JP2008177136A - 燃料電池用触媒電極およびその製造方法 - Google Patents

燃料電池用触媒電極およびその製造方法 Download PDF

Info

Publication number
JP2008177136A
JP2008177136A JP2007012017A JP2007012017A JP2008177136A JP 2008177136 A JP2008177136 A JP 2008177136A JP 2007012017 A JP2007012017 A JP 2007012017A JP 2007012017 A JP2007012017 A JP 2007012017A JP 2008177136 A JP2008177136 A JP 2008177136A
Authority
JP
Japan
Prior art keywords
catalyst
group
fuel cell
electrode
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007012017A
Other languages
English (en)
Inventor
Motohisa Kamijo
元久 上條
Yasukazu Iwasaki
靖和 岩崎
Rika Hagiwara
理加 萩原
Toshiyuki Nohira
俊之 野平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nissan Motor Co Ltd
Original Assignee
Kyoto University
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nissan Motor Co Ltd filed Critical Kyoto University
Priority to JP2007012017A priority Critical patent/JP2008177136A/ja
Publication of JP2008177136A publication Critical patent/JP2008177136A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】発電性能に優れる膜電極接合体を提供する。
【解決手段】触媒と、触媒担体と、イオン液体と、固定化剤とを含む燃料電池用触媒電極であって、ガス流路を有することを特徴とする燃料電池用触媒電極。触媒電極中に触媒担体により電子伝導パスが形成されてなり、触媒担体上の電解質によりプロトン伝導パスが形成されてなる燃料電池用触媒電極。触媒電極中の触媒担体上の電解質の厚さが、5〜1000nmである燃料電池用触媒電極。
【選択図】図1

