JP2008166476A - Thin film transformer and its manufacturing method - Google Patents

Thin film transformer and its manufacturing method Download PDF

Info

Publication number
JP2008166476A
JP2008166476A JP2006354117A JP2006354117A JP2008166476A JP 2008166476 A JP2008166476 A JP 2008166476A JP 2006354117 A JP2006354117 A JP 2006354117A JP 2006354117 A JP2006354117 A JP 2006354117A JP 2008166476 A JP2008166476 A JP 2008166476A
Authority
JP
Japan
Prior art keywords
film
insulating film
coil conductor
groove
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006354117A
Other languages
Japanese (ja)
Other versions
JP4797980B2 (en
Inventor
Kazumi Takagiwa
和美 高際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006354117A priority Critical patent/JP4797980B2/en
Publication of JP2008166476A publication Critical patent/JP2008166476A/en
Application granted granted Critical
Publication of JP4797980B2 publication Critical patent/JP4797980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film transformer capable of easily improving energy conversion efficiency without an occupied area increased, and to provide its manufacturing method. <P>SOLUTION: A first coil conductor 4 comprising a vortical (a planar spiral) primary coil and a second coil conductor 6 comprising a secondary coil are formed in mutually facing laterally in insulating films of silicon oxide films 2, 5, 7 formed on a silicon substrate 1. The width of the coil conductors 4, 6 can be formed vertically to easily improve the energy conversion efficiency without the occupied area increased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、渦巻き状の薄膜コイルが互いに対向してなる薄膜トランスとその製造方法に関する。   The present invention relates to a thin film transformer in which spiral thin film coils are opposed to each other and a method for manufacturing the same.

シリコンなどの半導体基板上に形成される薄膜トランスは、そのコイルが薄膜形成技術をもって形成されるため、小型化が可能なトランスとして知られ、半導体集積デバイスなどを構成する素子のひとつである。ここで、コイルには導電性配線(導体または半導体)が用いられ、コイルの形状は、コイルの長さ(または面積)当たりのインダクタンスを大きく、すなわち、大きなQ値(Q=ωL/R、ω:角周波数、L:相互インダクタンス、R:コイル抵抗)を確保するために、渦巻き状(平面コイル状)に形成される。このようにして形成された薄膜トランスの一例を図5に示す。
図5は、従来の薄膜トランスの構成図であり、同図(a)は斜視図、同図(b)は要部断面図である。同図(a)ではシリコン酸化膜12は省略されている。またコイル導体13、14は簡単のために厚みは省略して描いている。
薄膜トランスはシリコン基板11上に厚さが0.1〜2μmのシリコン酸化膜12aが形成され、その表面側にアルミや銅などからなる導電性の金属材料がスパッタリング法または真空蒸着法などにより、厚さが1〜5μmの金属膜として形成されている。この後、金属膜は、リソグラフィーで第1コイル導体13の渦巻きパターンを転写し、エッチングの工程を経て、幅が10〜100μm、配線間隔(コイル導体間の距離)が10〜100μmの第1コイル導体13が形成され、この第1コイル導体13を渦巻き状にして1次コイルを形成する。第1コイル導体13のピッチWはコイル導体の幅と配線間隔を合わせたもので第2コイル導体14のピッチも同じである。
次に、その表面側に厚さが0.1〜3μmのシリコン酸化膜12bを形成した後に、第1コイル導体13と同様な方法によって第2コイル導体14を厚さ1〜5μmで第1コイル導体13の直上に同一パターンで形成して2次コイルとし、この2次コイルの表面側に厚さが1〜2μmのシリコン酸化膜12cを形成する。このようにして、シリコン酸化膜12に埋め込まれた第1コイル導体13、第2コイル導体14で構成される薄膜トランスが形成される。
次に、第1コイル導体13の両端および第2コイル導体14の両端を電気的に接続が可能とする端子を形成するために、第1、第2コイル導体13、14の上部のシリコン酸化膜12cをリソグラフィーおよびエッチングの工程により除去し、薄膜トランスを形成する。図5の薄膜トランスにおいて、1次、2次コイルのコイル巻数は共に4であり、また、2次コイルを1次コイルに対して上下方向に対向させて同一パターンで形成する。
A thin film transformer formed on a semiconductor substrate such as silicon is known as a transformer that can be miniaturized because its coil is formed by a thin film formation technique, and is one of elements constituting a semiconductor integrated device or the like. Here, conductive wiring (conductor or semiconductor) is used for the coil, and the shape of the coil has a large inductance per length (or area) of the coil, that is, a large Q value (Q = ωL / R, ω : Angular frequency, L: Mutual inductance, R: Coil resistance) are formed in a spiral shape (planar coil shape). An example of the thin film transformer thus formed is shown in FIG.
5A and 5B are configuration diagrams of a conventional thin film transformer, in which FIG. 5A is a perspective view, and FIG. The silicon oxide film 12 is omitted in FIG. Further, the coil conductors 13 and 14 are drawn with the thickness omitted for simplicity.
In the thin film transformer, a silicon oxide film 12a having a thickness of 0.1 to 2 μm is formed on a silicon substrate 11, and a conductive metal material made of aluminum, copper, or the like is formed on the surface side by a sputtering method or a vacuum deposition method. It is formed as a metal film having a thickness of 1 to 5 μm. Thereafter, the metal film is transferred by lithography to the spiral pattern of the first coil conductor 13, and after an etching process, the first coil having a width of 10 to 100 μm and a wiring interval (distance between the coil conductors) of 10 to 100 μm. A conductor 13 is formed, and the first coil conductor 13 is spirally formed to form a primary coil. The pitch W of the first coil conductor 13 is a combination of the width of the coil conductor and the wiring interval, and the pitch of the second coil conductor 14 is the same.
Next, after a silicon oxide film 12b having a thickness of 0.1 to 3 μm is formed on the surface side, the second coil conductor 14 is formed to a thickness of 1 to 5 μm by the same method as the first coil conductor 13. A secondary coil is formed in the same pattern directly above the conductor 13, and a silicon oxide film 12 c having a thickness of 1 to 2 μm is formed on the surface side of the secondary coil. In this way, a thin film transformer composed of the first coil conductor 13 and the second coil conductor 14 embedded in the silicon oxide film 12 is formed.
Next, in order to form terminals that can electrically connect both ends of the first coil conductor 13 and both ends of the second coil conductor 14, silicon oxide films on the first and second coil conductors 13, 14 are formed. 12c is removed by lithography and etching processes to form a thin film transformer. In the thin film transformer of FIG. 5, the number of turns of the primary and secondary coils is 4, and the secondary coil is formed in the same pattern so as to face the primary coil in the vertical direction.

