JP2008164904A - ポジ型レジスト組成物およびレジストパターン形成方法 - Google Patents
ポジ型レジスト組成物およびレジストパターン形成方法 Download PDFInfo
- Publication number
- JP2008164904A JP2008164904A JP2006353933A JP2006353933A JP2008164904A JP 2008164904 A JP2008164904 A JP 2008164904A JP 2006353933 A JP2006353933 A JP 2006353933A JP 2006353933 A JP2006353933 A JP 2006353933A JP 2008164904 A JP2008164904 A JP 2008164904A
- Authority
- JP
- Japan
- Prior art keywords
- group
- alkyl group
- structural unit
- acid
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 0 CC*(C)C*(CC)C(OC1(*)C2CC(C3)CC1CC3C2)=O Chemical compound CC*(C)C*(CC)C(OC1(*)C2CC(C3)CC1CC3C2)=O 0.000 description 6
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/02—Diaryl- or thriarylmethane dyes derived from diarylmethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/06—Hydroxy derivatives of triarylmethanes in which at least one OH group is bound to an aryl nucleus and their ethers or esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
- C09B69/10—Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
- C09B69/103—Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing a diaryl- or triarylmethane dye
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
本発明は、ポジ型レジスト組成物およびレジストパターン形成方法に関する。
リソグラフィー技術においては、例えば基板の上にレジスト材料からなるレジスト膜を形成し、該レジスト膜に対し、所定のパターンが形成されたマスクを介して、光、電子線等の放射線にて選択的露光を行い、現像処理を施すことにより、前記レジスト膜に所定形状のレジストパターンを形成する工程が行われる。
レジストパターンの微細化の手段の1つとして、露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長のF2エキシマレーザー、電子線、EUV(極紫外線)やX線などについても検討が行われている。
露光光源の短波長化に伴い、レジスト材料には、露光光源に対する感度、微細な寸法のパターンを再現できる解像性等のリソグラフィー特性の向上が求められる。このような要求を満たすレジスト材料として、酸の作用によりアルカリ可溶性が変化する基材成分と、露光により酸を発生する酸発生剤成分とを含有する化学増幅型レジストが知られている。化学増幅型レジストには、露光によりアルカリ可溶性が低下するネガ型と、露光によりアルカリ可溶性が増大するポジ型とがある。
従来、このような化学増幅型レジストの基材成分としてはポリマーが用いられており、例えばポリヒドロキシスチレン(PHS)やその水酸基の一部を酸解離性溶解抑制基で保護した樹脂等のPHS系樹脂、(メタ)アクリル酸エステルから誘導される共重合体やそのカルボキシ基の一部を酸解離性溶解抑制基で保護した樹脂等が用いられている。なお、「(メタ)アクリル酸」とは、α位に水素原子が結合したアクリル酸と、α位にメチル基が結合したメタクリル酸の一方あるいは両方を意味する。「(メタ)アクリル酸エステルとは、α位に水素原子が結合したアクリル酸エステルと、α位にメチル基が結合したメタクリル酸エステルの一方あるいは両方を意味する。「(メタ)アクリレート」とは、α位に水素原子が結合したアクリレートと、α位にメチル基が結合したメタクリレートの一方あるいは両方を意味する。
レジストパターンの微細化の手段の1つとして、露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長のF2エキシマレーザー、電子線、EUV(極紫外線)やX線などについても検討が行われている。
露光光源の短波長化に伴い、レジスト材料には、露光光源に対する感度、微細な寸法のパターンを再現できる解像性等のリソグラフィー特性の向上が求められる。このような要求を満たすレジスト材料として、酸の作用によりアルカリ可溶性が変化する基材成分と、露光により酸を発生する酸発生剤成分とを含有する化学増幅型レジストが知られている。化学増幅型レジストには、露光によりアルカリ可溶性が低下するネガ型と、露光によりアルカリ可溶性が増大するポジ型とがある。
従来、このような化学増幅型レジストの基材成分としてはポリマーが用いられており、例えばポリヒドロキシスチレン(PHS)やその水酸基の一部を酸解離性溶解抑制基で保護した樹脂等のPHS系樹脂、(メタ)アクリル酸エステルから誘導される共重合体やそのカルボキシ基の一部を酸解離性溶解抑制基で保護した樹脂等が用いられている。なお、「(メタ)アクリル酸」とは、α位に水素原子が結合したアクリル酸と、α位にメチル基が結合したメタクリル酸の一方あるいは両方を意味する。「(メタ)アクリル酸エステルとは、α位に水素原子が結合したアクリル酸エステルと、α位にメチル基が結合したメタクリル酸エステルの一方あるいは両方を意味する。「(メタ)アクリレート」とは、α位に水素原子が結合したアクリレートと、α位にメチル基が結合したメタクリレートの一方あるいは両方を意味する。
近年、レジストパターン上面や側壁表面における荒れ(ラフネス)が、半導体素子の形成製造工程に強い影響を及ぼすことが指摘されている。たとえばライン状のレジストパターンの側壁表面のラフネス、すなわちラインエッジラフネス(LER)は、ライン幅のばらつき等の原因となるため、微細な半導体素子の形成等に悪影響を与えるおそれがある。かかる問題は、パターン寸法が小さいほど重大となってくる。例えば電子線やEUVによるリソグラフィーでは、数10nmの微細なパターン形成を目標としていることから、ラフネスの低減がきわめて重要な問題となる。
このような問題に対し、従来のレジスト材料に溶解抑止作用を有する化合物(溶解抑止剤)を添加することによりLERを低減できることが報告されている(たとえば特許文献1参照。)。
特開2001−83709号公報
このような問題に対し、従来のレジスト材料に溶解抑止作用を有する化合物(溶解抑止剤)を添加することによりLERを低減できることが報告されている(たとえば特許文献1参照。)。
しかしながら、従来の溶解抑止剤は、レジスト膜の物性に与える影響が大きく、その配合量には制限がある。特に、溶解抑止剤として低分子化合物(以下、溶解抑止化合物ということがある。)を用いる場合には、解像性を著しく劣化させてしまう。そのため、該溶解抑止化合物の配合量を多くすることは難しく、実用的な使用量は、基材成分に対して数%から、多くても30%程度と微量である。そのため、溶解抑止化合物の添加によってラフネスを低減するのには限界がある。
本発明は、上記事情に鑑みてなされたものであって、高解像性とラフネス低減とを両立できるポジ型レジスト組成物およびレジストパターン形成方法を提供することを目的とする。
本発明は、上記事情に鑑みてなされたものであって、高解像性とラフネス低減とを両立できるポジ型レジスト組成物およびレジストパターン形成方法を提供することを目的とする。
上記の目的を達成するために、本発明は以下の構成を採用した。
すなわち、本発明の第一の態様は、下記一般式(I)で表されるフェノール化合物またはその水酸基の水素原子の一部が炭素数1〜10のアルキル基で置換された置換フェノール化合物の水酸基の水素原子の一部または全部が酸解離性溶解抑制基で置換された(A1)成分と、酸解離性溶解抑制基を有する構成単位(a1)を含有し、酸の作用によりアルカリ溶解性が増大する樹脂成分(A2)と、放射線の照射により酸を発生する酸発生剤成分(B)とを含有することを特徴とするポジ型レジスト組成物である。
すなわち、本発明の第一の態様は、下記一般式(I)で表されるフェノール化合物またはその水酸基の水素原子の一部が炭素数1〜10のアルキル基で置換された置換フェノール化合物の水酸基の水素原子の一部または全部が酸解離性溶解抑制基で置換された(A1)成分と、酸解離性溶解抑制基を有する構成単位(a1)を含有し、酸の作用によりアルカリ溶解性が増大する樹脂成分(A2)と、放射線の照射により酸を発生する酸発生剤成分(B)とを含有することを特徴とするポジ型レジスト組成物である。
また、本発明の第二の態様は、支持体上に、前記第一の態様のポジ型レジスト組成物を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法である。
本明細書および特許請求の範囲において、「アルキル基」は、特に断りがない限り、直鎖、分岐鎖および環状の1価の飽和炭化水素基を包含するものとする。「低級アルキル基」は、炭素原子数1〜5のアルキル基である。
「アルキレン基」は、特に断りがない限り、直鎖、分岐鎖および環状の2価の飽和炭化水素基を包含するものとする。
「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
「構成単位」とは、樹脂(重合体、共重合体)を構成するモノマー単位(単量体単位)を意味する。
「露光」は放射線の照射全般を含む概念とする。
「アルキレン基」は、特に断りがない限り、直鎖、分岐鎖および環状の2価の飽和炭化水素基を包含するものとする。
「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
「構成単位」とは、樹脂(重合体、共重合体)を構成するモノマー単位(単量体単位)を意味する。
「露光」は放射線の照射全般を含む概念とする。
本発明により、高解像性とラフネス低減とを両立できるポジ型レジスト組成物およびレジストパターン形成方法を提供できる。
≪ポジ型レジスト組成物≫
本発明のポジ型レジスト組成物は、前記一般式(I)で表されるフェノール化合物(以下、フェノール化合物(I)という。)またはその水酸基の水素原子の一部が炭素数1〜10のアルキル基で置換された置換フェノール化合物(以下、置換フェノール化合物(I’)という。)の水酸基の水素原子の一部または全部が酸解離性溶解抑制基で置換された(A1)成分(以下、(A1)成分という。)と、酸解離性溶解抑制基を有する構成単位(a1)を含有し、酸の作用によりアルカリ溶解性が増大する樹脂成分(A2)(以下、(A2)成分という。)と、放射線の照射により酸を発生する酸発生剤成分(B)(以下、(B)成分という。)とを含有する。
かかるポジ型レジスト組成物においては、露光により(B)成分から酸が発生すると、該酸が、(A1)成分および(A2)成分の酸解離性溶解抑制基を解離させ、(A1)成分および(A2)成分のアルカリ溶解性が増大する。そのため、レジストパターンの形成において、該ポジ型レジスト組成物からなるレジスト膜を選択的に露光すると、または露光に加えて露光後加熱すると、露光部はアルカリ可溶性へ転じる一方で未露光部はアルカリ不溶性のまま変化しないので、アルカリ現像することによりポジ型のレジストパターンが形成される。
本発明のポジ型レジスト組成物は、前記一般式(I)で表されるフェノール化合物(以下、フェノール化合物(I)という。)またはその水酸基の水素原子の一部が炭素数1〜10のアルキル基で置換された置換フェノール化合物(以下、置換フェノール化合物(I’)という。)の水酸基の水素原子の一部または全部が酸解離性溶解抑制基で置換された(A1)成分(以下、(A1)成分という。)と、酸解離性溶解抑制基を有する構成単位(a1)を含有し、酸の作用によりアルカリ溶解性が増大する樹脂成分(A2)(以下、(A2)成分という。)と、放射線の照射により酸を発生する酸発生剤成分(B)(以下、(B)成分という。)とを含有する。
かかるポジ型レジスト組成物においては、露光により(B)成分から酸が発生すると、該酸が、(A1)成分および(A2)成分の酸解離性溶解抑制基を解離させ、(A1)成分および(A2)成分のアルカリ溶解性が増大する。そのため、レジストパターンの形成において、該ポジ型レジスト組成物からなるレジスト膜を選択的に露光すると、または露光に加えて露光後加熱すると、露光部はアルカリ可溶性へ転じる一方で未露光部はアルカリ不溶性のまま変化しないので、アルカリ現像することによりポジ型のレジストパターンが形成される。
<(A1)成分>
(A1)成分は、フェノール化合物(I)または置換フェノール化合物(I’)の水酸基の水素原子の一部または全部が酸解離性溶解抑制基で置換された化合物である。
(A1)成分における酸解離性溶解抑制基は、解離前は(A1)成分をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、解離後は(A1)成分をアルカリ可溶性へ変化させる基である。そのため、(A1)成分においては、ポジ型レジスト組成物にともに配合される(B)成分から露光により酸が発生すると、該酸の作用により酸解離性溶解抑制基が解離して、(A1)成分がアルカリ不溶からアルカリ可溶性へ変化する。
(A1)成分は、フェノール化合物(I)または置換フェノール化合物(I’)の水酸基の水素原子の一部または全部が酸解離性溶解抑制基で置換された化合物である。
(A1)成分における酸解離性溶解抑制基は、解離前は(A1)成分をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、解離後は(A1)成分をアルカリ可溶性へ変化させる基である。そのため、(A1)成分においては、ポジ型レジスト組成物にともに配合される(B)成分から露光により酸が発生すると、該酸の作用により酸解離性溶解抑制基が解離して、(A1)成分がアルカリ不溶からアルカリ可溶性へ変化する。
(A1)成分において、酸解離性溶解抑制基としては、特に制限はなく、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン系樹脂、(メタ)アクリレート系樹脂等において提案されているもののなかから適宜選択して用いることができる。
(A1)成分において好ましく用いられる酸解離性溶解抑制基としては、第3級アルキル基、第3級アルキルオキシカルボニル基、アルコキシカルボニルアルキル基、アルコキシアルキル基、環状エーテル基等が挙げられる。
第3級アルキル基として、具体的には、tert−ブチル基、tert−ペンチル基等の鎖状の第3級アルキル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基等の、脂肪族環式基を含む第3級アルキル基等が挙げられる。前記脂肪族環式基の具体例としては、例えば、低級アルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基を含む第3級アルキル基としては、例えば上述した2−メチル−2−アダマンチル基や、2−エチル−2−アダマンチル基等の、脂肪族環式基の環骨格上に第3級炭素原子を有する基;鎖状の第3級アルキル基の水素原子の一部が上述した脂肪族環式基で置換された基などが挙げられる。
第3級アルキルオキシカルボニル基における第3級アルキル基としては、上記と同様のものが挙げられる。第3級アルキルオキシカルボニル基として、具体的には、tert−ブチルオキシカルボニル基、tert−ペンチルオキシカルボニル基等が挙げられる。
環状エーテル基として、具体的には、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
(A1)成分において好ましく用いられる酸解離性溶解抑制基としては、第3級アルキル基、第3級アルキルオキシカルボニル基、アルコキシカルボニルアルキル基、アルコキシアルキル基、環状エーテル基等が挙げられる。
第3級アルキル基として、具体的には、tert−ブチル基、tert−ペンチル基等の鎖状の第3級アルキル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基等の、脂肪族環式基を含む第3級アルキル基等が挙げられる。前記脂肪族環式基の具体例としては、例えば、低級アルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基を含む第3級アルキル基としては、例えば上述した2−メチル−2−アダマンチル基や、2−エチル−2−アダマンチル基等の、脂肪族環式基の環骨格上に第3級炭素原子を有する基;鎖状の第3級アルキル基の水素原子の一部が上述した脂肪族環式基で置換された基などが挙げられる。
第3級アルキルオキシカルボニル基における第3級アルキル基としては、上記と同様のものが挙げられる。第3級アルキルオキシカルボニル基として、具体的には、tert−ブチルオキシカルボニル基、tert−ペンチルオキシカルボニル基等が挙げられる。
環状エーテル基として、具体的には、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
(A1)成分は、特に、本発明の効果に優れることから、下記一般式(p1)で表されるアルコキシカルボニルアルキル基、および下記一般式(p2)で表されるアルコキシアルキル基からなる群から選択される少なくとも1種の酸解離性溶解抑制基を有することが好ましい。
一般式(p1)において、n’は1〜3の整数であり、1であることが好ましい。
R1は直鎖状、分岐状または環状のアルキル基であって、その構造中にヘテロ原子を含んでもよい。すなわち、R1としてのアルキル基は、水素原子の一部または全部がヘテロ原子を含む基(ヘテロ原子そのものの場合も含む)で置換されていてもよく、該アルキル基の炭素原子の一部がヘテロ原子で置換されていてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、フッ素原子等が挙げられる。
ヘテロ原子を含む基としては、ヘテロ原子自体であってもよく、また、ヘテロ原子と炭素原子および/または水素原子とからなる基、たとえばアルコキシ基等であってもよい。
水素原子の一部または全部がヘテロ原子を含む基で置換されたアルキル基の例としては、たとえば、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、同一の炭素原子に結合した2つの水素原子が1つの酸素原子で置換された基(すなわちカルボニル基(C=O)を有する基)、同一の炭素原子に結合した2つの水素原子が1つの硫黄原子で置換された基(すなわちチオカルボニル基(C=S)を有する基)等が挙げられる。
アルキル基の炭素原子の一部がヘテロ原子を含む基で置換されている基としては、たとえば、炭素原子が窒素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−NH−で置換された基)や、炭素原子が酸素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−O−で置換された基)等が挙げられる。
R1は直鎖状、分岐状または環状のアルキル基であって、その構造中にヘテロ原子を含んでもよい。すなわち、R1としてのアルキル基は、水素原子の一部または全部がヘテロ原子を含む基(ヘテロ原子そのものの場合も含む)で置換されていてもよく、該アルキル基の炭素原子の一部がヘテロ原子で置換されていてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、フッ素原子等が挙げられる。
ヘテロ原子を含む基としては、ヘテロ原子自体であってもよく、また、ヘテロ原子と炭素原子および/または水素原子とからなる基、たとえばアルコキシ基等であってもよい。
水素原子の一部または全部がヘテロ原子を含む基で置換されたアルキル基の例としては、たとえば、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、同一の炭素原子に結合した2つの水素原子が1つの酸素原子で置換された基(すなわちカルボニル基(C=O)を有する基)、同一の炭素原子に結合した2つの水素原子が1つの硫黄原子で置換された基(すなわちチオカルボニル基(C=S)を有する基)等が挙げられる。
アルキル基の炭素原子の一部がヘテロ原子を含む基で置換されている基としては、たとえば、炭素原子が窒素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−NH−で置換された基)や、炭素原子が酸素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−O−で置換された基)等が挙げられる。
R1としての直鎖状のアルキル基は、炭素数が1〜5であることが好ましく、具体的にはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基が挙げられ、メチル基又はエチル基であることが好ましい。
R1としての分岐状のアルキル基は、炭素数が4〜10であることが好ましく、4〜8であることがより好ましい。具体的には、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基等が挙げられ、tert−ブチル基であることが好ましい。
R1としての分岐状のアルキル基は、炭素数が4〜10であることが好ましく、4〜8であることがより好ましい。具体的には、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基等が挙げられ、tert−ブチル基であることが好ましい。
R1としての環状のアルキル基は、炭素数が3〜20であることが好ましく、4〜14であることがより好ましく、5〜12であることが最も好ましい。
該環状のアルキル基における基本環(置換基を除いた基本の環)の構造は、単環でも多環でもよく、特に、本発明の効果に優れることから、多環であることが好ましい。また、基本環は、炭素および水素から構成された炭化水素環であってもよく、炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された複素環であってもよい。本発明においては、特に、基本環が炭化水素環であることが好ましい。炭化水素環の具体例としては、たとえば、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンが挙げられる。これらのなかでも、アダマンタン、ノルボルナン、トリシクロデカン、テトラシクロドデカンが好ましく、特にアダマンタンが好ましい。
これらの基本環は、その環上に置換基を有していてもよいし、有していなくてもよい。置換基としては、低級アルキル基、フッ素原子、フッ素化低級アルキル基、酸素原子(=O)等が挙げられる。該低級アルキル基としては、メチル基、エチル基等の炭素数1〜5の直鎖状または分岐状のアルキル基が挙げられる。基本環が置換基を有する場合、置換基の数は、1〜3が好ましく、1がより好ましい。
ここで、「置換基を有する」とは、基本環を構成する炭素原子に結合した水素原子が置換基で置換されていることを意味する。
R1の環状のアルキル基としては、これらの基本環から1つの水素原子を除いた基が挙げられる。R1においては、該R1に隣接する酸素原子が結合する炭素原子が、上記のような基本環を構成する炭素原子の1つであることが好ましく、特に、R1に隣接する酸素原子に結合する炭素原子が、低級アルキル基等の置換基が結合した第3級炭素原子であることが、本発明の効果に優れ、好ましい。
R1として環状アルキル基を有する酸解離性溶解抑制基としては、たとえば、下記式(p1−1)〜(p1−7)で表される基が挙げられる。これらの中でも、一般式(p1−1)で表されるものが好ましい。
該環状のアルキル基における基本環(置換基を除いた基本の環)の構造は、単環でも多環でもよく、特に、本発明の効果に優れることから、多環であることが好ましい。また、基本環は、炭素および水素から構成された炭化水素環であってもよく、炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された複素環であってもよい。本発明においては、特に、基本環が炭化水素環であることが好ましい。炭化水素環の具体例としては、たとえば、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンが挙げられる。これらのなかでも、アダマンタン、ノルボルナン、トリシクロデカン、テトラシクロドデカンが好ましく、特にアダマンタンが好ましい。
これらの基本環は、その環上に置換基を有していてもよいし、有していなくてもよい。置換基としては、低級アルキル基、フッ素原子、フッ素化低級アルキル基、酸素原子(=O)等が挙げられる。該低級アルキル基としては、メチル基、エチル基等の炭素数1〜5の直鎖状または分岐状のアルキル基が挙げられる。基本環が置換基を有する場合、置換基の数は、1〜3が好ましく、1がより好ましい。
ここで、「置換基を有する」とは、基本環を構成する炭素原子に結合した水素原子が置換基で置換されていることを意味する。
R1の環状のアルキル基としては、これらの基本環から1つの水素原子を除いた基が挙げられる。R1においては、該R1に隣接する酸素原子が結合する炭素原子が、上記のような基本環を構成する炭素原子の1つであることが好ましく、特に、R1に隣接する酸素原子に結合する炭素原子が、低級アルキル基等の置換基が結合した第3級炭素原子であることが、本発明の効果に優れ、好ましい。
