JP2008175682A - Detailed shape height measuring device and measuring method - Google Patents

Detailed shape height measuring device and measuring method Download PDF

Info

Publication number
JP2008175682A
JP2008175682A JP2007009065A JP2007009065A JP2008175682A JP 2008175682 A JP2008175682 A JP 2008175682A JP 2007009065 A JP2007009065 A JP 2007009065A JP 2007009065 A JP2007009065 A JP 2007009065A JP 2008175682 A JP2008175682 A JP 2008175682A
Authority
JP
Japan
Prior art keywords
product
inspected
shape
article
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009065A
Other languages
Japanese (ja)
Inventor
Shinichi Tozawa
伸一 戸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007009065A priority Critical patent/JP2008175682A/en
Publication of JP2008175682A publication Critical patent/JP2008175682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device for obtaining two-dimensional information and three-dimensional information of a body to be inspected, so that measuring errors due to the aberrations of a usage lens will not occur, and to provide a measurement method. <P>SOLUTION: The measuring device for measuring irregular shape on the surface of a substrate and the height of a foreign matter includes: a stage for mounting to arrange and horizontally conveying an article to be inspected, forming irregularities on the surface of a flat plate-like substrate, and an article of the shape known in which the same as the article to be inspected and its shape are known; light sources irradiating the article to be inspected and the shape known articles with illumination light, respectively; an imaging means for using a line sensor camera installed, in a state where the light axis is inclined at 45 degrees to the surface of the shape known article and the article to be inspected; an optical distribution element for integrating the optical paths of each reflected light from the article of the shape known and the article to be inspected into one; a shutter means installed among the optical distribution element, the article to be inspected and the article of the shape known, respectively; and a means for processing images by storing image data captured by the imaging means. The measuring method is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

被検査品上の微小な異物や欠陥など、被検査品の面内の高さの情報を、精密かつ高速に計測をするための方法及び装置に関するものである。   The present invention relates to a method and an apparatus for accurately and rapidly measuring in-plane height information such as minute foreign matters and defects on an inspected product.

近年、テレビを初めとする各種電子機器の大型化が著しい。例えば液晶テレビを例に挙げると、市場で競争が激しい32型でもパネルサイズは700x400mm,最も大きい65型ともなると1430x800mmにもなる。   In recent years, the size of various electronic devices such as televisions has increased significantly. For example, taking a liquid crystal television as an example, the panel size is 700 × 400 mm even for the 32 type, which is highly competitive in the market, and 1430 × 800 mm for the largest 65 type.

これらのパネル中は100万個以上のセルで構成されており、セル1つの大きさは数百μmである。この数百μmの大きさのセルは数十μmの大きさのごみや欠陥がないように管理されている。   These panels are composed of one million or more cells, and the size of one cell is several hundred μm. The cell having a size of several hundreds μm is managed so as not to have a dust or a defect having a size of several tens of μm.

しかし例えば携帯電話で使われている液晶画面の画面サイズは、2.2〜4インチのQVGAが主流で、その1セルの大きさは100μm程度である。今後は2インチでVGAに移行するといわれており、そうなるとセルの大きさは数十μm程度の大きさとなり、欠陥などの検出精度は今までのレベルでは到底不十分となる。   However, for example, the screen size of a liquid crystal screen used in a mobile phone is mainly QVGA of 2.2 to 4 inches, and the size of one cell is about 100 μm. It is said that the VGA will be shifted to 2 inches in the future, so that the size of the cell will be about several tens of μm, and the detection accuracy of defects and the like will be insufficient at the conventional level.

また、パネルの薄型化に伴い異物原因でのショートが生じやすくなり、異物の高さ自体が欠陥要因となってきている。携帯電話で使われている液晶画面の検査で、必要な検出精度は10μm以下とされている。   Further, as the panel is made thinner, short-circuiting due to foreign matter is likely to occur, and the height of the foreign matter itself has become a cause of defects. In the inspection of liquid crystal screens used in mobile phones, the required detection accuracy is 10 μm or less.