このような構成の薄膜トランスは、例えば、1次コイルの両端に電流を流し、この電流に変化を与えると、1次コイルの周囲に発生している磁界が変化するため、2次コイルの両端に電位差が生じ、2次コイルに起電力が生じる。ここで、2次コイルに発生する誘導起電力(誘導電流)は、2次コイルの巻数に比例する。
また、1次コイルの巻数が多ければその周囲に発生する磁界が強調されるため、大きな起電力を誘導させることができる。
In the thin film transformer having such a configuration, for example, when a current flows through both ends of the primary coil and the current is changed, the magnetic field generated around the primary coil changes. A potential difference is generated in the secondary coil, and an electromotive force is generated in the secondary coil. Here, the induced electromotive force (induced current) generated in the secondary coil is proportional to the number of turns of the secondary coil.
Further, if the number of turns of the primary coil is large, the magnetic field generated around the primary coil is emphasized, so that a large electromotive force can be induced.

このように、相互インダクタンスの効果により起電力を得る薄膜トランスにおいては、1次、2次コイル相互のコイル巻数が増大すれば、各コイル線による磁界が強調されるため、インダクタンス量が増加し、結合係数としても大きくなるので、1次コイルから2次コイルへのエネルギー変換の効率が向上する。
また、特許文献1によると、平面インダクタなどに代表される磁気素子内の平面コイルを作成する際に、あらかじめ作製すべきコイル導体幅と等しい幅のスペースをとるようなパターンを作製しておき、それに基づいて下地表面にコイル導体を形成し、その後にコイル導体部分の表面全体を覆うように薄い絶縁層を形成し、最後に残りのスペース部分を金属材料で埋めて、コイルを製作することで、隣接するコイル導体間の絶縁膜の厚さを非常に薄くすることができて、高いQ値を有する平面インダクタを製作できることことが開示されている。
Thus, in a thin film transformer that obtains an electromotive force due to the effect of mutual inductance, if the number of coil turns between the primary and secondary coils increases, the magnetic field due to each coil wire is emphasized, and the amount of inductance increases. Since the coupling coefficient is also increased, the efficiency of energy conversion from the primary coil to the secondary coil is improved.
According to Patent Document 1, when creating a planar coil in a magnetic element typified by a planar inductor or the like, a pattern having a width equal to the coil conductor width to be fabricated in advance is prepared. Based on this, a coil conductor is formed on the underlying surface, and then a thin insulating layer is formed so as to cover the entire surface of the coil conductor portion, and finally the remaining space is filled with a metal material to produce a coil. It is disclosed that the thickness of the insulating film between adjacent coil conductors can be made very thin, and a planar inductor having a high Q value can be manufactured.

また、特許文献2によると、磁性膜上にコイル導体間スペースを構成する絶縁膜を形成する工程と、この絶縁膜をコイル導体間スペースの形状にパターニングする工程と、この絶縁膜のパターンを導体膜が選択的に成長できるように表面改質する工程と、この絶縁膜のパターンの隙間に選択的に導体膜を充填してコイル導体を形成する工程と、全面に絶縁膜を形成する工程と、この絶縁膜上に磁性膜を形成する工程で平面型磁気素子を製造することで、コイル導体間スペースの幅を小さくでき、かつ十分な厚さのコイル導体を有する高性能の平面型磁気素子を非常に簡単なプロセスで製造できる方法が開示されている。
特開平5−6832号公報 特開平6−77072号公報
According to Patent Document 2, a step of forming an insulating film constituting a space between coil conductors on a magnetic film, a step of patterning the insulating film into a shape of a space between coil conductors, and a pattern of the insulating film as a conductor A step of surface modification so that the film can be selectively grown, a step of selectively filling a conductor film in a gap between the patterns of the insulating film to form a coil conductor, and a step of forming an insulating film on the entire surface. A high-performance planar magnetic element having a sufficiently thick coil conductor that can reduce the width of the space between the coil conductors by manufacturing a planar magnetic element in the process of forming a magnetic film on the insulating film Is disclosed in a very simple process.
JP-A-5-6832 JP-A-6-77072

しかしながら、上述の図5の構造の薄膜トランスにおいては、1次コイルおよび2次コイルの巻数を増大させると薄膜トランス自体の面積が大きくなり、トランスの小型化を図る上で支障となるという問題がある。また、コイル巻数の増大はコイル線の長大化につながり、特に薄膜コイルにおいては、その抵抗値が一般的な導線の抵抗値に比して非常に大きいため、コイル線の長大化による抵抗値の増大がエネルギー損失の増大、すなわち、エネルギー変換効率の目安となるQ値の低下を招来する可能性があるという問題がある。   However, in the thin film transformer having the structure shown in FIG. 5 described above, if the number of turns of the primary coil and the secondary coil is increased, the area of the thin film transformer itself increases, which hinders miniaturization of the transformer. is there. In addition, an increase in the number of coil turns leads to an increase in the length of the coil wire, and in particular, in a thin film coil, the resistance value is very large compared to the resistance value of a general conducting wire. There is a problem that the increase may lead to an increase in energy loss, that is, a decrease in Q value that is a measure of energy conversion efficiency.

