JP2008168322A - Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY - Google Patents

Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY Download PDF

Info

Publication number
JP2008168322A
JP2008168322A JP2007003755A JP2007003755A JP2008168322A JP 2008168322 A JP2008168322 A JP 2008168322A JP 2007003755 A JP2007003755 A JP 2007003755A JP 2007003755 A JP2007003755 A JP 2007003755A JP 2008168322 A JP2008168322 A JP 2008168322A
Authority
JP
Japan
Prior art keywords
solder
mass
tip
lead
solder alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007003755A
Other languages
Japanese (ja)
Inventor
Mari Omi
真理 近江
Shogo Goto
庄吾 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWA KINZOKU KK
Original Assignee
ISHIKAWA KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWA KINZOKU KK filed Critical ISHIKAWA KINZOKU KK
Priority to JP2007003755A priority Critical patent/JP2008168322A/en
Publication of JP2008168322A publication Critical patent/JP2008168322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide resin flux cored solder effective for cost reduction, without losing the characteristics as those of solder, suppressing the iron leaching of a tip end and a dip tank, reducing the consumption of the tip end caused by freedom from lead in solder. <P>SOLUTION: Disclosed is a lead-free solder alloy in which the leaching of a tip end and a dip tank is suppressed by adding 0.01 to 0.1 mass% Fe and 0.01 to 0.1 mass% Ge to a lead-free solder alloy essentially consisting of Sn. Also disclosed is resin flux cored solder using the same. Further, by incorporating P or Ge therein, the leaching of a tip can be further reduced, and its wettability can be improved as well. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、Snを主成分とし鉛を含まない鉛フリーはんだ合金に関係し、詳しくはFeの喰われを抑制したやに入りはんだ用鉛フリーはんだ合金に関するものである。 The present invention relates to a lead-free solder alloy containing Sn as a main component and containing no lead, and more particularly to a lead-free solder alloy for cored solder in which the erosion of Fe is suppressed.

電子工業における接続、接合に用いられてきたはんだ合金は、従来Sn-Pb共晶はんだに代表されるSn-Pb系はんだが使用されてきた。しかし、近年鉛の毒性が問題視され、鉛を含まないはんだ合金(以下「鉛フリーはんだ」若しくは「鉛フリーはんだ合金」という。)が求められ、現在では多くの種類の鉛フリーはんだ合金が提案されている。その中でも例えば、Sn-Cu系、Sn-Ag系、Sn-Ag-Cu系、Sn-Ag-Bi-In系などの鉛フリーはんだ合金はすでに実用化段階にある。   Conventionally, Sn—Pb solder represented by Sn—Pb eutectic solder has been used as a solder alloy used for connection and joining in the electronics industry. However, in recent years, the toxicity of lead has been regarded as a problem, and a solder alloy that does not contain lead (hereinafter referred to as “lead-free solder” or “lead-free solder alloy”) has been demanded, and many types of lead-free solder alloys are now proposed. Has been. Among them, for example, lead-free solder alloys such as Sn-Cu, Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Bi-In are already in practical use.

しかしながら、鉛フリー合金は、マニュアルソルダリングにおいて使用するはんだごてのこて先のめっき部分のFeを浸食(「喰われ」ともいう)し、こて先が磨耗するためこて先の寿命を短くするという問題があった。   However, lead-free alloys erode (also referred to as “corroded”) the iron part of the soldering iron tip used in manual soldering, and the tip wears out. There was a problem of shortening.

その原因は、鉛フリーはんだの主成分であるSnがこて先のFeと反応しやすいということが挙げられる。従来のSn-Pb系のはんだでもこの現象は発生していたが、はんだ合金の鉛フリー化にともなうSnの含有量の増加により、こて先の磨耗速度が速くなったため、無視できない問題となってきている。   The cause is that Sn, which is the main component of lead-free solder, easily reacts with iron on the tip. This phenomenon occurred even with conventional Sn-Pb solder, but the wear rate of the tip increased due to the increase in the Sn content accompanying the lead-free solder alloy. It is coming.

また、鉛フリーはんだはSn-Pb系はんだに比べ融点が高く、こて先の温度を高く設定するため、こて先の浸食速度のさらなる増大につながる。特許文献1には、はんだによるこて先の磨耗はこて先の金属元素がはんだ中へ溶出するためであるとして、こて先に数μm厚のニッケルめっきを施す提案がなされている。
特開2005−125349号公報(富士電機)
Also, lead-free solder has a higher melting point than Sn-Pb solder, and the tip temperature is set higher, leading to a further increase in the tip erosion rate. Patent Document 1 proposes that the tip is subjected to nickel plating with a thickness of several μm, because the tip is worn due to the solder metal element eluting into the solder.
JP 2005-125349 A (Fuji Electric)