現在、このような検査に使われている方法は、ラインセンサカメラで被検査体を撮像して、被検査体の画像を取得し、その画像に何らかの画像処理を行って異物や欠陥を検出するというものである。このような検査で使われる装置の構成は、画像取得系であるカメラおよびレンズ、被検査体を移動させるステージ、照射用光源である。   The method currently used for such inspection is to pick up an image of the object to be inspected with a line sensor camera, obtain an image of the object to be inspected, and perform some kind of image processing on the image to detect a foreign object or a defect. That's it. The configuration of the apparatus used in such an inspection includes a camera and a lens that are an image acquisition system, a stage for moving an object to be inspected, and an irradiation light source.

カメラは主にラインセンサカメラを使用し、これに所望の分解能を実現するような仕様のレンズを組み合わせて撮像を行う。カメラで取得した画像データは、画像処理ボードを介して、パソコンなどの画像処理および記憶手段に取り込まれ、記録および所定の処理が行われる。   As the camera, a line sensor camera is mainly used, and imaging is performed by combining it with a lens having a specification that realizes a desired resolution. Image data acquired by the camera is taken into image processing and storage means such as a personal computer via an image processing board, and recording and predetermined processing are performed.

ラインセンサカメラは1次元系の画像取得装置なので、単体では2次元の画像データを得ることはできない。そこで被検査体、もしくはカメラ自身を動かすことによって2次元の画像データを得るようにする。   Since the line sensor camera is a one-dimensional image acquisition device, it cannot obtain two-dimensional image data by itself. Therefore, two-dimensional image data is obtained by moving the object to be inspected or the camera itself.

このようにラインカメラは2次元情報を得ることは可能であるが、カメラで単に撮像する手法では2次元情報が得られるだけで3次元情報を得ることはできない。   As described above, the line camera can obtain the two-dimensional information, but the method of simply taking an image with the camera can obtain the two-dimensional information and cannot obtain the three-dimensional information.

異物の高さや、製品形状のうち高さの異常を検査したい場合には、2次元情報だけなく3次元情報を得ることが必要となる。   When it is desired to inspect the height of a foreign object or the height of a product shape, it is necessary to obtain not only two-dimensional information but also three-dimensional information.

例えば、特許文献1に係る測定装置では、ラインセンサカメラにより被検査体の2次元的な画像を取得しつつ、レーザー光と光位置検出素子により被検査体の各点の高さの情報を取得することを特徴としている。   For example, in the measuring apparatus according to Patent Document 1, while acquiring a two-dimensional image of an inspection object with a line sensor camera, information on the height of each point of the inspection object is acquired with a laser beam and an optical position detection element. It is characterized by doing.

特許第3379928号Japanese Patent No. 3379928

しかしながら特許文献1に係る測定装置では、ラインセンサカメラと光位置検出素子は対物レンズが同一ではあるものの、対物レンズ以外のレンズはそれぞれ個別のものを使用している。そのため、対物レンズ以外のレンズの収差が異なることにより、測定誤差が発生することがあるという問題点があった。   However, in the measuring apparatus according to Patent Document 1, although the line sensor camera and the optical position detection element have the same objective lens, lenses other than the objective lens are used individually. For this reason, there is a problem that measurement errors may occur due to aberrations of lenses other than the objective lens being different.

本発明はこのような事情に鑑みてなされたものであり、使用するレンズの収差による測定誤差が発生しないようにしつつ、被検査体の2次元情報および3次元情報を得ることができる測定装置および測定方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a measurement apparatus capable of obtaining two-dimensional information and three-dimensional information of an object to be inspected while preventing measurement errors due to aberration of a lens to be used. An object is to provide a measurement method.