R1として環状アルキル基を有する酸解離性溶解抑制基としては、たとえば、下記式(p1−1)〜(p1−7)で表される基が挙げられる。これらの中でも、一般式(p1−1)で表されるものが好ましい。
R4の低級アルキル基は、炭素原子数1〜5のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。R4としては、工業上入手しやすい点で、メチル基又はエチル基が好ましく、メチル基がより好ましい。
R1としては、特に、環状のアルキル基を有する酸解離性溶解抑制基が好ましい。
式(p2)中、R2としては、上記R1と同様のものが挙げられる。中でもR2としては、直鎖状アルキル基または環状アルキル基が好ましい。
R3は水素原子または低級アルキル基である。R3の低級アルキル基は、炭素原子数1〜5のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。R3としては、工業上入手しやすい点で、水素原子またはメチル基が好ましく、水素原子であることがより好ましい。
R3は水素原子または低級アルキル基である。R3の低級アルキル基は、炭素原子数1〜5のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。R3としては、工業上入手しやすい点で、水素原子またはメチル基が好ましく、水素原子であることがより好ましい。
R2が直鎖状アルキル基である式(p2)で表される基としては、たとえば、1−エトキシエチル基、1−エトキシメチル基、1−メトキシエチル基、1−メトキシメチル基、1−メトキシプロピル基、1−エトキシプロピル基、1−n−ブトキシエチル基、1−ペンタフルオロエトキシエチル基、1−トリフルオロメトキシエチル基、1−トリフルオロメトキシメチル基等が挙げられる。
R2が環状アルキル基である式(p2)で表される基としては、たとえば、下記式で表される基が挙げられる。
R2が環状アルキル基である式(p2)で表される基としては、たとえば、下記式で表される基が挙げられる。
これらのなかでも、下記一般式(p2−1)または(p2−2)で表される基が好ましい。
n”およびm”は0又は1であることが最も好ましい。
アダマンチル基と−CHR3−O−(CH2)n”−との結合位置は特に限定されないが、アダマンチル基の1位又は2位に結合することが好ましい。
アダマンチル基と−CHR3−O−(CH2)n”−との結合位置は特に限定されないが、アダマンチル基の1位又は2位に結合することが好ましい。
(A1)成分においては、酸解離性溶解抑制基が、上述した式(p1−1)〜(p1−7)、(p2−1)〜(p2−2)で表される基のように、環式基を有する基であることが、本発明の効果に優れることから好ましい。酸解離性溶解抑制基が環式基を有する基であると、鎖状の基である場合に比べ、(A1)成分のアルカリ溶解性が低くなる。そのため、当該(A1)成分をポジ型レジスト組成物に配合した場合に、当該ポジ型レジスト組成物を用いて形成されるレジスト膜の未露光部のアルカリ現像液に対する耐性が高くなる。つまり、露光部と未露光部とのアルカリ溶解性の差(溶解コントラスト)が大きくなり、解像性が向上する。
酸解離性溶解抑制基の種類の選択においては、特に、R101〜R107の構造を考慮することが好ましい。これにより、(A1)成分のアルカリ溶解性を、ポジ型レジスト組成物用として好適な範囲に調節することができる。たとえばR101〜R107がメチル基等の鎖状のアルキル基である場合、(A1)成分はアルカリ溶解性が高い傾向があるが、酸解離性溶解抑制基としてアダマンタン等の多環構造を有する基を選択することにより、(A1)成分のアルカリ溶解性を低くすることができる。また、たとえばR101〜R107がシキロヘキシル基等の環状のアルキル基または芳香族炭化水素基である場合、(A1)成分はアルカリ溶解性が低い傾向があるが、このとき、酸解離性溶解抑制基としてシクロヘキサン等の単環構造を有する基を選択して組み合わせることにより、(A1)成分のアルカリ溶解性を高くすることができる。
[フェノール化合物(I)]
式(I)中、Z1およびZ2はそれぞれ独立に水素原子または前記一般式(I−1)で表される基である。
すなわち、フェノール化合物(I)は、下記一般式(II)または(III)で表される化合物である。
式(I)中、Z1およびZ2はそれぞれ独立に水素原子または前記一般式(I−1)で表される基である。
すなわち、フェノール化合物(I)は、下記一般式(II)または(III)で表される化合物である。
式(I−1−1)中、eは1〜5の整数であり、1〜3の整数が好ましく、1または2であることがさらに好ましく、1であることが最も好ましい。
式(I−1−2)中、fは0〜5の整数であり、0〜3の整数が好ましく、1または2であることがさらに好ましく、1であることが最も好ましい。
また、R113が式(I−1−2)で表される基である場合、ベンゼン環に対する−(CH2)f−および−COOHの結合位置は、特に限定されないが、−(CH2)f−および−COOHが互いにパラ位となるように結合していることが好ましい。
また、R113が式(I−1−2)で表される基である場合、ベンゼン環に対する−(CH2)f−および−COOHの結合位置は、特に限定されないが、−(CH2)f−および−COOHが互いにパラ位となるように結合していることが好ましい。
式(I−1−2)中のベンゼン環は、置換基を有していてもよい。該置換基としては、水酸基、ハロゲン原子、アルキル基、アリール基、アルコキシ基およびアリールオキシ基から選択される1種以上が好ましい。
前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
前記アルキル基としては特に限定されず、直鎖状、分岐鎖状および環状のいずれでもよい。
直鎖状のアルキル基は、炭素数が1〜5であることが好ましく、具体的にはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基が挙げられ、メチル基又はエチル基であることが好ましい。
分岐鎖状のアルキル基は、炭素数が4〜10であることが好ましく、4〜8であることがより好ましい。具体的には、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基等が挙げられる。環状のアルキル基は、炭素数が3〜20であることが好ましく、4〜14であることがより好ましく、5〜12であることが特に好ましい。
該環状のアルキル基における基本環(置換基を除いた基本の環)の構造は、単環でも多環でもよい。また、基本環は、炭素および水素から構成された炭化水素環であってもよく、後記するように炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された複素環であってもよい。炭化水素環の具体例としては、たとえば、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンが挙げられる。
これらの基本環は、その環上に炭化水素基からなる置換基を有していてもよいし、有していなくてもよい。該炭化水素基としては、例えば、メチル基、エチル基等の炭素数1〜5の直鎖状または分岐鎖状のアルキル基が挙げられる。基本環が置換基を有する場合、置換基の数は、1〜3が好ましく、1がより好ましい。ここで、「置換基を有する」とは、先にR1の説明で述べた通りである。
前記アリール基としては特に限定されないが、炭素数が6〜15であることが好ましく、例えば、フェニル基、トリル基、キシリル基、メシチル基、フェネチル基、ナフチル基などが挙げられる。中でもフェニル基がより好ましい。
前記アルコキシ基およびアリールオキシ基としては、酸素原子(−O−)に前記アルキル基およびアリール基が結合した基を挙げることができる。
前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
前記アルキル基としては特に限定されず、直鎖状、分岐鎖状および環状のいずれでもよい。
直鎖状のアルキル基は、炭素数が1〜5であることが好ましく、具体的にはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基が挙げられ、メチル基又はエチル基であることが好ましい。
分岐鎖状のアルキル基は、炭素数が4〜10であることが好ましく、4〜8であることがより好ましい。具体的には、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基等が挙げられる。環状のアルキル基は、炭素数が3〜20であることが好ましく、4〜14であることがより好ましく、5〜12であることが特に好ましい。
該環状のアルキル基における基本環(置換基を除いた基本の環)の構造は、単環でも多環でもよい。また、基本環は、炭素および水素から構成された炭化水素環であってもよく、後記するように炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された複素環であってもよい。炭化水素環の具体例としては、たとえば、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンが挙げられる。
これらの基本環は、その環上に炭化水素基からなる置換基を有していてもよいし、有していなくてもよい。該炭化水素基としては、例えば、メチル基、エチル基等の炭素数1〜5の直鎖状または分岐鎖状のアルキル基が挙げられる。基本環が置換基を有する場合、置換基の数は、1〜3が好ましく、1がより好ましい。ここで、「置換基を有する」とは、先にR1の説明で述べた通りである。
前記アリール基としては特に限定されないが、炭素数が6〜15であることが好ましく、例えば、フェニル基、トリル基、キシリル基、メシチル基、フェネチル基、ナフチル基などが挙げられる。中でもフェニル基がより好ましい。
前記アルコキシ基およびアリールオキシ基としては、酸素原子(−O−)に前記アルキル基およびアリール基が結合した基を挙げることができる。
前記アルキル基、アリール基、アルコキシ基およびアリールオキシ基は、その構造中に炭化水素基以外の置換基、ヘテロ原子を含んでもよい。例えば、アルキル基、アリール基、アルコキシ基およびアリールオキシ基中の水素原子の一部または全部がヘテロ原子を含む基(ヘテロ原子そのものの場合も含む)で置換されていてもよく、アルキル基、アリール基、アルコキシ基およびアリールオキシ基中の炭素原子の一部がヘテロ原子で置換されていてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、フッ素原子等が挙げられる。
水素原子の一部または全部がヘテロ原子を含む基で置換されたものとしては、例えば、水酸基、アルコキシ基、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基などの、ヘテロ原子と炭素原子および/または水素原子とからなる基で置換されたものが挙げられる。
そして、水素原子の一部または全部がヘテロ原子自体で置換されたものとしては、例えば、同一の炭素原子に結合した2つの水素原子が1つの酸素原子で置換されたもの(すなわちカルボニル基(C=O)を有するもの)、同一の炭素原子に結合した2つの水素原子が1つの硫黄原子で置換されたもの(すなわちチオカルボニル基(C=S)を有するもの)が挙げられる。
炭素原子の一部がヘテロ原子で置換されたものとしては、例えば、その構造中に−CH2−を含むものにおいて、該−CH2−が−NH−で置換されたものや、−O−で置換されたものなどが挙げられる。
炭化水素基以外の置換基は、上記のヘテロ原子を含む基以外のものでもよい。
水素原子の一部または全部がヘテロ原子を含む基で置換されたものとしては、例えば、水酸基、アルコキシ基、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基などの、ヘテロ原子と炭素原子および/または水素原子とからなる基で置換されたものが挙げられる。
そして、水素原子の一部または全部がヘテロ原子自体で置換されたものとしては、例えば、同一の炭素原子に結合した2つの水素原子が1つの酸素原子で置換されたもの(すなわちカルボニル基(C=O)を有するもの)、同一の炭素原子に結合した2つの水素原子が1つの硫黄原子で置換されたもの(すなわちチオカルボニル基(C=S)を有するもの)が挙げられる。
炭素原子の一部がヘテロ原子で置換されたものとしては、例えば、その構造中に−CH2−を含むものにおいて、該−CH2−が−NH−で置換されたものや、−O−で置換されたものなどが挙げられる。
炭化水素基以外の置換基は、上記のヘテロ原子を含む基以外のものでもよい。
式(I−1−2)中のベンゼン環における置換基の数は、0〜4が好ましく、0または1がより好ましく、0であることが最も好ましい。該置換基の数が2以上の場合、これら複数の置換基は互いに同一でも異なってもよい。置換基のベンゼン環への結合位置は特に限定されない。
Z1およびZ2は、それぞれ、一般式(I−1)で表される基であることが好ましく、特に、一般式(I−1)におけるR113が前記一般式(I−1−1)で表される基であることが好ましい。
Z1およびZ2がそれぞれ一般式(I−1)で表される基であると、本発明の効果が高く、優れたラフネスの低減効果が得られる。これは、酸解離性溶解抑制基を導入する際、カルボキシ基の反応性がフェノール性水酸基に比べて高いため、酸解離性溶解抑制基はZ1およびZ2の位置に選択的に導入されるため、(A1)成分における分子間の構造のばらつきが非常に小さいことによると推測される。
また、酸解離性溶解抑制基が位置選択的に導入されるため、酸解離性溶解抑制基の種類を選択することにより、(A1)成分全体の性質を調節しやすいという利点も有する。たとえば酸解離性溶解抑制基としてアダマンタン等の多環構造を有する基を選択した場合と、シクロヘキサン等の単環構造を有する基を選択した場合と、鎖状構造の基を選択した場合とでは、(A1)成分のアルカリ溶解性は、多環構造を有する基<単環構造を有する基<鎖状構造の基となる。
Z1およびZ2がそれぞれ一般式(I−1)で表される基であると、本発明の効果が高く、優れたラフネスの低減効果が得られる。これは、酸解離性溶解抑制基を導入する際、カルボキシ基の反応性がフェノール性水酸基に比べて高いため、酸解離性溶解抑制基はZ1およびZ2の位置に選択的に導入されるため、(A1)成分における分子間の構造のばらつきが非常に小さいことによると推測される。
また、酸解離性溶解抑制基が位置選択的に導入されるため、酸解離性溶解抑制基の種類を選択することにより、(A1)成分全体の性質を調節しやすいという利点も有する。たとえば酸解離性溶解抑制基としてアダマンタン等の多環構造を有する基を選択した場合と、シクロヘキサン等の単環構造を有する基を選択した場合と、鎖状構造の基を選択した場合とでは、(A1)成分のアルカリ溶解性は、多環構造を有する基<単環構造を有する基<鎖状構造の基となる。
また、式(I)中、R101〜R107は、それぞれ独立に、炭素数1〜10のアルキル基または芳香族炭化水素基である。
前記アルキル基としては、炭素数1〜5の直鎖状または分岐状の低級アルキル基、または炭素数5〜6の環状アルキル基が好ましい。前記低級アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの直鎖状または分岐状のアルキル基が挙げられ、これらの中でもメチル基が好ましい。前記環状アルキル基としてはシクロヘキシル基、シクロペンチル基等が挙げられ、シクロヘキシル基が好ましい。
前記芳香族炭化水素基としては、炭素数6〜15であることが好ましく、例えば、フェニル基、トリル基、キシリル基、メシチル基、フェネチル基、ナフチル基などが挙げられる。
これらのアルキル基または芳香族炭化水素基は、その構造中に、酸素原子、窒素原子、硫黄原子等のヘテロ原子を含んでもよい。
前記アルキル基としては、炭素数1〜5の直鎖状または分岐状の低級アルキル基、または炭素数5〜6の環状アルキル基が好ましい。前記低級アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの直鎖状または分岐状のアルキル基が挙げられ、これらの中でもメチル基が好ましい。前記環状アルキル基としてはシクロヘキシル基、シクロペンチル基等が挙げられ、シクロヘキシル基が好ましい。
前記芳香族炭化水素基としては、炭素数6〜15であることが好ましく、例えば、フェニル基、トリル基、キシリル基、メシチル基、フェネチル基、ナフチル基などが挙げられる。
これらのアルキル基または芳香族炭化水素基は、その構造中に、酸素原子、窒素原子、硫黄原子等のヘテロ原子を含んでもよい。
aおよびn1はそれぞれ独立に1以上の整数であり、n2およびn7はそれぞれ独立に0以上の整数であり、かつa+n1+n2+n7が5以下である。
aおよびn1は、それぞれ独立に1または2であることが好ましく、最も好ましくは1である。
n2は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
n7は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
aおよびn1は、それぞれ独立に1または2であることが好ましく、最も好ましくは1である。
n2は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
n7は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
bは1以上の整数であり、n3およびn4はそれぞれ独立に0以上の整数であり、かつb+n3+n4が4以下である。
bは、1〜4の整数であることが好ましく、1または2であることがさらに好ましく、最も好ましくは1である。
n3およびn4は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
bは、1〜4の整数であることが好ましく、1または2であることがさらに好ましく、最も好ましくは1である。
n3およびn4は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
cは1以上の整数であり、n5およびn6はそれぞれ独立に0以上の整数であり、かつc+n5+n6が4以下である。
cは、1〜4であることが好ましく、1または2であることがさらに好ましく、最も好ましくは1である。
n5およびn6は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
cは、1〜4であることが好ましく、1または2であることがさらに好ましく、最も好ましくは1である。
n5およびn6は、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
下付文字aを付した水酸基(すなわち−(OH)a)の結合位置は、特に限定されないが、得られる(A1)成分がレジスト組成物用として好適であること、合成しやすさ等の点で、少なくとも、フェニル基のパラ位(4位)に結合していることが好ましい。
R101、R102およびR107の結合位置は、特に限定されないが、合成のしやすさ等の点で、R101が、水酸基が結合した炭素原子に隣接する炭素原子の少なくとも一方に結合していることが好ましい。
下付文字bまたはcを付した基(OZ1またはOZ2)の結合位置は特に限定されないが、少なくとも、当該基が結合するベンゼン環に結合したAのパラ位に当該基が結合していることが好ましい。かかる化合物は、レジスト組成物用として好適であること、合成しやすい等の利点を有する。
R101、R102およびR107の結合位置は、特に限定されないが、合成のしやすさ等の点で、R101が、水酸基が結合した炭素原子に隣接する炭素原子の少なくとも一方に結合していることが好ましい。
下付文字bまたはcを付した基(OZ1またはOZ2)の結合位置は特に限定されないが、少なくとも、当該基が結合するベンゼン環に結合したAのパラ位に当該基が結合していることが好ましい。かかる化合物は、レジスト組成物用として好適であること、合成しやすい等の利点を有する。
Aはアルキレン基、脂肪族環式基または芳香族環式基である。
Aのアルキレン基は特に限定されないが、炭素数1〜5の直鎖状または分岐鎖状のアルキレン基が好ましく、エチレン基またはメチレン基がより好ましく、合成が容易である点でメチレン基が特に好ましい。
Aのアルキレン基は特に限定されないが、炭素数1〜5の直鎖状または分岐鎖状のアルキレン基が好ましく、エチレン基またはメチレン基がより好ましく、合成が容易である点でメチレン基が特に好ましい。
Aの脂肪族環式基としては、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
脂肪族環式基の、置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。また、脂肪族環式基は、多環式基であることが好ましい。
脂肪族環式基の具体例としては、モノシクロアルカンから2個以上の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから2個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから2個以上の水素原子を除いた基や、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから2個以上の水素原子を除いた基などが挙げられる。これらの基は、その水素原子の一部または全部が置換基(例えば低級アルキル基、フッ素原子またはフッ素化アルキル基)で置換されていてもよい。
これらの中でも、炭素数が4〜15の脂肪族環式基が好ましく、アダマンタンから2個の水素原子を除いた基がより好ましく、特に、アダマンタンの1位および3位の水素原子を除いた基が好ましい。
脂肪族環式基の、置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。また、脂肪族環式基は、多環式基であることが好ましい。
脂肪族環式基の具体例としては、モノシクロアルカンから2個以上の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから2個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから2個以上の水素原子を除いた基や、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから2個以上の水素原子を除いた基などが挙げられる。これらの基は、その水素原子の一部または全部が置換基(例えば低級アルキル基、フッ素原子またはフッ素化アルキル基)で置換されていてもよい。
これらの中でも、炭素数が4〜15の脂肪族環式基が好ましく、アダマンタンから2個の水素原子を除いた基がより好ましく、特に、アダマンタンの1位および3位の水素原子を除いた基が好ましい。
Aの芳香族環式基としては、置換基を有していてもよいし、有していなくてもよい。置換基としては、その構造中にヘテロ原子を含んでいてもよい炭素数1〜10のアルキル基または芳香族炭化水素基、該アルキル基または芳香族炭化水素基の水素原子の一部または全部がフッ素原子で置換された基、水酸基、フッ素原子、酸素原子(=O)等が挙げられる。
芳香族環式基の、置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。好ましくは単環式基である。
このような芳香族環式基の具体例としては、ベンゼンから2個以上の水素原子を除いた基などを例示できる。これらの基は、その水素原子の一部または全部が置換基(例えば、その構造中にヘテロ原子を含んでいてもよい炭素数1〜10のアルキル基または芳香族炭化水素基、該アルキル基または芳香族炭化水素基の水素原子の一部または全部がフッ素原子で置換された基、水酸基、フッ素原子)で置換されていてもよい。
これらの中でも、置換基として水酸基、およびその構造中にヘテロ原子を含んでいてもよい炭素数1〜10のアルキル基または芳香族炭化水素基を有するベンゼンが好ましく、下記一般式(Ia)で表される基が、特に好ましいものとして挙げられる。
芳香族環式基の、置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。好ましくは単環式基である。
このような芳香族環式基の具体例としては、ベンゼンから2個以上の水素原子を除いた基などを例示できる。これらの基は、その水素原子の一部または全部が置換基(例えば、その構造中にヘテロ原子を含んでいてもよい炭素数1〜10のアルキル基または芳香族炭化水素基、該アルキル基または芳香族炭化水素基の水素原子の一部または全部がフッ素原子で置換された基、水酸基、フッ素原子)で置換されていてもよい。
これらの中でも、置換基として水酸基、およびその構造中にヘテロ原子を含んでいてもよい炭素数1〜10のアルキル基または芳香族炭化水素基を有するベンゼンが好ましく、下記一般式(Ia)で表される基が、特に好ましいものとして挙げられる。
式(Ia)中、R108、R109のアルキル基または芳香族炭化水素基としては、上記R101〜R107のアルキル基または芳香族炭化水素基と同様のものが挙げられる。
上記R101〜R107のアルキル基または芳香族炭化水素基は、その構造中に、酸素原子、窒素原子、硫黄原子等のヘテロ原子を含んでもよい。
R108、R109としては、本発明の効果に優れる点で、メチル基が好ましい。
d、n8、n9はそれぞれ独立に0以上の整数であり、かつd+n8+n9が4以下である。なかでも、d=1であり、かつn8+n9が1であることが好ましい。
上記R101〜R107のアルキル基または芳香族炭化水素基は、その構造中に、酸素原子、窒素原子、硫黄原子等のヘテロ原子を含んでもよい。
R108、R109としては、本発明の効果に優れる点で、メチル基が好ましい。
d、n8、n9はそれぞれ独立に0以上の整数であり、かつd+n8+n9が4以下である。なかでも、d=1であり、かつn8+n9が1であることが好ましい。
Aとしては、アルキレン基または芳香族環式基が好ましく、メチレン基または前記一般式(Ia)で表される基がより好ましく、メチレン基が特に好ましい。
