信号を加算回路50に出力する。即ち、図16に示す誤差増幅器11aの誤差電圧信号は、図13に示す誤差増幅器11の誤差電圧信号を反転器41で反転した反転信号と同じであり、この反転信号が加算回路50に出力される。
加算回路50は、電流検出回路30で検出された電流検出値と誤差増幅器11aからの誤差電圧信号(反転信号)である補正信号とを加算して誤差増幅器11aの非反転端子に出力する。
従って、実施例6の交流電源装置によれば、実施例5の交流電源装置の効果と同様な効果が得られる。また、第2検出回路が誤差増幅回路11aで構成できるので、反転器41を削除でき、安価となる。
なお、本発明は、上述した実施例1乃至実施例6の交流電源装置に限定されるものではない。実施例1乃至実施例6のいずれかの交流電源装置における、制御回路10,10a,10b,10cと加算回路50と補正信号生成回路40,40a,40b,45との少なくとも1つを同一の半導体基板上に設けて交流電源装置用集積回路を構成しても良い。
この場合、同じ電圧レベルの信号処理を行えば良いため、集積回路に容易に集積できる。制御回路10,10a,10b,10c、加算回路50、補正信号生成回路40,40a,40b,45を同一の半導体基板上に設けることにより入出力のピン数の増加が必要ない、或いは最小の数で良いため、集積回路上に構成する場合にコストを低減できる。
本発明の交流電源装置の基本原理回路図である。 本発明の交流電源装置の補正前後のレギュレーション特性を示す図である。 本発明の交流電源装置の実施例1の回路図である。 本発明の交流電源装置の実施例1の補正信号生成回路によるレギュレーション特性の補正方法を示す図である。 本発明の交流電源装置の実施例1の変形例の回路図である。 実施例2の交流電源装置のデューティの平均値及びその反転特性を示す図である。 本発明の交流電源装置の実施例2の回路図である。 本発明の交流電源装置の実施例2の変形例の回路図である。 本発明の交流電源装置の実施例2の変形例の具体的な回路図である。 本発明の交流電源装置の実施例2の変形例の具体的な回路において入力電圧を変動させたときの補正信号生成回路による実際のレギュレーション特性を示す図である。 本発明の交流電源装置の実施例3の回路図である。 本発明の交流電源装置の実施例4の回路図である。 本発明の交流電源装置の実施例5の回路図である。 本発明の交流電源装置の実施例5の具体的な回路図である。 図14に示す実施例5の具体的な回路のIC化の例である。 本発明の交流電源装置の実施例6の回路図である。
符号の説明
10,10a,10b,10c 制御回路
11,11a 誤差増幅器
13 比較回路
15,41 反転器
19 レベルシフト回路
20 放電灯
30 電流検出回路
31 電圧検出回路
40,40a,40b,45 補正信号生成回路
43 平均値電圧生成回路
50 加算回路
61,62,63 絶縁回路
Vin 直流電源
T1 トランス
P1 1次巻線
S1 2次巻線
Q1,Q2 スイッチ素子
C1〜C3 コンデンサ
R1〜R10 抵抗
D1〜D3 ダイオード

Claims (9)