請求項1に対応する発明は、平板状の基板の表面上の凹凸形状および異物の高さを測定する測定装置であって、
平板状の基板の表面上に凹凸が形成されている被検査品および、被検査品と同一品でその表面の形状が既知である形状既知品を並べて載せて水平に搬送する搬送ステージと、
被検査品に照明光を照射する第1の照明光源と、
形状既知品に照明光を照射する第2の照明光源と、
形状既知品および被検査品の表面に対してその光軸を45°傾けた状態で設置した、ラインセンサカメラおよびレンズを備えた撮像手段と、
前記撮像手段と搬送ステージとの間に設置され、形状既知品および被検査品からのそれぞれの反射光の光路を一つに統合する光分配素子と、
前記光分配素子と被検査品の間に設置される第1のシャッター手段と、
前記光分配素子と形状既知品の間に設置される第2のシャッター手段と、
前記撮像手段が撮像した画像データを、記憶および画像処理する手段と、
を備えることを特徴とする形状測定装置である。
The invention corresponding to claim 1 is a measuring device for measuring the uneven shape on the surface of a flat substrate and the height of a foreign material,
An inspected product in which irregularities are formed on the surface of a flat substrate, and a transport stage that carries the same shape of the inspected product and the known shape of the surface of the inspected product side by side and transports them horizontally,
A first illumination light source for illuminating the inspected product with illumination light;
A second illumination light source for irradiating illumination light to a known shape product;
An imaging means including a line sensor camera and a lens, which is installed with its optical axis inclined at 45 ° with respect to the surfaces of the known shape product and the inspected product;
A light distribution element that is installed between the imaging means and the transfer stage and integrates the optical paths of the reflected lights from the known shape product and the inspected product into one;
First shutter means installed between the light distribution element and the product to be inspected;
Second shutter means installed between the light distribution element and the known shape product;
Means for storing and processing image data captured by the imaging means;
It is a shape measuring apparatus provided with these.

請求項2に対応する発明は、平板状の基板の表面上の凹凸形状および異物の高さを測定する測定方法であって、
平板状の基板の表面上に凹凸が形成されている被検査品および、被検査品と同一品でその表面の形状が既知である形状既知品を並べて載せて水平に搬送する搬送段階と、
被検査品に照明光を照射する第1の照明段階と、
形状既知品に照明光を照射する第2の照明段階と、
形状既知品および被検査品の表面に対してその光軸を45°傾けた状態で設置した、ラインセンサカメラおよびレンズを備えた撮像手段による撮像段階と、
前記撮像手段と搬送ステージとの間に設置された光分配素子により、形状既知品および被検査品からのそれぞれの反射光の光路を一つに統合する光路統合段階と、
前記光分配素子と被検査品の間に設置される第1のシャッター手段、および前記光分配素子と形状既知品の間に設置される第2のシャッター手段により、撮像対象を選ぶ撮像対象選択段階と、
前記撮像手段が撮像した画像データを、記憶および画像処理する段階と、
を備えることを特徴とする形状測定方法である。
The invention corresponding to claim 2 is a measuring method for measuring the uneven shape on the surface of the flat substrate and the height of the foreign matter,
An inspected product in which irregularities are formed on the surface of a flat substrate, and a transporting stage for horizontally placing and transporting a known product having the same shape as the inspected product and the shape of the surface;
A first illumination stage for illuminating the inspected product with illumination light;
A second illumination stage for irradiating illumination light to a known shape product;
An imaging stage by an imaging means equipped with a line sensor camera and a lens, which is installed in a state where its optical axis is inclined by 45 ° with respect to the surfaces of the known shape product and the inspected product,
An optical path integrating step of integrating the optical paths of the reflected light from the known shape product and the inspected product into one by the light distribution element installed between the imaging means and the transport stage;
An imaging target selection step of selecting an imaging target by a first shutter means installed between the light distribution element and the product to be inspected and a second shutter means installed between the light distribution element and the known shape product. When,
Storing and processing image data captured by the imaging means;
It is a shape measuring method characterized by comprising.

以上のような手段を講じたことにより、形状既知品と被検査品をカメラに対して相対位置が全く同じように設置し、真上方向から照明して斜めから形状既知品と被検査品のそれぞれの画像を取得できる光学系が形成される。撮像は、1台のカメラと2台のシャッターを連動し、既知品、被検査品を交互に連続的に行う。カメラと既知品、被検査品の位置関係から2種類の画像を合成し、同一位置の画素の差分値を解析することによって被検査品の形状情報を得ることが可能になる。   By taking the above measures, the known shape product and the product to be inspected are installed in the same relative position with respect to the camera. An optical system capable of acquiring each image is formed. Imaging is performed by alternately linking a known product and a product to be inspected in conjunction with one camera and two shutters. By synthesizing two types of images from the positional relationship between the camera, the known product, and the inspected product, and analyzing the difference value of the pixels at the same position, it becomes possible to obtain the shape information of the inspected product.

以下、本発明の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態で撮像対象とする形状既知品9の一例を模式的に示した図である。
平板状の基板3上に、一辺の長さpの正方形を底面とし高さがhである四角柱2が複数個、間隔sをもって2次元的に配列しているものである。
FIG. 1 is a diagram schematically showing an example of a known shape product 9 to be imaged in the present embodiment.
On a flat substrate 3, a plurality of square pillars 2 having a square with a length p of one side and a height of h are arranged two-dimensionally with an interval s.

この形状既知品9は、検査対象となる製品のなかで高さ形状を含め、寸法的に正常とあらかじめわかっているものとする。つまり、同ロット内の製品検査のマスター品となるものである。本実施形態では、高さhが規格値に入っているかどうかの検査を行うものとする。   It is assumed that the known shape product 9 is known in advance in terms of dimensions, including the height shape, among the products to be inspected. That is, it becomes a master product for product inspection in the same lot. In the present embodiment, it is assumed that whether or not the height h is within the standard value is inspected.

図2は本発明の一実施形態に係わる測定部の概略構成を示す図である。
形状既知品9と被検査品10は水平なステージ12上に置かれ、照明灯11によりそれぞれ真上から照明される。照明灯11は、形状既知品9および被検査品10に対して同等の照度の照明を与えるものであり、蛍光灯、LED、ハロゲン光源、メタルハライド光源などを使用することが出来る。
FIG. 2 is a diagram showing a schematic configuration of a measurement unit according to an embodiment of the present invention.
The known shape product 9 and the product 10 to be inspected are placed on a horizontal stage 12 and illuminated by the illumination lamp 11 from directly above. The illuminating lamp 11 provides illumination with an equivalent illuminance to the known shape product 9 and the inspected product 10, and a fluorescent lamp, LED, halogen light source, metal halide light source, or the like can be used.

カメラ4は、キュービック型ハーフミラー7を通して、形状既知品9および被検査品10を撮像できるように設置されている。光分配素子であるキュービック型ハーフミラー7は、一般的には同じ形状の直角二等辺三角柱を2個接合してなる立方体であり、その接合面で光は分配される。したがって、カメラ4と形状既知品9および被検査品10の間の光路長を等しくするためには、カメラ4の光軸と水平面との角度は45°となる。   The camera 4 is installed so that the known shape product 9 and the inspected product 10 can be imaged through the cubic type half mirror 7. The cubic half mirror 7 as a light distribution element is generally a cube formed by joining two right-angled isosceles triangular prisms having the same shape, and light is distributed at the joint surface. Therefore, in order to equalize the optical path length between the camera 4 and the known shape product 9 and the product to be inspected 10, the angle between the optical axis of the camera 4 and the horizontal plane is 45 °.

カメラ4のレンズ5としては、コントラストが得られ、かつ平行光だけを受光できるようにテレセントリックレンズなどを用いることが好ましい。また撮像対象からの受光量を調整できるように、レンズ5の前にNDフィルター6を配置しても良い。   As the lens 5 of the camera 4, it is preferable to use a telecentric lens or the like so that contrast can be obtained and only parallel light can be received. Further, the ND filter 6 may be disposed in front of the lens 5 so that the amount of light received from the imaging target can be adjusted.

カメラ4は、カメラ4に対して光学的に同一の位置に配置された形状既知品9および被検査品10を撮像する。このとき交互に連続して撮像するため、シャッター機構8aおよび8bを、キュービック型ハーフミラー7と被検査品9および形状既知品10との間にそれぞれ配置する。シャッター機構8aおよび8bは、カメラ4と同期し、既知品9を撮像する場合はシャッター8bが開き、シャッター8aが閉じる。また、被検査品10を撮像する場合はシャッター8aが開き、シャッター8bが閉じる。   The camera 4 captures an image of the known shape product 9 and the product to be inspected 10 arranged at the same optical position with respect to the camera 4. At this time, the shutter mechanisms 8a and 8b are arranged between the cubic type half mirror 7, the product 9 to be inspected, and the product 10 having a known shape in order to alternately and continuously capture images. The shutter mechanisms 8a and 8b are synchronized with the camera 4, and when the known product 9 is imaged, the shutter 8b is opened and the shutter 8a is closed. Further, when the inspected product 10 is imaged, the shutter 8a is opened and the shutter 8b is closed.