Description

本発明は、触媒と、触媒担体と、イオン液体と、固定化剤とを含む燃料電池用触媒電極およびその製造方法に関する。
近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、燃料電池が電気自動車用電源、定置型電源として注目されている。燃料電池は、電解質の種類や電極の種類等により種々のタイプに分類され、代表的なものとしてはアルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子形がある。この中でも低温(通常100℃以下)で作動可能な固体高分子形燃料電池が注目を集め、近年自動車用低公害動力源としての開発・実用化が進んでいる。
固体高分子形燃料電池(PEFC)の構成は、一般的には、膜電極接合体(MEA)をセパレータで挟持した構造となっている。MEAは、電解質膜が一対の電極、すなわちアノードおよびカソードにより挟持されてなるものである。電極は、電極触媒および固体高分子電解質に代表される電解質を含み、外部から供給される反応ガスを拡散させるために多孔質構造を有する。
固体高分子電解質の代表的なものとしては、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)などのフッ素系高分子電解質がある。しかしながら、これらの固体高分子電解質は、80℃以上の温度で、プロトン伝導度が著しく低下するという問題があった。この問題点を解決するため、イオン液体をプロトン伝導体として用いることが行われている(例えば、特許文献1)。
イオン液体は、(i)蒸気圧が全くないか、もしくはきわめて小さい、(ii)不燃、または難燃性である、(iii)イオン伝導性をもつ、(iv)水より分解電圧が高い、(v)水よりも液体温度領域が広い、などの電解質として優れた特性を持っている。上記イオン液体の特性は、100℃以上の高温、無加湿運転が望まれる燃料電池用途に適しており、電池や電解などの電気化学デバイスに用いることができるものとして、イオン液体を電気化学デバイスに応用するための種々の開発がなされている。例えば、特許文献2では、ポリマー粒子およびイオン液体を含有する電池が提案されている。
ところで、PEFCにおいては次のような機構により発電反応が進行する。まず、アノード側に供給された燃料ガスに含まれる水素が触媒粒子により酸化され、プロトンおよび電子を生成する(2H→4H+4e)。生成したプロトンは、アノード触媒層に含まれる電解質、さらにアノード触媒層と接触している高分子電解質膜を通過し、カソード触媒層に達する。一方、アノード触媒層において生成した電子は、アノード触媒層に含まれるカーボン担体、さらにアノード触媒層の高分子電解質膜に対向する面に接触しているガス拡散層、セパレータおよび外部回路を通過して、カソード触媒層に達する。そして、カソード触媒層に達したプロトンおよび電子は、カソード側に供給された酸化剤ガスに含まれる酸素と反応し、水を生成する(O+4H+4e→2HO)。燃料電池では、上述した発電反応を通して、電気を外部に取り出すことが可能となる。
国際公開第2003/083981号パンフレット 特開2004−256711号公報
上記反応において、水素や酸素、イオン、電子を効率よく移動させるためには、三相界面の設計が重要となる。
しかしながら、ナフィオンなどのフッ素系高分子電解質は、高温でのプロトン伝導度の低下により、150℃程度でもプロトン伝導が可能なイオン液体に較べて、触媒層の三相界面構造の高温作動性が不十分となる。また、イオン液体を用いた特許文献1や2の技術であっても、触媒と電解質との密着性や、電解質粒子同士の密着性が悪く、三相界面構造での作動性が損なわれる場合があった。
そこで、本発明が目的とするところは、高温においても発電性能に優れた燃料電池用触媒電極を提供することである。
本発明者らは、触媒層中に気体を流通させるガス流路を形成させることにより、得られる触媒電極の発電性能が向上することを見出した。すなわち、本発明は、触媒と、触媒担体と、イオン液体と、固定化剤とを含む燃料電池用触媒電極であって、ガス流路を有することを特徴とする燃料電池用触媒電極により上記課題を解決する。
本発明の触媒電極によれば、高温での発電性能が大幅に向上された燃料電池用触媒電極を提供することが可能となる。
本発明の第一は、触媒と、触媒担体と、イオン液体と、固定化剤とを含む燃料電池用触媒電極であって、ガス流路を有することを特徴とする燃料電池用触媒電極である。
イオン液体は、高温でのプロトン伝導性に優れるため、燃料電池の電解質として用いると、電池の性能が向上することが期待される。しかしながら、実際にイオン液体をそのまま触媒電極の電解質として用いたとしても、電池の発電性能は満足なものとは言い難い状況であった。本発明者らは、この原因を検討した結果、イオン液体が電極細孔中に染み込み、ガス流路を塞ぐことが原因であることを見出した。すなわち、イオン液体を電解質として用いた場合、三相界面の設計において、ガス流路の確保が重要であることを本発明者らは見出し、本発明の燃料電池用触媒電極を完成させた。
本発明の触媒電極においては、図1に示すように触媒担体が電解質膜まで連通する電子伝導パスを形成し、触媒担体の少なくとも一部を覆った電解質が電解質膜まで連通するピロトン伝導パスを形成し、触媒層中の間隙にできたガス流路が、ガス供給・排出の為の拡散域まで連通するパスを形成するため、反応効率に非常に優れた触媒電極である。換言すれば、触媒反応に必要な反応物(カソードの場合では酸素ガス、プロトン、電子)と、生成物(カソードの場合では水または水蒸気)とを速やかに移動させ、反応場(触媒近傍)を反応に好適な状況に保ちうる。さらにイオン液体でイオンパスが形成される為、高温(150℃)下であってもイオンを伝導することが出来る。膜電極を高温にすることができれば、高温下での電極触媒の活性化過電圧が低減されうる。すなわち、高温化によって触媒活性が向上することにより、電極触媒の使用量が低減できる。そのため、従来のナフィオン(登録商標)などのフッ素系高分子電解質と比較して、高価な白金などの貴金属類の低減が可能となり、触媒電極のコストを抑制することが可能となる。
ガス流路の形成は、低温透過型電子顕微鏡(Cryo−TEM)などを用いて視覚的に確認することができる。また、ガス流路は空隙率として、定量的に規定することもできる。具体的には、触媒電極に対して、空隙率が10〜50%であることが好ましく、20〜40%の空隙率であることがより好ましい。空隙率は水銀圧入法による細孔分布計測によって求められる。
以下、触媒電極を構成するイオン液体、固定化剤について詳述する。
[イオン液体]
イオン液体は、分子性カチオンと分子性アニオンとで構成される。
イオン液体は、電解質を溶解する手順を省略でき、ハンドリング、構造体形成プロセスが簡略化でき、また、蒸気圧が非常に低く、蒸発し難いこと、難燃性であること、高い熱分解温度(>250〜300℃)を有すること、低い凝固点(<−20℃)を有することなどの特性が燃料電池用の電解質として好都合である。また、この特性により、高温においても、高いプロトン伝導が可能となる。
イオン液体は、分子性カチオンと分子性アニオンとを含む限り、特に限定されるものではないが、以下具体例を説明する。
カチオン成分としては、例えば、以下の化学式(1)〜(3)に示すイミダゾリウム誘導体(Imidazolium Derivatives、1〜3置換体)、化学式(4)に示すピリジニウム誘導体(Pyridinium Derivatives)、化学式(5)に示すピロリジニウム誘導体(Pyrrolidinium Derivatives)、化学式(6)に示すアンモニウム誘導体(Ammonium Derivatives)、化学式(7)に示すホスフォニウム誘導体(Phosphonium Derivatives)、化学式(8)に示すグアニジニウム誘導体(Guanidinium Derivatives)、化学式(9)に示すイソウロニウム誘導体(Isouronium Derivatives)などが挙げられる。
Figure 2008177136
上記式中のR11は、有機基であり、好ましくは、R11が炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基であり、より好ましくはR11がアルキル基であり、さらに好ましくはR11がメチル基、エチル基、プロピル基、n−イソプロピル基、またはブチル基である。
Figure 2008177136
上記式中のR21、およびR22は、各々独立して、有機基であり、好ましくは、R21およびR22の少なくとも1つ、より好ましくは双方が炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基である。さらに好ましくはR21およびR22はそれぞれアルキル基、またはアリールアルキル基、特に好ましくはメチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、ノニル基、ヘキシル基、オクチル基、デシル基、テトラデシル基、オクタデシル基、またはベンジル基である。
Figure 2008177136
上記式中のR31、R32、およびR33は、有機基であり、好ましくは、R31、R32、およびR33の少なくとも1つ、より好ましくはすべてが、炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基であり、特に好ましくはアルキル基を示す。さらに、好ましくは、R31およびR32がメチル基であり、R33が水素、メチル基、エチル基、プロピル基、ブチル基またはヘキシル基である。