また、Aの結合位置は、特に限定されないが、当該Aが結合するベンゼン環に結合した2級炭素原子(2個のベンゼン環が結合した炭素原子)の結合位置に対し、メタ位に結合していることが好ましい。かかる化合物は、レジスト組成物用として好適であること、合成しやすい等の利点を有する。
また、Aの結合位置は、特に限定されないが、当該Aが結合するベンゼン環に結合した2級炭素原子(2個のベンゼン環が結合した炭素原子)の結合位置に対し、メタ位に結合していることが好ましい。かかる化合物は、レジスト組成物用として好適であること、合成しやすい等の利点を有する。
フェノール化合物(I)としては、特に、下記一般式(I−11)で表される化合物が好ましい。
式(I−11)中、b’およびc’は、それぞれ独立に、1または2であることが好ましく、1が最も好ましい。
R12の結合位置は、特に限定されないが、合成のしやすさ等の点で、水酸基のオルト位またはメタ位に結合していることが好ましい。すなわち、フェノール化合物(I)としては、下記一般式(I−12)または(I−13)で表される化合物が好ましい。
特に、b’およびc’が1であり、OZ1およびOZ2が、それぞれ、Aの結合位置に対してパラ位に結合していることが好ましい。
R12の結合位置は、特に限定されないが、合成のしやすさ等の点で、水酸基のオルト位またはメタ位に結合していることが好ましい。すなわち、フェノール化合物(I)としては、下記一般式(I−12)または(I−13)で表される化合物が好ましい。
特に、b’およびc’が1であり、OZ1およびOZ2が、それぞれ、Aの結合位置に対してパラ位に結合していることが好ましい。
フェノール化合物(I)は、従来公知の方法により製造できる。
たとえば、Z1およびZ2がそれぞれ水素原子である場合、下記一般式(x1)で表される化合物(x1)と下記一般式(x2)で表される化合物(x2)とを酸性条件下で反応させることによりフェノール化合物(I)を製造できる。
たとえば、Z1およびZ2がそれぞれ水素原子である場合、下記一般式(x1)で表される化合物(x1)と下記一般式(x2)で表される化合物(x2)とを酸性条件下で反応させることによりフェノール化合物(I)を製造できる。
すなわち、化合物(x1)と化合物(x2)とを酸性条件下で反応させると、化合物(x1)のホルミル基(−CHO)と化合物(x2)とが反応し、Z1およびZ2がそれぞれ水素原子であるフェノール化合物(I)が形成される。
具体的には、例えば、使用する化合物(x1)に対して約4〜6当量倍の化合物(x2)をメタノール等の有機溶剤に溶解し、該溶液中に、塩酸等の酸を添加し、この混合溶液中に、化合物(x1)を添加することにより反応させることができる。
このとき使用する酸としては、化合物(x1)と化合物(x2)とが反応するものであれば特に制限はない。好ましくは塩酸、硫酸、無水硫酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸等を好ましい具体例として挙げることができる。なかでも塩酸が好ましく、特に塩酸ガスがより好ましい。塩酸ガスを用いる場合には、これを有機溶剤中に吹き込めばよく、化合物(x1)を有機溶剤中に添加する前に吹き込むことが好ましい。
これらの酸は、いずれか1種を単独で用いてもよく、2種類以上混合して用いてもよい。
酸の添加量は、酸の種類により適宜調整すればよいが、例えば、塩酸ガスの場合は、化合物(x1)100質量部に対して、好ましくは5〜50質量部、より好ましくは10〜40質量部の範囲で用いられる。
反応条件は、用いる原料の組み合わせ等に応じて適宜選定すれば良いが、例えば、反応温度は、10〜80℃が好ましく、30〜60℃がより好ましい。反応時間は、1〜96時間が好ましく、3〜72時間がより好ましい。
反応終了後、反応液に水酸化ナトリウム等の塩基を添加して、反応液中の酸を中和する。
このようにして得られる反応液はさらに、必要に応じて濃縮を行った後、例えば、分液ロートに移して抽出し、濃縮、乾燥を行うことにより目的物を得ることができる。
具体的には、例えば、使用する化合物(x1)に対して約4〜6当量倍の化合物(x2)をメタノール等の有機溶剤に溶解し、該溶液中に、塩酸等の酸を添加し、この混合溶液中に、化合物(x1)を添加することにより反応させることができる。
このとき使用する酸としては、化合物(x1)と化合物(x2)とが反応するものであれば特に制限はない。好ましくは塩酸、硫酸、無水硫酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸等を好ましい具体例として挙げることができる。なかでも塩酸が好ましく、特に塩酸ガスがより好ましい。塩酸ガスを用いる場合には、これを有機溶剤中に吹き込めばよく、化合物(x1)を有機溶剤中に添加する前に吹き込むことが好ましい。
これらの酸は、いずれか1種を単独で用いてもよく、2種類以上混合して用いてもよい。
酸の添加量は、酸の種類により適宜調整すればよいが、例えば、塩酸ガスの場合は、化合物(x1)100質量部に対して、好ましくは5〜50質量部、より好ましくは10〜40質量部の範囲で用いられる。
反応条件は、用いる原料の組み合わせ等に応じて適宜選定すれば良いが、例えば、反応温度は、10〜80℃が好ましく、30〜60℃がより好ましい。反応時間は、1〜96時間が好ましく、3〜72時間がより好ましい。
反応終了後、反応液に水酸化ナトリウム等の塩基を添加して、反応液中の酸を中和する。
このようにして得られる反応液はさらに、必要に応じて濃縮を行った後、例えば、分液ロートに移して抽出し、濃縮、乾燥を行うことにより目的物を得ることができる。
また、Z1およびZ2がそれぞれ一般式(I−1)で表される基である場合は、たとえば、前記化合物(x1)と下記一般式(y1)で表される化合物(y1)とを反応させて下記一般式(y2)で表される化合物(y2)を得、該化合物(y2)と前記化合物(x2)とを酸性条件下で反応させることによりフェノール化合物(I)を製造できる。
一般式(y1)中、Xhのハロゲン原子としては、臭素原子、塩素原子、フッ素原子等が挙げられる。反応性に優れることから、塩素原子、臭素原子が好ましい。
R201の保護基は、化合物(x1)と化合物(y1)とを反応させる際に反応せず、かつ、塩基性条件下で加水分解する基であれば特に限定されない。このような塩基性条件下で加水分解する基としては、例えば、炭素数1〜4の直鎖のアルキル基が挙げられ、好ましくはメチル基、エチル基である。
R201の保護基は、化合物(x1)と化合物(y1)とを反応させる際に反応せず、かつ、塩基性条件下で加水分解する基であれば特に限定されない。このような塩基性条件下で加水分解する基としては、例えば、炭素数1〜4の直鎖のアルキル基が挙げられ、好ましくはメチル基、エチル基である。
化合物(x1)と化合物(y1)とは、公知の方法により反応させることができる。たとえば、N−メチルピロリドン等の有機溶剤に化合物(x1)を溶解し、該溶液中に炭酸カリウム等の塩基を添加し、撹拌しながら該溶液中に、使用する化合物(x1)に対して約2〜3当量倍の化合物(y1)を添加することにより反応させることができる。
このとき使用する有機溶剤としては、化合物(x1)および化合物(y1)、並びに生成する化合物(y2)を溶解するものであればよく、一般的な有機溶剤から任意のものを選択すればよい。一般的な有機溶剤としては、例えば、N−メチルピロリドン等の環状アミド類、アセトン、メチルエチルケトン、メチルペンチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン(THF)、ジオキサン、グライム、プロピレングリコールモノメチルエーテル等のエーテル類;酢酸エチル、乳酸エチル等のエステル類;プロピレングリコールメチルエーテルアセテート等のエーテルエステル類;γ−ブチロラクトン等のラクトン類等を挙げることができ、これらを単独で、または混合して用いることができる。
反応条件は、用いる原料の組み合わせ、有機溶剤の沸点等に応じて適宜選定すれば良いが、反応温度は二段階に切り替えるのが好ましく、例えば、化合物(x1)と化合物(y1)との混合時の温度は、好ましくは30〜70℃、より好ましくは40〜60℃であり、その後昇温して、好ましくは90〜130℃、より好ましくは100〜120℃で引き続き反応を行うのがよい。
反応時間は、例えば、昇温前は好ましくは0.5〜3.5時間、より好ましくは1.5〜2.5時間とし、昇温後は好ましくは1〜24時間、より好ましくは4〜15時間とするのがよい。
反応終了後、反応液は、そのまま次の工程に用いてもよいが、水/酢酸エチル等を添加し、有機相(酢酸エチル相等)を減圧濃縮して化合物(y2)を得てもよいし、酸を適量加えて酸析してもよい。
このとき使用する有機溶剤としては、化合物(x1)および化合物(y1)、並びに生成する化合物(y2)を溶解するものであればよく、一般的な有機溶剤から任意のものを選択すればよい。一般的な有機溶剤としては、例えば、N−メチルピロリドン等の環状アミド類、アセトン、メチルエチルケトン、メチルペンチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン(THF)、ジオキサン、グライム、プロピレングリコールモノメチルエーテル等のエーテル類;酢酸エチル、乳酸エチル等のエステル類;プロピレングリコールメチルエーテルアセテート等のエーテルエステル類;γ−ブチロラクトン等のラクトン類等を挙げることができ、これらを単独で、または混合して用いることができる。
反応条件は、用いる原料の組み合わせ、有機溶剤の沸点等に応じて適宜選定すれば良いが、反応温度は二段階に切り替えるのが好ましく、例えば、化合物(x1)と化合物(y1)との混合時の温度は、好ましくは30〜70℃、より好ましくは40〜60℃であり、その後昇温して、好ましくは90〜130℃、より好ましくは100〜120℃で引き続き反応を行うのがよい。
反応時間は、例えば、昇温前は好ましくは0.5〜3.5時間、より好ましくは1.5〜2.5時間とし、昇温後は好ましくは1〜24時間、より好ましくは4〜15時間とするのがよい。
反応終了後、反応液は、そのまま次の工程に用いてもよいが、水/酢酸エチル等を添加し、有機相(酢酸エチル相等)を減圧濃縮して化合物(y2)を得てもよいし、酸を適量加えて酸析してもよい。
次に、酸性条件下で化合物(y2)と化合物(x2)とを反応させる。これにより、化合物(y2)のホルミル基(−CHO)と化合物(x2)とが反応するとともに、酸によって保護基R201が解離して、Z1およびZ2がそれぞれ一般式(I−1)で表される基であるフェノール化合物(I)が形成される。
化合物(y2)と化合物(x2)との反応は、前記化合物(x1)と化合物(x2)との反応と同様にして行うことができる。
化合物(y2)と化合物(x2)との反応は、前記化合物(x1)と化合物(x2)との反応と同様にして行うことができる。
[置換フェノール化合物(I’)]
置換フェノール化合物(I’)は、前記フェノール化合物(I)の水酸基の水素原子の一部が炭素数1〜10のアルキル基で置換された化合物である。
該アルキル基としては、前記R101〜R107の炭素数1〜10のアルキル基として挙げたものと同様のものが挙げられる。
置換フェノール化合物(I’)としては、たとえば、下記(I’−1)〜(I’−3)が挙げられる。
(I’−1):前記一般式(I)におけるZ1およびZ2がともに水素原子であって、フェノール性水酸基(ベンゼン環に直接結合した水酸基)の水素原子の一部が当該アルキル基で置換された化合物。
(I’−2):前記一般式(I)におけるZ1およびZ2がともに前記一般式(I−1)で表される基であって、フェノール性水酸基(ベンゼン環に直接結合した水酸基)の水素原子の全部が前記アルキル基で置換され、カルボキシ基末端の水酸基が前記アルキル基で置換されていない化合物。
(I’−3):前記一般式(I)におけるZ1およびZ2がともに前記一般式(I−1)で表される基であって、カルボキシ基末端の水酸基が前記アルキル基で置換され、フェノール性水酸基(ベンゼン環に直接結合した水酸基)の水素原子が前記アルキル基で置換されていない化合物。
置換フェノール化合物(I’)は、前記フェノール化合物(I)の水酸基の水素原子の一部が炭素数1〜10のアルキル基で置換された化合物である。
該アルキル基としては、前記R101〜R107の炭素数1〜10のアルキル基として挙げたものと同様のものが挙げられる。
置換フェノール化合物(I’)としては、たとえば、下記(I’−1)〜(I’−3)が挙げられる。
(I’−1):前記一般式(I)におけるZ1およびZ2がともに水素原子であって、フェノール性水酸基(ベンゼン環に直接結合した水酸基)の水素原子の一部が当該アルキル基で置換された化合物。
(I’−2):前記一般式(I)におけるZ1およびZ2がともに前記一般式(I−1)で表される基であって、フェノール性水酸基(ベンゼン環に直接結合した水酸基)の水素原子の全部が前記アルキル基で置換され、カルボキシ基末端の水酸基が前記アルキル基で置換されていない化合物。
(I’−3):前記一般式(I)におけるZ1およびZ2がともに前記一般式(I−1)で表される基であって、カルボキシ基末端の水酸基が前記アルキル基で置換され、フェノール性水酸基(ベンゼン環に直接結合した水酸基)の水素原子が前記アルキル基で置換されていない化合物。
置換フェノール化合物(I’)は、前記フェノール化合物(I)の水酸基の水素原子の一部を、周知の方法により、炭素数1〜10のアルキル基で置換することにより製造できる。
(A1)成分は、1種単独で用いてもよく、2種以上を併用してもよい。
(A1)成分としては、本発明の効果に優れることから、下記一般式(A1−1)で表される化合物が好ましく、下記一般式(A1−2)で表される化合物がより好ましい。
(A1)成分としては、本発明の効果に優れることから、下記一般式(A1−1)で表される化合物が好ましく、下記一般式(A1−2)で表される化合物がより好ましい。
なかでも、下記一般式(A1−3)または(A1−4)で表される化合物が好ましく、一般式(A1−3)で表される化合物がより好ましい。なかでも、b’およびc’が1であり、2つの−O−R113−COOZ11が、それぞれ、Aの結合位置に対してパラ位に結合していることが好ましい。
本発明のポジ型レジスト組成物中、(A1)成分の配合量は、特に限定されない。従来、ポジ型レジスト組成物に溶解抑止剤として配合されている低分子化合物(溶解抑止化合物)は、配合量の増加に伴って解像性を劣化させるため、その配合量は、実用上、基材成分に対して数%〜30%程度であるが、本発明における(A1)成分は、従来の溶解抑止化合物の配合量よりも高配合量であっても、解像性を劣化させることがない。
(A1)成分の配合量の下限値としては、(A2)成分に対し、0.1質量%以上が好ましく、1質量%以上がより好ましく、10質量%以上がさらに好ましく、30質量%以上が最も好ましい。0.1質量%以上であると、高いラフネスの改善効果が得られる。
(A1)成分の配合量の上限値としては、(A2)成分に対し、1000質量%以下が好ましく、500質量%以下がより好ましく、200質量%以下がさらに好ましく、100質量%以下であることが最も好ましい。1000質量%以下であると、(A2)成分とのバランスが良好で、解像性等のリソグラフィー特性が向上する。
(A1)成分の配合量の下限値としては、(A2)成分に対し、0.1質量%以上が好ましく、1質量%以上がより好ましく、10質量%以上がさらに好ましく、30質量%以上が最も好ましい。0.1質量%以上であると、高いラフネスの改善効果が得られる。
(A1)成分の配合量の上限値としては、(A2)成分に対し、1000質量%以下が好ましく、500質量%以下がより好ましく、200質量%以下がさらに好ましく、100質量%以下であることが最も好ましい。1000質量%以下であると、(A2)成分とのバランスが良好で、解像性等のリソグラフィー特性が向上する。
(A1)成分は、たとえば、前記フェノール化合物(I)または前記置換フェノール化合物(I’)の水酸基の水素原子の一部または全部を、周知の方法により、酸解離性溶解抑制基で置換することにより製造できる。また、前記フェノール化合物(I)の水酸基の水素原子の一部を酸解離性溶解抑制基で置換した後、さらに、残りの水酸基の水素原子の一部または全部を炭素数1〜10のアルキル基で置換してもよい。
(A1)成分において、(A1)成分中の水酸基の保護率(モル%)、すなわち、「水素原子が酸解離性溶解抑制基で置換された水酸基の数(保護数)と、置換されていない水酸基の数(未保護数)との合計量」に対する前記保護数の割合(モル%)は、フェノール化合物(I)または置換フェノール化合物(I’)の構造や水酸基の数、所望する各種リソグラフィー特性等を考慮して適宜決定することができる。たとえば解像性、ラフネス低減効果を考慮すると、5〜50モル%が好ましく、7〜45モル%がより好ましく、15〜45モル%がさらに好ましい。
保護率は、たとえば、プロトン−NMR、カーボンNMR等のNMR(核磁気共鳴スペクトル)により求めることができる。
保護率は、たとえば、プロトン−NMR、カーボンNMR等のNMR(核磁気共鳴スペクトル)により求めることができる。
(A1)成分は、スピンコート法によりアモルファス(非晶質)な膜を形成しうる材料である。
ここで、アモルファスな膜とは、結晶化しない光学的に透明な膜を意味する。スピンコート法は、一般的に用いられている薄膜形成手法の1つである。
当該化合物がスピンコート法によりアモルファスな膜を形成しうる材料であるかどうかは、8インチシリコンウェーハ上にスピンコート法により形成した塗膜が全面透明であるか否かにより判別できる。より具体的には、例えば以下のようにして判別できる。まず、当該化合物に、一般的にレジスト溶剤に用いられている溶剤を用いて、例えば乳酸エチル/プロピレングリコールモノメチルエーテルアセテート=40/60(質量比)の混合溶剤(以下、EMと略記する)を、濃度が14質量%となるよう溶解し、超音波洗浄器を用いて超音波処理(溶解処理)を施して溶解させ、該溶液を、ウェーハ上に1500rpmにてスピンコートし、任意に乾燥ベーク(PAB,Post Applied Bake)を110℃、90秒の条件で施し、この状態で、目視にて、透明かどうかによりアモルファスな膜が形成されているかどうかを確認する。なお、透明でない曇った膜はアモルファスな膜ではない。
本発明において、(A1)成分は、上述のようにして形成されたアモルファスな膜の安定性が良好であることが好ましく、例えば上記PAB後、室温環境下で2週間放置した後でも、アモルファスな状態が維持されていることが好ましい。
ここで、アモルファスな膜とは、結晶化しない光学的に透明な膜を意味する。スピンコート法は、一般的に用いられている薄膜形成手法の1つである。
当該化合物がスピンコート法によりアモルファスな膜を形成しうる材料であるかどうかは、8インチシリコンウェーハ上にスピンコート法により形成した塗膜が全面透明であるか否かにより判別できる。より具体的には、例えば以下のようにして判別できる。まず、当該化合物に、一般的にレジスト溶剤に用いられている溶剤を用いて、例えば乳酸エチル/プロピレングリコールモノメチルエーテルアセテート=40/60(質量比)の混合溶剤(以下、EMと略記する)を、濃度が14質量%となるよう溶解し、超音波洗浄器を用いて超音波処理(溶解処理)を施して溶解させ、該溶液を、ウェーハ上に1500rpmにてスピンコートし、任意に乾燥ベーク(PAB,Post Applied Bake)を110℃、90秒の条件で施し、この状態で、目視にて、透明かどうかによりアモルファスな膜が形成されているかどうかを確認する。なお、透明でない曇った膜はアモルファスな膜ではない。
本発明において、(A1)成分は、上述のようにして形成されたアモルファスな膜の安定性が良好であることが好ましく、例えば上記PAB後、室温環境下で2週間放置した後でも、アモルファスな状態が維持されていることが好ましい。
<(A2)成分>
(A2)成分は、酸解離性溶解抑制基を有する構成単位(a1)を含有し、酸の作用によりアルカリ溶解性が増大する樹脂成分である。
(A2)成分としては、特に限定されず、これまで化学増幅型のポジ型レジスト組成物用の樹脂成分、たとえばArFエキシマレーザー用レジスト組成物、KrFエキシマレーザー用レジスト組成物等の樹脂成分として多数提案されているもののなかから任意に選択して用いればよい。かかる樹脂成分としては、たとえば、アルカリ可溶性基(水酸基、カルボキシ基等)を有する構成単位を含有する樹脂における前記アルカリ可溶性基の一部または全部が酸解離性溶解抑制基で保護された樹脂が挙げられる。このような樹脂成分は、前記(B)成分から酸が発生すると、該酸の作用により当該樹脂成分の酸解離性溶解抑制基が解離し、アルカリ可溶性基が露出してアルカリ溶解性が増大する。
前記アルカリ可溶性基を有する構成単位を含有する樹脂としては、たとえばノボラック樹脂、ヒドロキシスチレンから誘導される構成単位を有するポリヒドロキシスチレン(PHS)系樹脂(ポリヒドロキシスチレン、ヒドロキシスチレン−スチレン共重合体等)、アクリル酸エステルから誘導される構成単位を有するアクリル系樹脂、ポリシクロオレフィン樹脂等が挙げられる。
(A2)成分は、酸解離性溶解抑制基を有する構成単位(a1)を含有し、酸の作用によりアルカリ溶解性が増大する樹脂成分である。
(A2)成分としては、特に限定されず、これまで化学増幅型のポジ型レジスト組成物用の樹脂成分、たとえばArFエキシマレーザー用レジスト組成物、KrFエキシマレーザー用レジスト組成物等の樹脂成分として多数提案されているもののなかから任意に選択して用いればよい。かかる樹脂成分としては、たとえば、アルカリ可溶性基(水酸基、カルボキシ基等)を有する構成単位を含有する樹脂における前記アルカリ可溶性基の一部または全部が酸解離性溶解抑制基で保護された樹脂が挙げられる。このような樹脂成分は、前記(B)成分から酸が発生すると、該酸の作用により当該樹脂成分の酸解離性溶解抑制基が解離し、アルカリ可溶性基が露出してアルカリ溶解性が増大する。
前記アルカリ可溶性基を有する構成単位を含有する樹脂としては、たとえばノボラック樹脂、ヒドロキシスチレンから誘導される構成単位を有するポリヒドロキシスチレン(PHS)系樹脂(ポリヒドロキシスチレン、ヒドロキシスチレン−スチレン共重合体等)、アクリル酸エステルから誘導される構成単位を有するアクリル系樹脂、ポリシクロオレフィン樹脂等が挙げられる。
ここで、本明細書および特許請求の範囲において、「ヒドロキシスチレンから誘導される構成単位」とは、ヒドロキシスチレンのエチレン性二重結合が開裂して構成される構成単位を意味する。
「ヒドロキシスチレン」は、狭義のヒドロキシスチレン、および狭義のヒドロキシスチレンのα位の炭素原子に置換基(水素原子以外の原子または基)が結合しているものも含む概念とする。前記置換基としては、低級アルキル基、ハロゲン化低級アルキル基等が挙げられる。ハロゲン化低級アルキル基におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なお、ヒドロキシスチレンのα位(α位の炭素原子)」とは、特に断りがない限り、ベンゼン環が結合している炭素原子のことである。
ヒドロキシスチレンにおいて、α位の置換基としての低級アルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。
本発明において、ヒドロキシスチレンのα位に結合しているのは、水素原子、低級アルキル基またはハロゲン化低級アルキル基であることが好ましく、水素原子または低級アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子またはメチル基であることが最も好ましい。
「ヒドロキシスチレン」は、狭義のヒドロキシスチレン、および狭義のヒドロキシスチレンのα位の炭素原子に置換基(水素原子以外の原子または基)が結合しているものも含む概念とする。前記置換基としては、低級アルキル基、ハロゲン化低級アルキル基等が挙げられる。ハロゲン化低級アルキル基におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なお、ヒドロキシスチレンのα位(α位の炭素原子)」とは、特に断りがない限り、ベンゼン環が結合している炭素原子のことである。
ヒドロキシスチレンにおいて、α位の置換基としての低級アルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。
本発明において、ヒドロキシスチレンのα位に結合しているのは、水素原子、低級アルキル基またはハロゲン化低級アルキル基であることが好ましく、水素原子または低級アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子またはメチル基であることが最も好ましい。
また、本明細書および特許請求の範囲において、「アクリル酸エステルから誘導される構成単位」とは、アクリル酸エステルのエチレン性二重結合が開裂して構成される構成単位を意味する。
「アクリル酸エステル」は、α位の炭素原子に水素原子が結合しているアクリル酸エステルのほか、α位の炭素原子に置換基(水素原子以外の原子または基)が結合しているものも含む概念とする。置換基としては、低級アルキル基、ハロゲン化低級アルキル基等が挙げられる。ハロゲン化低級アルキル基におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
アクリル酸エステルにおいて、α位の置換基としての低級アルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。
本発明において、アクリル酸エステルのα位に結合しているのは、水素原子、低級アルキル基またはハロゲン化低級アルキル基であることが好ましく、水素原子または低級アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子またはメチル基であることが最も好ましい。
「アクリル酸エステル」は、α位の炭素原子に水素原子が結合しているアクリル酸エステルのほか、α位の炭素原子に置換基(水素原子以外の原子または基)が結合しているものも含む概念とする。置換基としては、低級アルキル基、ハロゲン化低級アルキル基等が挙げられる。ハロゲン化低級アルキル基におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