またカメラ4はラインセンサカメラであり、1列ごとに画像データを撮像する。なおカメラ4のラインセンサ素子上に、形状既知品9および被検査品10の輝度値比較領域1の像が結像するように、レンズ5を調節するか、カメラ4とステージ12の間の距離を調節しておく必要がある。ステージ12は、カメラ4の撮像時には静止し、撮像していない間に所定距離を移動する。   The camera 4 is a line sensor camera that captures image data for each column. It should be noted that the lens 5 is adjusted or the distance between the camera 4 and the stage 12 so that the image of the luminance value comparison region 1 of the known shape 9 and the inspected product 10 is formed on the line sensor element of the camera 4. It is necessary to adjust. The stage 12 stops when the camera 4 captures an image, and moves a predetermined distance while the image is not captured.

この繰り返しによりカメラ4は、形状既知品9および被検査品10を交互に撮像して、それぞれの画像データを取得する。これらの2つの画像データは画像ボードを介してパソコンなどの画像処理および記憶手段に取り込まれ記録される。   By repeating this process, the camera 4 alternately captures the known shape product 9 and the inspected product 10 and acquires respective image data. These two image data are captured and recorded in image processing and storage means such as a personal computer via an image board.

画像データのノイズを削除するような前処理が行われた後、2つの画像データ中の同一位置の画素の輝度値を比較することにより、被検査品の高さ情報を解析することが可能となる。   After preprocessing that removes noise in the image data is performed, it is possible to analyze the height information of the inspected product by comparing the luminance values of the pixels at the same position in the two image data Become.

以下、被検査品10の高さ情報の解析の一例を示す。
まず図3に示したように、被検査品10の画像データ中から複数個の特徴点13を抽出する。その特徴点13の座標位置から、カメラ4のラインセンサ素子の画素配列の方向と、四角柱2の配列方向とがなす角度θを算出する。それから図4に示すようなアフィン変換を行い、被検査品10の画像データを矩形座標に変換する。
Hereinafter, an example of the analysis of the height information of the inspected product 10 will be shown.
First, as shown in FIG. 3, a plurality of feature points 13 are extracted from the image data of the inspected product 10. From the coordinate position of the feature point 13, the angle θ formed by the pixel array direction of the line sensor element of the camera 4 and the array direction of the quadrangular prism 2 is calculated. Then, affine transformation as shown in FIG. 4 is performed to convert the image data of the inspected product 10 into rectangular coordinates.

なお、図3および図4には説明のため、カメラ4のラインセンサ素子の画素配列の方向(図4のX方向)と、四角柱2の配列方向のうちの一方がなす角度がθ(θ≠90°)で、もう一方がなす角度が0°(図4のX方向と同一)の場合について模式的に示している。実際には0°以外の値をとる場合もあるが、その場合でもアフィン変換は可能である。   3 and 4, for the sake of explanation, the angle formed by one of the pixel array direction (X direction in FIG. 4) of the line sensor elements of the camera 4 and the array direction of the quadrangular prism 2 is θ (θ ≠ 90 °) and the angle formed by the other is schematically 0 ° (same as the X direction in FIG. 4). Actually, it may take a value other than 0 °, but even in that case, affine transformation is possible.

形状既知品9の画像についても同様の処理を行い、矩形座標に変換しておく。この処理で得られた画像データを、以下ではアフィン変換画像と呼ぶことにする。   The same processing is performed on the image of the known shape product 9 and converted into rectangular coordinates. Image data obtained by this processing will be referred to as an affine transformation image below.

次に既知品9と被検査品10のアフィン変換画像において、図1の輝度値比較領域1の形状を抽出する。それぞれの四角柱2の輝度値比較領域1の端部の座標値を算出することにより、その形状を知ることができる。その際、既知品9と被検査品10との間で、対応する四角柱2の像は、ラベリング処理によりラベルを付し認識しておく。   Next, the shape of the luminance value comparison region 1 in FIG. 1 is extracted from the affine transformation images of the known product 9 and the product to be inspected 10. By calculating the coordinate value of the end of the luminance value comparison area 1 of each square column 2, the shape can be known. At that time, between the known product 9 and the product to be inspected 10, the image of the corresponding quadrangular prism 2 is labeled and recognized by the labeling process.

形状既知品9は寸法が既知なので、形状既知品9の各四角柱2の高さ情報が得られる点14のアフィン変換画像中の座標値と、被検査品10の各四角柱2の高さ情報が得られる点14のアフィン変換画像中の座標値を比較することによって、被検査品10の寸法が得られる。   Since the shape of the known shape product 9 is known, the coordinate value in the affine transformation image of the point 14 from which the height information of each square shape 2 of the known shape shape product 9 is obtained, and the height of each square shape 2 of the product 10 to be inspected. By comparing the coordinate values in the affine transformation image of the point 14 from which information is obtained, the dimensions of the inspected product 10 are obtained.

輝度値比較領域1面内の高さ分布は、輝度値比較領域1の画素毎の輝度値から見積もることが出来る。輝度値比較領域1の部分の画素の輝度値を、形状既知品9、被検査品10で比較するため、被検査品10の輝度値から、形状既知品9の輝度値を引き算する。この値を差分値とする。   The height distribution in the surface of the luminance value comparison region 1 can be estimated from the luminance value for each pixel in the luminance value comparison region 1. In order to compare the luminance values of the pixels in the luminance value comparison region 1 between the known shape product 9 and the inspected product 10, the luminance value of the known shape product 9 is subtracted from the luminance value of the inspected product 10. This value is the difference value.

真上から照明したものを斜め方向から撮像した場合、形状既知品9に対して被検査品10が高い場合は、差分値は正の値をとり、低い場合は負の値をとる。従って、欠陥となるのは、差分値が正の値をとる場合とすればよい。   When an object illuminated from directly above is imaged from an oblique direction, the difference value takes a positive value when the inspected product 10 is higher than the known shape product 9, and takes a negative value when it is lower. Therefore, the defect may be caused when the difference value takes a positive value.

輝度値比較領域に対して画素のサイズが小さいときには、より形状分布を詳細に知ることが出来る。この差分値は実際の寸法のディメンジョンとは異なるが、実際の高さ情報と相関をとり予測・決定することが望ましい。   When the pixel size is small with respect to the luminance value comparison region, the shape distribution can be known in more detail. Although this difference value is different from the actual dimension, it is desirable to predict and determine it in correlation with the actual height information.

基板面からの高さ形状情報を求めるには、高さ情報が得られる点14の座標値と差分値から得られる高さ情報を合計した形で求めればよい。基板面からの高さ形状情報に対してスレッシュホールドを設けることにより、被検査品の合否判定が可能になる。   In order to obtain the height shape information from the substrate surface, the height information obtained from the coordinate value of the point 14 from which the height information is obtained and the difference value may be obtained in a total form. By providing a threshold for the height shape information from the substrate surface, it is possible to determine whether the product to be inspected is acceptable.

以上説明したように本発明によれば、例えば電子部品の検査において、微小異物の高さ情報が電気的にショートなどを引き起こす欠陥となりうる場合、あらかじめ高さ情報がわかっている既知品と被検査品を光学的に同一の位置で撮像、比較処理を行うことにより、レンズの収差による精度劣化の影響をあまり受けずに精度よく高さ情報を得ることが可能となる。   As described above, according to the present invention, for example, in the inspection of an electronic component, if the height information of a minute foreign matter can be a defect that causes an electrical short circuit or the like, the known product and the inspected object whose height information is known in advance. By imaging and comparing the product optically at the same position, it is possible to obtain height information with high accuracy without being greatly affected by accuracy degradation due to lens aberration.