従来は、こて先の磨耗低減に関しては、こて先の強化を主とするもので、はんだ合金の組成で解決しようという提案はなかった。またFeの浸食ははんだのこて先だけでなく、はんだ槽(ディップ槽ともいう)のFeも浸食する。この場合ははんだ槽に孔があくといった問題まで発生することになる。すなわち、本発明は、鉛フリーはんだのFeの浸食性を抑制し、マニュアルソルダリングにおけるはんだごてのこて先やはんだ槽の寿命の延長に効果的な鉛フリーはんだ合金の提供を目的とする。なお、Feの浸食という意味で、はんだごてのこて先もはんだ槽も同じ意味であり、またこて先やはんだ槽だけに限定されない。そこで、以後これらを「こて先等」と呼ぶ。   Conventionally, with regard to reducing the wear of the tip, there has been no proposal to solve the problem with the composition of the solder alloy, which mainly reinforces the tip. In addition, not only the soldering iron tip but also Fe in the solder bath (also called dip bath) is eroded. In this case, problems such as holes in the solder bath may occur. That is, the present invention aims to provide a lead-free solder alloy that suppresses Fe erosion of lead-free solder and is effective in extending the life of the soldering iron tip and solder bath in manual soldering. . Note that, in terms of Fe erosion, the soldering iron tip and the solder bath have the same meaning, and are not limited to the tip and the solder bath. Therefore, these are hereinafter referred to as “tips”.

本発明は、Snを主成分とし、Feを0.01〜0.1質量%、Geを0.01〜0.1質量%の両方を含み、場合によりCoを0.1〜0.5質量%、Niを0.1〜0.5質量%、Inを0.1〜10.0質量%、Pを0.01〜0.05質量%、Gaを0.01〜0.05質量%のうち、少なくとも一種を含むことを特徴とするやに入りはんだ用鉛フリーはんだ合金である。   The present invention comprises Sn as a main component, including both 0.01 to 0.1% by mass of Fe and 0.01 to 0.1% by mass of Ge, optionally 0.1 to 0.5% by mass of Co, 0.1 to 0.5% by mass of Ni, and In. It is a lead-free solder alloy for flux cored solder characterized by containing at least one of 0.1 to 10.0 mass%, P from 0.01 to 0.05 mass%, and Ga from 0.01 to 0.05 mass%.

Snを主成分とする鉛フリーはんだに、FeとGeの両方を同時添加元素として用いることで、Fe、Geを単体で用いる場合よりFeの浸食を抑制することができる。FeとGeは互いに金属間化合物を作成しやすく、こて先でのFeめっき層のバリアとなり、こて先等の磨耗の抑制に効果がある。   By using both Fe and Ge as simultaneous additive elements in lead-free solder containing Sn as a main component, Fe erosion can be suppressed more than when Fe and Ge are used alone. Fe and Ge can easily form an intermetallic compound with each other, serve as a barrier for the Fe plating layer at the tip, and are effective in suppressing wear of the tip and the like.

またFe単体は、はんだ合金の製造時に、ドロスになりやすく安定して製造することが難しい。Geとともに用いることにより、安定してはんだ合金に添加でき、実用化もしやすくすることができる。   In addition, Fe alone is prone to dross when manufacturing a solder alloy, and it is difficult to stably manufacture it. By using together with Ge, it can be stably added to the solder alloy, and can be easily put into practical use.

またNiやCo、PやGaを加えることによりぬれ性の向上に効果がある。さらにIn、P、Gaの添加はFeめっきの浸食抑制にさらに効果が上がる。FeやGeはこて先等の表面に偏析すると同時に酸素と結びつきやすいため、こて先等の表面から酸素の存在するはんだ表面に移動する。In、P、GaはFe、Ge同様酸素と結びつきやすく、Fe、Geの酸素との結びつきを緩和し、Fe、Geが安定してこて先等のFeめっき表面に存在しやすくさせることができる。   In addition, the addition of Ni, Co, P, or Ga is effective in improving wettability. Furthermore, the addition of In, P, and Ga is further effective in suppressing the corrosion of Fe plating. Fe and Ge are segregated on the surface of the tip and the like, and at the same time, are easily combined with oxygen, and therefore move from the surface of the tip and the like to the solder surface where oxygen is present. Like Fe and Ge, In, P, and Ga are easily combined with oxygen, and the connection between Fe and Ge with oxygen can be relaxed, and Fe and Ge can be stably present on the Fe plating surface such as the tip.

本発明の鉛フリーはんだは、Snを主成分とし、Feを0.01〜0.1質量%とGeを0.01〜0.1質量%との両方を含む。FeとGeの両方用いることで、Fe、Geを単体で用いる場合よりFeの浸食を抑制することができる。   The lead-free solder of the present invention contains Sn as a main component and contains both 0.01 to 0.1% by mass of Fe and 0.01 to 0.1% by mass of Ge. By using both Fe and Ge, erosion of Fe can be suppressed more than when Fe and Ge are used alone.

公知の技術ではんだへのFeの添加は単体であってもこて先等のFeめっき浸食の抑制効果はある。しかしFeとGeを同時に添加することでその効果はさらに上がる。FeとGeは互いに金属間化合物を作成しやすく、こて先等の表面にはFe-Geの金属間化合物が偏析する。さらにこのFe-Geの金属間化合物は融点が高いため、一度こて先等のFeめっき表面にFe-Geが偏析すると、こて先等のFeめっき層のバリアとなり、Feめっきの浸食抑制に効果的である。   Even if the addition of Fe to the solder is a simple substance with a known technique, there is an effect of suppressing the corrosion of Fe plating such as the tip. However, the effect is further increased by adding Fe and Ge simultaneously. Fe and Ge can easily form intermetallic compounds with each other, and Fe—Ge intermetallic compounds are segregated on the surface of the tip or the like. Furthermore, since this Fe-Ge intermetallic compound has a high melting point, once Fe-Ge is segregated on the surface of the Fe plating such as the tip, it becomes a barrier for the Fe plating layer such as the tip, and it suppresses the corrosion of the Fe plating. It is effective.

またFe単体ははんだ合金の製造時、ドロスになりやすく安定して製造することが難しい。Geとともに用いることにより、安定してはんだ合金に添加でき、実用化もしやすくすることができる。   In addition, Fe alone is prone to dross when manufacturing solder alloys, and it is difficult to manufacture stably. By using together with Ge, it can be stably added to the solder alloy, and can be easily put into practical use.

FeとGeの含有率は0.01質量%未満ではFeめっきの浸食抑制に効果が少なく、0.1質量%を超えるとはんだ合金が黒く変色し、こて先等が炭化し、ぬれ性にも影響が出て、はんだとしての特性が失われる場合がある。浸食抑制効果を保ちつつ、従来使用しているはんだ合金としての特性を失わないために、両元素とも0.01〜0.05質量%が好ましい。   If the Fe and Ge content is less than 0.01% by mass, the effect of suppressing the erosion of Fe plating is small, and if it exceeds 0.1% by mass, the solder alloy turns black and the tip etc. carbonizes, affecting the wettability. As a result, the solder characteristics may be lost. In order not to lose the characteristics of the solder alloy used conventionally while maintaining the erosion control effect, both elements are preferably 0.01 to 0.05% by mass.

またNiやCoを加えることによりぬれ性の向上に効果がある。さらにIn、P、Gaの添加はFeめっきの浸食抑制にさらに効果が上がる。FeやGeはこて先等の表面に偏析すると同時に酸素と結びつきやすいため、こて先等の表面から酸素の存在するはんだ表面に移動する。In、P、GaはFe、Ge同様酸素と結びつきやすく、Fe、Geの酸素との結びつきを緩和し、Fe、Geが安定してこて先等のFeめっき表面に存在しやすくさせることができる。   In addition, adding Ni or Co is effective in improving wettability. Furthermore, the addition of In, P, and Ga is further effective in suppressing the corrosion of Fe plating. Fe and Ge are segregated on the surface of the tip and the like, and at the same time, are easily combined with oxygen, and therefore move from the surface of the tip and the like to the solder surface where oxygen is present. Like Fe and Ge, In, P, and Ga are easy to be combined with oxygen, relax the bond between Fe and Ge with oxygen, and make Fe and Ge stably exist on the surface of the iron plating such as the tip.

NiとCoの含有率は0.1質量%未満ではぬれ性に効果が少なく、0.5質量%以上では融点が上昇してはんだ付け温度が上がり、またはんだ内にNi、Coの偏析が生じ、こて先等の喰われの効果も低下し、はんだとしての特性も失われる。Feめっきの浸食抑制効果とぬれ性の効果を保ちつつ、従来使用しているはんだ合金としても特性を失わないために、両元素とも0.1〜0.3質量%が好ましい。   If the Ni and Co content is less than 0.1% by mass, the effect on wettability is small.If the Ni and Co content is 0.5% by mass or more, the melting point rises and the soldering temperature rises. The effect of biting is also reduced, and the characteristics as solder are lost. In order not to lose the characteristics of the conventionally used solder alloy while maintaining the effect of erosion control and wettability of Fe plating, both elements are preferably 0.1 to 0.3% by mass.

Inの含有率は0.1質量%未満ではこて先等の喰われ抑制の向上に効果がなく、10.0質量%を超えると、強度が低下してしまう。Feの浸食抑制効果の向上と強度のバランスを考えて、0.1〜10.0質量%が好ましく、0.1〜8.0質量%であればより好ましい。   If the content of In is less than 0.1% by mass, there is no effect in improving the suppression of the erosion of the tip or the like, and if it exceeds 10.0% by mass, the strength decreases. In consideration of the improvement of Fe erosion suppression effect and the balance of strength, 0.1 to 10.0% by mass is preferable, and 0.1 to 8.0% by mass is more preferable.

P、Gaの含有率は0.01質量%以下ではこて先等喰われ抑制の向上に効果が無く、0.05質量%以上でははんだ合金が黒く変色し、こて先等の炭化が起き、ぬれ性に影響が出る。浸食抑制効果が向上し、従来使用しているはんだ合金と比較しても特性を失わないために、両元素とも0.01〜0.05質量%が好ましい。   If the P and Ga content is 0.01% by mass or less, there is no effect in improving the control of the tip and the like, and if it is 0.05% by mass or more, the solder alloy turns black, and the tip is carbonized, resulting in wettability. There will be an impact. In order to improve the erosion-inhibiting effect and not lose the characteristics even when compared with the solder alloys used conventionally, both elements are preferably 0.01 to 0.05% by mass.

これらの本発明においてAgを2.5〜4.0質量%、Cuを0.3〜1.0質量%を含んでも良い。これは一般的な鉛フリーはんだ合金で使用されており、これらの元素が含まれていても、本発明は、こて先等の喰われ抑制に関して効果がある。また、本発明のはんだ合金がやに入りはんだとして用いる事ができるのは言うまでもない。   In the present invention, Ag may be contained in an amount of 2.5 to 4.0% by mass and Cu may be contained in an amount of 0.3 to 1.0% by mass. This is used in a general lead-free solder alloy, and even if these elements are contained, the present invention is effective in suppressing biting of a tip or the like. Needless to say, the solder alloy of the present invention can be used as a cored solder.

なお、本明細書において、Snは錫、Agは銀、Cuは銅、Feは鉄、Geはゲルマニウム、Coはコバルト、Niはニッケル、Inはインジウム、Pは燐、Gaはガリウム、Biはビスマス、Nは窒素を表す。   In this specification, Sn is tin, Ag is silver, Cu is copper, Fe is iron, Ge is germanium, Co is cobalt, Ni is nickel, In is indium, P is phosphorus, Ga is gallium, and Bi is bismuth. , N represents nitrogen.

以下、実施例および比較例を挙げて、本発明をさらに詳しく説明する。なお、実施例ははんだごてのこて先の浸食を比較検討したもので説明する。しかしステンレスや鉄製のはんだ槽においてもFeの浸食という観点で、こて先と同様の結果が生じる。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, an Example demonstrates by comparing and examining the erosion of the tip of a soldering iron. However, in the case of a stainless steel or iron solder bath, the same result as the tip is produced from the viewpoint of Fe erosion.

(こて喰われ試験)
下記表1に示す組成のはんだ合金を作成し、フラックスを充填してやに入りはんだとし、φ0.8の糸状に成形した。フラックスは石川金属株式会社製のATSを使用し、フラックス含有量は3質量%とした。こてロボットに試作のやに入りはんだとこて先をセットし、一定の速度、時間で、やに入りはんだを20000回こて先に供給した。
(Trowel bite test)
A solder alloy having the composition shown in Table 1 below was prepared, filled with flux to form a cored solder, and formed into a thread of φ0.8. The flux used was ATS manufactured by Ishikawa Metal Co., Ltd., and the flux content was 3% by mass. A prototype cored solder and tip were set on the ironing robot, and soldered solder was supplied to the tip 20,000 times at a constant speed and time.

こて先の温度は400℃とした。またはんだの送り長さは1回につき、4.7mm、送り速度は9.4mm/secとした。こてロボットはジャパンユニックス製の型式番号「UNIX401P」を用い、こて先は同社製P3D-S(片面はんだめっき)を用いた。試験後のこて先を切断、中央断面まで研磨、鏡面出しし、写真を撮影した。そして、こて先の喰われた部分の面積を画像処理により算出した。本試験ではSn-3.0Ag-0.5Cuを用いた際のこて先喰われ率を100としたときの値を算出した。   The tip temperature was 400 ° C. In addition, the solder feed length was 4.7 mm and the feed speed was 9.4 mm / sec. The iron robot used was model number “UNIX401P” manufactured by Japan Unix, and the tip used was P3D-S (single-sided solder plating) manufactured by the same company. The tip after the test was cut, polished to the center cross section, mirror finished, and photographed. And the area of the part where the tip was eaten was calculated by image processing. In this test, the value when the tip erosion rate was set to 100 when Sn-3.0Ag-0.5Cu was used was calculated.

(ぬれ性)
試験基板にこてロボットではんだ付けを行い、はんだ付け後の基板の写真を撮影し、画像処理によってぬれ率を算出した。ぬれ率は以下の計算式から求めた。
ぬれ率(%)=100×(はんだの面積/ランドの面積)
条件はランド3×3mm、ランドの材質はCu、基板の材質はガラスエポキシ、こて先は3mmドライバー型、こて温度は290℃と320℃で評価した。はんだ供給条件は1次はんだが供給量1.0mm、供給速度20mm/sec、2次はんだが供給量2.0mm、20mm/secとした。こてロボットはジャパンユニックス製のUNIX401Pを用いた。
(Wettability)
The test board was soldered with a trowel robot, a picture of the board after soldering was taken, and the wetting rate was calculated by image processing. The wetting rate was obtained from the following calculation formula.
Wetting rate (%) = 100 x (solder area / land area)
The conditions were as follows: land 3 × 3 mm, land material Cu, substrate material glass epoxy, tip 3 mm driver type, iron temperature 290 ° C and 320 ° C. The solder supply conditions were as follows: primary solder supply rate 1.0 mm, supply rate 20 mm / sec, secondary solder supply rate 2.0 mm, 20 mm / sec. The iron robot used was UNIX 401P manufactured by Japan Unix.

(融点測定)
はんだ合金の融点を(株)リガク製の示差走査熱量測定(DSC:Differential scanning
Calorimetry)で測定した。試験条件は、はかりとり量を10mg、昇温速度を1℃/min、N2雰囲気で行った。実施例および比較例の組成比を表1に、またその評価結果を表2に示す。
(Melting point measurement)
Differential scanning calorimetry (DSC: Differential scanning) manufactured by Rigaku Corporation
Measured by calorimetry). The test conditions were as follows: the weighing amount was 10 mg, the heating rate was 1 ° C./min, and an N 2 atmosphere. The composition ratios of Examples and Comparative Examples are shown in Table 1, and the evaluation results are shown in Table 2.

比較例1はSn-Ag-Cu系の基本組成である。この比較例1のこて喰われ率を100%として各実施例を比較する。なお、融点とぬれ性についても実施結果を示した。融点において、固相線とは、固体だけの状態と、固体と液体が共存する状態の境界をいう。また液相線とは、固体と液体が共存する状態と、液体だけの状態の境界である。それぞれの融点は表2に示すとおりである。   Comparative Example 1 is a Sn—Ag—Cu base composition. Each Example is compared with the iron erosion rate of Comparative Example 1 as 100%. Note that the results of the melting point and wettability are also shown. In terms of the melting point, the solid phase line refers to a boundary between a solid state and a state where a solid and a liquid coexist. The liquidus is a boundary between a state in which a solid and a liquid coexist and a state in which only the liquid is present. Each melting point is as shown in Table 2.

比較例2および3はFeとGeを別々に含有させた場合である。こて喰われ率はそれぞれ86%、81%と減少しており、これらの元素を含有させることがこて喰われ率の減少に効果があることが確認された。   Comparative Examples 2 and 3 are cases where Fe and Ge were separately contained. The iron erosion rate decreased to 86% and 81%, respectively, and it was confirmed that the inclusion of these elements had an effect on the reduction of the iron erosion rate.

これに対して実施例1乃至11はすべてFeとGeを同時に含有させた場合である。全ての実施例が比較例2及び3よりも、こて喰われ率が減少している。すなわち、FeとGeの同時添加は、それぞれの元素を単独に添加する場合に比べ、こて喰われ率をさらに減少させる効果がある。   On the other hand, Examples 1 to 11 are all cases in which Fe and Ge are simultaneously contained. In all the examples, the trowel biting rate is lower than in Comparative Examples 2 and 3. That is, simultaneous addition of Fe and Ge has an effect of further reducing the trowel biting rate as compared with the case where each element is added alone.

実施例10と実施例11は、Sn-Cu系とSn-Ag-In-Bi系の組成系である。これらは添加元素がない場合はSn-Ag-Cu系のはんだとほぼ同じこて喰われ率を示す。   Example 10 and Example 11 are Sn—Cu and Sn—Ag—In—Bi composition systems. When there is no additive element, they show almost the same erosion rate as Sn-Ag-Cu solder.

この2つの場合もFeとGeを同時に添加するとこて喰われ率はSn-Ag-Cu系にFeとGeを個別に加えた場合の半分以下になっている。この結果はFeとGeを同時に添加した場合の効果が、単にSn-Ag-Cu系はんだ合金に特異的な効果を与えているのではなく、こて先のFeとの間の反応によって生じる効果であることを示している。つまり、FeとGeを同時に添加するということは、どのような組成のはんだ合金でもこて喰われの減少に効果があることを示すものである。   Also in these two cases, when Fe and Ge are added simultaneously, the erosion rate is less than half that of the case where Fe and Ge are individually added to the Sn—Ag—Cu system. This result shows that the effect of adding Fe and Ge at the same time is not simply giving a specific effect to the Sn-Ag-Cu solder alloy, but the effect caused by the reaction with Fe at the tip It is shown that. In other words, the simultaneous addition of Fe and Ge indicates that a solder alloy having any composition is effective in reducing galling.

次にその他の添加元素が存在する組成への効果を説明する。ぬれ性を向上させることで知られているCoを添加したはんだの場合を示す実施例3は、比較例1乃至3のぬれ性である60.1%〜64.9%に対して65.9%であり確かにぬれ性の向上に効果があった。   Next, the effect on the composition containing other additive elements will be described. Example 3, which shows the case of solder added with Co, which is known to improve wettability, is 65.9% compared to the wettability of 60.1% to 64.9% of Comparative Examples 1 to 3, which is certainly wet. It was effective in improving the sex.

一方こて喰われ率は79%であり、3つの比較例より低い値を示している。すなわち、Coが含有されてぬれ性が改善されているはんだに対してもFeとGeの同時添加によりこて喰われ率を減少させることができる。   On the other hand, the trowel biting rate is 79%, which is lower than the three comparative examples. That is, the soldering rate of the solder containing Co and improved in wettability can be reduced by the simultaneous addition of Fe and Ge.

実施例4はNiを含有させているが、こて喰われ率は74%であり、Geを単体で含有させた比較例3より改善している。一方実施例4のぬれ性は、比較例3のぬれ性より少し改善している。   Although Example 4 contains Ni, the trowel biting rate is 74%, which is an improvement over Comparative Example 3 containing Ge alone. On the other hand, the wettability of Example 4 is slightly improved from the wettability of Comparative Example 3.

比較対照をSn-Ag-Cu系の基本組成である比較例1にした場合、実施例4は、ぬれ性はほぼ同じであるものの、こて喰われ率は改善している。以上のことより、CoとNiは、ぬれ性の向上に効果があり、そのような組成系に対してもFeとGeの同時添加は、こて喰われの減少に効果があることがわかる。   When Comparative Example 1 was a basic composition of Sn—Ag—Cu, the wettability of Example 4 was almost the same, but the trowel bit rate was improved. From the above, it can be seen that Co and Ni are effective in improving the wettability, and the simultaneous addition of Fe and Ge is effective in reducing the erosion of such a composition system.

実施例5乃至8はPとGaを添加した場合の実施例で、実施例5と6および実施例7と8は、それぞれPとGaの含有量が異なる場合を示す。実施例5乃至8のこて喰われ率は12%から24%の範囲であり、FeとGeの同時添加にPとGaをさらに添加するとより一層こて喰われ率を減少させる効果がある。   Examples 5 to 8 are examples in which P and Ga are added, and Examples 5 and 6 and Examples 7 and 8 show cases where the contents of P and Ga are different from each other. The iron erosion rate of Examples 5 to 8 is in the range of 12% to 24%, and when P and Ga are further added to the simultaneous addition of Fe and Ge, there is an effect of further reducing the erosion rate.

より詳細に見てみると、実施例1と実施例5および実施例7はFeとGeがそれぞれ0.02質量%づつ含有されている。実施例5はさらにPが0.10質量%、実施例7はGaが0.30質量%含有されている。これらのこて喰われ率は、実施例1が65%であるのに対して実施例5が12%、実施例7は22%でありFeとGeの同時添加に対してさらに、こて喰われ率の減少に効果を示している。   In more detail, Example 1, Example 5 and Example 7 contain 0.02% by mass of Fe and Ge, respectively. Example 5 further contains 0.10% by mass of P, and Example 7 contains 0.30% by mass of Ga. These iron erosion rates were 65% for Example 1 and 12% for Example 5 and 22% for Example 7. This is effective in reducing the crack rate.

なお、実施例5と実施例7は、PとGaが0.05質量%以上含まれており、ぬれ性が比較例1よりも低くなっている。つまり、PとGaは0.05質量%を超えるとぬれ性に影響するということがわかる。   Note that Example 5 and Example 7 contain 0.05 mass% or more of P and Ga, and the wettability is lower than that of Comparative Example 1. That is, it is understood that P and Ga affect the wettability when it exceeds 0.05 mass%.

また、実施例2と実施例6と実施例8は、Feを0.02質量%、とGeを0.05質量%をそれぞれ同時添加した系である。実施例6はさらにPを0.03質量%含有させ、実施例8はGaを0.04質量%含有させている。これらのこて喰われ率は、それぞれ26%、17%、24%であり、やはりPとGaの添加がこて喰われ率を低減させる効果を示している。   Example 2, Example 6 and Example 8 are systems in which 0.02% by mass of Fe and 0.05% by mass of Ge are added simultaneously. Example 6 further contains 0.03% by mass of P, and Example 8 contains 0.04% by mass of Ga. These trowel bit rates are 26%, 17%, and 24%, respectively, and the addition of P and Ga also shows the effect of reducing the trowel bit rate.

一方、ぬれ性は同じくそれぞれ58.0%、64.8%、65.1%で、PやGeを0.05質量%以下の割合で添加させた場合は、ぬれ性を向上させ、さらにこて喰われ率も低下するという効果があることが確認できた。つまり実施例5及び7の結果を考慮すると、PやGeは好ましくは0.05質量%以下であるのがよい。もちろん、含有されてなければぬれ性の向上に効果はなく、下限は0.01質量%以上である。   On the other hand, the wettability is also 58.0%, 64.8%, and 65.1%, respectively, and when P or Ge is added at a ratio of 0.05% by mass or less, the wettability is improved and the troweling rate is also reduced. It was confirmed that there was an effect. That is, considering the results of Examples 5 and 7, P and Ge are preferably 0.05% by mass or less. Of course, if not contained, there is no effect in improving wettability, and the lower limit is 0.01% by mass or more.

実施例9は実施例1にInを0.30質量%含有させたものである。こて喰われ率は65%から28%に減少している。また、実施例11ではInを3.0質量%含有させている。この実施例11もこて喰われ率は26%と非常に少なくなっている。すなわち、InもFeとGeの同時添加に加え、さらにこて喰われ率の減少に効果があることが示された。   Example 9 is obtained by adding 0.30% by mass of In to Example 1. The trowel rate has decreased from 65% to 28%. In Example 11, 3.0% by mass of In is contained. This Example 11 also has a very low troweling rate of 26%. In other words, it has been shown that In is effective in reducing the erosion rate in addition to the simultaneous addition of Fe and Ge.

以上のように、本発明であるFeとGeを同時に添加するはんだ合金は、はんだこて喰われを減少させることができる。また、P、Ga、Inを含有させることにより一層こて喰われ率を減少させることができる。なお、PやGaは、ぬれ性の向上にも効果がある。   As described above, the solder alloy to which Fe and Ge of the present invention are added at the same time can reduce the soldering iron erosion. Further, the inclusion of P, Ga, and In can further reduce the rate of erosion. P and Ga are also effective in improving wettability.

また、Co、Ni、といった添加元素がふくまれていても、はんだこて喰われを減少させることができる。さらに、Sn-Cu系や、Sn-Ag-In-Bi系といったSn-Ag-Cu系とは異なるはんだ組成系でもはんだこて喰われを減少させることができる。


Further, even if additive elements such as Co and Ni are included, the soldering iron can be reduced. Furthermore, even with a solder composition system different from the Sn-Ag-Cu system such as the Sn-Cu system and the Sn-Ag-In-Bi system, the erosion of the soldering iron can be reduced.


Claims (11)

Snを主成分とし、0.01〜0.1質量%のFeと、0.01〜0.1質量%のGeを含有する鉛フリーはんだ合金。 A lead-free solder alloy containing Sn as a main component and containing 0.01 to 0.1% by mass of Fe and 0.01 to 0.1% by mass of Ge. 0.01〜0.1質量%のP若しくは、0.01〜0.3質量%のGaを含有する請求項1に記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 1, containing 0.01 to 0.1% by mass of P or 0.01 to 0.3% by mass of Ga. Inを含有する請求項1に記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 1 containing In. 0.1〜0.5質量%のCo若しくは、0.1〜0.5質量%のNiを含有する請求項1記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 1, containing 0.1 to 0.5 mass% Co or 0.1 to 0.5 mass% Ni. Agと、Cuを含有する請求項1記載の鉛フリー用はんだ合金。 The lead-free solder alloy according to claim 1 containing Ag and Cu. 0.01〜0.1質量%のP若しくは、0.01〜0.3質量%のGaを含有する請求項5に記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 5, containing 0.01 to 0.1% by mass of P or 0.01 to 0.3% by mass of Ga. Inを含有する請求項5に記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 5 containing In. 0.1〜0.5質量%のCo若しくは、0.1〜0.5質量%のNiを含有する請求項5記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 5, containing 0.1 to 0.5 mass% Co or 0.1 to 0.5 mass% Ni. Cuを含有する請求項1記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 1 containing Cu. AgとBiを含有する請求項1記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 1 containing Ag and Bi. 請求項1乃至8の鉛フリーはんだ合金を用いたやに入りはんだ。

Filled solder using the lead-free solder alloy according to claim 1.

JP2007003755A 2007-01-11 2007-01-11 Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY Pending JP2008168322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003755A JP2008168322A (en) 2007-01-11 2007-01-11 Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003755A JP2008168322A (en) 2007-01-11 2007-01-11 Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY

Publications (1)

Publication Number Publication Date
JP2008168322A true JP2008168322A (en) 2008-07-24

Family

ID=39696906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003755A Pending JP2008168322A (en) 2007-01-11 2007-01-11 Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY

Country Status (1)

Country Link
JP (1) JP2008168322A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034139A1 (en) * 2012-08-30 2014-03-06 パナソニック株式会社 Solder material and mounted body
JP5638174B1 (en) * 2014-06-24 2014-12-10 ハリマ化成株式会社 Solder alloy, solder composition, solder paste and electronic circuit board
JP2015083321A (en) * 2009-11-20 2015-04-30 エプコス アーゲーEpcos Ag Solder material for bonding outer electrode to piezoelectric component, and piezoelectric component comprising solder material
WO2020111273A1 (en) * 2018-11-30 2020-06-04 株式会社日本スペリア社 Lead-free solder alloy
WO2020241316A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder alloy, solder powder, solder paste, solder ball and solder preform
KR20220141914A (en) 2020-04-10 2022-10-20 센주긴조쿠고교 가부시키가이샤 Solder alloy, solder powder, solder paste, solder ball, solder preform and solder joint
JP7376842B1 (en) 2023-02-21 2023-11-09 千住金属工業株式会社 Solder alloys, solder balls, solder pastes and solder joints
US11878137B2 (en) 2006-10-18 2024-01-23 Medical Components, Inc. Venous access port assembly with X-ray discernable indicia

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11878137B2 (en) 2006-10-18 2024-01-23 Medical Components, Inc. Venous access port assembly with X-ray discernable indicia
JP2015083321A (en) * 2009-11-20 2015-04-30 エプコス アーゲーEpcos Ag Solder material for bonding outer electrode to piezoelectric component, and piezoelectric component comprising solder material
JP5919545B2 (en) * 2012-08-30 2016-05-18 パナソニックIpマネジメント株式会社 Solder material and mounting body
WO2014034139A1 (en) * 2012-08-30 2014-03-06 パナソニック株式会社 Solder material and mounted body
JP5638174B1 (en) * 2014-06-24 2014-12-10 ハリマ化成株式会社 Solder alloy, solder composition, solder paste and electronic circuit board
US9931716B2 (en) 2014-06-24 2018-04-03 Harima Chemicals, Incorporated Solder alloy, solder composition, solder paste, and electronic circuit board
US9956649B2 (en) 2014-06-24 2018-05-01 Harima Chemicals, Incorporated Solder alloy, solder paste, and electronic circuit board
WO2020111273A1 (en) * 2018-11-30 2020-06-04 株式会社日本スペリア社 Lead-free solder alloy
JPWO2020111273A1 (en) * 2018-11-30 2021-12-02 株式会社日本スペリア社 Lead-free solder alloy
JP7357227B2 (en) 2018-11-30 2023-10-06 株式会社日本スペリア社 Lead-free solder alloy
JP2020192572A (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder alloy, solder powder, solder paste, solder ball, solder preform, and solder joint
WO2020241316A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder alloy, solder powder, solder paste, solder ball and solder preform
KR20220141914A (en) 2020-04-10 2022-10-20 센주긴조쿠고교 가부시키가이샤 Solder alloy, solder powder, solder paste, solder ball, solder preform and solder joint
JP7376842B1 (en) 2023-02-21 2023-11-09 千住金属工業株式会社 Solder alloys, solder balls, solder pastes and solder joints

Similar Documents

Publication Publication Date Title
TWI383052B (en) Low silver solder alloy and solder paste composition
JP2008168322A (en) Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY
JP4577888B2 (en) Fe erosion prevention solder alloy and Fe erosion prevention method
KR101738841B1 (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
JP2011156558A (en) Lead-free solder alloy
JP2005153007A (en) Lead-free solder for manual soldering or flow soldering, and electronic component using the same
JP4554713B2 (en) Lead-free solder alloy, fatigue-resistant solder joint material including the solder alloy, and joined body using the joint material
CN111230355B (en) Lead-free solder alloy
JP2013000744A (en) Lead-free solder alloy, and soldered joint using the same
KR20140030175A (en) Flux for brazing aluminum materials
JP2006281318A (en) LEAD-FREE SOLDER ALLOY COMPOSITION BASICALLY CONTAINING TIN (Sn), SILVER (Ag), COPPER (Cu) AND PHOSPHORUS (P)
JP3966554B2 (en) Solder alloy
JP2009082986A (en) Lead-free solder alloy for manual soldering
WO2007014530A1 (en) Lead-free sn-ag-cu-ni-al system solder alloy
KR101945683B1 (en) Fe erosion-resistant solder alloy, resin flux-containing solder, lead solder, solder containing resin flux, flux-clad solder, solder joint and soldering method
JP5773444B2 (en) Solder alloy for aluminum joining
JP5080946B2 (en) Lead-free solder alloy for manual soldering
KR100963462B1 (en) SOLDER ALLOY AND METHOD FOR Fe-LEACHING PREVENTION
JP5051633B2 (en) Solder alloy
JP6344541B1 (en) Fe erosion prevention solder alloy, cored wire solder, wire solder, cored wire solder, flux coated solder, and solder joint
JP2004330260A (en) LEAD-FREE SnAgCu SOLDER ALLOY
WO2014142153A1 (en) Solder alloy and joint thereof
JP2007111715A (en) Solder alloy
WO2018034320A1 (en) Solder alloy for preventing fe erosion, resin flux cored solder, wire solder, resin flux cored wire solder, flux coated solder, solder joint and soldering method
JP7357227B2 (en) Lead-free solder alloy