アクリル酸エステルにおいて、α位の置換基としての低級アルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。
本発明において、アクリル酸エステルのα位に結合しているのは、水素原子、低級アルキル基またはハロゲン化低級アルキル基であることが好ましく、水素原子または低級アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子またはメチル基であることが最も好ましい。
本発明において、構成単位(a1)としては、下記構成単位(a’1)および/または構成単位(a”1)が好ましく用いられる。
構成単位(a’1):ヒドロキシスチレンから誘導される構成単位における水酸基の水素原子が酸解離性溶解抑制基含有基で置換されてなる構成単位。
構成単位(a”1):酸解離性溶解抑制基を有するアクリル酸エステルから誘導される構成単位。
構成単位(a’1):ヒドロキシスチレンから誘導される構成単位における水酸基の水素原子が酸解離性溶解抑制基含有基で置換されてなる構成単位。
構成単位(a”1):酸解離性溶解抑制基を有するアクリル酸エステルから誘導される構成単位。
[構成単位(a’1)]
構成単位(a’1)における酸解離性溶解抑制基含有基は、「酸解離性溶解抑制基」そのものであってもよく、「酸解離性溶解抑制基とそれ以外の基および/または原子とをその構造中に含む基」であってもよい。
構成単位(a’1)における「酸解離性溶解抑制基」としては、前記(A1)成分において、酸解離性溶解抑制基として挙げたものと同様のものを用いることができる。
「酸解離性溶解抑制基とそれ以外の基および/または原子とをその構造中に含む基」としては、たとえば、下記一般式(p’1)で表される基が挙げられる。かかる構造を有する基においては、露光により(B)成分から酸が発生すると、該酸の作用により、Y’に結合した酸素原子と、R13およびR14が結合した炭素原子との間の結合が切れて、−C(R13)(R14)−OYが解離する。
構成単位(a’1)における酸解離性溶解抑制基含有基は、「酸解離性溶解抑制基」そのものであってもよく、「酸解離性溶解抑制基とそれ以外の基および/または原子とをその構造中に含む基」であってもよい。
構成単位(a’1)における「酸解離性溶解抑制基」としては、前記(A1)成分において、酸解離性溶解抑制基として挙げたものと同様のものを用いることができる。
「酸解離性溶解抑制基とそれ以外の基および/または原子とをその構造中に含む基」としては、たとえば、下記一般式(p’1)で表される基が挙げられる。かかる構造を有する基においては、露光により(B)成分から酸が発生すると、該酸の作用により、Y’に結合した酸素原子と、R13およびR14が結合した炭素原子との間の結合が切れて、−C(R13)(R14)−OYが解離する。
Y’の脂肪族環式基としては、従来KrFレジスト、ArFレジスト等において多数提案されている単環又は多環式の脂肪族環式基の中から適宜選択して用いることができ、たとえば、低級アルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
Y’の芳香族環式炭化水素基としては、炭素数10〜16の芳香族多環式基が挙げられる。具体的には、ナフタレン、アントラセン、フェナントレン、ピレンなどから1個の水素原子を除いた基などを例示できる。具体的には、1−ナフチル基、2−ナフチル基、1−アントリル基、2−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、1−ピレニル基等が挙げられ、2−ナフチル基が工業上特に好ましい。
Y’の低級アルキル基としては、メチル基またはエチル基がより好ましく、エチル基が最も好ましい。
A’の脂肪族環式基としては、上記Y’における脂肪族環式基からさらに水素原子を1つ除いた基が挙げられる。
Y’の芳香族環式炭化水素基としては、炭素数10〜16の芳香族多環式基が挙げられる。具体的には、ナフタレン、アントラセン、フェナントレン、ピレンなどから1個の水素原子を除いた基などを例示できる。具体的には、1−ナフチル基、2−ナフチル基、1−アントリル基、2−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、1−ピレニル基等が挙げられ、2−ナフチル基が工業上特に好ましい。
Y’の低級アルキル基としては、メチル基またはエチル基がより好ましく、エチル基が最も好ましい。
A’の脂肪族環式基としては、上記Y’における脂肪族環式基からさらに水素原子を1つ除いた基が挙げられる。
R13,R14の低級アルキル基としては、メチル基またはエチル基が好ましく、メチル基が最も好ましい。
本発明においては、R13,R14のうち少なくとも1つが水素原子であることが好ましい。
また、上記式においては、R13及びY’がそれぞれ独立に炭素数1〜5の直鎖状または分岐鎖状のアルキレン基であってR13の末端とY’の末端とが結合していてもよい。
この場合、R13とY’と、Y’が結合した酸素原子と、該酸素原子およびR13が結合した炭素原子とにより環式基が形成されている。該環式基としては、4〜7員環が好ましく、4〜6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
本発明においては、R13,R14のうち少なくとも1つが水素原子であることが好ましい。
また、上記式においては、R13及びY’がそれぞれ独立に炭素数1〜5の直鎖状または分岐鎖状のアルキレン基であってR13の末端とY’の末端とが結合していてもよい。
この場合、R13とY’と、Y’が結合した酸素原子と、該酸素原子およびR13が結合した炭素原子とにより環式基が形成されている。該環式基としては、4〜7員環が好ましく、4〜6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
構成単位(a’1)において、酸解離性溶解抑制基含有基は、前記一般式(p1)で表されるアルコキシカルボニルアルキル基、および前記一般式(p2)で表されるアルコキシアルキル基からなる群から選択される少なくとも1種の酸解離性溶解抑制基を有することが好ましい。
構成単位(a’1)としては、下記一般式(a’1−1)で表される構成単位が好ましい。
一般式(a’1−1)中、Rは上記と同様であり、水素原子またはメチル基が好ましく、特に水素原子が好ましい。
n11は1〜3の整数であり、好ましくは1である。
X3の酸解離性溶解抑制基含有基は上記と同様である。
−OX3の置換位置は、n11が1である場合、o−位、m−位、p−位のいずれでもよいが、容易に入手可能で低価格であることからp−位が好ましい。さらに、n11が2または3の場合には、任意の置換位置を組み合わせることができる。
n11は1〜3の整数であり、好ましくは1である。
X3の酸解離性溶解抑制基含有基は上記と同様である。
−OX3の置換位置は、n11が1である場合、o−位、m−位、p−位のいずれでもよいが、容易に入手可能で低価格であることからp−位が好ましい。さらに、n11が2または3の場合には、任意の置換位置を組み合わせることができる。
n12は0〜2の整数であり、0または1であることが好ましく、工業上、0であることが特に好ましい。
R5の低級アルキル基としては、Rの低級アルキル基と同様のものが挙げられる。
R5の置換位置は、n12が1である場合には、o−位、m−位、p−位のいずれでもよく、さらに、n12が2の場合には、任意の置換位置を組み合わせることができる。
R5の低級アルキル基としては、Rの低級アルキル基と同様のものが挙げられる。
R5の置換位置は、n12が1である場合には、o−位、m−位、p−位のいずれでもよく、さらに、n12が2の場合には、任意の置換位置を組み合わせることができる。
構成単位(a’1)としては、前記一般式(a’1−1)におけるn11が1であり、且つn12が0である構成単位が好ましく、特に、X3が、前記一般式(p1)で表されるアルコキシカルボニルアルキル基、または前記一般式(p2)で表されるアルコキシアルキル基である構成単位が好ましい。
[構成単位(a”1)]
構成単位(a”1)における酸解離性溶解抑制基は、解離前は(A2)成分全体をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、解離後はこの(A2)成分全体をアルカリ可溶性へ変化させるものであれば、これまで、化学増幅型レジスト用のベース樹脂の酸解離性溶解抑制基として提案されているものを使用することができる。一般的には、(メタ)アクリル酸等におけるカルボキシ基と環状または鎖状の第3級アルキルエステルを形成する基;アルコキシアルキル基等のアセタール型酸解離性溶解抑制基などが広く知られている。
ここで、「第3級アルキルエステル」とは、カルボキシ基の水素原子が、鎖状または環状のアルキル基で置換されることによりエステルを形成しており、そのカルボニルオキシ基(−C(O)−O−)の末端の酸素原子に、前記鎖状または環状のアルキル基の第3級炭素原子が結合している構造を示す。この第3級アルキルエステルにおいては、露光により(B)成分から発生した酸が作用すると、酸素原子と第3級炭素原子との間で結合が切断される。
なお、前記鎖状または環状のアルキル基は置換基を有していてもよい。
以下、カルボキシ基と第3級アルキルエステルを構成することにより、酸解離性となっている基を、便宜上、「第3級アルキルエステル型酸解離性溶解抑制基」という。
構成単位(a”1)における酸解離性溶解抑制基は、解離前は(A2)成分全体をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、解離後はこの(A2)成分全体をアルカリ可溶性へ変化させるものであれば、これまで、化学増幅型レジスト用のベース樹脂の酸解離性溶解抑制基として提案されているものを使用することができる。一般的には、(メタ)アクリル酸等におけるカルボキシ基と環状または鎖状の第3級アルキルエステルを形成する基;アルコキシアルキル基等のアセタール型酸解離性溶解抑制基などが広く知られている。
ここで、「第3級アルキルエステル」とは、カルボキシ基の水素原子が、鎖状または環状のアルキル基で置換されることによりエステルを形成しており、そのカルボニルオキシ基(−C(O)−O−)の末端の酸素原子に、前記鎖状または環状のアルキル基の第3級炭素原子が結合している構造を示す。この第3級アルキルエステルにおいては、露光により(B)成分から発生した酸が作用すると、酸素原子と第3級炭素原子との間で結合が切断される。
なお、前記鎖状または環状のアルキル基は置換基を有していてもよい。
以下、カルボキシ基と第3級アルキルエステルを構成することにより、酸解離性となっている基を、便宜上、「第3級アルキルエステル型酸解離性溶解抑制基」という。
第3級アルキルエステル型酸解離性溶解抑制基としては、脂肪族分岐鎖状酸解離性溶解抑制基、脂肪族環式基を含有する酸解離性溶解抑制基が挙げられる。
ここで、「脂肪族分岐鎖状」とは、芳香族性を持たない分岐鎖状の構造を有することを示す。
「脂肪族分岐鎖状酸解離性溶解抑制基」の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
脂肪族分岐鎖状酸解離性溶解抑制基としては、炭素数4〜8の第3級アルキル基が好ましく、具体的にはtert−ブチル基、tert−ペンチル基、tert−ヘプチル基等が挙げられる。
ここで、「脂肪族分岐鎖状」とは、芳香族性を持たない分岐鎖状の構造を有することを示す。
「脂肪族分岐鎖状酸解離性溶解抑制基」の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
脂肪族分岐鎖状酸解離性溶解抑制基としては、炭素数4〜8の第3級アルキル基が好ましく、具体的にはtert−ブチル基、tert−ペンチル基、tert−ヘプチル基等が挙げられる。
「脂肪族環式基を含有する酸解離性溶解抑制基」における「脂肪族環式基」は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
「脂肪族環式基」の置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。「脂肪族環式基」は、多環式基であることが好ましい。
脂肪族環式基の具体例としては、例えば、低級アルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基を含有する酸解離性溶解抑制基としては、例えば環状のアルキル基の環骨格上に第3級炭素原子を有する基を挙げることができ、具体的には2−メチル−2−アダマンチル基や、2−エチル−2−アダマンチル基等が挙げられる。あるいは、下記一般式(a”11)で示す構成単位において、カルボニルオキシ基(−C(O)−O−)の酸素原子に結合した基の様に、アダマンチル基等の脂肪族環式基と、これに結合する、第3級炭素原子を有する分岐鎖状アルキレン基とを有する基が挙げられる。
「脂肪族環式基」の置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。「脂肪族環式基」は、多環式基であることが好ましい。
脂肪族環式基の具体例としては、例えば、低級アルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基を含有する酸解離性溶解抑制基としては、例えば環状のアルキル基の環骨格上に第3級炭素原子を有する基を挙げることができ、具体的には2−メチル−2−アダマンチル基や、2−エチル−2−アダマンチル基等が挙げられる。あるいは、下記一般式(a”11)で示す構成単位において、カルボニルオキシ基(−C(O)−O−)の酸素原子に結合した基の様に、アダマンチル基等の脂肪族環式基と、これに結合する、第3級炭素原子を有する分岐鎖状アルキレン基とを有する基が挙げられる。
式(a”11)中、Rの低級アルキル基またはハロゲン化低級アルキル基としては、上記アクリル酸エステルの説明において、α位の置換基として挙げた低級アルキル基またはハロゲン化低級アルキル基と同じものが挙げられる。
「アセタール型酸解離性溶解抑制基」は、一般的に、カルボキシ基、水酸基等のアルカリ可溶性基末端の水素原子と置換して酸素原子と結合している。そして、露光により酸が発生すると、この酸が作用して、アセタール型酸解離性溶解抑制基と、当該アセタール型酸解離性溶解抑制基が結合した酸素原子との間で結合が切断される。
アセタール型酸解離性溶解抑制基としては、たとえば、下記一般式(p”1)で表される基が挙げられる。
アセタール型酸解離性溶解抑制基としては、たとえば、下記一般式(p”1)で表される基が挙げられる。
上記式中、nは、0〜2の整数であることが好ましく、0または1がより好ましく、0が最も好ましい。
R1’,R2’の低級アルキル基としては、上記Rの低級アルキル基と同様のものが挙げられ、メチル基またはエチル基が好ましく、メチル基が最も好ましい。
本発明においては、R1’,R2’のうち少なくとも1つが水素原子であることが好ましい。すなわち、酸解離性溶解抑制基(p”1)が、下記一般式(p”1−1)で表される基であることが好ましい。
R1’,R2’の低級アルキル基としては、上記Rの低級アルキル基と同様のものが挙げられ、メチル基またはエチル基が好ましく、メチル基が最も好ましい。
本発明においては、R1’,R2’のうち少なくとも1つが水素原子であることが好ましい。すなわち、酸解離性溶解抑制基(p”1)が、下記一般式(p”1−1)で表される基であることが好ましい。
Yの低級アルキル基としては、上記Rの低級アルキル基と同様のものが挙げられる。
Yの脂肪族環式基としては、従来ArFレジスト等において多数提案されている単環又は多環式の脂肪族環式基の中から適宜選択して用いることができ、たとえば上記「脂肪族環式基」と同様のものが例示できる。
Yの脂肪族環式基としては、従来ArFレジスト等において多数提案されている単環又は多環式の脂肪族環式基の中から適宜選択して用いることができ、たとえば上記「脂肪族環式基」と同様のものが例示できる。
また、アセタール型酸解離性溶解抑制基としては、下記一般式(p”2)で示される基も挙げられる。
R17、R18において、アルキル基の炭素数は好ましくは1〜15であり、直鎖状、分岐鎖状のいずれでもよく、エチル基、メチル基が好ましく、メチル基が最も好ましい。特にR17、R18の一方が水素原子で、他方がメチル基であることが好ましい。
R19は直鎖状、分岐鎖状または環状のアルキル基であり、炭素数は好ましくは1〜15であり、直鎖状、分岐鎖状又は環状のいずれでもよい。
R19が直鎖状、分岐鎖状の場合は炭素数1〜5であることが好ましく、エチル基、メチル基がさらに好ましく、特にエチル基が最も好ましい。
R19が環状の場合は炭素数4〜15であることが好ましく、炭素数4〜12であることがさらに好ましく、炭素数5〜10が最も好ましい。具体的にはフッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。中でもアダマンタンから1個以上の水素原子を除いた基が好ましい。
また、上記式においては、R17及びR19がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基(好ましくは炭素数1〜5のアルキレン基)であってR19の末端とR17の末端とが結合していてもよい。
この場合、R17とR19と、R19が結合した酸素原子と、該酸素原子およびR17が結合した炭素原子とにより環式基が形成されている。該環式基としては、4〜7員環が好ましく、4〜6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
R19は直鎖状、分岐鎖状または環状のアルキル基であり、炭素数は好ましくは1〜15であり、直鎖状、分岐鎖状又は環状のいずれでもよい。
R19が直鎖状、分岐鎖状の場合は炭素数1〜5であることが好ましく、エチル基、メチル基がさらに好ましく、特にエチル基が最も好ましい。
R19が環状の場合は炭素数4〜15であることが好ましく、炭素数4〜12であることがさらに好ましく、炭素数5〜10が最も好ましい。具体的にはフッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。中でもアダマンタンから1個以上の水素原子を除いた基が好ましい。
また、上記式においては、R17及びR19がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基(好ましくは炭素数1〜5のアルキレン基)であってR19の末端とR17の末端とが結合していてもよい。
この場合、R17とR19と、R19が結合した酸素原子と、該酸素原子およびR17が結合した炭素原子とにより環式基が形成されている。該環式基としては、4〜7員環が好ましく、4〜6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
構成単位(a”1)としては、下記一般式(a”1−0−1)で表される構成単位および下記一般式(a”1−0−2)で表される構成単位からなる群から選ばれる1種以上を用いることが好ましい。
一般式(a”1−0−1)において、Rの低級アルキル基またはハロゲン化低級アルキル基は、上記アクリル酸エステルのα位に結合していてよい低級アルキル基またはハロゲン化低級アルキル基と同様である。
X1は、酸解離性溶解抑制基であれば特に限定することはなく、例えば上述した第3級アルキルエステル型酸解離性溶解抑制基、アセタール型酸解離性溶解抑制基などを挙げることができ、第3級アルキルエステル型酸解離性溶解抑制基が好ましい。
X1は、酸解離性溶解抑制基であれば特に限定することはなく、例えば上述した第3級アルキルエステル型酸解離性溶解抑制基、アセタール型酸解離性溶解抑制基などを挙げることができ、第3級アルキルエステル型酸解離性溶解抑制基が好ましい。
一般式(a”1−0−2)において、Rは上記と同様である。
X2は、式(a”1−0−1)中のX1と同様である。
Y2は好ましくは炭素数1〜4のアルキレン基又は2価の脂肪族環式基であり、該脂肪族環式基としては、水素原子が2個以上除かれた基が用いられる以外は前記「脂肪族環式基」の説明と同様のものを用いることができる。
X2は、式(a”1−0−1)中のX1と同様である。
Y2は好ましくは炭素数1〜4のアルキレン基又は2価の脂肪族環式基であり、該脂肪族環式基としては、水素原子が2個以上除かれた基が用いられる以外は前記「脂肪族環式基」の説明と同様のものを用いることができる。
構成単位(a”1)として、より具体的には、下記一般式(a1−1)〜(a1−4)で表される構成単位が挙げられる。
前記R1’、R2’は好ましくは少なくとも1つが水素原子であり、より好ましくは共に水素原子である。nは好ましくは0または1である。
X’は前記X1において例示した第3級アルキルエステル型酸解離性溶解抑制基と同様のものである。
Yの脂肪族環式基については、上述の「脂肪族環式基」の説明において例示したものと同様のものが挙げられる。
X’は前記X1において例示した第3級アルキルエステル型酸解離性溶解抑制基と同様のものである。
Yの脂肪族環式基については、上述の「脂肪族環式基」の説明において例示したものと同様のものが挙げられる。
以下に、上記一般式(a1−1)〜(a1−4)で表される構成単位の具体例を示す。
構成単位(a”1)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記の中でも、一般式(a1−1)で表される構成単位が好ましく、具体的には(a1−1−1)〜(a1−1−6)または(a1−1−35)〜(a1−1−41)で表される構成単位から選ばれる少なくとも1種を用いることがより好ましい。
さらに、構成単位(a”1)としては、特に式(a1−1−1)〜式(a1−1−4)の構成単位を包括する下記一般式(a”1−1−01)で表されるものや、式(a1−1−35)〜(a1−1−41)の構成単位を包括する下記一般式(a”1−1−02)も好ましい。
上記の中でも、一般式(a1−1)で表される構成単位が好ましく、具体的には(a1−1−1)〜(a1−1−6)または(a1−1−35)〜(a1−1−41)で表される構成単位から選ばれる少なくとも1種を用いることがより好ましい。
さらに、構成単位(a”1)としては、特に式(a1−1−1)〜式(a1−1−4)の構成単位を包括する下記一般式(a”1−1−01)で表されるものや、式(a1−1−35)〜(a1−1−41)の構成単位を包括する下記一般式(a”1−1−02)も好ましい。
一般式(a”1−1−01)において、Rについては上記と同様である。R11の低級アルキル基はRにおける低級アルキル基と同様であり、メチル基又はエチル基が好ましい。
一般式(a”1−1−02)において、Rについては上記と同様である。R12の低級アルキル基はRにおける低級アルキル基と同様であり、メチル基又はエチル基が好ましく、エチル基が最も好ましい。hは1又は2が好ましく、2が最も好ましい。
一般式(a”1−1−02)において、Rについては上記と同様である。R12の低級アルキル基はRにおける低級アルキル基と同様であり、メチル基又はエチル基が好ましく、エチル基が最も好ましい。hは1又は2が好ましく、2が最も好ましい。
(A2)成分中、構成単位(a1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(A2)成分中、構成単位(a1)の割合は、(A2)成分を構成する全構成単位に対し、10〜80モル%が好ましく、20〜70モル%がより好ましく、25〜50モル%がさらに好ましい。下限値以上とすることによって、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2)成分中、構成単位(a1)の割合は、(A2)成分を構成する全構成単位に対し、10〜80モル%が好ましく、20〜70モル%がより好ましく、25〜50モル%がさらに好ましい。下限値以上とすることによって、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2)成分は、構成単位(a1)以外の他の構成単位を含有してもよい。該他の構成単位としては、特に限定されず、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト用樹脂に用いられるものとして従来から知られている多数のもののなかから、構成単位(a1)に該当しないもの(つまり酸解離性溶解抑制基を有さないもの)を適宜選択して用いることができる。
このような構成単位の具体例としては、たとえば、下記構成単位(a2)〜(a7)等が挙げられる。
構成単位(a2):ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位。
構成単位(a3):極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位。
構成単位(a4):酸非解離性の脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位。
構成単位(a5):アクリル酸から誘導される構成単位。
構成単位(a6):ヒドロキシスチレンから誘導される構成単位。
構成単位(a7):スチレンから誘導される構成単位。
このような構成単位の具体例としては、たとえば、下記構成単位(a2)〜(a7)等が挙げられる。
構成単位(a2):ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位。
構成単位(a3):極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位。
構成単位(a4):酸非解離性の脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位。
構成単位(a5):アクリル酸から誘導される構成単位。
構成単位(a6):ヒドロキシスチレンから誘導される構成単位。
構成単位(a7):スチレンから誘導される構成単位。
[構成単位(a2)]
構成単位(a2)は、ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位である。