本発明の一実施形態に係る形状既知品の模式図。The schematic diagram of the shape known goods which concern on one Embodiment of this invention. 本発明の一実施形態に係る測定部の概略構成を示す模式図。The schematic diagram which shows schematic structure of the measurement part which concerns on one Embodiment of this invention. 被検査品を撮像した斜め画像において、高さ情報が得られる点を示す模式図。The schematic diagram which shows the point from which height information is obtained in the diagonal image which imaged the to-be-inspected goods. 斜め画像の座標変換を模式的に示す説明図。Explanatory drawing which shows the coordinate transformation of an oblique image typically.

符号の説明Explanation of symbols

1…輝度値比較領域
2…四角柱
3…製品の基板
4…ラインセンサカメラ
5…レンズ
6…NDフィルター
7…光分配素子(キュービック型ハーフミラー)
8a…シャッター機構
8b…シャッター機構
9…形状既知品
10…被検査品
11…照明光源
12…搬送ステージ
p…四角柱の底面の1辺の長さ
s…隣り合う四角柱の間の距離
h…四角柱の高さ
DESCRIPTION OF SYMBOLS 1 ... Luminance value comparison area 2 ... Square pillar 3 ... Product board 4 ... Line sensor camera 5 ... Lens 6 ... ND filter 7 ... Light distribution element (cubic type half mirror)
8a ... Shutter mechanism 8b ... Shutter mechanism 9 ... Product with known shape 10 ... Product to be inspected 11 ... Illumination light source 12 ... Transport stage p ... Length of one side of the bottom of a square column s ... Distance between adjacent square columns h ... Square column height

Claims (2)

平板状の基板の表面上の凹凸形状および異物の高さを測定する測定装置であって、
平板状の基板の表面上に凹凸が形成されている被検査品および、被検査品と同一品でその表面の形状が既知である形状既知品を並べて載せて水平に搬送する搬送ステージと、
被検査品に照明光を照射する第1の照明光源と、
形状既知品に照明光を照射する第2の照明光源と、
形状既知品および被検査品の表面に対してその光軸を45°傾けた状態で設置した、ラインセンサカメラおよびレンズを備えた撮像手段と、
前記撮像手段と搬送ステージとの間に設置され、形状既知品および被検査品からのそれぞれの反射光の光路を一つに統合する光分配素子と、
前記光分配素子と被検査品の間に設置される第1のシャッター手段と、
前記光分配素子と形状既知品の間に設置される第2のシャッター手段と、
前記撮像手段が撮像した画像データを、記憶および画像処理する手段と、
を備えることを特徴とする形状測定装置。
A measuring device for measuring the uneven shape on the surface of a flat substrate and the height of a foreign object,
An inspected product in which irregularities are formed on the surface of a flat substrate, and a transport stage that carries the same shape of the inspected product and the known shape of the surface of the inspected product side by side and transports them horizontally,
A first illumination light source for illuminating the inspected product with illumination light;
A second illumination light source for irradiating illumination light to a known shape product;
An imaging means including a line sensor camera and a lens, which is installed with its optical axis inclined at 45 ° with respect to the surfaces of the known shape product and the inspected product;
A light distribution element that is installed between the imaging means and the transfer stage and integrates the optical paths of the reflected lights from the known shape product and the inspected product into one;
First shutter means installed between the light distribution element and the product to be inspected;
Second shutter means installed between the light distribution element and the known shape product;
Means for storing and processing image data captured by the imaging means;
A shape measuring apparatus comprising:
平板状の基板の表面上の凹凸形状および異物の高さを測定する測定方法であって、
平板状の基板の表面上に凹凸が形成されている被検査品および、被検査品と同一品でその表面の形状が既知である形状既知品を並べて載せて水平に搬送する搬送段階と、
被検査品に照明光を照射する第1の照明段階と、
形状既知品に照明光を照射する第2の照明段階と、
形状既知品および被検査品の表面に対してその光軸を45°傾けた状態で設置した、ラインセンサカメラおよびレンズを備えた撮像手段による撮像段階と、
前記撮像手段と搬送ステージとの間に設置された光分配素子により、形状既知品および被検査品からのそれぞれの反射光の光路を一つに統合する光路統合段階と、
前記光分配素子と被検査品の間に設置される第1のシャッター手段、および前記光分配素子と形状既知品の間に設置される第2のシャッター手段により、撮像対象を選ぶ撮像対象選択段階と、
前記撮像手段が撮像した画像データを、記憶および画像処理する段階と、
を備えることを特徴とする形状測定方法。
It is a measuring method for measuring the uneven shape on the surface of a flat substrate and the height of foreign matter,
An inspected product in which irregularities are formed on the surface of a flat substrate, and a transporting stage for horizontally placing and transporting a known product having the same shape as the inspected product and the shape of the surface;
A first illumination stage for illuminating the inspected product with illumination light;
A second illumination stage for irradiating illumination light to a known shape product;
An imaging stage by an imaging means equipped with a line sensor camera and a lens, which is installed in a state where its optical axis is inclined by 45 ° with respect to the surfaces of the known shape product and the inspected product,
An optical path integrating step of integrating the optical paths of the reflected light from the known shape product and the inspected product into one by the light distribution element installed between the imaging means and the transport stage;
An imaging target selection step of selecting an imaging target by a first shutter means installed between the light distribution element and the product to be inspected and a second shutter means installed between the light distribution element and the known shape product. When,
Storing and processing image data captured by the imaging means;
A shape measuring method comprising:
JP2007009065A 2007-01-18 2007-01-18 Detailed shape height measuring device and measuring method Pending JP2008175682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009065A JP2008175682A (en) 2007-01-18 2007-01-18 Detailed shape height measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009065A JP2008175682A (en) 2007-01-18 2007-01-18 Detailed shape height measuring device and measuring method

Publications (1)

Publication Number Publication Date
JP2008175682A true JP2008175682A (en) 2008-07-31

Family

ID=39702811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009065A Pending JP2008175682A (en) 2007-01-18 2007-01-18 Detailed shape height measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2008175682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987964A (en) * 2019-12-26 2020-04-10 泉州师范学院 Method for obtaining complete equal illumination of opposite two sides of semiconductor crystal grain through optical detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987964A (en) * 2019-12-26 2020-04-10 泉州师范学院 Method for obtaining complete equal illumination of opposite two sides of semiconductor crystal grain through optical detection
CN110987964B (en) * 2019-12-26 2023-05-09 泉州师范学院 Method for obtaining optical detection completely equal illumination of opposite two sides of semiconductor crystal grain

Similar Documents

Publication Publication Date Title
TWI484161B (en) Defect inspection system and filming device for defect inspection, image processing device for defect inspection, image processing program for defect inspection, recording media, and image processing method for defect inspection used therein
KR101324015B1 (en) Apparatus and method for detecting the surface defect of the glass substrate
JP5190405B2 (en) Glass surface foreign matter inspection apparatus and method
US7372556B2 (en) Apparatus and methods for inspecting a composite structure for inconsistencies
JP2007256106A (en) Display panel inspection device and display panel inspection method using the same
US7869021B2 (en) Multiple surface inspection system and method
KR20160043233A (en) The visual inspection method of a lens module for a camera
KR101261016B1 (en) method and apparatus for automatic optical inspection of flat panel substrate
KR101094968B1 (en) System for Inspecting Defects on Glass Substrate Using Contrast Value, and Method of the same
JP2018040761A (en) Device for inspecting appearance of inspection target object
JP2021032598A (en) Wafer appearance inspection device and method
JP2008175682A (en) Detailed shape height measuring device and measuring method
TWI477768B (en) Method and apparatus for automatic optical inspection of flat panel substrate
KR101198406B1 (en) Pattern inspection device
KR101351000B1 (en) In-line camera inspection apparatus having plural mode
TWM477571U (en) Image inspection device
KR101351004B1 (en) Carrying apparatus having camera array detecting defects
JP7362324B2 (en) Inspection method, manufacturing method and inspection device for image display device
KR101485425B1 (en) Cover-glass Analysis Apparatus
JP2010175283A (en) Device for producing plane image
JP5231779B2 (en) Appearance inspection device
JP2006177760A (en) X-ray inspection device, x-ray inspection method, and x-ray inspection program
TWM425273U (en) Re-inspection machine for visual inspection
JP2009271089A (en) Substrate inspection device and inspection method
Perng et al. A novel vision system for CRT panel auto-inspection