なお、上記の化学式(1)〜(3)に記載されるイミダゾリウム環では、4位、5位のいずれか一方、あるいは双方に有機基を導入することも可能である。有機基としては炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基の中から適宜適用することができる。
Figure 2008177136
上記式中のR41は、有機基であり、好ましくは、R41は炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基である。また、式中のR42、R43、およびR44は、少なくとも1つが水素原子であり、残りが各々独立して、有機基であり、好ましくは炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基である。特に、R41がエチル基、ブチル基、ヘキシル基、またはオクチル基であり、R42、R43、およびR44のすべてが水素原子であるもの、または1つもしくは2つがメチル基であるものを好適に使用できる。
Figure 2008177136
上記式中のR51、およびR52は、各々独立して、水素原子または有機基であり、好ましくは少なくとも一方が炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基である。より好ましくは、R51、およびR52が、各々独立して、水素原子、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基またはオクチル基であり、さらに好ましくは、R51、およびR52の少なくとも1つが水素原子である。
Figure 2008177136
上記式中のR61、R62、R63、R64は、各々独立して、水素原子または有機基であり、好ましくはR61、R62、R63およびR64の少なくとも1つは水素原子であって、残りが炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基である。
Figure 2008177136
上記式中のR71、R72、R73、およびR74は、各々独立して、水素原子または有機基であり、好ましくはR71、R72、R73およびR74の少なくとも1つは水素原子であって、残りが炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基である。
Figure 2008177136
上記式中のR81、R82、R83、R84、R85、およびR86は、各々独立して、水素原子、または有機基であり、好ましくはR81、R82、R83、R84、R85およびR86の少なくとも1つは水素原子であって、残りが炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基である。
Figure 2008177136
上記式中のR91、R92、R93、R94、およびR95は、各々独立して、水素原子、または有機基であり、好ましくはR91、R92、R93、R94およびR95の少なくとも1つは水素原子であって、残りが炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基または複素環式基であり、Aは、酸素原子または硫黄原子である。
また、アニオン成分としては、例えば、下記化学式(10)に示すスルフェート類(Sulfates)、下記化学式(11)に示すスルホン酸類(Sulfonates)、下記化学式(12)〜(14)に示すアミドアニオン(Amides Anion)またはイミドアニオン(Imides Anion)、下記化学式(15)、および(16)に示すメタンアニオン(Methanes Anion)、下記化学式(17)に示すハロゲン類(Halogenides)、下記化学式(18)〜(24)に示すホウ素含有アニオン類、下記化学式(25)〜(32)に示すリン酸塩類及びアンチモン類(Phosphates and Antimonates)、下記化学式(33)、および(34)に示すその他のアニオン類、などが挙げられる。
Figure 2008177136
式中のR101は水素原子、または炭化水素基であり、好ましくは炭素数1〜20のアルキル基またはアリールアルキル基である。好ましくは、R101は水素原子、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基である。
Figure 2008177136
式中のR111は水素原子、または有機基であり、好ましくは炭素数1〜20のアルキル基またはアリールアルキル基、更にはそのフッ素置換体である。好ましくは、R111は水素原子、メチル基、トリフルオロメチル基、エチル基、ブチル基、ヘキシル基、またはオクチル基であり、より好ましくはトリフルオロメチル基である。
Figure 2008177136
Figure 2008177136
Figure 2008177136
Figure 2008177136
Figure 2008177136
Figure 2008177136
Figure 2008177136
Figure 2008177136
Figure 2008177136
前記化学式(34)中、Xは17族元素の何れかであり、yは正の実数であり;XはF、Cl、Br、またはIであることが好ましく、Fであることがより好ましく;yは1.0〜2.3であることが好ましい。
また、多価アニオンとしては、例えば、下記化学式(35)に示す各アニオンなどを好適に使用できる。
Figure 2008177136
上述のアニオン成分の中でも、前記化学式(34)で示される(HX)が好ましい。この際、カチオン成分の例としては、1,3−ジメチルイミダゾリウム塩、1,3,4−トリメチルイミダゾリウム塩、1−エチル−3−メチルイミダゾリウム塩等が挙げられ、好適なのは1−エチル−3−メチルイミダゾリウム塩である。最も好適なイオン液体は、EMI(HF)2.3F(1−エチル−3−メチルイミダゾリウムをカチオンとし、フルオロハイドロジェネートをアニオンとする)で示される。
なお、上述のカチオン成分やアニオン成分は、それぞれ単独で使用することも、2種以上を適宜組み合わせて使用することもできる。
さらに、上記イオン液体においては、キャリアーイオンとしてプロトンが使用されることが好ましい。これによって、当該イオン液体を燃料電池の電解質として好適に使用することができるようになる。
なお、プロトン以外のキャリアーイオンとしては、カチオン成分、その他の陽イオンを使用することができる。
[固定化剤]
前記触媒電極は、固定化剤を含む。固定化剤により、イオン液体は電極内に固定化される。イオン液体が電極内で固定化されることによって、後に触媒層へ電解質が移動したとき、または触媒層中で、電解質の形状および位置が保たれる。すなわち、イオン液体によるガス流路の閉塞が効果的に防止でき、電子・プロトン伝導パス、ガス流路が保たれるため、効率のよい物質移動が行われる。
イオン液体を固定化させる固定化剤は、特に制限されるものではないが、ポリマーであることが好ましく、重合性モノマーを重合してなるポリマーを用いることがより好ましい。
前記ポリマーとして、具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリメタクリル酸メチル、およびポリフッ化ビニリデン等のポリマー、(メタ)アクリル酸系モノマー、アクリルアミド系モノマー、アリル系モノマー、スチレン系モノマー、およびエポキシ系モノマー等の重合性モノマーを重合させてなる重合体が好ましく挙げられる。なお、モノマーは1種単独で重合体を形成してもよいし、2種以上組み合わせて重合体を形成してもよい。また、上記ポリマーは1種単独で用いてもよく、2種以上を組み合わせてもよい。好ましくは、(メタ)アクリル酸系モノマー、アクリルアミド系モノマー、アリル系モノマー、スチレン系モノマー、およびエポキシ系モノマーから選ばれる重合性モノマーを重合させてなる重合体である。
前記(メタ)アクリル酸系モノマーとは、モノカルボン酸(エステル)モノエチレン性不飽和単量体を構成として持つものを指し、具体的には、ヒドロキシアルキル(メタ)アクリレート(2−ヒドロキシルエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等)、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等のノニオン性の不飽和単量体;(メタ)アクリル酸、マレイン酸、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸等のアニオン性の不飽和単量体およびその塩;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレートおよびそれらの4級塩などのカチオン性の不飽和単量体が挙げられる。
アクリルアミド系モノマーとしては、(メタ)アクリルアミド;N,N−ジメチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミドおよびそれらの4級塩;2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸およびその塩などが好ましく挙げられる。
アリル系モノマーとしては、アリルアルコール、アリルアミン、トリアリルイソシアヌレートなどが好ましく挙げられる。
スチレン系モノマーとしては、スチレン、メチルスチレン、トリフルオロスチレン、スチレンスルホン酸およびその塩などが好ましく挙げられる。
エポキシ系モノマーとしては、ビスフェノールフルオレンジグリシジルエーテル、ビスフェノキシエタノールフルオレンジグリシジルエーテルなどが好ましく挙げられる。
なお、アニオン性のモノマーを塩として用いる場合には、イオン液体を安定して固定するために、アクリル酸のアルカリ金属塩、アンモニウム塩、アミン塩から選ばれるアクリル酸の1価塩とすることが好ましい。より好ましくはアクリル酸アルカリ金属塩であり、特に好ましくは、ナトリウム塩、リチウム塩、カリウム塩から選ばれるアクリル酸塩である。
(メタ)アクリル酸系モノマー、アクリルアミド系モノマー、アリル系モノマー、スチレン系モノマー、およびエポキシ系モノマーから選ばれる重合性モノマーを重合させる場合、全モノマー100質量%に対して少なくとも30質量%以上、より好ましくは50〜100質量%、さらに好ましくは80〜100質量%、(メタ)アクリル酸系モノマー、アクリルアミド系モノマー、アリル系モノマー、スチレン系モノマー、およびエポキシ系モノマーから選ばれる重合性モノマーを含む。なお、本願において、上記アクリル酸系モノマー等以外の他の重合性モノマー(ビニルスルホン酸、N−ビニル−2−ピロリドン等)を含んで重合体を形成させてもよい。
前記重合性モノマーとしては、アクリル酸系モノマーであることが好ましく、2−ヒドロキシルアルキル(メタ)アクリレートであることがより好ましく、2−ヒドロキシルエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートであることがさらに好ましく、2−ヒドロキシルエチル(メタ)アクリレートであることが特に好ましい。前記モノマーを含むモノマーを重合させてなるポリマーによれば、膜電極接合体においてイオン液体を固定できるだけでなく、得られる膜電極接合体の発電性能をさらに向上させることが可能となる。発電性能を向上させる理由としては、酸素透過性の向上による活性化過電圧の低減等が考えられる。
なお、本発明においてポリマーとは、重量平均分子量が1000以上であるものを指す。
ポリマーの含有量は、特に制限されるものではないが、イオン液体100質量%に対して、5〜95質量%含まれることが好ましく、30〜60質量%含まれることがより好ましい。このように、上記ポリマーは固定化剤として作用するため、配合具合を調整すれば、電解質の粘度に関係なく、所望の粘度(硬さ)のイオン伝導ゲルを作製することができ、液状の電解質であるイオン液体であっても、溶解、混合するだけの簡易な操作で固定化することができる。
上記イオン液体の固定化により、触媒層中において、イオン液体からなる電解質層が触媒担体上に形成される。電解質層の厚さは、特に制限されるものではないが、5〜1000nmであることが好ましく、10〜1000nmであることがより好ましく、10〜500nmであることがさらに好ましく、10〜50nmであることが特に好ましい。電解質層の厚さがこの範囲にあると、触媒へのガス供給が良好となるとともに、電解質膜への連通経路が形成され、途切れの無いイオン伝導パスが形成されうる。すなわち、触媒上に、反応ガスとイオンとを速やかに供給する(または離脱させる)ことができ、発電性能が向上する。
本発明の第二は、本発明の第一の触媒電極の製造方法である。該製造方法は、重合性モノマーおよび重合開始剤と、イオン液体と、揮発性物質と、を混合する工程(I)と、前記工程(I)で得られた混合物を触媒と触媒担体とを含む層に塗布する、あるいは触媒、触媒担体および前記工程(I)で得られた混合物を混合し、電解質膜および/またはガス拡散層に塗布する工程(II)と、揮発性物質を揮発させ、重合性モノマーを重合させる工程(III)と、を含む。なお、以下に説明する製造方法は、本願触媒電極を得るための製造方法の一つに過ぎず、本願触媒電極は本願構成を具備する限り、他の製造方法によって製造されてもよい。
以下、各工程について、詳細に説明する。
(I)重合性モノマーおよび重合開始剤と、イオン液体と、揮発性物質とを混合する工程
まず、重合性モノマーおよび重合開始剤と、イオン液体と、揮発性物質とを混合する。固定化剤およびイオン液体は上記で説明したものを用いることができ、重合開始剤および揮発性物質については、以下のものを用いることができる。
[重合開始剤]
重合開始剤としては、例えば、過硫酸アンモニウム基、過硫酸ナトリウム、過硫酸カリウムなどの過硫酸塩;過酸化水素;2,2’−アゾビス(2−アミジノプロパン)2塩酸塩、アゾビス−2−メチルプロピオンアミジン塩酸塩、アゾビスイソブチロニトリル(AIBN)などのアゾ化合物;ベンゾイルパーオキシド(Benzoyl peroxide:BPO)、ラウロイルパーオキシド等のパーオキシド;クメンハイドロパーオキシド等のハイドロパーオキシド等が挙げられる。これらの中でも、パーオキシドおよびアゾ化合物が好ましく、ベンゾイルパーオキシドおよびアゾビスイソブチロニトリルがより好ましい。これらの重合開始剤は、単独でまたは2種以上の混合物の形態で用いることができる。なお、重合開始剤は上記列記したものに限定されず、鉄(II)イオン、銀(I)イオンなどと組み合わせるレドックス開始剤、光の作用により励起状態となるか他の分子と反応するなどしてラジカルを発生させる光感受性分子などラジカル重合を進行させるものであれば、特に限定されない。
この際、促進剤として亜硫酸水素ナトリウム、亜硫酸ナトリウム、モール塩、ピロ重亜硫酸ナトリウム、ホルムアルデヒドナトリウムスルホキシレート、アスコルビン酸などの還元剤;エチレンジアミン、エチレンジアミン四酢酸ナトリウム、グリシンなどのアミン化合物;などの1種または2種以上を併用することもできる。
重合開始剤の含有量は、特に限定されないが、重合性モノマー、重合開始剤、イオン液体、揮発性物質からなる混合物100質量%に対して、0.1〜3.0質量%であることが好ましく、0.2〜0.8質量%であることがより好ましい。
[揮発性物質]
本願でいう揮発性物質とは、溶液の場合、沸点が180℃以下、好ましくは120℃以下の化合物を指し、固体の場合、昇華点が120℃以下、好ましくは80℃以下の化合物を指す。揮発性物質としては、水、有機溶剤、加熱により融解する有機物固体が挙げられる。水、有機溶剤、加熱により融解する有機物固体は、イオン液体と混合できる、固定化剤を融解することができる、更に、揮発工程で除去できるという特徴を有する。
有機溶剤は特に制限されるものではないが、例えば、アセトン(沸点:56.3℃)、イソブチルアルコール(沸点:108℃)、イソプロピルアルコール(沸点:82.3℃)、イソペンチルアルコール(沸点:131.7℃)、ジエチルエーテル(沸点:34.5℃)、エチレングリコールモノエチルエーテル(沸点:131.7℃)、エチレングリコールモノエチルエーテルアセテート(沸点:156.4℃)、エチレングリコールモノブチルエーテル(沸点:171.2℃)、エチレングリコールモノメチルエーテル(沸点:124.5℃)、o−、m−、p−キシレン(o−キシレンの場合、沸点:144.4℃)、スチレン(沸点:145.2℃)、トルエン(沸点:110.6℃)、エチルアルコール(沸点:78.3℃)、メチルアルコール(沸点:64.7℃)、メチルエチルケトン(沸点:79.5℃)などが挙げられる。
加熱により融解する有機物固体としては、特に制限されないが、ナフタレン、2−メチルナフタレン、1−ナフトール、2−ナフトール、ナフトエ酸、ナフトニトリル、ナフチルアミン、アセナフテンなどのナフタレン化合物などが挙げられる。
重合性モノマーがイオン液体に溶解しない場合であっても、先に揮発性物質に溶解させて、その後、イオン液体を混合することができることから、揮発性物質は、エチルアルコールおよび/またはイソプロピルアルコールを含むことが好ましい。この場合、エチルアルコールおよび/またはイソプロピルアルコールが、揮発性物質中、99〜100質量%であることが好ましい。
揮発性物質は、1種単独で用いてもよいし、2種以上を併用してもよい。
重合性モノマーおよび重合開始剤、イオン液体、揮発性物質を、本工程では混合するが、4者が均一に混合される限り、混合の順序は問わない。例えば、重合性モノマーおよび重合開始剤を揮発性物質またはイオン液体に溶解してから残りの一方を混合してもよいし、4者同時に混合してもよい。溶解性の観点からは、まず重合性モノマーおよび重合開始剤をイオン液体または揮発性物質の少なくとも一方に溶解混合させることが好ましく、重合性モノマーおよび重合開始剤をイオン液体に溶解させた後、揮発性物質を添加することがより好ましい。重合性モノマーをイオン液体に溶解させる際に、加熱処理を行ってもよい。この場合、揮発性物質の沸点/昇華点以下まで冷却してから、揮発性物質を添加することが好ましい。
上記揮発性物質とイオン液体との混合比率は、特に制限されるものではないが、好ましくは、イオン液体100体積%に対して揮発性物質が5〜98体積%、より好ましくは10〜70体積%、さらに好ましくは30〜40体積%である。この範囲であると、細孔内を全て電解質で満たすことの無い構造を得ることが可能になる。また、混合比が5%以上であると、得られるガス拡散流路体積が適当であり、ガス拡散性の良好な電極が得られ、さらに電極触媒層中の電解質量が十分なものであるため、電極反応の進行が効率よく行われる。
また、前記イオン液体のモルと、前記モノマーの合計モルとの比(N=イオン液体/モノマー)は、好ましくは0.3≦N≦0.7であり、より好ましくは0.45≦N≦0.6である。この範囲であれば、触媒層中の水素移動が適当となり、また、モノマーの重合が進行しやすいためである。
以上の重合性モノマー、重合開始剤、イオン液体、揮発性物質の混合物を、以下単に「混合物」とすることもある。
(II)前記工程(I)で得られた混合物を触媒と触媒担体とを含む層に塗布する、あるいは触媒、触媒担体および前記工程(I)で得られた混合物を混合し、電解質膜および/またはガス拡散層に塗布する工程
前記工程(I)で得られたイオン液体を含む混合物を、触媒と触媒担体とを含む層(以下、「触媒前駆体層」とする)に塗布する(以下、工程(II’)とする)、または触媒、触媒担体および前記工程(I)で得られた混合物を混合する(以下、工程(II”)とする)ことで、電解質層を有する触媒層が形成される。
工程(II’)で用いられる触媒前駆体層は、触媒と触媒担体を含む限り特に制限されず、自ら作製してもよく、また、市販品を使用することもできる。
混合物の触媒前駆体層への塗布方法は、公知の方法を用いることができ、例えば、スプレーコーター法、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法等を用いることができる。
触媒前駆体層への塗布量は、イオン液体や揮発性物質の種類などによって、適宜選択されうるが、例えば、触媒層全体100質量%に対して、混合物の塗布量が、好ましくは40〜90質量%であり、より好ましくは50〜70質量%である。
なお、下記次工程(III)に進む前に、好ましくは0〜30℃、より好ましくは10〜25℃の温度で、常圧下において、好ましくは10〜60分、より好ましくは15〜60分、上記混合物が塗布された触媒前駆体層を保持することが好ましい。この操作により、混合物を電極触媒層に十分浸透させることができるため、好ましい。
工程(II”)において、触媒、触媒担体および混合物との混合方法は、特に制限されるものではなく、通常の混合方法を採ることができる。混合物と触媒層との混合比率も、適宜選択されうるが、触媒が担持された触媒担体100質量%に対して、混合物の量が好ましくは40〜90質量%であり、より好ましくは50〜70質量%である。
混合後に、得られた混合物を電解質膜および/またはガス拡散層に塗布する。電解質膜および/またはガス拡散層への塗布量は、イオン液体や揮発性物質の種類などによって、適宜選択されうる。本工程で用いられうる触媒および触媒担体については、別途詳細に述べる。
(III)混合物から揮発性物質を揮発させ、重合性モノマーを重合させる工程
揮発性物質を揮発させることで、揮発性物質分の体積が減少するため、ガス流路が確保され、また、揮発したガスが外部へ放出される際、電解質層を多孔質状にする効果も得られるため、プロトン伝導パスおよびガス流路を確保することができる。また、固定化剤を含有する場合、上記電解質層の多孔質形状が維持されうる。
揮発方法としては、通常公知の方法を使用することができ、例えば、加熱工程、乾燥ガスによるパージ工程、真空乾燥工程、凍結乾燥工程などを用いることができる。
加熱工程の際の各種の条件については特に制限はなく、適宜設定することができる。例えば、加熱温度としては、揮発性物質によるが、通常揮発性物質の沸点より高い温度で加熱し、例えば揮発性物質の沸点より0〜30℃高い温度で加熱すると、効率的かつ効果的に乾燥することができる。具体的には、加熱温度は0〜25℃であることが好ましく、0〜20℃であることがより好ましい。また、加熱時間は、通常0.5〜24時間程度である。
乾燥ガスによるパージ工程、真空乾燥工程、凍結乾燥工程は、温度を上昇させずに揮発物を除去できるため、高温で効果が得られなくなる固定化剤の系でも、ガス流路の確保が可能になる。
乾燥ガスによるパージ工程は、乾燥ガス(例えば、ヘリウムガス、アルゴンガス、窒素ガスなど)をパージガスとして用いるものである。乾燥ガスによるパージは、公知の装置を用いることができる。この際、乾燥に用いる乾燥器の電熱ヒーターにより上記加熱温度に雰囲気温度を調整する。パージガス量は乾燥器容積に対する空間速度で100h−1程度であると、揮発性物質の揮発が効率的に行われるので好ましい。また、乾燥ガスによるパージ操作はこの工程を通して実施されるものである。乾燥ガスによるパージ工程は、揮発性物質の沸点よりも低い温度で乾燥を行うことができるので、過度な揮発およびそれに伴う電解質の膜外への移動を防ぐことができる。
真空乾燥は、減圧下に工程(II)で得られた触媒層を置き、揮発性物質を揮発させる方法である。真空乾燥における温度は、上記加熱温度であることが好ましい。さらに、好ましくは0.1〜0.5kPaの圧力下であり、より好ましくは0.1〜0.2kPaの圧力下である。
凍結乾燥は、混合物中の揮発性物質を凍結させ、真空ポンプなどにより通常1〜24時間程度、減圧(通常0.1〜0.5kPa)し、揮発性物質を揮発(昇華)させる方法である。凍結乾燥により、より孔の小さい多孔性の電解質層が得られる。
本工程において、揮発性物質を揮発させる工程によって重合性モノマーが重合される場合には、別途重合工程を行う必要はない。具体的には、例えば、揮発性物質を揮発させる工程が加熱工程である場合、該加熱により重合開始剤による重合が進行するため、別途重合工程を行う必要はない。この場合、揮発性物質の揮発と重合性モノマーの重合とが一工程で行われるため、生産効率の観点から好ましい。加熱により重合させる場合、重合開始剤の分解効率の点からは、通常60℃以上150℃未満で行うことが好ましい。したがって、用いる揮発性物質の沸点を考慮して、加熱温度を適宜設定することが好ましい。
また、揮発性物質を揮発させる工程と別途重合性モノマーの重合を行う場合は、揮発性物質の揮発工程を行う前に該重合工程を行うことが好ましい。重合方法としては、ラジカル重合開始剤を用いる他、重合開始剤と組み合わせて、熱、光、紫外線、放射線、電子線などを用いて重合を行ってもよい。
以上の工程により、触媒上に、反応ガスとイオンとを速やかに供給する(または離脱させる)、電極触媒層内の微細構造を得ることができる。すなわち、電子、イオン、反応ガス分子の移動が効率よく行われる三相界面構造を有する触媒層を含む触媒電極が製造される。また、イオン液体の固定化により、微細構造が固定化され、イオンパス、ガス流路形状を維持することができる。
以下、触媒層に含まれうる他の材料について簡単に説明するが、本発明の技術的範囲が下記の形態のみに限定されることはない。
触媒層は、触媒成分、触媒成分を担持する導電性触媒担体、および上記イオン液体を含む電解質を有する。
アノード触媒層に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒成分もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、およびそれらの合金等などから選択されうる。
これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。前記合金の組成は、合金化する金属の種類にもよるが、白金が30〜90原子%、合金化する金属が10〜70原子%とするのがよい。カソード触媒として合金を使用する場合の合金の組成は、合金化する金属の種類などによって異なり、当業者が適宜選択できるが、白金が30〜90原子%、合金化する他の金属が10〜70原子%とすることが好ましい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒成分およびカソード触媒層に用いられる触媒成分は、上記の中から適宜選択できる。以下の説明では、特記しない限り、アノード触媒層およびカソード触媒層用の触媒成分についての説明は、両者について同様の定義であり、一括して、「触媒成分」と称する。しかしながら、アノード触媒層およびカソード触媒層の触媒成分は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択される。
触媒成分の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが使用できるが、触媒成分は、粒状であることが好ましい。この際、触媒粒子の平均粒子径は、好ましくは1〜30nmである。触媒粒子の平均粒子径がかような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスが適切に制御されうる。なお、本発明における「触媒粒子の平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡像より調べられる触媒成分の粒子径の平均値として測定されうる。
触媒担体は、上述した触媒成分を担持するための担体、および触媒成分との電子の授受に関与する電子伝導パスとして機能する。
触媒担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンであることが好ましい。具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、「実質的に炭素原子からなる」とは、2〜3質量%程度以下の不純物の混入が許容されうることを意味する。
触媒担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよいが、好ましくは20〜1600m/g、より好ましくは80〜1200m/gである。触媒担体の比表面積がかような範囲内の値であると、触媒担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御されうる。
触媒担体のサイズについても特に限定されないが、担持の簡便さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点からは、平均粒子径を5〜200nm、好ましくは10〜100nm程度とするとよい。
触媒担体に触媒成分が担持されてなる電極触媒において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10〜80質量%、より好ましくは30〜70質量%である。触媒成分の担持量がかような範囲内の値であると、触媒担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。なお、触媒成分の担持量は、誘導結合プラズマ発光分光法(ICP)によって測定されうる。
触媒層には、上記イオン液体以外のイオン伝導性の高分子電解質が含まれていてもよい。当該高分子電解質は特に限定されず従来公知の知見が適宜参照されうるが、例えば、後述する高分子電解質膜を構成するイオン交換樹脂が前記高分子電解質として触媒層に添加されうる。イオン液体以外の高分子電解質の含有量は、特に制限されるものではないが、触媒層に含まれる電解質100質量%に対して、好ましくは60質量%以下である。
燃料電池に適用する場合、触媒電極のその他の部材については、燃料電池の分野において従来公知の構成がそのまま、または適宜改良されて採用されうる。以下、参考までに触媒層以外の部材の典型的な形態について説明するが、本発明の技術的範囲が下記の形態のみに限定されることはない。
[ガス拡散層]
アノードおよびカソードにおける各電極は、上述した電極触媒層の他にガス拡散層を有していてもよい。前記ガス拡散層は、電極触媒層の電解質膜が接する面とは反対の面に配置される。
電極触媒層およびガス拡散層を有する電極において、電極触媒層はガス拡散層上に形成されてもよい他、ガス拡散層中の一部に電極触媒層が形成されていてもよい。後者の場合、後述するガス拡散基材の所望する部位に、電極触媒および電解質材料が含浸されたものなどが挙げられる。
前記ガス拡散層は、特に限定されず公知のものが同様にして使用でき、例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性及び多孔質性を有するシート状のガス拡散基材からなるものなどが挙げられる。
前記ガス拡散基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30〜500μm程度とすればよい。
前記ガス拡散基材には、撥水性をより高めてフラッディング現象などを防ぐことを目的として、撥水剤を含んでいてもよい。前記撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
また、撥水性をより向上させるために、前記ガス拡散層は、前記ガス拡散基材上に撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層を有するものであってもよい。
前記カーボン粒子としては、特に限定されず、カーボンブラック、黒鉛、膨張黒鉛などの従来一般的なものであればよい。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく挙げられる。
前記カーボン粒子層に用いられる撥水剤としては、前記ガス拡散基材に用いられる上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられる。
前記カーボン粒子層におけるカーボン粒子と、撥水剤との混合比は、カーボン粒子が多過ぎると期待するほど撥水性が得られない恐れがあり、撥水剤が多過ぎると十分な電子伝導性が得られない恐れがある。これらを考慮して、カーボン層におけるカーボン粒子と撥水剤との混合比は、質量比で、90:10〜40:60程度とするのがよい。
前記カーボン粒子層の厚さは、得られるガス拡散層の撥水性を考慮して適宜決定すればよいが、好ましくは10〜1000μm、より好ましくは50〜500μmとするのがよい。
本発明の第三は、上記触媒電極を有する燃料電池である。電解質としてイオン液体を用い、ガス流路を有する触媒電極を使用するため、燃料電池の大幅な発電性能の向上が期待できるとともに、高温での信頼性が高く、さらに触媒使用量の低減によるコスト削減などが可能となる。
本発明は、触媒電極に特徴を有するものであって、したがって、燃料電池を構成するその他の部材については、燃料電池の分野において従来公知の構成がそのまま、または適宜改良されて採用されうる。触媒電極の適用用途としては、PEFCが挙げられる。PEFCの一般的な構成としては、セパレータ、ガス拡散層、カソード触媒層、電解質膜、アノード触媒層、ガス拡散層、およびセパレータが、この順序で配置された構成が挙げられる。電解質膜としては、上記で説明したイオン液体を含むもの、またナフィオン(登録商標)もしくはアシプレックス(登録商標)などのフッ素系高分子電解質から構成されるものを使用することができる。ただし、PEFCにおける基本的な構成は上記に限定されるわけではなく、他の構成を有するPEFCにも、本発明を適用することが可能である。PEFCの用途としては特に制限されないが、発電性能および信頼性に優れることから、自動車などの車両における駆動用電源として用いられることが好ましい。
本発明の燃料電池の製造方法は特に制限されず、燃料電池の分野において従来公知の知見を適宜参照することにより製造可能である。なお、本発明の特徴的な構成である触媒電極の形成方法の具体例については、上述した通りである。ただし、上述の手法により触媒電極が形成されてなる触媒層を有する触媒電極にのみ、本発明の技術的範囲が限定されるわけではない。
前記燃料電池の燃料の種類としては、特に限定されず、上記した説明中では水素を例に挙げて説明したが、この他にも、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2級ブタノール、3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールを用いることができる。なかでも高出力化が可能である点で、水素とメタノールが好ましく挙げられる。
さらに、燃料電池が所望する電圧等を得られるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだスタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
本発明の第四は、本発明の第三の燃料電池を搭載した車両である。
従来のナフィオン(登録商標)を電解質として使用した燃料電池では、特に膜電極接合体を積層してスタックを組んだ場合に、高電流密度化により発電効率が低下して放熱量が増加するため、80℃以下に燃料電池を冷却する必要がある。そのため、ラジエーター面積を従来の内燃機関の車両と比較して大きくする必要があった。しかし、本発明のように、イオン液体を電解質として使用する燃料電池では、120℃以上の高温での運転が可能である。そのため、ラジエーターの大きさを従来の内燃機関の車両と同程度に小型化することが可能である。したがって、本発明の燃料電池を用いることで、車両の簡素化、低コスト化が実現されうる。
以下、実施例を用いて、より具体的に本発明を説明する。なお、本発明が下記実施例に
限定されることはない。
実施例1
(1)イオン液体の作製
温度60℃、130kPaの真空下で1−エチル−3−メチルイミダゾリウムクロライド(EMICl)(純度98.5%、水含有率1.4%)を乾燥させた。次いで、グローブボックスを使用して乾燥雰囲気下(HO濃度<10ppm)において、乾燥させたEMIClをアセトニトリルに溶解させた。完全に溶解したのを確認し、この溶液に酢酸エチルを加えるとEMIClが再結晶化した。アセトニトリルと酢酸エチルとを除去し、再度これを60℃、130kPaの真空下で2〜4時間乾燥させた。得られたEMIClを再度アセトニトリルに溶解させ、再結晶化した。この操作を4回繰り返してEMICl中の水分と不純物を除去した。このようにして得たEMIClをパーフルオロアルコキシドポリマー(PFA)からなる反応容器に投入し、大過剰のフッ化水素(HF)と0〜25℃で反応させた。なお、HFは、蒸留により無水化したものを用いた。これによりEMI(HF)2.3Fが生成した。
(2)触媒電極の作製
上記で合成したEMI(HF)2.3Fと、2−ヒドロキシルエチルメタクリレート(HEMA)とを、質量比で、1:1で混合した後、重合開始剤としてベンゾイルパーオキサイドを前記混合液100質量%に対して0.5質量%混合した。得られた混合液(A)を、PTFE製多孔質支持体(厚さ30μm、空隙率63%、大きさ30mm×30mm)に塗布することにより含浸させた。
次に、前記混合液(A)にイソプロピルアルコール(沸点82.3℃)を、イオン液体100体積%に対し70体積%となるように混合した混合液Bを作製した。触媒前駆体層(約20μm)、ガス拡散層(カーボン粒子層(約80μm)、カーボンクロス層(約300μm))からなる基材(E−TEK社製 LT140E−W、Pt担持量5g/m)の触媒前駆体層側に得られた混合液Bを塗布した。塗布量は、0.4mg/cmであり、スプレーコーターを用いて均一に塗布した。なお、触媒前駆体層は、Ptを30wt%担持したカーボンブラックの粒子から構成されていて、触媒前駆体層、カーボン粒子層、カーボンクロス層は、予め電子伝導するように構成されている。
その後、基材を20℃にて1時間保持した。この操作により、混合液Bを触媒前駆体層に十分浸透させることができる。
その後、100℃で2時間乾燥し、室温まで冷却して触媒電極を得た。乾燥温度はイソプロピルアルコールの沸点を超える温度であり、イソプロピルアルコールを速やかに揮発させることで、ガス流路が形成され、途切れのない電子・プロトン伝導パスおよびガス拡散流路を確保することが出来た。混合液Bの塗布量は、0.4mg/cmであり、スプレーコーターを用いて均一に塗布した。なお、触媒前駆体層は、Ptを担持したカーボンブラックの粒子から構成されていて、触媒前駆体層、カーボン粒子層、カーボンクロス層は、予め電子伝導するように構成されている。
前記混合液Aを含浸させたPTFE製多孔質支持体の両側に、電極前駆体を前記混合液(A)が塗布された面を内側にして配置し、得られた積層体を、0.05MPaで加圧しながら、80℃、24時間、加熱することにより、重合および接合して膜電極接合体を作製した。
<形態観察>
得られた触媒電極をエポキシ樹脂に包埋固定し、ミクロトームにより触媒層部分の超薄切片を得た。得られた試料を、低温電子顕微鏡(Cryo−TEM)により形態観察した。その結果、得られた触媒電極にはガス流路が形成されていることが確認できた。
本発明の触媒層中の微細構造の模式図を示す。

Claims (13)

  1. 触媒と、触媒担体と、イオン液体と、固定化剤とを含む燃料電池用触媒電極であって、ガス流路を有することを特徴とする燃料電池用触媒電極。
  2. 触媒電極中に触媒担体により電子伝導パスが形成されてなり、触媒担体上の電解質によりプロトン伝導パスが形成されてなる、請求項1に記載の燃料電池用触媒電極。
  3. 触媒電極中の触媒担体上の電解質層の厚さが、5〜1000nmである、請求項1または2に記載の燃料電池用触媒電極。
  4. 前記固定化剤がポリマーである、請求項1〜3のいずれか1項に記載の燃料電池用触媒電極。
  5. 前記ポリマーが、重合性モノマーを重合させてなるポリマーであって、前記重合性モノマーが(メタ)アクリル酸系モノマー、アクリルアミド系モノマー、アリル系モノマー、スチレン系モノマー、およびエポキシ系モノマーからなる群から選択される少なくとも1種の重合性モノマーを全重合性モノマー100重量%に対して30重量%以上含む請求項4に記載の燃料電池用触媒電極。
  6. 前記重合性モノマーが、アクリル酸系モノマーである請求項5に記載の燃料電池用触媒電極。
  7. 重合性モノマーおよび重合開始剤と、イオン液体と、揮発性物質と、を混合する工程(I)と、
    前記工程(I)で得られた混合物を触媒と触媒担体とを含む層に塗布する、あるいは触媒、触媒担体および前記工程(I)で得られた混合物を混合したものを電解質膜およびガス拡散層のいずれか一方または両方に塗布する工程(II)と、
    揮発性物質を揮発させ、重合性モノマーを重合させる工程(III)と、
    を含むことを特徴とする、燃料電池用触媒電極の製造方法。
  8. 前記工程(III)における揮発性物質の揮発が、加熱、乾燥ガスによるパージ、真空乾燥、および凍結乾燥のいずれかによって行われる請求項7に記載の製造方法。
  9. 前記揮発性物質が、水、有機溶剤および加熱により融解する有機物固体から選ばれる1種以上である請求項7または8に記載の製造方法。
  10. 前記揮発性物質が、エチルアルコールまたはイソプロピルアルコールである請求項9に記載の製造方法。
  11. イオン液体100%に対する揮発性物質の体積混合比が5〜98%である請求項7〜10のいずれか1項に記載の製造方法。
  12. 請求項1〜6のいずれか1項に記載の燃料電池用触媒電極、または請求項7〜11のいずれか1項に記載の製造方法により製造された燃料電池用触媒電極を用いた燃料電池。
  13. 請求項12に記載の燃料電池を搭載した車両。
JP2007012017A 2007-01-22 2007-01-22 燃料電池用触媒電極およびその製造方法 Pending JP2008177136A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012017A JP2008177136A (ja) 2007-01-22 2007-01-22 燃料電池用触媒電極およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012017A JP2008177136A (ja) 2007-01-22 2007-01-22 燃料電池用触媒電極およびその製造方法

Publications (1)

Publication Number Publication Date
JP2008177136A true JP2008177136A (ja) 2008-07-31

Family

ID=39703994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012017A Pending JP2008177136A (ja) 2007-01-22 2007-01-22 燃料電池用触媒電極およびその製造方法

Country Status (1)

Country Link
JP (1) JP2008177136A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077006A (ja) * 2009-10-02 2011-04-14 Toppan Printing Co Ltd 固体高分子型燃料電池用電極触媒層の製造方法および固体高分子型燃料電池用電極触媒層、ならびに膜電極接合体の製造方法および膜電極接合体
JP2011198501A (ja) * 2010-03-17 2011-10-06 Toppan Printing Co Ltd 固体高分子形燃料電池、膜・電極接合体、電極触媒層、及びその製造方法
JP2011210563A (ja) * 2010-03-30 2011-10-20 Toppan Printing Co Ltd 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP2012517095A (ja) * 2009-02-05 2012-07-26 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク 移動変更用誘電勾配領域を有するエネルギー変換セルおよびその方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517095A (ja) * 2009-02-05 2012-07-26 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク 移動変更用誘電勾配領域を有するエネルギー変換セルおよびその方法
JP2011077006A (ja) * 2009-10-02 2011-04-14 Toppan Printing Co Ltd 固体高分子型燃料電池用電極触媒層の製造方法および固体高分子型燃料電池用電極触媒層、ならびに膜電極接合体の製造方法および膜電極接合体
JP2011198501A (ja) * 2010-03-17 2011-10-06 Toppan Printing Co Ltd 固体高分子形燃料電池、膜・電極接合体、電極触媒層、及びその製造方法
JP2011210563A (ja) * 2010-03-30 2011-10-20 Toppan Printing Co Ltd 固体高分子形燃料電池用膜電極接合体およびその製造方法

Similar Documents

Publication Publication Date Title
US8153329B2 (en) Proton conducting electrolyte membrane and production method thereof and solid polymer fuel cell using the same
JP5002939B2 (ja) 燃料電池用電解質膜および膜電極接合体
JP2008276949A (ja) 固体高分子形燃料電池用膜電極接合体
JP2003123791A (ja) プロトン伝導体及びこれを用いた燃料電池
JP2006019272A (ja) 燃料電池用高分子膜及びその製造方法
US20230295813A1 (en) Ammonia production method and ammonia production apparatus
JP2008177136A (ja) 燃料電池用触媒電極およびその製造方法
JPWO2006080159A1 (ja) プロトン伝導性電解質膜とその製造方法、及び該プロトン伝導性電解質膜を用いた固体高分子型燃料電池
JP4846371B2 (ja) 燃料電池用膜−電極接合体及びこれを含む燃料電池システム
CA2788723A1 (en) Membrane electrode assembly for polymer electrolyte fuel cell with intermediate layer for decreased humidity variations
JP2008177134A (ja) 燃料電池用触媒電極およびその製造方法
JP2008282635A (ja) 電極触媒およびこれを用いた燃料電池ならびにそれらの製造方法
US20100196790A1 (en) Membrane and electrode assembly and fuel cell
JP5168913B2 (ja) 燃料電池用触媒電極およびその製造方法
JP2009029846A (ja) 電解質、電極触媒層、燃料電池およびそれらの製造方法
JP2007066765A (ja) 膜電極接合体、および、これを用いた燃料電池
JP2006236927A (ja) 固体高分子型燃料電池用膜電極接合体
JP2007234247A (ja) プロトン伝導性材料及びその製造方法
WO2023113033A1 (ja) ガス拡散電極
JP2006079917A (ja) 燃料電池用mea、および、これを用いた燃料電池
JP2007066764A (ja) 膜電極接合体、および、これを用いた燃料電池
JP2007173159A (ja) 温度応答性材料含有電解質膜
JP2006079840A (ja) 燃料電池用電極触媒、および、これを用いた燃料電池用mea
US20230295818A1 (en) Ammonia production method and ammonia production apparatus
KR100738059B1 (ko) 연료전지용 전극, 그 제조방법 및 이를 구비한 연료전지