ラクトン含有環式基とは、上述したように−O−C(O)−構造を含むひとつの環(ラクトン環)を含有する環式基を示す。ラクトン環をひとつの目の環として数え、ラクトン環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。
構成単位(a2)のラクトン環式基は、(A2)成分をレジスト膜の形成に用いた場合に、レジスト膜の基板への密着性を高めたり、水を含有する現像液との親和性を高めたりするうえで有効なものである。
構成単位(a2)としては、特に限定されることなく任意のものが使用可能である。具体的には、ラクトン含有単環式基としては、γ−ブチロラクトンから水素原子1つを除いた基が挙げられる。また、ラクトン含有多環式基としては、ラクトン環を有するビシクロアルカン、トリシクロアルカン、テトラシクロアルカンから水素原子一つを除いた基が挙げられる。
構成単位(a2)の例として、より具体的には、下記一般式(a2−1)〜(a2−5)で表される構成単位が挙げられる。
構成単位(a2)は、ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位である。
ラクトン含有環式基とは、上述したように−O−C(O)−構造を含むひとつの環(ラクトン環)を含有する環式基を示す。ラクトン環をひとつの目の環として数え、ラクトン環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。
構成単位(a2)のラクトン環式基は、(A2)成分をレジスト膜の形成に用いた場合に、レジスト膜の基板への密着性を高めたり、水を含有する現像液との親和性を高めたりするうえで有効なものである。
構成単位(a2)としては、特に限定されることなく任意のものが使用可能である。具体的には、ラクトン含有単環式基としては、γ−ブチロラクトンから水素原子1つを除いた基が挙げられる。また、ラクトン含有多環式基としては、ラクトン環を有するビシクロアルカン、トリシクロアルカン、テトラシクロアルカンから水素原子一つを除いた基が挙げられる。
構成単位(a2)の例として、より具体的には、下記一般式(a2−1)〜(a2−5)で表される構成単位が挙げられる。
一般式(a2−1)〜(a2−5)におけるRは前記構成単位(a”1)におけるRと同様である。
R’の低級アルキル基としては、前記構成単位(a”1)におけるRの低級アルキル基と同じである。
Aの炭素数1〜5のアルキレン基として、具体的には、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基等が挙げられる。
一般式(a2−1)〜(a2−5)中、R’は、工業上入手が容易であること等を考慮すると、水素原子が好ましい。
以下に、前記一般式(a2−1)〜(a2−5)の具体的な構成単位を例示する。
R’の低級アルキル基としては、前記構成単位(a”1)におけるRの低級アルキル基と同じである。
Aの炭素数1〜5のアルキレン基として、具体的には、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基等が挙げられる。
一般式(a2−1)〜(a2−5)中、R’は、工業上入手が容易であること等を考慮すると、水素原子が好ましい。
以下に、前記一般式(a2−1)〜(a2−5)の具体的な構成単位を例示する。
これらの中でも、一般式(a2−1)〜(a2−5)から選択される少なくとも1種以上を用いることが好ましく、一般式(a2−1)〜(a2−3)から選択される少なくとも1種以上を用いることが好ましい。具体的には、化学式(a2−1−1)、(a2−1−2)、(a2−2−1)、(a2−2−2)、(a2−3−1)、(a2−3−2)、(a2−3−9)及び(a2−3−10)から選択される少なくとも1種以上を用いることが好ましい。
構成単位(a2)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[構成単位(a3)]
構成単位(a3)は、極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位である。構成単位(a3)を有することにより、(A2)成分の親水性が高まり、現像液との親和性が高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
極性基としては、水酸基、シアノ基、カルボキシ基、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基等が挙げられ、特に水酸基が好ましい。
脂肪族炭化水素基としては、炭素数1〜10の直鎖状または分岐状の炭化水素基(好ましくはアルキレン基)や、多環式の脂肪族炭化水素基(多環式基)が挙げられる。該多環式基としては、例えばArFエキシマレーザー用レジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができる。該多環式基の炭素数は7〜30であることが好ましい。
その中でも、水酸基、シアノ基、カルボキシ基、またはアルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基を含有する脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位がより好ましい。該多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどから1個以上の水素原子を除いた基などを例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。これらの多環式基の中でも、アダマンタンから2個以上の水素原子を除いた基、ノルボルナンから2個以上の水素原子を除いた基、テトラシクロドデカンから2個以上の水素原子を除いた基が工業上好ましい。
構成単位(a3)は、極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位である。構成単位(a3)を有することにより、(A2)成分の親水性が高まり、現像液との親和性が高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
極性基としては、水酸基、シアノ基、カルボキシ基、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基等が挙げられ、特に水酸基が好ましい。
脂肪族炭化水素基としては、炭素数1〜10の直鎖状または分岐状の炭化水素基(好ましくはアルキレン基)や、多環式の脂肪族炭化水素基(多環式基)が挙げられる。該多環式基としては、例えばArFエキシマレーザー用レジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができる。該多環式基の炭素数は7〜30であることが好ましい。
その中でも、水酸基、シアノ基、カルボキシ基、またはアルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基を含有する脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位がより好ましい。該多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどから1個以上の水素原子を除いた基などを例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。これらの多環式基の中でも、アダマンタンから2個以上の水素原子を除いた基、ノルボルナンから2個以上の水素原子を除いた基、テトラシクロドデカンから2個以上の水素原子を除いた基が工業上好ましい。
構成単位(a3)としては、親水基含有脂肪族炭化水素基における炭化水素基が炭素数1〜10の直鎖状または分岐状の炭化水素基のときは、アクリル酸のヒドロキシエチルエステルから誘導される構成単位が好ましく、該炭化水素基が多環式基のときは、下記式(a3−1)で表される構成単位、(a3−2)で表される構成単位、(a3−3)で表される構成単位が好ましいものとして挙げられる。
式(a3−1)中、jは1又は2であることが好ましく、1であることがさらに好ましい。jが2の場合は、水酸基がアダマンチル基の3位と5位に結合しているものが好ましい。jが1の場合は、水酸基がアダマンチル基の3位に結合しているものが好ましい。
jは1であることが好ましく、特に水酸基がアダマンチル基の3位に結合しているものが好ましい。
式(a3−2)中、kは1であることが好ましい。シアノ基はノルボルニル基の5位または6位に結合していることが好ましい。
式(a3−3)中、t’は1であることが好ましい。lは1であることが好ましい。sは1であることが好ましい。これらはアクリル酸のカルボキシ基の末端に2−ノルボルニル基または3−ノルボルニル基が結合していることが好ましい。フッ素化アルキルアルコールはノルボルニル基の5又は6位に結合していることが好ましい。
jは1であることが好ましく、特に水酸基がアダマンチル基の3位に結合しているものが好ましい。
式(a3−2)中、kは1であることが好ましい。シアノ基はノルボルニル基の5位または6位に結合していることが好ましい。
式(a3−3)中、t’は1であることが好ましい。lは1であることが好ましい。sは1であることが好ましい。これらはアクリル酸のカルボキシ基の末端に2−ノルボルニル基または3−ノルボルニル基が結合していることが好ましい。フッ素化アルキルアルコールはノルボルニル基の5又は6位に結合していることが好ましい。
構成単位(a3)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[構成単位(a4)]
構成単位(a4)は、酸非解離性の脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位である。該多環式基は、例えば、前記の構成単位(a”1)の場合に例示したものと同様のものを例示することができ、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト組成物の樹脂成分に用いられるものとして従来から知られている多数のものが使用可能である。
特にトリシクロデカニル基、アダマンチル基、テトラシクロドデカニル基、イソボルニル基、ノルボルニル基から選ばれる少なくとも1種以上であると、工業上入手し易いなどの点で好ましい。これらの多環式基は、炭素数1〜5の直鎖又は分岐状のアルキル基を置換基として有していてもよい。
構成単位(a4)として、具体的には、下記一般式(a4−1)〜(a4−5)の構造のものを例示することができる。
構成単位(a4)は、酸非解離性の脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位である。該多環式基は、例えば、前記の構成単位(a”1)の場合に例示したものと同様のものを例示することができ、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト組成物の樹脂成分に用いられるものとして従来から知られている多数のものが使用可能である。
特にトリシクロデカニル基、アダマンチル基、テトラシクロドデカニル基、イソボルニル基、ノルボルニル基から選ばれる少なくとも1種以上であると、工業上入手し易いなどの点で好ましい。これらの多環式基は、炭素数1〜5の直鎖又は分岐状のアルキル基を置換基として有していてもよい。
構成単位(a4)として、具体的には、下記一般式(a4−1)〜(a4−5)の構造のものを例示することができる。
[構成単位(a5)]
構成単位(a5)は、アクリル酸から誘導される構成単位である。構成単位(a5)を有することにより、(A2)成分の親水性が高まり、現像液との親和性が高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
ここで、本明細書および特許請求の範囲において、「アクリル酸から誘導される構成単位」とは、アクリル酸のエチレン性二重結合が開裂して構成される構成単位を意味する。
また、「アクリル酸」は、狭義のアクリル酸(CH2=CHCOOH)、及び該狭義のアクリル酸のα位の炭素原子に置換基(水素原子以外の原子または基)が結合しているα置換アクリル酸を含む概念とする。
α置換アクリル酸の置換基としては、前記アクリル酸エステルから誘導される構成単位において、α位の置換基としてあげたものと同じもの(低級アルキル基、ハロゲン化低級アルキル基)が挙げられる。
構成単位(a5)において、アクリル酸のα位に結合しているのは、水素原子、低級アルキル基、またはハロゲン化低級アルキル基であることが好ましく、水素原子または低級アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子またはメチル基であることが最も好ましい。すなわち、構成単位(a5)は、α位に水素原子が結合したアクリル酸(CH2=CHCOOH)から誘導される構成単位、および/またはα位にメチル基が結合したメタクリル酸(CH2=C(CH3)COOH)から誘導される構成単位であることが好ましい。
構成単位(a5)は、アクリル酸から誘導される構成単位である。構成単位(a5)を有することにより、(A2)成分の親水性が高まり、現像液との親和性が高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
ここで、本明細書および特許請求の範囲において、「アクリル酸から誘導される構成単位」とは、アクリル酸のエチレン性二重結合が開裂して構成される構成単位を意味する。
また、「アクリル酸」は、狭義のアクリル酸(CH2=CHCOOH)、及び該狭義のアクリル酸のα位の炭素原子に置換基(水素原子以外の原子または基)が結合しているα置換アクリル酸を含む概念とする。
α置換アクリル酸の置換基としては、前記アクリル酸エステルから誘導される構成単位において、α位の置換基としてあげたものと同じもの(低級アルキル基、ハロゲン化低級アルキル基)が挙げられる。
構成単位(a5)において、アクリル酸のα位に結合しているのは、水素原子、低級アルキル基、またはハロゲン化低級アルキル基であることが好ましく、水素原子または低級アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子またはメチル基であることが最も好ましい。すなわち、構成単位(a5)は、α位に水素原子が結合したアクリル酸(CH2=CHCOOH)から誘導される構成単位、および/またはα位にメチル基が結合したメタクリル酸(CH2=C(CH3)COOH)から誘導される構成単位であることが好ましい。
[構成単位(a6)]
構成単位(a6)は、ヒドロキシスチレンから誘導される構成単位である。構成単位(a6)を有することにより、(A2)成分の親水性が向上し、現像液との親和性を高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
構成単位(a6)としては、たとえば、下記一般式(a6−1)で表される構成単位が例示できる。
構成単位(a6)は、ヒドロキシスチレンから誘導される構成単位である。構成単位(a6)を有することにより、(A2)成分の親水性が向上し、現像液との親和性を高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
構成単位(a6)としては、たとえば、下記一般式(a6−1)で表される構成単位が例示できる。
一般式(a6−1)中、R、R6、n13およびn14はそれぞれ上記式(a’1−1)中のR、R5、n11およびn12と同様である。
構成単位(a6)は1種または2種以上を混合して用いることができる。
[構成単位(a7)]
構成単位(a7)は、スチレンから誘導される構成単位である。(A2)成分に構成単位(a7)を含有させ、その含有量を調整することにより、(A2)成分のアルカリ現像液に対する溶解性を調整でき、それによって、レジスト膜のアルカリ溶解性をコントロールできる。また、エッチング耐性等も向上する。
ここで、「スチレンから誘導される構成単位」とは、スチレンのエチレン性二重結合が開裂して構成される構成単位を意味する。「スチレン」とは、狭義のスチレン、および狭義のスチレンのα位の水素原子がアルキル基、ハロゲン化アルキル基等の他の置換基に置換されたもの、ならびにそれらの誘導体を含む概念とする。スチレンは、フェニル基の水素原子が低級アルキル基等の置換基で置換されていても良い。
構成単位(a7)としては、下記一般式(a7−1)で表される構成単位が例示できる。
構成単位(a7)は、スチレンから誘導される構成単位である。(A2)成分に構成単位(a7)を含有させ、その含有量を調整することにより、(A2)成分のアルカリ現像液に対する溶解性を調整でき、それによって、レジスト膜のアルカリ溶解性をコントロールできる。また、エッチング耐性等も向上する。
ここで、「スチレンから誘導される構成単位」とは、スチレンのエチレン性二重結合が開裂して構成される構成単位を意味する。「スチレン」とは、狭義のスチレン、および狭義のスチレンのα位の水素原子がアルキル基、ハロゲン化アルキル基等の他の置換基に置換されたもの、ならびにそれらの誘導体を含む概念とする。スチレンは、フェニル基の水素原子が低級アルキル基等の置換基で置換されていても良い。
構成単位(a7)としては、下記一般式(a7−1)で表される構成単位が例示できる。
式(a7−1)中、RおよびR7としては、それぞれ、上記式(a7−1)中のRおよびR5と同様のものが挙げられる。
n15は、0〜3の整数であり、0または1であることが好ましく、工業上、0であることが特に好ましい。
R7の置換位置は、n15が1である場合にはo−位、m−位、p−位のいずれでもよく、n15が2または3の場合には任意の置換位置を組み合わせることができる。
n15は、0〜3の整数であり、0または1であることが好ましく、工業上、0であることが特に好ましい。
R7の置換位置は、n15が1である場合にはo−位、m−位、p−位のいずれでもよく、n15が2または3の場合には任意の置換位置を組み合わせることができる。
構成単位(a7)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A2)成分は、本発明の効果を損なわない範囲で、上記構成単位(a1)〜(a7)以外の他の構成単位を含んでいてもよい。該他の構成単位としては、上記構成単位(a1)〜(a7)に分類されない他の構成単位であれば特に限定するものではなく、ArFエキシマレーザー用、KrFポジエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト用樹脂に用いられるものとして従来から知られている多数のものが使用可能である。
本発明において、(A2)成分は、前記構成単位(a1)と、前記構成単位(a2)〜(a7)のいずれか1種以上とを含むことが好ましく、これらの構成単位は、露光光源の種類等を考慮して適宜選択すればよい。
たとえば露光光源としてKrFエキシマレーザー、電子線等を用いる場合は、前記構成単位(a1)に加えて、構成単位(a6)および/または構成単位(a7)を含むことが好ましい。
また、ArFエキシマレーザーを用いる場合は、構成単位(a”1)、(a2)〜(a4)等の、アクリル酸エステルから誘導される構成単位を主たる構成単位として含有することが好ましい。
ここで、「主たる構成単位として含有する」とは、当該樹脂を構成する全構成単位の合計量に対し、当該構成単位の占める割合が最も多いことを意味し、好ましくは50モル%以上、より好ましくは75モル%以上であり、100%であってもよい。
たとえば露光光源としてKrFエキシマレーザー、電子線等を用いる場合は、前記構成単位(a1)に加えて、構成単位(a6)および/または構成単位(a7)を含むことが好ましい。
また、ArFエキシマレーザーを用いる場合は、構成単位(a”1)、(a2)〜(a4)等の、アクリル酸エステルから誘導される構成単位を主たる構成単位として含有することが好ましい。
ここで、「主たる構成単位として含有する」とは、当該樹脂を構成する全構成単位の合計量に対し、当該構成単位の占める割合が最も多いことを意味し、好ましくは50モル%以上、より好ましくは75モル%以上であり、100%であってもよい。
本発明において好ましく用いられる(A2)成分としては、たとえば、下記の(A2−1)成分、(A2−2)成分が挙げられる。
(A2−1)成分:前記構成単位(a1)に加えて、さらに、前記構成単位(a6)を含む樹脂成分。
(A2−2)成分:前記構成単位(a1)として前記構成単位(a”1)を含み、該構成単位(a”1)に加えて、さらに、構成単位(a”1)以外のアクリル酸エステルから誘導される構成単位(前記構成単位(a2)〜(a4)等)を含む樹脂成分。
(A2−1)成分:前記構成単位(a1)に加えて、さらに、前記構成単位(a6)を含む樹脂成分。
(A2−2)成分:前記構成単位(a1)として前記構成単位(a”1)を含み、該構成単位(a”1)に加えて、さらに、構成単位(a”1)以外のアクリル酸エステルから誘導される構成単位(前記構成単位(a2)〜(a4)等)を含む樹脂成分。
[(A2−1)成分]
(A2−1)成分中、構成単位(a1)の割合は、(A2)成分を構成する全構成単位に対し、10〜80モル%が好ましく、20〜70モル%がより好ましく、25〜50モル%がさらに好ましい。下限値以上とすることによって、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−1)成分中、構成単位(a1)の割合は、(A2)成分を構成する全構成単位に対し、10〜80モル%が好ましく、20〜70モル%がより好ましく、25〜50モル%がさらに好ましい。下限値以上とすることによって、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−1)成分中、構成単位(a6)の割合は、(A2)成分を構成する全構成単位に対し、10〜95モル%であることが好ましく、20〜85モル%がより好ましく、30〜80モル%がさらに好ましく、50〜75モル%が特に好ましい。該範囲内であると、適度なアルカリ溶解性が得られるとともに、他の構成単位とのバランスが良好である。
(A2−1)成分は、さらに、前記構成単位(a7)を含有してもよい。
(A2−1)成分中、構成単位(a7)の割合は、(A2)成分を構成する全構成単位に対し、1〜20モル%が好ましく、3〜15モル%がより好ましく、5〜15モル%が特に好ましい。この範囲内であると、構成単位(a7)を有することによる効果が高く、他の構成単位とのバランスも良好である。
(A2−1)成分中、構成単位(a7)の割合は、(A2)成分を構成する全構成単位に対し、1〜20モル%が好ましく、3〜15モル%がより好ましく、5〜15モル%が特に好ましい。この範囲内であると、構成単位(a7)を有することによる効果が高く、他の構成単位とのバランスも良好である。
(A2−1)成分は、さらに、前記構成単位(a5)を含有してもよい。特に、構成単位(a1)として前記構成単位(a”1)を有する場合、(A2−2)は、さらに、前記構成単位(a7)を含有してもよい。
(A2)成分が構成単位(a5)を含有する場合、その含有量は、(A2)成分を構成する全構成単位に対し、1〜20モル%が好ましく、3〜15モル%がより好ましく、5〜15モル%が特に好ましい。この範囲内であると、構成単位(a3)を有することによる効果が高く、他の構成単位とのバランスも良好である。
(A2)成分が構成単位(a5)を含有する場合、その含有量は、(A2)成分を構成する全構成単位に対し、1〜20モル%が好ましく、3〜15モル%がより好ましく、5〜15モル%が特に好ましい。この範囲内であると、構成単位(a3)を有することによる効果が高く、他の構成単位とのバランスも良好である。
好ましい(A2−1)成分としては、たとえば、構成単位(a’1)と(a6)とからなる共重合体、構成単位(a’1)と(a6)と(a7)とからなる共重合体、構成単位(a”1)と(a6)とからなる共重合体、構成単位(a”1)と(a6)と(a7)とからなる共重合体、構成単位(a”1)と(a5)と(a6)と(a7)とからなる共重合体等が例示できる。
[(A2−2)成分]
(A2−2)成分中、構成単位(a”1)の割合は、(A2−2)成分を構成する全構成単位に対し、10〜80モル%が好ましく、20〜70モル%がより好ましく、25〜50モル%がさらに好ましい。下限値以上とすることによって、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−2)成分中、構成単位(a”1)の割合は、(A2−2)成分を構成する全構成単位に対し、10〜80モル%が好ましく、20〜70モル%がより好ましく、25〜50モル%がさらに好ましい。下限値以上とすることによって、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−2)成分は、前記構成単位(a”1)に加えて、さらに、前記構成単位(a2)を含有することが好ましい。
(A2−2)成分中の構成単位(a2)の割合は、(A2−2)成分を構成する全構成単位の合計に対して、5〜60モル%が好ましく、10〜60モル%がより好ましく、20〜55モル%がさらに好ましい。下限値以上とすることにより構成単位(a2)を含有させることによる効果が充分に得られ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−2)成分中の構成単位(a2)の割合は、(A2−2)成分を構成する全構成単位の合計に対して、5〜60モル%が好ましく、10〜60モル%がより好ましく、20〜55モル%がさらに好ましい。下限値以上とすることにより構成単位(a2)を含有させることによる効果が充分に得られ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−2)成分は、前記構成単位(a”1)に加えて、または前記構成単位(a”1)および(a2)に加えて、さらに、前記構成単位(a3)を含有することが好ましい。
(A2−2)成分中、構成単位(a3)の割合は、当該(A2−2)成分を構成する全構成単位に対し、5〜50モル%であることが好ましく、5〜40モル%がより好ましく、5〜25モル%がさらに好ましい。下限値以上とすることにより構成単位(a3)を含有させることによる効果が充分に得られ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−2)成分中、構成単位(a3)の割合は、当該(A2−2)成分を構成する全構成単位に対し、5〜50モル%であることが好ましく、5〜40モル%がより好ましく、5〜25モル%がさらに好ましい。下限値以上とすることにより構成単位(a3)を含有させることによる効果が充分に得られ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
(A2−2)成分は、さらに、前記構成単位(a4)を含有してもよい。
構成単位(a4)を(A2−2)成分に含有させる際には、(A2−2)成分を構成する全構成単位の合計に対して、構成単位(a4)を1〜30モル%、好ましくは10〜20モル%含有させると好ましい。
構成単位(a4)を(A2−2)成分に含有させる際には、(A2−2)成分を構成する全構成単位の合計に対して、構成単位(a4)を1〜30モル%、好ましくは10〜20モル%含有させると好ましい。
本発明において、(A2−2)成分は、構成単位(a”1)と、構成単位(a2)および/または(a3)とを有する共重合体であることが好ましい。かかる共重合体としては、たとえば、構成単位(a”1)および(a2)からなる共重合体、構成単位(a”1)および(a3)からなる共重合体、構成単位(a”1)、(a2)および(a3)からなる共重合体、構成単位(a”1)、(a2)、(a3)および(a4)からなる共重合体等が例示できる。
(A2)成分は、各構成単位を誘導するモノマーを常法、例えばアゾビスイソブチロニトリル(AIBN)のようなラジカル重合開始剤を用いた公知のラジカル重合等によって重合させることによって得ることができる。
その一例として、たとえば前記構成単位(a’1)と(a6)とからなる共重合体は、構成単位(a6)に相当するモノマー(ヒドロキシスチレン)を常法により重合させて構成単位(a6)からなる重合体を得た後、その水酸基の一部を周知の手法により酸解離性溶解抑制基で保護(水酸基の水素原子を酸解離性溶解抑制基含有基で置換)し、構成単位(a’1)とする方法により製造することができる。または、予め構成単位(a’1)に相当するモノマーを調製し、これを常法により重合させて構成単位(a’1)からなる重合体を得た後、加水分解により、酸解離性溶解抑制基で保護された水酸基の水素原子の一部を水素原子に変えて構成単位(a3)とする方法によっても製造することができる。
また、たとえば前記構成単位(a”1)と(a5)と(a6)と(a7)とからなる共重合体は、各構成単位に相当するモノマーを共重合させる方法、構成単位(a5)に相当するモノマー(アクリル酸)と、構成単位(a6)に相当するモノマーと、構成単位(a7)に相当するモノマー(スチレン)とを共重合させ、アクリル酸から誘導される構成単位のカルボキシ基の一部を、周知の手法により酸解離性溶解抑制基で保護して構成単位(a”1)とする方法等により製造することができる。
その一例として、たとえば前記構成単位(a’1)と(a6)とからなる共重合体は、構成単位(a6)に相当するモノマー(ヒドロキシスチレン)を常法により重合させて構成単位(a6)からなる重合体を得た後、その水酸基の一部を周知の手法により酸解離性溶解抑制基で保護(水酸基の水素原子を酸解離性溶解抑制基含有基で置換)し、構成単位(a’1)とする方法により製造することができる。または、予め構成単位(a’1)に相当するモノマーを調製し、これを常法により重合させて構成単位(a’1)からなる重合体を得た後、加水分解により、酸解離性溶解抑制基で保護された水酸基の水素原子の一部を水素原子に変えて構成単位(a3)とする方法によっても製造することができる。
また、たとえば前記構成単位(a”1)と(a5)と(a6)と(a7)とからなる共重合体は、各構成単位に相当するモノマーを共重合させる方法、構成単位(a5)に相当するモノマー(アクリル酸)と、構成単位(a6)に相当するモノマーと、構成単位(a7)に相当するモノマー(スチレン)とを共重合させ、アクリル酸から誘導される構成単位のカルボキシ基の一部を、周知の手法により酸解離性溶解抑制基で保護して構成単位(a”1)とする方法等により製造することができる。
(A2)成分は、質量平均分子量(Mw;ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算。)が2000〜50000の範囲内であることが好ましく、3000〜30000がより好ましく、5000〜20000がさらに好ましい。Mwが上記範囲の上限値以下であると、レジスト溶剤に対する溶解性を充分に確保でき、レジストパターンの表面荒れ(ラフネス)を低減できる。また、下限値以上であると、現像液に対する溶解性を調整しやすい。また、ドライエッチング耐性が向上し、膜減りが改善される。
(A2)成分の分散度(Mw/Mn(数平均分子量))は、小さいほど(単分散に近いほど)、解像性に優れ、好ましい。該分散度は1.0〜5.0が好ましく、1.0〜3.0がより好ましく、1.0〜2.5が最も好ましい。
(A2)成分の分散度(Mw/Mn(数平均分子量))は、小さいほど(単分散に近いほど)、解像性に優れ、好ましい。該分散度は1.0〜5.0が好ましく、1.0〜3.0がより好ましく、1.0〜2.5が最も好ましい。
本発明のポジ型レジスト組成物中、(A2)成分の含有量は、形成しようとするレジスト膜厚に応じて調整すればよい。
<(B)成分>
(B)成分としては、特に限定されず、これまで化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。このような酸発生剤としては、これまで、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキルまたはビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが知られている。
(B)成分としては、特に限定されず、これまで化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。このような酸発生剤としては、これまで、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキルまたはビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが知られている。
オニウム塩系酸発生剤として、例えば下記一般式(b−0)で表される酸発生剤が挙げられる。
一般式(b−0)において、R51は、直鎖、分岐鎖若しくは環状のアルキル基、または直鎖、分岐鎖若しくは環状のフッ素化アルキル基を表す。
前記直鎖若しくは分岐鎖状のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、炭素数4〜12であることが好ましく、炭素数5〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また、該フッ素化アルキル基のフッ素化率(アルキル基中全水素原子の個数に対する置換したフッ素原子の個数の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R51としては、直鎖状のアルキル基またはフッ素化アルキル基であることが最も好ましい。
前記直鎖若しくは分岐鎖状のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、炭素数4〜12であることが好ましく、炭素数5〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また、該フッ素化アルキル基のフッ素化率(アルキル基中全水素原子の個数に対する置換したフッ素原子の個数の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R51としては、直鎖状のアルキル基またはフッ素化アルキル基であることが最も好ましい。
R52は、水素原子、水酸基、ハロゲン原子、直鎖若しくは分岐鎖状のアルキル基、直鎖若しくは分岐鎖状のハロゲン化アルキル基、または直鎖若しくは分岐鎖状のアルコキシ基である。
R52において、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子などが挙げられ、フッ素原子が好ましい。
R52において、アルキル基は、直鎖または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52において、ハロゲン化アルキル基は、アルキル基中の水素原子の一部または全部がハロゲン原子で置換された基である。ここでのアルキル基は、前記R52における「アルキル基」と同様のものが挙げられる。置換するハロゲン原子としては上記「ハロゲン原子」について説明したものと同様のものが挙げられる。ハロゲン化アルキル基において、水素原子の全個数の50〜100%がハロゲン原子で置換されていることが望ましく、全て置換されていることがより好ましい。
R52において、アルコキシ基としては、直鎖状または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52としては、これらの中でも水素原子が好ましい。
R52において、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子などが挙げられ、フッ素原子が好ましい。
R52において、アルキル基は、直鎖または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52において、ハロゲン化アルキル基は、アルキル基中の水素原子の一部または全部がハロゲン原子で置換された基である。ここでのアルキル基は、前記R52における「アルキル基」と同様のものが挙げられる。置換するハロゲン原子としては上記「ハロゲン原子」について説明したものと同様のものが挙げられる。ハロゲン化アルキル基において、水素原子の全個数の50〜100%がハロゲン原子で置換されていることが望ましく、全て置換されていることがより好ましい。
R52において、アルコキシ基としては、直鎖状または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52としては、これらの中でも水素原子が好ましい。
R53は置換基を有していてもよいアリール基であり、置換基を除いた基本環(母体環)の構造としては、ナフチル基、フェニル基、アントリル基などが挙げられ、本発明の効果やArFエキシマレーザーなどの露光光の吸収の観点から、フェニル基が望ましい。
置換基としては、水酸基、低級アルキル基(直鎖または分岐鎖状であり、その好ましい炭素数は5以下であり、特にメチル基が好ましい)などを挙げることができる。
R53のアリール基としては、置換基を有しないものがより好ましい。
u”は1〜3の整数であり、2または3であることが好ましく、特に3であることが望ましい。
置換基としては、水酸基、低級アルキル基(直鎖または分岐鎖状であり、その好ましい炭素数は5以下であり、特にメチル基が好ましい)などを挙げることができる。
R53のアリール基としては、置換基を有しないものがより好ましい。
u”は1〜3の整数であり、2または3であることが好ましく、特に3であることが望ましい。
一般式(b−0)で表される酸発生剤の好ましいものは以下の様なものを挙げることができる。
また一般式(b−0)で表される酸発生剤以外の他のオニウム塩系酸発生剤として、例えば下記一般式(b−1)または(b−2)で表される化合物が挙げられる。
式(b−1)中、R1”〜R3”はそれぞれ独立にアリール基またはアルキル基を表す。R1”〜R3”のうち、少なくとも1つはアリール基を表す。R1”〜R3”のうち、2以上がアリール基であることが好ましく、R1”〜R3”のすべてがアリール基であることが最も好ましい。
R1”〜R3”のアリール基としては、特に制限はなく、例えば、炭素数6〜20のアリール基であって、該アリール基は、その水素原子の一部または全部がアルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよく、されていなくてもよい。アリール基としては、安価に合成可能なことから、炭素数6〜10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
前記アリール基の水素原子が置換されていても良いアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが最も好ましい。
前記アリール基の水素原子が置換されていても良いアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記アリール基の水素原子が置換されていても良いハロゲン原子としては、フッ素原子であることが好ましい。
R1”〜R3”のアルキル基としては、特に制限はなく、例えば炭素数1〜10の直鎖状、分岐状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1〜5であることが好ましい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
これらの中で、R1”〜R3”は、それぞれ、フェニル基またはナフチル基であることが最も好ましい。
R1”〜R3”のアリール基としては、特に制限はなく、例えば、炭素数6〜20のアリール基であって、該アリール基は、その水素原子の一部または全部がアルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよく、されていなくてもよい。アリール基としては、安価に合成可能なことから、炭素数6〜10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
前記アリール基の水素原子が置換されていても良いアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが最も好ましい。
前記アリール基の水素原子が置換されていても良いアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記アリール基の水素原子が置換されていても良いハロゲン原子としては、フッ素原子であることが好ましい。
R1”〜R3”のアルキル基としては、特に制限はなく、例えば炭素数1〜10の直鎖状、分岐状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1〜5であることが好ましい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
これらの中で、R1”〜R3”は、それぞれ、フェニル基またはナフチル基であることが最も好ましい。
R4”は、直鎖、分岐または環状のアルキル基またはフッ素化アルキル基を表す。
前記直鎖または分岐のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、前記R1”で示したような環式基であって、炭素数4〜15であることが好ましく、炭素数4〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また、該フッ素化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R4”としては、直鎖または環状のアルキル基、またはフッ素化アルキル基であることが最も好ましい。
前記直鎖または分岐のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、前記R1”で示したような環式基であって、炭素数4〜15であることが好ましく、炭素数4〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また、該フッ素化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R4”としては、直鎖または環状のアルキル基、またはフッ素化アルキル基であることが最も好ましい。
式(b−2)中、R5”〜R6”はそれぞれ独立にアリール基またはアルキル基を表す。R5”〜R6”のうち、少なくとも1つはアリール基を表す。R5”〜R6”のすべてがアリール基であることが好ましい。
R5”〜R6”のアリール基としては、R1”〜R3”のアリール基と同様のものが挙げられる。
R5”〜R6”のアルキル基としては、R1”〜R3”のアルキル基と同様のものが挙げられる。
これらの中で、R5”〜R6”はすべてフェニル基であることが最も好ましい。
式(b−2)中のR4”としては上記式(b−1)のR4”と同様のものが挙げられる。
R5”〜R6”のアリール基としては、R1”〜R3”のアリール基と同様のものが挙げられる。
R5”〜R6”のアルキル基としては、R1”〜R3”のアルキル基と同様のものが挙げられる。
これらの中で、R5”〜R6”はすべてフェニル基であることが最も好ましい。
式(b−2)中のR4”としては上記式(b−1)のR4”と同様のものが挙げられる。
式(b−1)、(b−2)で表されるオニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジメチル(4−ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−tert−ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニル(1−(4−メトキシ)ナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジ(1−ナフチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネートなどが挙げられる。また、これらのオニウム塩のアニオン部がメタンスルホネート、n−プロパンスルホネート、n−ブタンスルホネート、n−オクタンスルホネートに置き換えたオニウム塩も用いることができる。
また、前記一般式(b−1)又は(b−2)において、アニオン部を下記一般式(b−3)又は(b−4)で表されるアニオン部に置き換えたオニウム塩系酸発生剤も用いることができる(カチオン部は(b−1)又は(b−2)と同様)。
X”は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキレン基であり、該アルキレン基の炭素数は2〜6であり、好ましくは炭素数3〜5、最も好ましくは炭素数3である。
Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキル基であり、該アルキル基の炭素数は1〜10であり、好ましくは炭素数1〜7、より好ましくは炭素数1〜3である。
X”のアルキレン基の炭素数またはY”、Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶媒への溶解性も良好である等の理由により、小さいほど好ましい。
また、X”のアルキレン基またはY”、Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基またはアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70〜100%、さらに好ましくは90〜100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基またはパーフルオロアルキル基である。
Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキル基であり、該アルキル基の炭素数は1〜10であり、好ましくは炭素数1〜7、より好ましくは炭素数1〜3である。
X”のアルキレン基の炭素数またはY”、Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶媒への溶解性も良好である等の理由により、小さいほど好ましい。
また、X”のアルキレン基またはY”、Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基またはアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70〜100%、さらに好ましくは90〜100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基またはパーフルオロアルキル基である。
本明細書において、オキシムスルホネート系酸発生剤とは、下記一般式(B−1)で表される基を少なくとも1つ有する化合物であって、放射線の照射によって酸を発生する特性を有するものである。この様なオキシムスルホネート系酸発生剤は、化学増幅型レジスト組成物用として多用されているので、任意に選択して用いることができる。
R31、R32の有機基は、炭素原子を含む基であり、炭素原子以外の原子(たとえば水素原子、酸素原子、窒素原子、硫黄原子、ハロゲン原子(フッ素原子、塩素原子等)等)を有していてもよい。
R31の有機基としては、直鎖、分岐または環状のアルキル基またはアリール基が好ましい。これらのアルキル基、アリール基は置換基を有していても良い。該置換基としては、特に制限はなく、たとえばフッ素原子、炭素数1〜6の直鎖、分岐または環状のアルキル基等が挙げられる。ここで、「置換基を有する」とは、アルキル基またはアリール基の水素原子の一部または全部が置換基で置換されていることを意味する。
アルキル基としては、炭素数1〜20が好ましく、炭素数1〜10がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、炭素数1〜4が最も好ましい。アルキル基としては、特に、部分的または完全にハロゲン化されたアルキル基(以下、ハロゲン化アルキル基ということがある)が好ましい。なお、部分的にハロゲン化されたアルキル基とは、水素原子の一部がハロゲン原子で置換されたアルキル基を意味し、完全にハロゲン化されたアルキル基とは、水素原子の全部がハロゲン原子で置換されたアルキル基を意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。すなわち、ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
アリール基は、炭素数4〜20が好ましく、炭素数4〜10がより好ましく、炭素数6〜10が最も好ましい。アリール基としては、特に、部分的または完全にハロゲン化されたアリール基が好ましい。なお、部分的にハロゲン化されたアリール基とは、水素原子の一部がハロゲン原子で置換されたアリール基を意味し、完全にハロゲン化されたアリール基とは、水素原子の全部がハロゲン原子で置換されたアリール基を意味する。
R31としては、特に、置換基を有さない炭素数1〜4のアルキル基、または炭素数1〜4のフッ素化アルキル基が好ましい。
R31の有機基としては、直鎖、分岐または環状のアルキル基またはアリール基が好ましい。これらのアルキル基、アリール基は置換基を有していても良い。該置換基としては、特に制限はなく、たとえばフッ素原子、炭素数1〜6の直鎖、分岐または環状のアルキル基等が挙げられる。ここで、「置換基を有する」とは、アルキル基またはアリール基の水素原子の一部または全部が置換基で置換されていることを意味する。
アルキル基としては、炭素数1〜20が好ましく、炭素数1〜10がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、炭素数1〜4が最も好ましい。アルキル基としては、特に、部分的または完全にハロゲン化されたアルキル基(以下、ハロゲン化アルキル基ということがある)が好ましい。なお、部分的にハロゲン化されたアルキル基とは、水素原子の一部がハロゲン原子で置換されたアルキル基を意味し、完全にハロゲン化されたアルキル基とは、水素原子の全部がハロゲン原子で置換されたアルキル基を意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。すなわち、ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
アリール基は、炭素数4〜20が好ましく、炭素数4〜10がより好ましく、炭素数6〜10が最も好ましい。アリール基としては、特に、部分的または完全にハロゲン化されたアリール基が好ましい。なお、部分的にハロゲン化されたアリール基とは、水素原子の一部がハロゲン原子で置換されたアリール基を意味し、完全にハロゲン化されたアリール基とは、水素原子の全部がハロゲン原子で置換されたアリール基を意味する。
R31としては、特に、置換基を有さない炭素数1〜4のアルキル基、または炭素数1〜4のフッ素化アルキル基が好ましい。
R32の有機基としては、直鎖、分岐または環状のアルキル基、アリール基またはシアノ基が好ましい。R32のアルキル基、アリール基としては、前記R31で挙げたアルキル基、アリール基と同様のものが挙げられる。
R32としては、特に、シアノ基、置換基を有さない炭素数1〜8のアルキル基、または炭素数1〜8のフッ素化アルキル基が好ましい。
R32としては、特に、シアノ基、置換基を有さない炭素数1〜8のアルキル基、または炭素数1〜8のフッ素化アルキル基が好ましい。
オキシムスルホネート系酸発生剤として、さらに好ましいものとしては、下記一般式(B−2)または(B−3)で表される化合物が挙げられる。
前記一般式(B−2)において、R33の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
R33としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましい。
R33におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが好ましい。
R33としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましい。
R33におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが好ましい。
R34のアリール基としては、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントリル(anthryl)基、フェナントリル基等の、芳香族炭化水素の環から水素原子を1つ除いた基、およびこれらの基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基等が挙げられる。これらのなかでも、フルオレニル基が好ましい。
R34のアリール基は、炭素数1〜10のアルキル基、ハロゲン化アルキル基、アルコキシ基等の置換基を有していても良い。該置換基におけるアルキル基またはハロゲン化アルキル基は、炭素数が1〜8であることが好ましく、炭素数1〜4がさらに好ましい。また、該ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
R34のアリール基は、炭素数1〜10のアルキル基、ハロゲン化アルキル基、アルコキシ基等の置換基を有していても良い。該置換基におけるアルキル基またはハロゲン化アルキル基は、炭素数が1〜8であることが好ましく、炭素数1〜4がさらに好ましい。また、該ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
R35の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
R35としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましく、部分的にフッ素化されたアルキル基が最も好ましい。
R35におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが、発生する酸の強度が高まるため好ましい。最も好ましくは、水素原子が100%フッ素置換された完全フッ素化アルキル基である。
R35としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましく、部分的にフッ素化されたアルキル基が最も好ましい。
R35におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが、発生する酸の強度が高まるため好ましい。最も好ましくは、水素原子が100%フッ素置換された完全フッ素化アルキル基である。
前記一般式(B−3)において、R36の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R33の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
R37の2または3価の芳香族炭化水素基としては、上記R34のアリール基からさらに1または2個の水素原子を除いた基が挙げられる。
R38の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R35の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
p’’は好ましくは2である。
R37の2または3価の芳香族炭化水素基としては、上記R34のアリール基からさらに1または2個の水素原子を除いた基が挙げられる。
R38の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R35の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
p’’は好ましくは2である。
オキシムスルホネート系酸発生剤の具体例としては、α−(p−トルエンスルホニルオキシイミノ)−ベンジルシアニド、α−(p−クロロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロ−2−トリフルオロメチルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−クロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,4−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,6−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(2−クロロベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−チエン−2−イルアセトニトリル、α−(4−ドデシルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−[(p−トルエンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−[(ドデシルベンゼンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−(トシルオキシイミノ)−4−チエニルシアニド、α−(メチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘプテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロオクテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(エチルスルホニルオキシイミノ)−エチルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−プロピルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロペンチルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−p−メチルフェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−ブロモフェニルアセトニトリルなどが挙げられる。
また、特開平9−208554号公報(段落[0012]〜[0014]の[化18]〜[化19])に開示されているオキシムスルホネート系酸発生剤、WO2004/074242A2(65〜85頁目のExample1〜40)に開示されているオキシムスルホネート系酸発生剤も好適に用いることができる。
また、好適なものとして以下のものを例示することができる。
また、特開平9−208554号公報(段落[0012]〜[0014]の[化18]〜[化19])に開示されているオキシムスルホネート系酸発生剤、WO2004/074242A2(65〜85頁目のExample1〜40)に開示されているオキシムスルホネート系酸発生剤も好適に用いることができる。
また、好適なものとして以下のものを例示することができる。
上記例示化合物の中でも、下記の4つの化合物が好ましい。
ジアゾメタン系酸発生剤のうち、ビスアルキルまたはビスアリールスルホニルジアゾメタン類の具体例としては、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(2,4−ジメチルフェニルスルホニル)ジアゾメタン等が挙げられる。
また、特開平11−035551号公報、特開平11−035552号公報、特開平11−035573号公報に開示されているジアゾメタン系酸発生剤も好適に用いることができる。
また、ポリ(ビススルホニル)ジアゾメタン類としては、例えば、特開平11−322707号公報に開示されている、1,3−ビス(フェニルスルホニルジアゾメチルスルホニル)プロパン、1,4−ビス(フェニルスルホニルジアゾメチルスルホニル)ブタン、1,6−ビス(フェニルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(フェニルスルホニルジアゾメチルスルホニル)デカン、1,2−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)エタン、1,3−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)プロパン、1,6−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)デカンなどを挙げることができる。
また、特開平11−035551号公報、特開平11−035552号公報、特開平11−035573号公報に開示されているジアゾメタン系酸発生剤も好適に用いることができる。
また、ポリ(ビススルホニル)ジアゾメタン類としては、例えば、特開平11−322707号公報に開示されている、1,3−ビス(フェニルスルホニルジアゾメチルスルホニル)プロパン、1,4−ビス(フェニルスルホニルジアゾメチルスルホニル)ブタン、1,6−ビス(フェニルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(フェニルスルホニルジアゾメチルスルホニル)デカン、1,2−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)エタン、1,3−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)プロパン、1,6−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)デカンなどを挙げることができる。
(B)成分としては、これらの酸発生剤を1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(B)成分としては、フッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩を用いることが好ましい。
本発明のポジ型レジスト組成物における(B)成分の含有量は、(A1)成分および(A2)成分の合計量100質量部に対し、0.5〜30質量部が好ましく、1〜15質量部がより好ましい。上記範囲とすることでパターン形成が十分に行われる。また、均一な溶液が得られ、保存安定性が良好となるため好ましい。
(B)成分としては、フッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩を用いることが好ましい。
本発明のポジ型レジスト組成物における(B)成分の含有量は、(A1)成分および(A2)成分の合計量100質量部に対し、0.5〜30質量部が好ましく、1〜15質量部がより好ましい。上記範囲とすることでパターン形成が十分に行われる。また、均一な溶液が得られ、保存安定性が良好となるため好ましい。
<任意成分>
本発明のポジ型レジスト組成物は、さらに、任意の成分として、レジストパターン形状、引き置き経時安定性などを向上させるために、含窒素有機化合物(D)(以下、(D)成分という)を含有することが好ましい。
この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良く、なかでも脂肪族アミン、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましい。ここで、本特許請求の範囲及び明細書における「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。「脂肪族環式基」は、芳香性を持たない単環式基または多環式基であることを示す。脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、該脂肪族基は炭素数が1〜12であることが好ましい。
脂肪族アミンとしては、アンモニアNH3の水素原子の少なくとも1つを、炭素数12以下のアルキル基またはヒドロキシアルキル基で置換したアミン(アルキルアミンまたはアルキルアルコールアミン)又は環式アミンが挙げられる。
アルキルアミンおよびアルキルアルコールアミンの具体例としては、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ヘキシルアミン、トリ−n−ペンチルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デカニルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、炭素数5〜10のトリアルキルアミンがさらに好ましく、トリ−n−オクチルアミンが最も好ましい。
環式アミンとしては、たとえば、ヘテロ原子として窒素原子を含む複素環化合物が挙げられる。該複素環化合物としては、単環式のもの(脂肪族単環式アミン)であっても多環式のもの(脂肪族多環式アミン)であってもよい。
脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。
脂肪族多環式アミンとしては、炭素数が6〜10のものが好ましく、具体的には、1,5−ジアザビシクロ[4.3.0]−5−ノネン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、ヘキサメチレンテトラミン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D)成分の配合量は、(A1)成分および(A2)成分の合計量100質量部に対して、0.01〜5.0質量部の範囲内であることが好ましい。
本発明のポジ型レジスト組成物は、さらに、任意の成分として、レジストパターン形状、引き置き経時安定性などを向上させるために、含窒素有機化合物(D)(以下、(D)成分という)を含有することが好ましい。
この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良く、なかでも脂肪族アミン、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましい。ここで、本特許請求の範囲及び明細書における「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。「脂肪族環式基」は、芳香性を持たない単環式基または多環式基であることを示す。脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、該脂肪族基は炭素数が1〜12であることが好ましい。
脂肪族アミンとしては、アンモニアNH3の水素原子の少なくとも1つを、炭素数12以下のアルキル基またはヒドロキシアルキル基で置換したアミン(アルキルアミンまたはアルキルアルコールアミン)又は環式アミンが挙げられる。
アルキルアミンおよびアルキルアルコールアミンの具体例としては、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ヘキシルアミン、トリ−n−ペンチルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デカニルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、炭素数5〜10のトリアルキルアミンがさらに好ましく、トリ−n−オクチルアミンが最も好ましい。
環式アミンとしては、たとえば、ヘテロ原子として窒素原子を含む複素環化合物が挙げられる。該複素環化合物としては、単環式のもの(脂肪族単環式アミン)であっても多環式のもの(脂肪族多環式アミン)であってもよい。
脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。
脂肪族多環式アミンとしては、炭素数が6〜10のものが好ましく、具体的には、1,5−ジアザビシクロ[4.3.0]−5−ノネン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、ヘキサメチレンテトラミン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D)成分の配合量は、(A1)成分および(A2)成分の合計量100質量部に対して、0.01〜5.0質量部の範囲内であることが好ましい。
本発明のポジ型レジスト組成物には、感度劣化の防止や、レジストパターン形状、引き置き経時安定性等の向上の目的で、任意の成分として、有機カルボン酸、ならびにリンのオキソ酸およびその誘導体からなる群から選択される少なくとも1種の化合物(E)(以下、(E)成分という)を含有させることができる。
有機カルボン酸としては、例えば、酢酸、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸およびその誘導体としては、リン酸、ホスホン酸、ホスフィン酸等が挙げられ、これらの中でも特にホスホン酸が好ましい。
リンのオキソ酸の誘導体としては、たとえば、上記オキソ酸の水素原子を炭化水素基で置換したエステル等が挙げられ、前記炭化水素基としては、炭素数1〜5のアルキル基、炭素数6〜15のアリール基等が挙げられる。
リン酸の誘導体としては、リン酸ジ−n−ブチルエステル、リン酸ジフェニルエステル等のリン酸エステルなどが挙げられる。
ホスホン酸の誘導体としては、ホスホン酸ジメチルエステル、ホスホン酸−ジ−n−ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸エステルなどが挙げられる。
ホスフィン酸の誘導体としては、フェニルホスフィン酸等のホスフィン酸エステルなどが挙げられる。
(E)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
(E)成分の配合量は、(A1)成分および(A2)成分の合計量100質量部に対して、0.01〜5.0質量部の範囲内であることが好ましい。
有機カルボン酸としては、例えば、酢酸、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸およびその誘導体としては、リン酸、ホスホン酸、ホスフィン酸等が挙げられ、これらの中でも特にホスホン酸が好ましい。
リンのオキソ酸の誘導体としては、たとえば、上記オキソ酸の水素原子を炭化水素基で置換したエステル等が挙げられ、前記炭化水素基としては、炭素数1〜5のアルキル基、炭素数6〜15のアリール基等が挙げられる。
リン酸の誘導体としては、リン酸ジ−n−ブチルエステル、リン酸ジフェニルエステル等のリン酸エステルなどが挙げられる。
ホスホン酸の誘導体としては、ホスホン酸ジメチルエステル、ホスホン酸−ジ−n−ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸エステルなどが挙げられる。
ホスフィン酸の誘導体としては、フェニルホスフィン酸等のホスフィン酸エステルなどが挙げられる。
(E)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
(E)成分の配合量は、(A1)成分および(A2)成分の合計量100質量部に対して、0.01〜5.0質量部の範囲内であることが好ましい。
本発明のポジ型レジスト組成物には、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料などを適宜、添加含有させることができる。
本発明のポジ型レジスト組成物は、材料を有機溶剤(以下、(S)成分ということがある)に溶解させて製造することができる。
(S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。
例えば、γ−ブチロラクトン等のラクトン類;
アセトン、メチルエチルケトン、シクロヘキサノン、メチル−n−ペンチルケトン、メチルイソペンチルケトン、2−ヘプタノンなどのケトン類;
エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類;
エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体[これらの中では、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)が好ましい];
ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;
アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤などを挙げることができる。
これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、ELが好ましい。
また、PGMEAと極性溶剤とを混合した混合溶媒は好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1:9〜9:1、より好ましくは2:8〜8:2の範囲内とすることが好ましい。
より具体的には、極性溶剤としてELを配合する場合は、PGMEA:ELの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2、さらに好ましくは3:7〜7:3である。
また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ−ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者の質量比が好ましくは70:30〜95:5とされる。
(S)成分の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が2〜20質量%、好ましくは5〜15質量%の範囲内となる様に用いられる。
(S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。
例えば、γ−ブチロラクトン等のラクトン類;
アセトン、メチルエチルケトン、シクロヘキサノン、メチル−n−ペンチルケトン、メチルイソペンチルケトン、2−ヘプタノンなどのケトン類;
エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類;
エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体[これらの中では、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)が好ましい];
ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;
アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤などを挙げることができる。
これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、ELが好ましい。
また、PGMEAと極性溶剤とを混合した混合溶媒は好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1:9〜9:1、より好ましくは2:8〜8:2の範囲内とすることが好ましい。
より具体的には、極性溶剤としてELを配合する場合は、PGMEA:ELの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2、さらに好ましくは3:7〜7:3である。
また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ−ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者の質量比が好ましくは70:30〜95:5とされる。
(S)成分の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が2〜20質量%、好ましくは5〜15質量%の範囲内となる様に用いられる。
≪レジストパターン形成方法≫
本発明のレジストパターン形成方法は、支持体上に、前記ポジ型レジスト組成物を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含む。
本発明のレジストパターン形成方法は例えば以下の様にして行うことができる。
すなわち、まず支持体上に、上記ポジ型レジスト組成物をスピンナーなどで塗布し、80〜150℃の温度条件下、プレベーク(ポストアプライベーク(PAB))を40〜120秒間、好ましくは60〜90秒間施し、これに例えばArF露光装置などにより、ArFエキシマレーザー光を所望のマスクパターンを介して選択的に露光した後、80〜150℃の温度条件下、PEB(露光後加熱)を40〜120秒間、好ましくは60〜90秒間施す。次いでこれをアルカリ現像液、例えば0.1〜10質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。また、場合によっては、上記現像処理後にベーク処理(ポストベーク)を行ってもよい。
このようにして、マスクパターンに忠実なレジストパターンを得ることができる。
本発明のレジストパターン形成方法は、支持体上に、前記ポジ型レジスト組成物を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含む。
本発明のレジストパターン形成方法は例えば以下の様にして行うことができる。
すなわち、まず支持体上に、上記ポジ型レジスト組成物をスピンナーなどで塗布し、80〜150℃の温度条件下、プレベーク(ポストアプライベーク(PAB))を40〜120秒間、好ましくは60〜90秒間施し、これに例えばArF露光装置などにより、ArFエキシマレーザー光を所望のマスクパターンを介して選択的に露光した後、80〜150℃の温度条件下、PEB(露光後加熱)を40〜120秒間、好ましくは60〜90秒間施す。次いでこれをアルカリ現像液、例えば0.1〜10質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。また、場合によっては、上記現像処理後にベーク処理(ポストベーク)を行ってもよい。
このようにして、マスクパターンに忠実なレジストパターンを得ることができる。
支持体としては、特に限定されず、従来公知のものを用いることができ、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例示することができる。より具体的には、シリコンウェーハ、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば銅、アルミニウム、ニッケル、金等が使用可能である。
また、支持体としては、上述のような基板上に、無機系および/または有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。
また、支持体としては、上述のような基板上に、無機系および/または有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。
露光に用いる波長は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、F2エキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、EB(電子線)、X線、軟X線等の放射線を用いて行うことができる。上記ポジ型レジスト組成物は、KrFエキシマレーザー、ArFエキシマレーザー、EBまたはEUV、特にEBに対して有効である。
上記本発明のポジ型レジスト組成物およびレジストパターン形成方法によれば、高解像性のレジストパターン、たとえば寸法100nm以下の超微細なレジストパターンを形成でき、また、該レジストパターン表面のラフネスも低減できる。
上記効果が得られる理由の1つとして、(A1)成分が、上述したように、単独であってもアモルファスな膜を形成できる材料であることが考えられる。また、(A1)成分が、樹脂成分に比べて、分子ごとの性質(分子量、アルカリ溶解性等)のばらつきが少なく、そのため、本発明のポジ型レジスト組成物を用いて得られるレジスト膜の性質、たとえば各種成分の膜中での分布、アルカリ溶解性、熱的性質(Tg(ガラス転移点)など)等の均一性が向上し、それによって、優れたラフネス低減効果が得られると推測される。
上記効果が得られる理由の1つとして、(A1)成分が、上述したように、単独であってもアモルファスな膜を形成できる材料であることが考えられる。また、(A1)成分が、樹脂成分に比べて、分子ごとの性質(分子量、アルカリ溶解性等)のばらつきが少なく、そのため、本発明のポジ型レジスト組成物を用いて得られるレジスト膜の性質、たとえば各種成分の膜中での分布、アルカリ溶解性、熱的性質(Tg(ガラス転移点)など)等の均一性が向上し、それによって、優れたラフネス低減効果が得られると推測される。
以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
[合成例1(化合物(1)の合成)]
30gのメチレンビスサリチルアルデヒド(1’)(本州化学工業製)に500gのアセトンを加え、溶解させた。そこへ48.6gの炭酸カリウム(K2CO3)を加え、10分間室温で攪拌させた。その後、45.72gのtert−ブチルブロモアセテート(2’)を加え、室温(r.t)で12時間反応させた。
反応終了後、水/酢酸エチル(質量比1:1)で抽出、酢酸エチル相を減圧濃縮し、目的とする化合物(3’)を53.5g得た。
[合成例1(化合物(1)の合成)]
30gのメチレンビスサリチルアルデヒド(1’)(本州化学工業製)に500gのアセトンを加え、溶解させた。そこへ48.6gの炭酸カリウム(K2CO3)を加え、10分間室温で攪拌させた。その後、45.72gのtert−ブチルブロモアセテート(2’)を加え、室温(r.t)で12時間反応させた。
反応終了後、水/酢酸エチル(質量比1:1)で抽出、酢酸エチル相を減圧濃縮し、目的とする化合物(3’)を53.5g得た。
次に、2,5−ジメチルフェノール15.14g(4’)、メタノール(CH3OH)50g、35質量%塩酸水溶液(HClaq.)10gの混合溶液中に、化合物(3’)を12g添加し、60℃で3日間反応させた。
反応終了後、室温に戻し、次いで水酸化ナトリウム水溶液を添加して10時間攪拌を行った。その後、反応液を分液ロートに移して、水/ジエチルエーテルで洗浄して原料を除去し、次いで水層を抜き取り、塩酸水溶液で中和(pH試験紙で中性を確認)し、沈殿物を得た。この沈殿物をろ過して粗結晶を得た。この粗結晶をテトラヒドロフラン(THF)に溶解させ、ヘプタンで再沈を行った。次いでこれをろ過して粗結晶を得た。この粗結晶をTHFに溶解させ、濃縮・乾燥を経て目的の化合物(1)を15.3g得た。
反応終了後、室温に戻し、次いで水酸化ナトリウム水溶液を添加して10時間攪拌を行った。その後、反応液を分液ロートに移して、水/ジエチルエーテルで洗浄して原料を除去し、次いで水層を抜き取り、塩酸水溶液で中和(pH試験紙で中性を確認)し、沈殿物を得た。この沈殿物をろ過して粗結晶を得た。この粗結晶をテトラヒドロフラン(THF)に溶解させ、ヘプタンで再沈を行った。次いでこれをろ過して粗結晶を得た。この粗結晶をTHFに溶解させ、濃縮・乾燥を経て目的の化合物(1)を15.3g得た。
化合物(1)について、1H−NMR(プロトン核磁気共鳴スペクトル)、IR(赤外吸収スペクトル)による分析を行った。その結果を以下に示した。
1H−NMRデータ(重ジメチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=12.68 brs 2H Ha,8.94 brs 4H Hb,6.82−6.27 m 14H Hc,5.85 s 2H Hd,4.47 s 4H He,3.32 s 2H Hf,2.09−1.76 brs 24H Hg。
IRデータ:3382cm−1,2925cm−1,1728cm−1,1495cm−1,1463cm−1,1411cm−1,1285cm−1,1227cm−1,1195cm−1,1119cm−1,1075cm−1。
この結果から、化合物(1)が下記に示す構造を有することが確認できた。
1H−NMRデータ(重ジメチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=12.68 brs 2H Ha,8.94 brs 4H Hb,6.82−6.27 m 14H Hc,5.85 s 2H Hd,4.47 s 4H He,3.32 s 2H Hf,2.09−1.76 brs 24H Hg。
IRデータ:3382cm−1,2925cm−1,1728cm−1,1495cm−1,1463cm−1,1411cm−1,1285cm−1,1227cm−1,1195cm−1,1119cm−1,1075cm−1。
この結果から、化合物(1)が下記に示す構造を有することが確認できた。
[合成例2(化合物(2)の合成)]
5gの化合物(1)を30gのテトラヒドロフラン(THF)に溶解し、1.52gのトリエチルアミン(Et3N)を加えて10分撹拌し、そこへ2.43gの2−クロロメトキシアダマンタンを加え、室温で10時間撹拌した。反応終了後、ろ過を行い、得られたろ液に水/酢酸エチル(質量比1:1)を加えて抽出を行い、分離した酢酸エチル相を減圧濃縮し、5.1gの目的とする化合物(2)を得た。
5gの化合物(1)を30gのテトラヒドロフラン(THF)に溶解し、1.52gのトリエチルアミン(Et3N)を加えて10分撹拌し、そこへ2.43gの2−クロロメトキシアダマンタンを加え、室温で10時間撹拌した。反応終了後、ろ過を行い、得られたろ液に水/酢酸エチル(質量比1:1)を加えて抽出を行い、分離した酢酸エチル相を減圧濃縮し、5.1gの目的とする化合物(2)を得た。
化合物(2)について、1H−NMRおよびIRによる分析を行った。
1H−NMR(重ジメチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=8.80 brs 4H Ha,6.24−6.72 m 14H Hb,5.83 s 2H Hc,5.36 s 4H Hd,4.61 s 4H He,3.66 s 2H Hf,3.57 s 2H Hg,1.95 s 12H Hh,1.85 s 12H Hi,1.29−2.15 m 28H Hj。
IR:3391cm−1,2907cm−1,2855cm−1,1737cm−1,1496cm−1,1286cm−1。
上記の結果から、化合物(2)が下記に示す構造を有することが確認できた。なお、下記構造中、f は、2−アダマンチル基の、酸素原子が直接結合している炭素原子に結合した水素原子を示し、jは2−アダマンチル基の、f以外の水素原子を示す。
1H−NMR(重ジメチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=8.80 brs 4H Ha,6.24−6.72 m 14H Hb,5.83 s 2H Hc,5.36 s 4H Hd,4.61 s 4H He,3.66 s 2H Hf,3.57 s 2H Hg,1.95 s 12H Hh,1.85 s 12H Hi,1.29−2.15 m 28H Hj。
IR:3391cm−1,2907cm−1,2855cm−1,1737cm−1,1496cm−1,1286cm−1。
上記の結果から、化合物(2)が下記に示す構造を有することが確認できた。なお、下記構造中、f は、2−アダマンチル基の、酸素原子が直接結合している炭素原子に結合した水素原子を示し、jは2−アダマンチル基の、f以外の水素原子を示す。
合成例3(化合物(5)の合成)
4gの化合物(1)を20gのTHFに溶解し、1.52gのEt3Nを加えて10分撹拌し、そこへ2.79gのブロモ酢酸−2−メチル−2−アダマンチルを加え、室温で10時間撹拌した。反応終了後、ろ過を行い、得られたろ液に水/酢酸エチル(質量比1:1)を加えて抽出を行い、分離した酢酸エチル相を減圧濃縮し、3.2gの目的とする化合物(5)を得た。
4gの化合物(1)を20gのTHFに溶解し、1.52gのEt3Nを加えて10分撹拌し、そこへ2.79gのブロモ酢酸−2−メチル−2−アダマンチルを加え、室温で10時間撹拌した。反応終了後、ろ過を行い、得られたろ液に水/酢酸エチル(質量比1:1)を加えて抽出を行い、分離した酢酸エチル相を減圧濃縮し、3.2gの目的とする化合物(5)を得た。
化合物(5)について、1H−NMRおよびIRによる分析を行った。
1H−NMR(重ジメチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=8.80 brs 4H Ha,6.23−6.94 m 14H Hb,5.84 s 2H Hc,4.68 s 4H Hd,4.68 s 4H He,3.58 s 2H Hf,2.19 s 4H Hg,1.39−2.15 m 54H Hh。
IR:3417cm−1,2920cm−1,2863cm−1,1750cm−1,1728cm−1,1495cm−1,1292cm−1,1278cm−1。
上記の結果から、化合物(5)が下記に示す構造を有することが確認できた。なお、下記構造中、gは、2−メチル−2−アダマンチル基の、酸素原子が直接結合している炭素原子に隣接する炭素原子(但し、この炭素原子は環骨格を構成する炭素原子である。)に結合した水素原子(2個×2)を示し、hは、2−メチル−2−アダマンチル基の、g以外の水素原子と、ベンゼン環に結合したメチル基の水素原子とを示す。
1H−NMR(重ジメチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=8.80 brs 4H Ha,6.23−6.94 m 14H Hb,5.84 s 2H Hc,4.68 s 4H Hd,4.68 s 4H He,3.58 s 2H Hf,2.19 s 4H Hg,1.39−2.15 m 54H Hh。
IR:3417cm−1,2920cm−1,2863cm−1,1750cm−1,1728cm−1,1495cm−1,1292cm−1,1278cm−1。
上記の結果から、化合物(5)が下記に示す構造を有することが確認できた。なお、下記構造中、gは、2−メチル−2−アダマンチル基の、酸素原子が直接結合している炭素原子に隣接する炭素原子(但し、この炭素原子は環骨格を構成する炭素原子である。)に結合した水素原子(2個×2)を示し、hは、2−メチル−2−アダマンチル基の、g以外の水素原子と、ベンゼン環に結合したメチル基の水素原子とを示す。
[実施例1〜6]
表1に示す基材1、基材2、(B)成分、(D)成分および(S)成分を混合、溶解してポジ型レジスト組成物を調製した。表1の[ ]内に示す数値は配合量(単位:質量部)である。
表1に示す基材1、基材2、(B)成分、(D)成分および(S)成分を混合、溶解してポジ型レジスト組成物を調製した。表1の[ ]内に示す数値は配合量(単位:質量部)である。
表1中の略号は下記の意味を有する。
・(A’1−1):下記化学式(A’1−1)で表される化合物。
・(A2−1):下記化学式(A2−1)で表されるMw=12900、Mw/Mn=2.40の樹脂。式(A2−1)中、m1:n1=64.0:36.0(モル比)である。
・(A2−2):下記化学式(A2−2)で表されるMw=11900、Mw/Mn=2.96の樹脂。式(A2−2)中、m2:n2=69.2:30.8(モル比)である。
・(A2−3):下記化学式(A2−3)で表されるMw=8500、Mw/Mn=1.66の樹脂。式(A2−3)中、m3:n3:p3:q3=58.2:9.1:26.5:6.2(モル比)である。
・(B)−1:トリフェニルスルホニウムノナフルオロブタンスルホネート。
・(D)−1:トリ−n−オクチルアミン。
・(S)−1:プロピレングリコールモノメチルエーテルアセテート。
・(A’1−1):下記化学式(A’1−1)で表される化合物。
・(A2−1):下記化学式(A2−1)で表されるMw=12900、Mw/Mn=2.40の樹脂。式(A2−1)中、m1:n1=64.0:36.0(モル比)である。
・(A2−2):下記化学式(A2−2)で表されるMw=11900、Mw/Mn=2.96の樹脂。式(A2−2)中、m2:n2=69.2:30.8(モル比)である。
・(A2−3):下記化学式(A2−3)で表されるMw=8500、Mw/Mn=1.66の樹脂。式(A2−3)中、m3:n3:p3:q3=58.2:9.1:26.5:6.2(モル比)である。
・(B)−1:トリフェニルスルホニウムノナフルオロブタンスルホネート。
・(D)−1:トリ−n−オクチルアミン。
・(S)−1:プロピレングリコールモノメチルエーテルアセテート。
得られたポジ型レジスト組成物を用いて以下の評価を行った。
実施例1〜6のポジ型レジスト組成物を、ヘキサメチルジシラザン処理を施した8インチシリコン基板上にスピンナーを用いて均一に塗布し、110℃にて90秒間ベーク処理(PAB)を行ってレジスト膜(膜厚150nm)を成膜した。該レジスト膜に対し、電子線描画機HL−800D(VSB)(Hitachi社製)を用い、加速電圧70kVにて描画(露光)を行い、100℃にて90秒間のベーク処理(PEB)を行い、テトラメチルアンモニウムヒドロキシド(TMAH)の2.38質量%水溶液(23℃)を用いて60秒間の現像を行った後、純水にて30秒間リンスした。
リンス後の基板表面を測長SEM(走査型電子顕微鏡;Hitachi社製S−9220)を用いて観察したところ、ラインアンドスペースのレジストパターン(L/Sパターン)が形成されていた。また、該L/Sパターンの表面は、ラフネスが少なく、きれいなものであった。
このとき、ライン幅100nmのL/Sパターンがライン幅:スペース幅=1:1に形成される露光量Eop(μC/cm2)を求め、該Eopにおける限界解像度(nm)を求めた。その結果を表2に「解像性」として示す。
実施例1〜6のポジ型レジスト組成物を、ヘキサメチルジシラザン処理を施した8インチシリコン基板上にスピンナーを用いて均一に塗布し、110℃にて90秒間ベーク処理(PAB)を行ってレジスト膜(膜厚150nm)を成膜した。該レジスト膜に対し、電子線描画機HL−800D(VSB)(Hitachi社製)を用い、加速電圧70kVにて描画(露光)を行い、100℃にて90秒間のベーク処理(PEB)を行い、テトラメチルアンモニウムヒドロキシド(TMAH)の2.38質量%水溶液(23℃)を用いて60秒間の現像を行った後、純水にて30秒間リンスした。
リンス後の基板表面を測長SEM(走査型電子顕微鏡;Hitachi社製S−9220)を用いて観察したところ、ラインアンドスペースのレジストパターン(L/Sパターン)が形成されていた。また、該L/Sパターンの表面は、ラフネスが少なく、きれいなものであった。
このとき、ライン幅100nmのL/Sパターンがライン幅:スペース幅=1:1に形成される露光量Eop(μC/cm2)を求め、該Eopにおける限界解像度(nm)を求めた。その結果を表2に「解像性」として示す。
また、比較例1〜3のポジ型レジスト組成物についても上記と同様の評価を行った。
その結果、比較例1は、L/Sパターンは解像したものの、解像性は悪く、また、実施例1〜6に比べて顕著なラフネスが見られた。また、比較例2〜3についてはL/Sパターンが解像しなかった。
なお、ラフネスの評価は、実施例1〜6については1:1の100nmのL/Sパターンを、比較例1については1:1の500nmのL/Sパターンを、SEMにより観察することにより行った。
その結果、比較例1は、L/Sパターンは解像したものの、解像性は悪く、また、実施例1〜6に比べて顕著なラフネスが見られた。また、比較例2〜3についてはL/Sパターンが解像しなかった。
なお、ラフネスの評価は、実施例1〜6については1:1の100nmのL/Sパターンを、比較例1については1:1の500nmのL/Sパターンを、SEMにより観察することにより行った。
上記結果から明らかなように、(A1)成分に該当する化合物(3)または(5)を用いた実施例1〜6においては、その配合量が、(A2)成分に該当する基材2に対して100質量%という比較的高配合量の化合物(3)または(5)を含有していても、高解像性のレジストパターンを形成できた。また、形成されたレジストパターンは、ラフネスが少なかった。
一方、化合物(3)または(5)の代わりに、従来溶解抑止剤として用いられている低分子化合物である(A’1−1)を用いた比較例1〜3においては、レジストパターンを形成できないか、または形成できたとしても非常に解像性が悪く、ラフネスも顕著であった。
一方、化合物(3)または(5)の代わりに、従来溶解抑止剤として用いられている低分子化合物である(A’1−1)を用いた比較例1〜3においては、レジストパターンを形成できないか、または形成できたとしても非常に解像性が悪く、ラフネスも顕著であった。
Claims (6)
- 下記一般式(I)で表されるフェノール化合物またはその水酸基の水素原子の一部が炭素数1〜10のアルキル基で置換された置換フェノール化合物の水酸基の水素原子の一部または全部が酸解離性溶解抑制基で置換された(A1)成分と、酸解離性溶解抑制基を有する構成単位(a1)を含有し、酸の作用によりアルカリ溶解性が増大する樹脂成分(A2)と、放射線の照射により酸を発生する酸発生剤成分(B)とを含有することを特徴とするポジ型レジスト組成物。
- 前記構成単位(a1)が、ヒドロキシスチレンから誘導される構成単位における水酸基の水素原子が酸解離性溶解抑制基含有基で置換されてなる構成単位(a’1)および/または酸解離性溶解抑制基を有するアクリル酸エステルから誘導される構成単位(a”1)である請求項1または2に記載のポジ型レジスト組成物。
- 前記樹脂成分(A2)が、さらに、ヒドロキシスチレンから誘導される構成単位を含有する請求項1〜3のいずれか一項に記載のポジ型レジスト組成物。
- さらに、含窒素有機化合物(D)を含有する請求項1〜4のいずれか一項に記載のポジ型レジスト組成物。
- 支持体上に、請求項1〜5のいずれか一項に記載のポジ型レジスト組成物を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006353933A JP2008164904A (ja) | 2006-12-28 | 2006-12-28 | ポジ型レジスト組成物およびレジストパターン形成方法 |
PCT/JP2007/074521 WO2008081731A1 (ja) | 2006-12-28 | 2007-12-20 | ポジ型レジスト組成物およびレジストパターン形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006353933A JP2008164904A (ja) | 2006-12-28 | 2006-12-28 | ポジ型レジスト組成物およびレジストパターン形成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008164904A true JP2008164904A (ja) | 2008-07-17 |
Family
ID=39588416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006353933A Withdrawn JP2008164904A (ja) | 2006-12-28 | 2006-12-28 | ポジ型レジスト組成物およびレジストパターン形成方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008164904A (ja) |
WO (1) | WO2008081731A1 (ja) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10123703A (ja) * | 1996-10-18 | 1998-05-15 | Fuji Photo Film Co Ltd | ポジ型感光性組成物 |
JP2006078744A (ja) * | 2004-09-09 | 2006-03-23 | Tokyo Ohka Kogyo Co Ltd | Euv用レジスト組成物およびレジストパターン形成方法 |
-
2006
- 2006-12-28 JP JP2006353933A patent/JP2008164904A/ja not_active Withdrawn
-
2007
- 2007-12-20 WO PCT/JP2007/074521 patent/WO2008081731A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2008081731A1 (ja) | 2008-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5285884B2 (ja) | 高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4828204B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法、並びに高分子化合物 | |
JP5193513B2 (ja) | 化合物、酸発生剤、レジスト組成物およびレジストパターン形成方法 | |
JP5489417B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
KR100941343B1 (ko) | 화합물, 포지티브형 레지스트 조성물 및 레지스트 패턴형성 방법 | |
JP5308874B2 (ja) | ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物 | |
JP5129988B2 (ja) | 高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP2008250157A (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP5068526B2 (ja) | 高分子化合物、レジスト組成物およびレジストパターン形成方法 | |
JP4980078B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP5349765B2 (ja) | 高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4969916B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4855293B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4633655B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4951395B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4920271B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4762821B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP5303122B2 (ja) | 高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4890166B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4717732B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP5648094B2 (ja) | ポジ型レジスト組成物、レジストパターン形成方法および高分子化合物 | |
JP4472586B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP5702917B2 (ja) | ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物 | |
JP5314922B2 (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP2008242011A (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100302 |