このように、従来の薄膜トランスにおいては、そのエネルギー変換効率の向上を目的としたコイル巻数の増大とトランスの小型化とがトレードオフの関係にあり、また、コイル巻数の増大がエネルギー変換効率の低下を招く可能性が指摘されている。
また、前記の特許文献1、2では薄膜インダクタについての開示はあるが、薄膜トランスに関する具体的な記述はされていない。
As described above, in the conventional thin film transformer, there is a trade-off relationship between an increase in the number of coil turns for the purpose of improving the energy conversion efficiency and a reduction in the size of the transformer. It has been pointed out that this could lead to a decline.
Moreover, although the said patent documents 1 and 2 have disclosed the thin film inductor, the concrete description regarding the thin film transformer is not made.

この発明の目的は、前記の課題を解決して、占有面積を拡張することなく、エネルギー変換効率を容易に向上できる薄膜トランスとその製造方法を提供することにある。   An object of the present invention is to solve the above-described problems and provide a thin film transformer and a method for manufacturing the same that can easily improve energy conversion efficiency without expanding an occupied area.

前記の目的を達成するために、支持基板と、該支持基板上に形成された第1絶縁膜と、該第1絶縁膜に形成された細長状の溝と、該溝の側壁に形成された第1コイル導体と、該溝内に第2絶縁膜を介して形成され前記第1コイル導体と対向するように形成された第2コイル導体と、を備える構成とする。
また、前記支持基板が半導体基板もしくは絶縁基板であるとよい。
In order to achieve the above object, a support substrate, a first insulating film formed on the support substrate, an elongated groove formed in the first insulating film, and a sidewall of the groove are formed. A first coil conductor and a second coil conductor formed in the groove through a second insulating film so as to face the first coil conductor are provided.
The support substrate may be a semiconductor substrate or an insulating substrate.

また、前記溝の平面形状が、渦巻き状(平面スパイラル状)であるとよい。
また、前記第1コイル導体が前記溝の側壁および底面に形成されるとよい。
また、前記絶縁膜が、シリコン酸化膜、ポリイミド膜もしくはレジスト膜のいずれかであるとよい。
また、前記第1コイル導体および前記第2コイル導体のそれぞれの端部にパッド電極が接続する構成とする。
The planar shape of the groove may be a spiral shape (planar spiral shape).
The first coil conductor may be formed on a side wall and a bottom surface of the groove.
The insulating film may be a silicon oxide film, a polyimide film, or a resist film.
In addition, a pad electrode is connected to each end of the first coil conductor and the second coil conductor.

また、支持基板上に第1絶縁膜を形成し、該第1絶縁膜に細長状の溝を形成する工程と、
前記溝内を含む前記第1絶縁膜上に第1金属膜を形成する工程と、
該第1金属膜を異方性エッチングで除去し、前記溝の側壁に前記第1金属膜を残し第1コイル導体を形成する工程と、
前記溝を残して第1金属膜を第2絶縁膜で被覆する工程と、
前記第2絶縁膜上を第2金属膜で被覆し前記溝内を該第2金属膜で充填する工程と、
前記第2絶縁膜をストッパ層としてCMP法で前記溝内を充填した前記第2金属膜を残し、その他の箇所の前記第2金属膜を除去して、第2コイル導体を形成する工程と、
を備える製造方法とする。
A step of forming a first insulating film on the support substrate and forming an elongated groove in the first insulating film;
Forming a first metal film on the first insulating film including the inside of the trench;
Removing the first metal film by anisotropic etching, leaving the first metal film on the side wall of the groove, and forming a first coil conductor;
Coating the first metal film with a second insulating film leaving the groove;
Covering the second insulating film with a second metal film and filling the groove with the second metal film;
Forming the second coil conductor by leaving the second metal film filled in the groove by a CMP method using the second insulating film as a stopper layer, and removing the second metal film at other locations;
It is set as a manufacturing method provided with.

また、支持基板上に第1絶縁膜を形成し、該第1絶縁膜に細長状の溝を形成する工程と、
前記溝内を含む前記第1絶縁膜上に第1金属膜を形成する工程と、
前記第1絶縁膜をストッパ層としてCMP法で前記溝の側壁と底面の前記第1金属膜を残しその他の箇所の前記第1金属膜を除去して第1コイル導体を形成する工程と、
表面と、溝内の前記第1金属膜を第2絶縁膜で被覆する工程と、
前記第2絶縁膜上を第2金属膜で被覆し前記溝内を該第2金属膜で充填する工程と、
CMP法で前記溝内を充填した前記第2金属膜を残し、その他の箇所の前記第2金属膜を除去して、第2コイル導体を形成する工程と、
を備える製造方法とする。
A step of forming a first insulating film on the support substrate and forming an elongated groove in the first insulating film;
Forming a first metal film on the first insulating film including the inside of the trench;
Forming a first coil conductor by using the first insulating film as a stopper layer, leaving the first metal film on the sidewalls and bottom of the groove by CMP, and removing the first metal film at other locations;
Coating the surface and the first metal film in the groove with a second insulating film;
Covering the second insulating film with a second metal film and filling the groove with the second metal film;
Leaving the second metal film filled in the groove by CMP and removing the second metal film in other locations to form a second coil conductor;
It is set as a manufacturing method provided with.

また、前記支持基板が半導体基板であり、前記第1絶縁膜および前記第2絶縁膜がシリコン酸化膜であるとよい。
また、前記第2コイル導体を形成した後、表面を第3絶縁膜で被覆し、該第3絶縁膜にコンタクトホールを形成し、前記第1コイル導体の端部および第2コイル導体の端部とコンタクトホールを介して接続するパッド電極を形成する工程を備えるとよい。
The support substrate may be a semiconductor substrate, and the first insulating film and the second insulating film may be silicon oxide films.
In addition, after forming the second coil conductor, the surface is covered with a third insulating film, a contact hole is formed in the third insulating film, and an end portion of the first coil conductor and an end portion of the second coil conductor are formed. And a step of forming a pad electrode connected through a contact hole.

この発明によれば、渦巻き状の薄膜トランスにおいて、支持基板上の絶縁膜に溝を形成して、その溝内に1次コイルおよび2次コイルを形成することによって、占有面積を増加することなく、エネルギー変換効率の向上ができる。   According to the present invention, in the spiral thin film transformer, a groove is formed in the insulating film on the support substrate, and the primary coil and the secondary coil are formed in the groove without increasing the occupied area. , Energy conversion efficiency can be improved.

実施の形態を以下の実施例で説明する。   Embodiments will be described in the following examples.

図1は、この発明の第1実施例の薄膜トランスの構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX1−X1線で切断した要部断面図である。同図(a)は、同図(b)のX2−X2線で切断した要部平面図である。
半導体基板であるシリコン基板1上に形成したシリコン酸化膜によりなる絶縁膜2、5、7(これらの番号はシリコン酸化膜にも付す)内に渦巻き状(平面スパイラル状)の1次コイルを構成する第1コイル導体4、2次コイルを構成する第2コイル導体6が互いに横方向に対向するように形成する。これは絶縁膜2に形成した渦巻き状の溝3内に第1コイル導体4と第2コイル導体6を形成することで得られる。表面には保護膜であるシリコン窒化膜8が被覆される。第1コイル導体4の幅は2.5μm、厚さは0.5μmであり、第2コイル導体6の幅は2.5μmで厚さは1μmである。第1コイル導体4と第2コイル導体6の間隔は0.2μmで、渦巻きの間隔は1μmである。第1、第2コイル導体4、6は例えば銅で形成する。また、本実施例では、絶縁膜2はシリコン酸化膜であるがポリイミド膜やレジスト膜などであってもよい。本発明品ではコイル導体4、6の幅は垂直方向となり、占有面積に影響するのはコイル導体4、6の厚さである。
FIG. 1 is a configuration diagram of a thin film transformer according to a first embodiment of the present invention. FIG. 1 (a) is a plan view of an essential part, and FIG. 1 (b) is cut along line X1-X1 in FIG. 1 (a). It is principal part sectional drawing. The figure (a) is the principal part top view cut | disconnected by the X2-X2 line | wire of the figure (b).
A spiral (planar spiral) primary coil is formed in insulating films 2, 5, and 7 (these numbers are also attached to the silicon oxide film) made of a silicon oxide film formed on a silicon substrate 1 that is a semiconductor substrate. The first coil conductor 4 and the second coil conductor 6 constituting the secondary coil are formed so as to face each other in the lateral direction. This is obtained by forming the first coil conductor 4 and the second coil conductor 6 in the spiral groove 3 formed in the insulating film 2. The surface is covered with a silicon nitride film 8 as a protective film. The first coil conductor 4 has a width of 2.5 μm and a thickness of 0.5 μm, and the second coil conductor 6 has a width of 2.5 μm and a thickness of 1 μm. The distance between the first coil conductor 4 and the second coil conductor 6 is 0.2 μm, and the distance between the spirals is 1 μm. The first and second coil conductors 4 and 6 are made of, for example, copper. In this embodiment, the insulating film 2 is a silicon oxide film, but may be a polyimide film or a resist film. In the product of the present invention, the widths of the coil conductors 4 and 6 are in the vertical direction, and it is the thickness of the coil conductors 4 and 6 that affects the occupied area.

図5に示す従来の薄膜トランスを上記のコイル諸元で製作した場合は、従来品では、コイル導体のピッチWは、コイル導体の幅+コイル導体同士の間隔(渦巻き間隔)=2.5μm+1μm=3.5μmである。
一方、本発明品の場合は、第1コイル導体4(又は第2コイル導体6)のピッチTは、第1コイル導体4の厚さ(1μm)×2+第2コイル導体6の厚さ+第1、第2コイル導体4、6の間隔(0.2μm)×2+渦巻き間隔=1μm+1μm+0.4μm+1μm=3.4μmとなり従来品の方が占有面積が同程度となるが、第1、第2コイル導体4、6の重なりが大きくなる分、従来品よりQ値が大きくなる。
When the conventional thin film transformer shown in FIG. 5 is manufactured with the above-described coil specifications, in the conventional product, the pitch W of the coil conductors is the width of the coil conductor + the interval between the coil conductors (swirl interval) = 2.5 μm + 1 μm = 3.5 μm.
On the other hand, in the case of the present invention product, the pitch T of the first coil conductor 4 (or the second coil conductor 6) is the thickness of the first coil conductor 4 (1 μm) × 2 + the thickness of the second coil conductor 6 + the second. 1. The interval between the second coil conductors 4 and 6 (0.2 μm) × 2 + vortex interval = 1 μm + 1 μm + 0.4 μm + 1 μm = 3.4 μm. The occupied area of the conventional product is about the same, but the first and second coil conductors Since the overlap of 4 and 6 is larger, the Q value is larger than that of the conventional product.

また、エネルギー変換効率を高めるために、絶縁膜2の膜厚を厚くして溝を深くすることでコイル導体の幅を広くして、エネルギー変換効率を容易に高めることができる。ただし、そのときの絶縁膜2としてはシリコン酸化膜より膜厚を大きくできるポリイミド膜やレジスト膜などを用いるとよい。
また、前記シリコン基板1は支持基板の役割をしているので、絶縁膜2にポリイミド膜やレジスト膜を用いる場合などは、シリコン基板以外に、例えば、フェライトなどの絶縁性磁性基板やプラスチックスなどの絶縁基板を用いても構わない。絶縁性磁性基板を用いると磁束密度が高まりエネルギー変換効率をシリコン基板などより高めることができる。
Further, in order to increase the energy conversion efficiency, the width of the coil conductor can be increased by increasing the thickness of the insulating film 2 and deepening the groove, thereby easily increasing the energy conversion efficiency. However, as the insulating film 2 at that time, it is preferable to use a polyimide film, a resist film, or the like that can be larger than the silicon oxide film.
Further, since the silicon substrate 1 serves as a support substrate, when a polyimide film or a resist film is used for the insulating film 2, other than the silicon substrate, for example, an insulating magnetic substrate such as ferrite, plastics, etc. Alternatively, an insulating substrate may be used. When an insulating magnetic substrate is used, the magnetic flux density is increased, and the energy conversion efficiency can be increased compared to a silicon substrate or the like.

図2は、図1の薄膜トランスの製造方法を示す工程図であり、同図(a)〜同図(c)は工程順に示した要部製造工程断面図である。
シリコン基板1表面側にCVD(Chemical Vapor Deposition)法によって厚さが3μmのシリコン酸化膜2を形成し、リソグラフィーおよびエッチングによって、幅2.4μm、間隔1μm、深さ2.5μmの渦巻き状の溝3を形成する。続いて、スパッタリング法によって、厚さが0.5μmの銅をシリコン酸化膜3上に形成し、異方性のドライエッチングによって、銅をエッチングして、溝3内の側壁の銅を残し底部の銅と溝以外の箇所の銅を除去し、1次コイルを構成する第1コイル導体4を形成する(同図(a))。
2A to 2C are process diagrams showing a method of manufacturing the thin film transformer of FIG. 1, and FIGS. 2A to 2C are cross-sectional views of main part manufacturing processes shown in the order of processes.
A silicon oxide film 2 having a thickness of 3 μm is formed on the surface side of the silicon substrate 1 by a CVD (Chemical Vapor Deposition) method, and a spiral groove having a width of 2.4 μm, an interval of 1 μm, and a depth of 2.5 μm is formed by lithography and etching. 3 is formed. Subsequently, copper having a thickness of 0.5 μm is formed on the silicon oxide film 3 by a sputtering method, and the copper is etched by anisotropic dry etching to leave copper on the side wall in the groove 3 and at the bottom. The copper other than the copper and the groove is removed to form the first coil conductor 4 constituting the primary coil (FIG. 1A).

次に、CVD法によって、厚さが0.2μmのシリコン酸化膜5で表面を被覆し、スパッタリング法によって、厚さが0.5μmの銅をシリコン酸化膜5上に形成し、溝3内のシリコン酸化膜5で被覆された凹部10を銅で充填し、シリコン酸化膜5をストッパ層としてCMP法によって凹部10に充填された銅以外を除去し、凹部10の銅を残して2次コイルを構成する第2コイル導体6を形成する(同図(b))。   Next, the surface is covered with a silicon oxide film 5 having a thickness of 0.2 μm by a CVD method, and copper having a thickness of 0.5 μm is formed on the silicon oxide film 5 by a sputtering method. The recess 10 covered with the silicon oxide film 5 is filled with copper, and the silicon oxide film 5 is used as a stopper layer to remove the copper other than the copper filled in the recess 10 by CMP, leaving the copper in the recess 10 to form the secondary coil. The second coil conductor 6 to be formed is formed ((b) in the figure).

次に、CVD法によって、厚さが1μmのシリコン酸化膜7を形成し、リソグラフィーおよびエッチングによって図示しない箇所の1次コイルおよび2次コイルのコンタクトホールを形成し、スパッタリング法により、チタンを形成しその上に厚さが1μmのアルミを形成する。続いて、リソグラフィーおよびエッチングによって、1次コイルおよび2次コイルの図示しないパッド電極を形成し、CVD法によって、厚さが1μmのシリコン窒化膜8を形成する。このシリコン窒化膜8は薄膜トランスの表面保護膜となる。続いて、リソグラフィーおよびエッチングによって、図示しないパッド電極部を開口する(同図(c))。   Next, a silicon oxide film 7 having a thickness of 1 μm is formed by a CVD method, contact holes of primary coils and secondary coils at locations not shown are formed by lithography and etching, and titanium is formed by a sputtering method. Aluminum having a thickness of 1 μm is formed thereon. Subsequently, pad electrodes (not shown) of the primary coil and the secondary coil are formed by lithography and etching, and a silicon nitride film 8 having a thickness of 1 μm is formed by a CVD method. This silicon nitride film 8 serves as a surface protective film of the thin film transformer. Subsequently, a pad electrode portion (not shown) is opened by lithography and etching ((c) in the figure).

このようにして形成された渦巻き状の1次コイル、2次コイルのコイル導体4、6は溝3内で2次コイルの両側に1次コイルが対向するように形成されるので、1次コイルと2次コイルの重なりが大きくなり伝達効率が向上し、相互インダクタンスが高くなり、Q値が向上して前記したようにエネルギー変換効率を高めることができる。
この構造においては、コイル導体4、6の基板垂直方向(図面の上下方向)の長さ(コイル導体4、6の幅に相当する)を長くすることで、1次コイルと2次コイルの重なりが大きくなり、面積を増加することなくQ値を向上することが可能となる。また、コイル導体の基板垂直方向の長さを長くすることで、1次コイルおよび2次コイルの断面積が増加し、コイル抵抗が減少する効果もある。
The spiral primary coil and secondary coil coil conductors 4 and 6 formed in this way are formed in the groove 3 so that the primary coils are opposed to both sides of the secondary coil. And the secondary coil overlap each other, the transmission efficiency is improved, the mutual inductance is increased, the Q value is improved, and the energy conversion efficiency can be increased as described above.
In this structure, the length of the coil conductors 4 and 6 in the substrate vertical direction (vertical direction in the drawing) (corresponding to the width of the coil conductors 4 and 6) is increased to overlap the primary coil and the secondary coil. As a result, the Q value can be improved without increasing the area. Further, by increasing the length of the coil conductor in the direction perpendicular to the substrate, the cross-sectional areas of the primary coil and the secondary coil are increased, and the coil resistance is also reduced.

図3は、この発明の第2実施例の薄膜トランスの構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX1−X1線で切断した要部断面図である。同図(a)は、同図(b)のX2−X2線で切断した要部平面図である。
図1との違いは、溝3の底部にも第1コイル導体9となる銅膜を形成した点である。こうすることで、第1コイル導体9の抵抗値を図1の薄膜トランスの第1コイル導体4よりも小さくできて、エネルギー変換効率を高めることができる。
FIGS. 3A and 3B are configuration diagrams of a thin film transformer according to the second embodiment of the present invention. FIG. 3A is a plan view of the main part, and FIG. 3B is cut along the X1-X1 line of FIG. It is principal part sectional drawing. The figure (a) is the principal part top view cut | disconnected by the X2-X2 line | wire of the figure (b).
The difference from FIG. 1 is that a copper film to be the first coil conductor 9 is also formed at the bottom of the groove 3. By doing so, the resistance value of the first coil conductor 9 can be made smaller than that of the first coil conductor 4 of the thin film transformer of FIG. 1, and the energy conversion efficiency can be increased.

図4は、図3の薄膜トランスの製造方法を示す工程図であり、同図(a)〜同図(c)は工程順に示した要部製造工程断面図である。
シリコン基板1表面側にCVD法によって厚さが3μmのシリコン酸化膜2を形成し、リソグラフィーおよびエッチングによって、渦巻き状に幅2.4μm、間隔1μm、深さ2.5μmの溝3を形成する。続いて、スパッタリング法によって、厚さが0.5μmの銅をシリコン酸化膜2上に形成し、CMP法で溝3以外の銅を除去し、溝3内の側壁と底部の銅を残して、1次コイルを構成する第1コイル導体9を形成する(同図(a))
次に、CVD法によって、厚さが0.2μmのシリコン酸化膜5で表面を被覆し、スパッタリング法によって、厚さが0.5μmの銅をシリコン酸化膜5上に形成し、溝3内のシリコン酸化膜5で被覆された凹部10を銅で充填し、シリコン酸化膜5をストッパとしてCMP法によって凹部10に充填された銅以外を除去し、凹部10の銅を残して2次コイルを構成する第2コイル導体6を形成する(同図(b))。
4A to 4C are process diagrams showing a method of manufacturing the thin film transformer of FIG. 3, and FIGS. 4A to 4C are cross-sectional views of main part manufacturing processes shown in the order of processes.
A silicon oxide film 2 having a thickness of 3 μm is formed on the surface side of the silicon substrate 1 by CVD, and grooves 3 having a width of 2.4 μm, a spacing of 1 μm, and a depth of 2.5 μm are formed in a spiral shape by lithography and etching. Subsequently, copper having a thickness of 0.5 μm is formed on the silicon oxide film 2 by a sputtering method, copper other than the groove 3 is removed by a CMP method, and the side wall and the bottom copper in the groove 3 are left, A first coil conductor 9 constituting the primary coil is formed (FIG. 1A).
Next, the surface is covered with a silicon oxide film 5 having a thickness of 0.2 μm by a CVD method, and copper having a thickness of 0.5 μm is formed on the silicon oxide film 5 by a sputtering method. The concave portion 10 covered with the silicon oxide film 5 is filled with copper, and the silicon oxide film 5 is used as a stopper to remove the copper other than the copper filled in the concave portion 10 by CMP. The second coil conductor 6 is formed (FIG. 2B).

次に、CVD法によって、厚さが1μmのシリコン酸化膜7を形成し、リソグラフィーおよびエッチングによって1次コイルおよび2次コイルの図示しないコンタクトホールを形成し、スパッタリング法により、チタンを形成し、その上に厚さが1μmのアルミを形成する。続いて、リソグラフィーおよびエッチングによって、1次コイルおよび2次コイルの図示しないパッド電極を形成し、CVD法によって、厚さが1μmのシリコン窒化膜8を形成する。このシリコン窒化膜8は薄膜トランスの表面保護膜となる。続いて、リソグラフィーおよびエッチングによって、図示しないパッド電極部を開口する(同図(c))。   Next, a silicon oxide film 7 having a thickness of 1 μm is formed by CVD, contact holes (not shown) of the primary coil and the secondary coil are formed by lithography and etching, titanium is formed by sputtering, Aluminum having a thickness of 1 μm is formed thereon. Subsequently, pad electrodes (not shown) of the primary coil and the secondary coil are formed by lithography and etching, and a silicon nitride film 8 having a thickness of 1 μm is formed by a CVD method. This silicon nitride film 8 serves as a surface protective film of the thin film transformer. Subsequently, a pad electrode portion (not shown) is opened by lithography and etching ((c) in the figure).

図1は、この発明の第1実施例の薄膜トランスの構成図であり、(a)は要部平面図、(b)は(a)のX1−X1線で切断した要部断面図1A and 1B are configuration diagrams of a thin film transformer according to a first embodiment of the present invention, in which FIG. 1A is a plan view of a main part, and FIG. 1B is a cross-sectional view of a main part taken along line X1-X1 of FIG. 図1の薄膜トランスの製造方法を示す工程図であり、(a)〜(c)は工程順に示した要部製造工程断面図It is process drawing which shows the manufacturing method of the thin film transformer of FIG. 1, (a)-(c) is principal part manufacturing process sectional drawing shown to process order この発明の第2実施例の薄膜トランスの構成図であり、(a)は要部平面図、(b)は(a)のX1−X1線で切断した要部断面図It is a block diagram of the thin film transformer of 2nd Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the X1-X1 line | wire of (a). 図3の薄膜トランスの製造方法を示す工程図であり、(a)〜(c)は工程順に示した要部製造工程断面図FIGS. 4A to 4C are process diagrams illustrating a method for manufacturing the thin film transformer of FIG. 3, and FIGS. 従来の薄膜トランスの構成図であり、(a)は斜視図、(b)は要部断面図It is a block diagram of the conventional thin film transformer, (a) is a perspective view, (b) is principal part sectional drawing.