  1. 直流電源と、
    前記直流電源の直流電力を交流電力に交換するスイッチ素子と、
    前記スイッチ素子で変換された交流電力の電圧を別の電圧に変換するトランスと、
    前記トランスの出力端子に接続された負荷と、
    前記負荷に供給される電力を表す第1電気信号を検出する第1検出回路と、
    前記直流電源の電圧を表す第2電気信号を検出する第2検出回路と、
    前記第1検出回路で検出された前記第1電気信号と前記第2検出回路で検出された前記第2電気信号とに基づいて帰還信号を生成する帰還回路と、
    前記帰還回路からの帰還信号に基づき制御信号を生成し、該制御信号により前記負荷に供給される電力が所定値になるように前記スイッチ素子のオン/オフを制御する制御回路と、
    備えることを特徴とする交流電源装置。
  2. 前記第2検出回路は、前記第2電気信号として前記直流電源の電圧又は前記スイッチ素子の端子電圧を検出することを特徴とする請求項1記載の交流電源装置。
  3. 前記第2検出回路は、前記制御回路の制御信号を平均することにより生成された平均値信号を前記第2電気信号として処理する平均値信号生成回路からなることを特徴とする請求項1記載の交流電源装置。
  4. 前記第2検出回路は、前記制御回路の制御信号を反転する反転器と、この反転器で反転された制御信号を平均することにより生成された平均値信号を前記第2電気信号として処理する平均値信号生成回路とを有することを特徴とする請求項1記載の交流電源装置。
  5. 前記第2検出回路は、前記制御回路の制御信号を平均することにより平均値信号を生成する平均値信号生成回路と、この平均値信号生成回路で生成された平均値信号を反転することにより得られた反転信号を前記第2電気信号として処理する反転器とを有することを特徴とする請求項1記載の交流電源装置。
  6. 前記スイッチ素子は、前記直流電源の両端にローサイド用の第1スイッチ素子とハイサイド用で且つ前記第1スイッチ素子とは異質の第2スイッチ素子とが直列に接続され、
    前記制御回路は、前記制御信号としてローサイド用信号を前記第1スイッチ素子に出力し、前記ローサイド用信号と180°の位相で、かつ反転した反転信号を前記第2スイッチ素子に出力するとともに、前記反転信号を前記平均値信号生成回路に出力することを特徴とする請求項3記載の交流電源装置。
  7. 前記制御回路は、前記帰還回路からの帰還信号と基準電圧信号との差を増幅して誤差電圧信号を生成する誤差増幅回路を備え、
    前記第2検出回路は、前記誤差増幅回路からの誤差電圧信号を反転することにより生成された反転信号を前記第2電気信号として処理する反転信号生成回路からなることを特徴とする請求項1記載の交流電源装置。
  8. 前記制御回路は、前記帰還回路からの帰還信号と基準電圧信号との差を増幅して誤差電圧信号を生成する誤差増幅回路を備え、
    前記第2検出回路は、前記誤差増幅回路からなり、該誤差増幅回路からの誤差電圧信号を前記第2電気信号とすることを特徴とする請求項1記載の交流電源装置。
  9. 請求項1乃至8のいずれか1項記載の交流電源装置の前記制御回路と前記帰還回路と前記第2検出回路との少なくとも1つを同一の半導体基板上に設けることを特徴とする交流電源装置用集積回路。
JP2007150334A 2006-12-22 2007-06-06 交流電源装置及び交流電源装置用集積回路 Expired - Fee Related JP4289422B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007150334A JP4289422B2 (ja) 2006-12-22 2007-06-06 交流電源装置及び交流電源装置用集積回路
KR1020087026520A KR101022613B1 (ko) 2006-12-22 2007-11-16 교류 전원 장치 및 교류 전원 장치용 집적 회로
CN2007800115535A CN101411246B (zh) 2006-12-22 2007-11-16 交流电源装置以及交流电源装置用集成电路
US12/295,363 US7839659B2 (en) 2006-12-22 2007-11-16 Alternating current power supply device and integrated circuit for alternating current power supply device
PCT/JP2007/072281 WO2008078473A1 (ja) 2006-12-22 2007-11-16 交流電源装置及び交流電源装置用集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006345704 2006-12-22
JP2007150334A JP4289422B2 (ja) 2006-12-22 2007-06-06 交流電源装置及び交流電源装置用集積回路

Publications (2)

Publication Number Publication Date
JP2008178283A true JP2008178283A (ja) 2008-07-31
JP4289422B2 JP4289422B2 (ja) 2009-07-01

Family

ID=39704867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150334A Expired - Fee Related JP4289422B2 (ja) 2006-12-22 2007-06-06 交流電源装置及び交流電源装置用集積回路

Country Status (4)

Country Link
US (1) US7839659B2 (ja)
JP (1) JP4289422B2 (ja)
KR (1) KR101022613B1 (ja)
CN (1) CN101411246B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2242172A1 (en) * 2009-04-14 2010-10-20 Nxp B.V. Inverter having only a one bit feedback signal for controlling three switching states

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277127B2 (ja) * 2007-08-22 2009-06-10 サンケン電気株式会社 交流電源装置
CN109765955B (zh) * 2018-12-07 2020-10-09 中电科仪器仪表(安徽)有限公司 一种电压反馈控制电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668979A (ja) 1992-08-17 1994-03-11 Hitachi Ltd 放電灯点灯装置
JP2791273B2 (ja) * 1993-09-07 1998-08-27 株式会社東芝 電力変換装置
JPH1052059A (ja) 1996-08-01 1998-02-20 Toshiba Lighting & Technol Corp 電源装置、放電灯点灯装置及び照明装置
JP4350810B2 (ja) 1997-05-16 2009-10-21 株式会社デンソー 放電灯装置
JP3496543B2 (ja) * 1998-11-25 2004-02-16 松下電工株式会社 電源装置
JP2002043083A (ja) 2000-07-27 2002-02-08 Toshiba Lighting & Technology Corp 蛍光ランプ点灯装置および照明装置
JP2005101016A (ja) 2005-01-13 2005-04-14 Matsushita Electric Works Ltd 放電灯点灯装置及び車載用照明器具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2242172A1 (en) * 2009-04-14 2010-10-20 Nxp B.V. Inverter having only a one bit feedback signal for controlling three switching states
WO2010119399A2 (en) * 2009-04-14 2010-10-21 Nxp B.V. Mains separator in an inverter
WO2010119399A3 (en) * 2009-04-14 2010-12-09 Nxp B.V. Inverter having only a one bit feedback signal for controlling three switching states

Also Published As

Publication number Publication date
KR20090018605A (ko) 2009-02-20
US20090122581A1 (en) 2009-05-14
KR101022613B1 (ko) 2011-03-16
CN101411246B (zh) 2012-05-23
CN101411246A (zh) 2009-04-15
JP4289422B2 (ja) 2009-07-01
US7839659B2 (en) 2010-11-23

Similar Documents

Publication Publication Date Title
US7414371B1 (en) Voltage regulation loop with variable gain control for inverter circuit
US7336057B2 (en) DC/DC converter
US7920390B2 (en) DC-AC converter, controller IC therefor, and electronic apparatus utilizing such DC-AC converter
US7403401B2 (en) DC-AC converter and method of supplying AC power
US9113519B2 (en) LED driving apparatus and LED lighting apparatus
JP2008288207A (ja) Ledアレイ駆動装置
JP2010283616A (ja) 照明光通信装置
CN106028496B (zh) Led点亮装置以及led照明装置
WO2004047280A1 (ja) 直流−交流変換装置、及びそのコントローラic
US6226196B1 (en) Piezoelectric transformer inverter
US6690591B2 (en) Single stage converter in LCD backlight inverter
JP4941036B2 (ja) 放電管点灯装置及び半導体集積回路
CN110601537B (zh) 初级侧恒定电流调节
TWI435519B (zh) 電源轉換器與其控制方法
US7176638B2 (en) Discharge lamp lighting circuit
KR101202990B1 (ko) Smps 및 이의 정전류 방식 smps 제어회로와 이들을 이용한 led 신호등 시스템
JP4289422B2 (ja) 交流電源装置及び交流電源装置用集積回路
US8492993B2 (en) LED driving circuit and power converting circuit
US7928661B2 (en) Self-excited inverter driving circuit
JP2008289319A (ja) 放電管電力供給装置及び半導体集積回路
JPH11144887A (ja) 高圧放電ランプ用電子バラスト装置
JPH1126181A (ja) 冷陰極管点灯装置
JP2015011831A (ja) フィラメント予熱回路を含んだ低圧ランプ点灯装置
KR100526240B1 (ko) 복합디밍제어방식의 냉음극형광램프용 인버터
JP2005143197A (ja) Pwm信号の時比率制御方法、時比率制御回路およびdc−dcコンバータ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees