JP2008175196A - ターボチャージャシステム及びターボチャージャシステムの制御装置 - Google Patents
ターボチャージャシステム及びターボチャージャシステムの制御装置 Download PDFInfo
- Publication number
- JP2008175196A JP2008175196A JP2007012052A JP2007012052A JP2008175196A JP 2008175196 A JP2008175196 A JP 2008175196A JP 2007012052 A JP2007012052 A JP 2007012052A JP 2007012052 A JP2007012052 A JP 2007012052A JP 2008175196 A JP2008175196 A JP 2008175196A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- control means
- turbocharger
- pressure accumulating
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
【課題】 低速高回転時の過給温度の上昇を抑制するとともにターボラグを低減し、これにより併せてターボチャージャが適用されるシステムの熱効率の向上を図ることができるターボチャージャシステム及びターボチャージャシステムの制御装置を提供する。
【解決手段】 ターボチャージャ110と、蓄圧タンク120とを有して構成されるターボチャージャシステム100であって、蓄圧タンク120が、ターボチャージャ110のコンプレッサ部111の出口111bから吐出される圧縮エアが流入するように、且つ流入した圧縮エアを流出させて、ターボチャージャ110のタービンホイールに作用させることができるように接続されており、さらに蓄圧タンク120への圧縮エアの流入を制御可能な第1の制御弁131と、蓄圧タンク120からの圧縮エアの流出を制御可能な第2の制御弁132とを備えている。
【選択図】 図1
【解決手段】 ターボチャージャ110と、蓄圧タンク120とを有して構成されるターボチャージャシステム100であって、蓄圧タンク120が、ターボチャージャ110のコンプレッサ部111の出口111bから吐出される圧縮エアが流入するように、且つ流入した圧縮エアを流出させて、ターボチャージャ110のタービンホイールに作用させることができるように接続されており、さらに蓄圧タンク120への圧縮エアの流入を制御可能な第1の制御弁131と、蓄圧タンク120からの圧縮エアの流出を制御可能な第2の制御弁132とを備えている。
【選択図】 図1
Description
本発明はターボチャージャシステム及びターボチャージャシステムの制御装置に関し、特にターボチャージャが大型である場合に好適なターボチャージャシステム及びターボチャージャシステムの制御装置に関する。
従来、ターボチャージャを備えたシステムとして一般によく知られているシステムに内燃機関システムがある。係る内燃機関システムでは、ターボチャージャが過給を行うことでより多くの吸気が内燃機関のシリンダ内に充填されることから、いわゆる自然吸気式の内燃機関システムよりも大きな出力を得ることができる。また係る内燃機関システムでは、ターボチャージャを大型化することで内燃機関の更なる高出力化を図ることもできる。なお、本発明とは課題や効果が相違するものの本発明と構成上、部分的に関連性があると考えられる技術が例えば特許文献1から5までで提案されている。
大型のターボチャージャは、一般に内燃機関の高出力時、すなわちこのとき内燃機関の回転は高速になることから吸気流量が大きくなり、且つターボチャージャの回転数Ntが大きくなったときに、コンプレッサの効率が最大になるようにチューニングされている。ところが、この背反として特性上、低速高過給時にはコンプレッサの効率が低いものとなってしまう。図4は大型ターボチャージャに適用された大型コンプレッサの効率特性の一例を示す図である。図4に示すように、コンプレッサの効率は吸気流量と相関関係を有している。このため、低速高過給時として、例えば吸気流量がおよそ140g/s、ターボチャージャの回転数Ntが10万rpmのときを参照すると、コンプレッサの効率は60%程度になっているのに対して、高速高過給時として、例えば吸気流量がおよそ300g/s、回転数Ntが12万rpmのときを参照すると、コンプレッサの効率は75%程度になっていることがわかる。
これは低速高過給時には吸気流量が小さいことに起因して、コンプレッサの出口側で一種の詰まりのような状態が発生し、過給を行おうとするコンプレッサの仕事がより多く温度上昇に変換されてしまうことを意味している。すなわち、大型ターボチャージャでは低速高過給時にコンプレッサの効率が低下し、この結果、過給温度が上昇してしまうという問題があった。他方、大型ターボチャージャは全体として質量が増大する傾向にあることから、これに伴い一般に回転部のイナーシャも大きくなる。このため大型ターボチャージャでは、回転の立ち上がりのレスポンスが小型のターボチャージャに比して悪化してしまうという問題もあった。
そこで、本発明は上記の課題に鑑みてなされたものであり、低速高回転時の過給温度の上昇を抑制するとともにターボラグを低減し、これにより併せてターボチャージャが適用されるシステムの熱効率の向上を図ることができるターボチャージャシステム及びターボチャージャシステムの制御装置を提供することを目的とする。
上記課題を解決するために、本発明はターボチャージャと、蓄圧タンクとを有して構成されるターボチャージャシステムであって、前記蓄圧タンクが、前記ターボチャージャのコンプレッサ部の出口から吐出される圧縮流体が流入するように、且つ流入した圧縮流体を流出させて、前記ターボチャージャのタービンホイールに作用させることができるように接続されており、さらに前記蓄圧タンクへの圧縮流体の流入を制御可能な第1の流体制御手段と、前記蓄圧タンクからの圧縮流体の流出を制御可能な第2の流体制御手段とを備えていることを特徴とする。
本発明によれば、低速高過給時に第1の流体制御手段を介して蓄圧タンクに圧縮流体の一部を流入させることができるようになることから、コンプレッサ部を流通する流体の流量が増大したのと同様の効果を得ることができる。すなわち、これによりコンプレッサの効率が向上するようになることから、本発明によれば低速高過給時の過給温度の上昇を抑制できる。また本発明によれば、蓄圧タンクに流入させた圧縮流体を蓄えておくとともに、これをターボチャージャの回転の立ち上がり時などに第2の流体制御手段を介して流出させてタービンホイールに向けて噴射するなど作用させることができるようになることから、ターボラグを低減できる。さらに、これにより低速高過給時に過給温度の上昇に変換されてしまっていたエネルギーがターボラグの低減に利用されるようになることから、本発明によれば併せてターボチャージャが適用されるシステムの熱効率の向上を図ることができる。
また本発明は請求項1記載のターボチャージャシステムを制御するためのターボチャージャシステムの制御装置であって、前記第2の流体制御手段が前記蓄圧タンクからの圧縮流体の流出を禁止している状態で、前記コンプレッサ部の出口から吐出される圧縮流体の過給温度が所定温度を超えたときに、前記蓄圧タンクへの圧縮流体の流入を許可するように前記第1の流体制御手段を制御するとともに、前記過給温度が前記所定温度になるように前記第1の流体制御手段を制御する第1の制御手段と、前記第1の流体制御手段が前記蓄圧タンクへの圧縮流体の流入を禁止している状態で、且つ前記第2の流体制御手段が前記蓄圧タンクからの圧縮流体の流出を禁止している状態で、前記ターボチャージャの回転数が所定回転数よりも低い状態から上昇するときに、前記蓄圧タンクからの圧縮流体の流出を許可するように前記第2の流体制御手段を制御する第2の制御手段とを備えることを特徴とする。
本発明によれば上記のように第1の流体制御手段を制御することで、低速高過給時に過給温度の上昇を抑制するとともに、過給温度の上昇に変換されてしまうエネルギーを好適に回収できる。また本発明によれば、上記のように第2の流体制御手段を制御することでターボラグを低減できる。さらに本発明によれば、ターボラグの低減が回収したエネルギーを利用して行われるので、併せてターボチャージャが適用されるシステムの熱効率の向上を図ることができる。
また本発明はさらに前記第1の制御手段が、前記第1の流体制御手段が前記蓄圧タンクへの圧縮流体の流入を許可している状態で、前記過給温度が少なくとも前記所定温度よりも低くなったときに、前記第1の流体制御手段を前記蓄圧タンクへの圧縮流体の流入を禁止するように制御してもよい。また蓄圧タンクへの圧縮流体の流入を禁止するにあたっては、例えば本発明のように流入を禁止することが好適である。
また本発明はさらに前記タービン部の入口に流入しようとする流体を迂回させることが可能な第3の流体制御手段を制御する第3の制御手段を備えるとともに、該第3の制御手段が、前記第1の流体制御手段が前記蓄圧タンクへの圧縮流体の流入を最大限許可している状態で、前記過給温度が前記所定温度を超えたときに、前記タービン部の入口に流入しようとする流体を迂回させるように前記第3の流体制御手段を制御してもよい。
ここで例えば蓄圧タンクに流入する圧縮流体の流量や、蓄圧タンクの容量には限度があることなどから、前述のように第1の流体制御手段を制御しても過給温度が所定温度を超えてしまう場合も起こり得る。これに対して本発明によれば、上記のように第3の流体制御手段を制御することで、ターボチャージャの回転を低く抑制するとともに過給温度の上昇を抑制できる。なお、このときには第1の制御手段が、同時に第1の流体制御手段を蓄圧タンクへの圧縮流体の流入を禁止するように制御することが好ましい。
本発明によれば、低速高回転時の過給温度の上昇を抑制するとともにターボラグを低減し、これにより併せてターボチャージャが適用されるシステムの熱効率の向上を図ることができるターボチャージャシステム及びターボチャージャシステムの制御装置を提供できる。
以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。
図1は本実施例に係るターボチャージャシステム100を内燃機関システム200に適用された状態で模式的に示す図である。なお、図1では実施例2で後述するECU(Electronic Control Unit:電子制御装置)1についても同時に示している。内燃機関システム200は吸気管11やインタークーラ12や図示しないエアクリーナやスロットル弁などを有して構成される吸気系10と、排気管21や図示しない触媒や消音器などを有して構成される排気系20と、内燃機関50と、ターボチャージャシステム100とを有して構成されている。ターボチャージャシステム100はターボチャージャ110と蓄圧タンク120と、第1の制御弁131と、第2の制御弁132と、ウエストゲートバルブ133とを有して構成されている。
ターボチャージャ110は、コンプレッサ部111とタービン部112とを有して構成されている。コンプレッサ部111は吸気系10に介在し、内部に備える図示しないコンプレッサホイールの回転で入口111aから流入してきたエア(流体)を圧縮するとともに、圧縮エア(圧縮流体)を出口111bから吐出する。圧縮エアはインタークーラ12で冷却された上で内燃機関50に供給される。タービン部112は排気系20に介在し、内部に備える図示しないタービンホイールが入口112aから流入してきた排気(流体)によって回転し、これにより回転軸(図示省略)で連結されたコンプレッサホイールが同時に回転する。排気系20にはタービン部112を迂回するように設けられたバイパス路143にウエストゲートバルブ133が配設されており、このウエストゲートバルブ133が開くと、タービン部112の入口112aに流入しようとする排気の一部が迂回される。本実施例ではウエストゲートバルブ133は電子制御で駆動可能な流量調節弁で実現されており、このウエストゲートバルブ133は流路を全開、全閉にするほか、流路の遮蔽度合いを調節できるようになっている。
蓄圧タンク120はコンプレッサ部111の出口111bから吐出される圧縮エアが流入するように接続されている。具体的には本実施例では、蓄圧タンク120は、コンプレッサ部111の出口111bとインタークーラ12を接続する吸気管11にエアホース141を介して接続されている。これにより、蓄圧タンク120とコンプレッサ部111の出口111bとが連通した状態になり、圧縮エアを蓄圧タンク120に流入させることが可能になる。また蓄圧タンク120は流入した圧縮エアを流出させて、タービンホイールに作用させることができるように接続されている。具体的には本実施例では、蓄圧タンク120がタービン部112にエアホース142を介して接続されており、これにより、蓄圧タンク120とタービン部112の内部とが連通した状態になる。さらに本実施例ではこの状態でエアホース142を流通した圧縮エアがタービンホイールに直接噴射されるようになっており、噴射された圧縮エアはエアを圧縮する方向にタービンホイールの回転を付勢する。
エアホース141には蓄圧タンク120への圧縮エアの流入を制御可能な第1の制御弁131が配設されている。本実施例では第1の制御弁131は電子制御で駆動可能な流量調節弁で実現されており、この第1の制御弁131は流路を全開、全閉にするほか、流路の遮蔽度合いを調節できるようになっている。一方、エアホース142には蓄圧タンク120からの圧縮エアの流出を制御可能な第2の制御弁132が配設されている。本実施例では第2の制御弁132は電子制御で駆動可能な開閉弁で実現されており、この第2の制御弁132は流路を全開、全閉にすることができるようになっている。本実施例では第1の制御弁131で第1の流体制御手段が、第2の制御弁132で第2の流体制御手段が、ウエストゲートバルブ133で第3の流体制御手段が夫々実現されている。
上述の構成で、次にターボチャージャシステム100の作用効果について説明する。このターボチャージャシステム100によれば、低速高過給時に第1の制御弁131を介して蓄圧タンク120に圧縮エアの一部を流入させることができるようになることから、低速高過給時の過給温度Tの上昇を抑制できるようになる。また、流入させた圧縮エアを蓄圧タンク120に蓄えておくとともに、これをターボチャージャ110の回転の立ち上がり時に第2の制御弁132を介して流出させてタービンホイールに向けて噴射することができるようになることから、ターボラグを低減できるようになる。さらに、これにより低速高過給時に過給温度Tの上昇に変換されてしまっていたエネルギーが利用されるようになることから、併せて内燃機関システム200の熱効率の向上を図ることができるようになる。以上により、低速高回転時の過給温度Tの上昇を抑制するとともにターボラグを低減し、これにより併せて内燃機関システム200の熱効率の向上を図ることができるターボチャージャシステム100を実現できる。
本実施例ではECU1で実現されているターボチャージャシステムの制御装置について詳述する。ECU1は図示しないCPU(Central Processing Unit:中央演算処理装置)と、ROM(Read Only Memory)と、RAM(Random Access Memory)などで構成されるマイクロコンピュータ(以下、単にマイコンと称す)と、入出力回路などを有して構成されている。ECU1は主として内燃機関50を制御するための構成であり、本実施例では第1の制御弁131、第2の制御弁132及びウエストゲートバルブ133も制御している。ECU1にはこれらのほか、各種の制御対象が駆動回路(図示省略)を介して接続されている。また、ECU1にはコンプレッサ部111の出口111bから吐出される圧縮エアの過給温度Tを検出するための過給温度センサ2や、ターボチャージャの回転数Ntを検出するためのタービン回転数センサ3や、スロットル弁の開度を検出するためのスロットル開度センサ4や、第1の制御弁131、第2の制御弁132及びウエストゲートバルブ133夫々の開弁状態を検出するための開弁状態検知センサ(図示省略)各々など、各種のセンサが接続されている。
ROMはCPUが実行する種々の処理を記述したプログラムなどを格納するための構成であり、本実施例では内燃機関50制御用プログラムのほか、例えば第2の制御弁132が蓄圧タンク120からの圧縮エアの流出を禁止している状態で(すなわち本実施例では具体的には第2の制御弁132が閉じている状態で)、過給温度Tが所定温度を超えたときに、蓄圧タンク120への圧縮流体の流入を許可するように第1の制御弁131を制御(すなわち本実施例では具体的には第1の制御弁131を開くように制御)するとともに、過給温度Tが所定温度になるように第1の制御弁131を制御(すなわち本実施例では具体的には過給温度Tが所定温度になるように第1の制御弁131の開度を制御)する第1の制御プログラムを格納している。
この第1の制御プログラムは、さらに第1の制御弁131が蓄圧タンク120への圧縮流体の流入を許可している状態(すなわち本実施例では具体的には第1の制御弁131が開いている状態)で、過給温度Tが所定温度よりも低くなったときに、第1の制御弁131を蓄圧タンク120への圧縮流体の流入を禁止するように制御(すなわち本実施例では具体的には第1の制御弁131を閉じるように制御)するように作成されている。またこの第1の制御プログラムは、第1の制御弁131が蓄圧タンク120への圧縮流体の流入を最大限許可している状態で(すなわち本実施例では具体的には第1の制御弁131が全開になっている状態で)、過給温度Tが所定温度を超えたときにも、第1の制御弁131を蓄圧タンク120への圧縮流体の流入を禁止するように制御(すなわち本実施例では具体的には第1の制御弁131を閉じるように制御)するように作成されている。
またROMは、第1の制御弁131が蓄圧タンク120への圧縮流体の流入を禁止している状態で(すなわち本実施例では具体的には第1の制御弁131が閉じている状態で)、且つ第2の制御弁132が蓄圧タンク120からの圧縮流体の流出を禁止している状態で(すなわち本実施例では具体的には第2制御弁132が閉じている状態で)、ターボチャージャの回転数Ntが所定回転数よりも低い状態から上昇するときに、蓄圧タンク120からの圧縮流体の流出を許可するように第2の制御弁132を制御(すなわち本実施例では第2の制御弁132を開くように制御)する第2の制御プログラムを格納している。
さらにROMは、第1の制御弁131が蓄圧タンク120への圧縮流体の流入を最大限許可している状態で(すなわち本実施例では具体的には第1の制御弁131が全開になっている状態で)、過給温度Tが所定温度を超えたときに、タービン部112の入口112aに流入しようとする排気を迂回させるようにウエストゲートバルブ133を制御(すなわち本実施例ではウエストゲートバルブ133を開くように制御)する第3の制御プログラムを格納している。なお、これらのプログラムは例えば内燃機関50制御用プログラムの一部として構成されていてもよい。本実施例では上記の第1の制御プログラムとマイコンとで第1の制御手段が、第2の制御プログラムとマイコンとで第2の制御手段が、第3の制御プログラムとマイコンとで第3の制御手段が夫々実現されている。
次にECU1で行われる処理を図2及び図3に示すフローチャートを用いて詳述する。ECU1は、CPUがROMに格納された上述の各種プログラムに基づき、フローチャートに示す処理を実行することでターボチャージャシステム100を制御する。なお、図2及び図3に示すフローチャートは内燃機関50始動時に開始され、またこれらのフローチャートは第1の制御弁131、第2の制御弁132及びウエストゲートバルブ133が閉じた状態で開始される。CPUは過給温度Tが所定温度を超えているか否かを判定する処理を実行する(ステップS11)。すなわち低速高過給時には過給温度Tがより上昇することから、本ステップで低速高過給時であるか否かが判定できる。なお、本実施例ではこの所定温度は200℃に設定されている。否定判定であれば、肯定判定されるまでの間、ステップS11を繰り返す。
一方肯定判定であれば、CPUは第1の制御弁131を開くための処理を実行する(ステップS12)。これにより、コンプレッサ部111の出口111aから吐出された圧縮エアが蓄圧タンク120に流入することから、過給温度Tの上昇を抑制できる。さらにCPUは過給温度Tが所定温度になるように第1の制御弁131の開度を制御するための処理を実行する(ステップS13)。このように第1の制御弁131の開度を制御することにより、過給温度Tの上昇を抑制するとともに、さらに過給温度Tの上昇に変換されてしまっていたエネルギーを好適に回収できる。続いてCPUは第1の制御弁131が全開になっている状態で、過給温度Tが所定温度を超えているか否かを判定する処理を実行する(ステップS14)。
ステップS14で否定判定であれば、CPUは高過給が終了したか否かを判定する処理を実行する(ステップS15)。具体的には本ステップでは過給温度Tが所定温度よりも低くなったか否かで高過給が終了したか否かを判定している。なお、誤判定してしまうことを防止すべく、本ステップでは過給温度Tが所定温度よりもある程度低くなったことを以って肯定判定とすることが好ましい。ステップS15で否定判定であれば、ステップS13に戻る。これにより引き続き過給温度Tの上昇を抑制できる。一方、ステップS15で肯定判定であれば、CPUは第1の制御弁131を閉じるための処理を実行する(ステップS17)。これにより、貯圧タンク120に圧縮エアを蓄えておくことができる。
一方、ステップS14で肯定判定であった場合には、CPUはウエストゲートバルブ133を開くための処理を実行する(ステップS16)。これにより、第1の制御弁131で過給温度Tの上昇を抑制できなくなった場合でも、過給温度Tの上昇を抑制できる。続いてCPUは第1の制御弁131を閉じるための処理を実行する(ステップS17)。これにより、貯圧タンク120に圧縮エアを蓄えておくことができる。
一方、ECU1では図2のフローチャートに示す処理と並列的に進行させるような形で、図3のフローチャートに示す処理も行われている。CPUはターボチャージャ110の回転数Ntが所定回転数よりも低いか否かを判定する処理を実行する(ステップS21)。否定判定であれば、肯定判定されるまでの間、ステップS21を繰り返す。一方肯定判定であれば、CPUは加速要求があるか否かを判定する処理を実行する(ステップS22)。すなわち、本実施例では回転数Ntが所定回転数よりも低い状態から上昇するときであるか否かを、加速要求があるか否かで判定している。なお、加速要求があるか否かは、例えばスロットル弁を開く方向に、所定値よりも大きいスロットル弁の開度変化があったか否かで判定することが好ましい。これにより過給過渡時を好適に検出できる。ステップS22で否定判定であれば、ステップS21に戻る。
一方、ステップS22で肯定判定であれば、CPUは第2の制御弁132を開くための処理を実行する(ステップS23)。これにより蓄圧タンク120からエアホース142を介して圧縮エアがタービンホイールに噴射されるため、ターボラグを低減できる。またこのとき過給温度Tの上昇に変換されてしまっていたエネルギーが利用されることから、併せて内燃機関システム200の熱効率の向上を図ることができる。ステップS23で圧縮エアを噴射した後には、CPUは第2の制御弁132を閉じるための処理を実行する(ステップS24)。以上により、低速高回転時の過給温度Tの上昇を抑制するとともにターボラグを低減し、これにより併せて内燃機関システム200の熱効率の向上を図ることができるECU1を実現できる。
上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。例えば本発明は内燃機関システムに限られず、その他の適宜のシステムに適用されてもよい。また蓄圧タンクの圧縮流体はタービンホイールに直接噴射されることが好適であるが、これに限られず、タービンホイールに作用させることができれば、例えばタービン部の内部スクロール流路やタービン部の入口などに噴射されてもよい。
1 ECU
2 過給温度センサ
10 吸気系
20 排気系
50 内燃機関
100 ターボチャージャシステム
110 ターボチャージャ
120 蓄圧タンク
131 第1の制御弁
132 第2の制御弁
133 ウエストゲートバルブ
200 内燃機関システム
2 過給温度センサ
10 吸気系
20 排気系
50 内燃機関
100 ターボチャージャシステム
110 ターボチャージャ
120 蓄圧タンク
131 第1の制御弁
132 第2の制御弁
133 ウエストゲートバルブ
200 内燃機関システム
Claims (4)
- ターボチャージャと、蓄圧タンクとを有して構成されるターボチャージャシステムであって、
前記蓄圧タンクが、前記ターボチャージャのコンプレッサ部の出口から吐出される圧縮流体が流入するように、且つ流入した圧縮流体を流出させて、前記ターボチャージャのタービンホイールに作用させることができるように接続されており、さらに前記蓄圧タンクへの圧縮流体の流入を制御可能な第1の流体制御手段と、前記蓄圧タンクからの圧縮流体の流出を制御可能な第2の流体制御手段とを備えていることを特徴とするターボチャージャシステム。 - 請求項1記載のターボチャージャシステムを制御するためのターボチャージャシステムの制御装置であって、
前記第2の流体制御手段が前記蓄圧タンクからの圧縮流体の流出を禁止している状態で、前記コンプレッサ部の出口から吐出される圧縮流体の過給温度が所定温度を超えたときに、前記蓄圧タンクへの圧縮流体の流入を許可するように前記第1の流体制御手段を制御するとともに、前記過給温度が前記所定温度になるように前記第1の流体制御手段を制御する第1の制御手段と、
前記第1の流体制御手段が前記蓄圧タンクへの圧縮流体の流入を禁止している状態で、且つ前記第2の流体制御手段が前記蓄圧タンクからの圧縮流体の流出を禁止している状態で、前記ターボチャージャの回転数が所定回転数よりも低い状態から上昇するときに、前記蓄圧タンクからの圧縮流体の流出を許可するように前記第2の流体制御手段を制御する第2の制御手段とを備えることを特徴とするターボチャージャシステムの制御装置。 - さらに前記第1の制御手段が、前記第1の流体制御手段が前記蓄圧タンクへの圧縮流体の流入を許可している状態で、前記過給温度が少なくとも前記所定温度よりも低くなったときに、前記第1の流体制御手段を前記蓄圧タンクへの圧縮流体の流入を禁止するように制御することを特徴とする請求項2記載のターボチャージャシステムの制御装置。
- さらに前記タービン部の入口に流入しようとする流体を迂回させることが可能な第3の流体制御手段を制御する第3の制御手段を備えるとともに、該第3の制御手段が、前記第1の流体制御手段が前記蓄圧タンクへの圧縮流体の流入を最大限許可している状態で、前記過給温度が前記所定温度を超えたときに、前記タービン部の入口に流入しようとする流体を迂回させるように前記第3の流体制御手段を制御することを特徴とする請求項2または3記載のターボチャージャシステムの制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007012052A JP2008175196A (ja) | 2007-01-22 | 2007-01-22 | ターボチャージャシステム及びターボチャージャシステムの制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007012052A JP2008175196A (ja) | 2007-01-22 | 2007-01-22 | ターボチャージャシステム及びターボチャージャシステムの制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008175196A true JP2008175196A (ja) | 2008-07-31 |
Family
ID=39702379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007012052A Pending JP2008175196A (ja) | 2007-01-22 | 2007-01-22 | ターボチャージャシステム及びターボチャージャシステムの制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008175196A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130305714A1 (en) * | 2012-05-17 | 2013-11-21 | Ford Global Technologies, Llc | Boost air management for improved engine performance |
-
2007
- 2007-01-22 JP JP2007012052A patent/JP2008175196A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130305714A1 (en) * | 2012-05-17 | 2013-11-21 | Ford Global Technologies, Llc | Boost air management for improved engine performance |
US9279396B2 (en) * | 2012-05-17 | 2016-03-08 | Ford Global Technologies, Llc | Boost air management for improved engine performance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5018975B2 (ja) | 内燃機関の過給機制御装置 | |
JP4483584B2 (ja) | 内燃機関用過給システム | |
JP6378251B2 (ja) | 内燃機関の過給システム | |
JP6163914B2 (ja) | ディーゼルエンジン及びその制御方法 | |
JP2007092683A (ja) | エンジンの過給装置 | |
WO2015157496A1 (en) | System and method for turbocharger compressor surge control | |
CN106481444A (zh) | 调节内燃发动机充气压力的方法及内燃发动机 | |
JP4844569B2 (ja) | 内燃機関の過給システム | |
JP2010024878A (ja) | 内燃機関の制御装置 | |
JP2007285222A (ja) | 内燃機関の排気制御装置 | |
JP2010190052A (ja) | 内燃機関の過給システム | |
JP6691498B2 (ja) | 内燃機関の制御装置 | |
JP2009057944A (ja) | 内燃機関の過給制御装置 | |
JP2010203426A (ja) | 過給機付き内燃機関の制御装置 | |
JP2008175196A (ja) | ターボチャージャシステム及びターボチャージャシステムの制御装置 | |
JP2009287412A (ja) | 過給機付き内燃機関の制御装置 | |
JP2007092682A (ja) | エンジンの過給装置 | |
JP6834396B2 (ja) | 車両の制御装置 | |
JP2011111929A (ja) | 内燃機関及びその制御方法 | |
JP2016050517A (ja) | 内燃機関 | |
KR20190135105A (ko) | 차량의 서지 발생 방지방법 | |
JP2005201092A (ja) | 内燃機関用過給システム | |
JP2014190264A (ja) | 内燃機関の制御装置 | |
JP5397128B2 (ja) | 多段過給システム内燃機関及びその制御方法 | |
JP2012167601A (ja) | 内燃機関の制御装置 |