符号の説明Explanation of symbols

1 シリコン基板
2、5、7 絶縁膜(シリコン酸化膜にも同一番号を付す)
3 溝
4、9 第1コイル導体
6 第2コイル導体
8 シリコン窒化膜
10 凹部
T ピッチ
1 Silicon substrate 2, 5, 7 Insulating film (the same number is given to the silicon oxide film)
3 Grooves 4 and 9 First coil conductor 6 Second coil conductor 8 Silicon nitride film 10 Recessed portion T pitch

Claims (10)

支持基板と、該支持基板上に形成された第1絶縁膜と、該第1絶縁膜に形成された細長状の溝と、該溝の側壁に形成された第1コイル導体と、該溝内に第2絶縁膜を介して形成され前記第1コイル導体と対向するように形成された第2コイル導体と、を備えることを特徴とする薄膜トランス。 A supporting substrate; a first insulating film formed on the supporting substrate; an elongated groove formed in the first insulating film; a first coil conductor formed on a sidewall of the groove; And a second coil conductor formed so as to face the first coil conductor with a second insulating film interposed therebetween. 前記支持基板が半導体基板もしくは絶縁基板であることを特徴とする請求項1に記載の薄膜トランス。 The thin film transformer according to claim 1, wherein the support substrate is a semiconductor substrate or an insulating substrate. 前記溝の平面形状が、渦巻き状であることを特徴とする請求項1または2に記載の薄膜トランス。 The thin film transformer according to claim 1, wherein the planar shape of the groove is a spiral shape. 前記第1コイル導体が前記溝の側壁および底面に形成されることを特徴とする請求項1〜3のいずれか一項に記載の薄膜トランス。 The thin film transformer according to claim 1, wherein the first coil conductor is formed on a side wall and a bottom surface of the groove. 前記絶縁膜が、シリコン酸化膜、ポリイミド膜もしくはレジスト膜のいずれかであることを特徴とする請求項1または2に記載の薄膜トランス。 3. The thin film transformer according to claim 1, wherein the insulating film is any one of a silicon oxide film, a polyimide film, and a resist film. 前記第1コイル導体および前記第2コイル導体のそれぞれの端部にパッド電極が接続することを特徴とする請求項1〜4のいずれか一項に記載の薄膜トランス。 The thin film transformer according to any one of claims 1 to 4, wherein a pad electrode is connected to each end of the first coil conductor and the second coil conductor. 支持基板上に第1絶縁膜を形成し、該第1絶縁膜に細長状の溝を形成する工程と、
前記溝内を含む前記第1絶縁膜上に第1金属膜を形成する工程と、
該第1金属膜を異方性エッチングで除去し、前記溝の側壁に前記第1金属膜を残し第1コイル導体を形成する工程と、
前記溝を残して第1金属膜を第2絶縁膜で被覆する工程と、
前記第2絶縁膜上を第2金属膜で被覆し前記溝内を該第2金属膜で充填する工程と、
前記第2絶縁膜をストッパ層としてCMP法で前記溝内を充填した前記第2金属膜を残し、その他の箇所の前記第2金属膜を除去して、第2コイル導体を形成する工程と、
を備えることを特徴とする薄膜トランスの製造方法。
Forming a first insulating film on the support substrate and forming an elongated groove in the first insulating film;
Forming a first metal film on the first insulating film including the inside of the trench;
Removing the first metal film by anisotropic etching, leaving the first metal film on the side wall of the groove, and forming a first coil conductor;
Coating the first metal film with a second insulating film leaving the groove;
Covering the second insulating film with a second metal film and filling the groove with the second metal film;
Forming the second coil conductor by leaving the second metal film filled in the groove by a CMP method using the second insulating film as a stopper layer, and removing the second metal film at other locations;
A method of manufacturing a thin film transformer, comprising:
支持基板上に第1絶縁膜を形成し、該第1絶縁膜に細長状の溝を形成する工程と、
前記溝内を含む前記第1絶縁膜上に第1金属膜を形成する工程と、
前記第1絶縁膜をストッパとしてCMP法で前記溝の側壁と底面の前記第1金属膜を残しその他の箇所の前記第3金属膜を除去して第1コイル導体を形成する工程と、
表面と、溝内の前記第1金属膜を第2絶縁膜で被覆する工程と、
前記第2絶縁膜上を第2金属膜で被覆し前記溝内を該第2金属膜で充填する工程と、
CMP法で前記溝内を充填した前記第2金属膜を残し、その他の箇所の前記第2金属膜を除去して、第2コイル導体を形成する工程と、
を備えることを特徴とする薄膜トランスの製造方法。
Forming a first insulating film on the support substrate and forming an elongated groove in the first insulating film;
Forming a first metal film on the first insulating film including the inside of the trench;
Forming the first coil conductor by removing the third metal film at other locations while leaving the first metal film on the sidewall and bottom of the groove by CMP using the first insulating film as a stopper;
Coating the surface and the first metal film in the groove with a second insulating film;
Covering the second insulating film with a second metal film and filling the groove with the second metal film;
Leaving the second metal film filled in the groove by CMP and removing the second metal film in other locations to form a second coil conductor;
A method of manufacturing a thin film transformer, comprising:
前記支持基板が半導体基板であり、前記第1絶縁膜および前記第2絶縁膜がシリコン酸化膜であることを特徴とする請求項7または8に記載の薄膜トランスの製造方法。 9. The method of manufacturing a thin film transformer according to claim 7, wherein the supporting substrate is a semiconductor substrate, and the first insulating film and the second insulating film are silicon oxide films. 前記第2コイル導体を形成した後、表面を第3絶縁膜で被覆し、該第3絶縁膜にコンタクトホールを形成し、前記第1コイル導体の端部および第2コイル導体の端部とコンタクトホールを介して接続するパッド電極を形成する工程を備えることを特徴とする請求項7〜9のいずれか一項に記載の薄膜トランスの製造方法。 After forming the second coil conductor, the surface is covered with a third insulating film, a contact hole is formed in the third insulating film, and contacts the end of the first coil conductor and the end of the second coil conductor. The method for manufacturing a thin film transformer according to any one of claims 7 to 9, further comprising a step of forming a pad electrode connected through a hole.
JP2006354117A 2006-12-28 2006-12-28 Thin film transformer and manufacturing method thereof Expired - Fee Related JP4797980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354117A JP4797980B2 (en) 2006-12-28 2006-12-28 Thin film transformer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354117A JP4797980B2 (en) 2006-12-28 2006-12-28 Thin film transformer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008166476A true JP2008166476A (en) 2008-07-17
JP4797980B2 JP4797980B2 (en) 2011-10-19

Family

ID=39695559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354117A Expired - Fee Related JP4797980B2 (en) 2006-12-28 2006-12-28 Thin film transformer and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4797980B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532171B1 (en) * 2014-06-02 2015-07-06 삼성전기주식회사 Inductor and Manufacturing Method for the Same
JP2016225464A (en) * 2015-05-29 2016-12-28 Tdk株式会社 Coil component
US20190333693A1 (en) * 2016-09-21 2019-10-31 Ihi Corporation Coil device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285966A (en) * 1987-05-19 1988-11-22 Fujitsu Ltd Semiconductor device
JPH01132152A (en) * 1987-11-17 1989-05-24 Mitsubishi Electric Corp Manufacture of groove-shaped capacitor cell for semiconductor device
JPH0541321A (en) * 1991-08-05 1993-02-19 Nippon Telegr & Teleph Corp <Ntt> Coil for high-frequency and manufacture thereof
JPH0621387A (en) * 1992-04-23 1994-01-28 Nippon Steel Corp Semiconductor memory and manufacture thereof
JPH0786507A (en) * 1993-09-20 1995-03-31 Fujitsu Ltd Semiconductor device and fabrication thereof
JPH07263230A (en) * 1994-03-25 1995-10-13 Takeshi Ikeda Miniature transformer
JP2004193535A (en) * 2002-01-16 2004-07-08 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2005079700A (en) * 2003-08-28 2005-03-24 Sony Corp Substrate having microstrip line structure, method of manufacturing the same and semiconductor device having microstrip line structure
JP2005286289A (en) * 2004-03-02 2005-10-13 Fuji Electric Holdings Co Ltd Semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285966A (en) * 1987-05-19 1988-11-22 Fujitsu Ltd Semiconductor device
JPH01132152A (en) * 1987-11-17 1989-05-24 Mitsubishi Electric Corp Manufacture of groove-shaped capacitor cell for semiconductor device
JPH0541321A (en) * 1991-08-05 1993-02-19 Nippon Telegr & Teleph Corp <Ntt> Coil for high-frequency and manufacture thereof
JPH0621387A (en) * 1992-04-23 1994-01-28 Nippon Steel Corp Semiconductor memory and manufacture thereof
JPH0786507A (en) * 1993-09-20 1995-03-31 Fujitsu Ltd Semiconductor device and fabrication thereof
JPH07263230A (en) * 1994-03-25 1995-10-13 Takeshi Ikeda Miniature transformer
JP2004193535A (en) * 2002-01-16 2004-07-08 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2005079700A (en) * 2003-08-28 2005-03-24 Sony Corp Substrate having microstrip line structure, method of manufacturing the same and semiconductor device having microstrip line structure
JP2005286289A (en) * 2004-03-02 2005-10-13 Fuji Electric Holdings Co Ltd Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532171B1 (en) * 2014-06-02 2015-07-06 삼성전기주식회사 Inductor and Manufacturing Method for the Same
CN105225793A (en) * 2014-06-02 2016-01-06 三星电机株式会社 Inductor and manufacture method thereof
JP2016225464A (en) * 2015-05-29 2016-12-28 Tdk株式会社 Coil component
US20190333693A1 (en) * 2016-09-21 2019-10-31 Ihi Corporation Coil device
US11710596B2 (en) * 2016-09-21 2023-07-25 Ihi Corporation Coil device

Also Published As

Publication number Publication date
JP4797980B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US7332792B2 (en) Magnetic layer processing
KR100250225B1 (en) Semiconductor device inductor and manufacturing method thereof
US6988307B2 (en) Method of making an integrated inductor
CN103247596B (en) on-chip ferrite bead inductor
JP4772495B2 (en) Inductor and method of forming inductor
CN102738128B (en) The integrated Magnetic Induction device of large inductance value and manufacture method thereof
JP2022174321A (en) Chip inductor and method of manufacturing the same
US20010013820A1 (en) High efficiency thin film inductor
JP2007300143A (en) Spiral inductor formed in semiconductor substrate and method for forming inductor
JP4584533B2 (en) Thin film multilayer high Q transformer formed in a semiconductor substrate
JP2007537585A (en) Planar inductor and manufacturing method thereof
CN103367314B (en) Semiconductor transformer
JP2018046257A (en) Chip inductor and manufacturing method therefor
JP2022174315A (en) chip inductor
JP2009111036A (en) Thin film transformer and its production process
JP4797980B2 (en) Thin film transformer and manufacturing method thereof
TW200903537A (en) Inductor structure
CN105244367A (en) Substrate structure and manufacturing method thereof
CN106898458B (en) Inductor and forming method thereof
JP3909799B2 (en) Semiconductor integrated circuit device
JPH10303037A (en) Thin film stacked type magnetic induction device and its manufacture
JP2012222197A (en) Semiconductor integrated circuit device and manufacturing method of the same
JP2010123831A (en) Inductor and manufacturing method therefor
JP2023110595A (en) Electronic component, electronic circuit and method for manufacturing electronic component
US8859384B1 (en) Inductor formation with sidewall image transfer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4797980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees