JP2008158519A - バイアスされた荷電/転写ローラーをその場の電圧計及び光受容体厚み検出器として使用する方法並びにその結果でゼログラフィックプロセスを調整する方法 - Google Patents

バイアスされた荷電/転写ローラーをその場の電圧計及び光受容体厚み検出器として使用する方法並びにその結果でゼログラフィックプロセスを調整する方法 Download PDF

Info

Publication number
JP2008158519A
JP2008158519A JP2007324404A JP2007324404A JP2008158519A JP 2008158519 A JP2008158519 A JP 2008158519A JP 2007324404 A JP2007324404 A JP 2007324404A JP 2007324404 A JP2007324404 A JP 2007324404A JP 2008158519 A JP2008158519 A JP 2008158519A
Authority
JP
Japan
Prior art keywords
photoreceptor
voltage
subsystem
charging
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007324404A
Other languages
English (en)
Other versions
JP4902515B2 (ja
JP2008158519A5 (ja
Inventor
Christopher A Dirubio
エイ ディルビオ クリストファー
Michael F Zona
エフ ゾナ マイケル
Charles A Radulski
エイ ラダルスキー チャールズ
Aaron M Burry
エム バリー アーロン
Palghat S Ramesh
エス ラメッシュ パルガット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of JP2008158519A publication Critical patent/JP2008158519A/ja
Publication of JP2008158519A5 publication Critical patent/JP2008158519A5/ja
Application granted granted Critical
Publication of JP4902515B2 publication Critical patent/JP4902515B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5033Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor
    • G03G15/5037Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor the characteristics being an electrical parameter, e.g. voltage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/55Self-diagnostics; Malfunction or lifetime display
    • G03G15/553Monitoring or warning means for exhaustion or lifetime end of consumables, e.g. indication of insufficient copy sheet quantity for a job

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cleaning In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】ゼログラフィック装置において光受容体の厚みを決定する方法を提供する。
【解決手段】光受容体の誘電体厚みは、スレッシュホールド電圧と誘電体厚みとの関係を使用し、誘電体厚みと、バイアスされた転写ローラー電圧と光受容体表面電位との差との間の関係を使用し、誘電体厚みとバイアスされた荷電ローラーインピーダンスとの間の関係を使用し、誘電体厚みと、バイアスされた転写ローラー又は荷電ローラーに対するDC電流・対・電圧曲線の傾斜との間の関係を使用し、誘電体厚みと、ゼロ電流でのバイアスされた転写ローラー電圧との間の関係を使用することを含む種々の仕方で決定される。スレッシュホールド電圧は、バイアスされた荷電ローラーのDC電流・対・電圧曲線の傾斜を使用し、荷電膝より下の複数のターゲット電圧に対して光受容体表面電位を測定して切片値を得るか、又は荷電膝の実際の値を見つけることで、見出すことができる。
【選択図】図9

Description

本発明は、ゼログラフィック装置において光受容体の厚みを決定する方法に係る。
本発明の実施形態は、バイアスされた荷電ローラーを使用して光受容体表面電位(VOPC)及び光受容体誘電体厚み(DOPC)の両方を測定することにより非常に正確な測定値を与える。他の現在のマーキングエンジンは、コストの高い静電電圧計(ESV)を使用して光受容体表面電位(VOPC)を測定し、表面電位を測定している。例えば、図1に見られる4つの光受容体を使用するタンデムのマーキングエンジンの場合には、少なくとも4つのESVが必要となり、マーキングエンジンのコストを著しく高める。従って、この実施形態では、既存のサブシステムコンポーネントを使用して、電源に対する僅かな変更のみで光受容体表面電位を測定することにより、僅かなコスト増加で測定、制御及び調整を行うことができる。
この実施形態の測定ルーチンを、周期的に、例えば、サイクルアップ又はサイクルダウン中に実行して、それが使用されたゼログラフィック装置の一貫した出力を確保することができる。VOPCは、この実施形態では、バイアスされた荷電ローラーを一定DC電流モードで動作し、そして電源によってシャフトに印加されるDC電圧であってVOPCに応答してシフトするDC電圧を測定することにより、測定される。DOPCは、この実施形態では、最初に、DCバイアスされたACモードで動作するバイアスされた荷電ローラーで光受容体を荷電し、次いで、そのバイアスされた荷電ローラーでVOPCを測定することにより、測定される。双極Vp-p荷電膝より上及びそれより下のACバイアス荷電ローラーピーク−ピーク電圧(Vp-p)の多数の値に対して、荷電と測定を繰り返すのが好ましい。次いで、DOPCの尺度である膝の位置を計算することができる。ゼログラフィックプロセスの安定性は、その後、ROS、荷電、現像、消去、転写及び他のゼログラフィック制御ファクタを、DOPC及びVOPCの測定結果に基づいて調整することにより達成される。
従って、エンジンの既存のハードウェアを使用して光受容体表面電位VOPCを直接測定するこの実施形態を利用すると、より進歩したプロセス制御及びマシンの自己診断を可能にし、しかも、この機能を付加するために、製造コストを著しく増加せず、且つバイアスされた荷電ローラーの電源に僅かな変更しか要求しない。光受容体の荷電に影響するサブシステムの性能(消去、前転写、転写、放電、現像、等)は、サブシステムアクチュエータを使用して評価し及び/又は調整することができる。同様に、光受容体の荷電により影響されるサブシステムの性能、例えば、消去、前転写、転写、放電、現像、及び他の要素も、サブシステムアクチュエータを使用して評価し及び/又は調整することができる。更に、サブシステムの故障を検出することができ、コントローラは、エラーメッセージを発生するか、又はリモート診断を通してサービスコールを開始することができる。更に、この実施形態を使用して、自動光誘起放電曲線を発生することができる。
この実施形態では、エンジンにおける既存のハードウェアを使用して、光受容体誘電体厚みDOPC、ひいては、光受容体厚みの直接的な測定を行うことができる。多くのゼログラフィックマシンが、現在、光受容体のサイクル数に基づいてOPC誘電体厚みを推定する予想方程式を使用しているので、この実施形態を利用すると、非常に正確な厚み決定を行うことができ、より進歩したプロセス制御及びマシン自己診断を行なうことができる。従って、マーキングシステムの性能は、サブシステムアクチュエータ(現像、荷電、放電、転写、消去、等)をDOPCに基づいて調整することによって最適化することができる。更に、光受容体/CRUは、現在、固定サイクル数の後に交換されるので、DOPCのより正確な測定は、光受容体の年齢及び性能を良好に推定し、ユニットが交換される頻度を潜在的に減少することで運転コストを低減することができる。この実施形態を利用する他の利点は、マーキングの安定性及び像の一貫性を改善することを含む。この実施形態は、BCRを使用するエンジンにより安価に利用することができる。BCRは、ゼログラフィックエンジンの全ての大手製造者によりカラー及び白黒の事務機に広く使用されている。
図1を参照すれば、実施形態の特徴を組み込んだ複写機又はレーザプリンタのようなゼログラフィック装置100が概略的に示されている。図示された実施形態を参照して詳細に説明するが、多数の別の実施形態も使用できることを理解されたい。更に、本発明の精神から逸脱せずに、適当なサイズ、形状、又は形式の要素又は材料を使用することができる。
図1に示すように、ゼログラフィック装置100は、一般に、カラー(又はブラック)トナーを付与できる各々実質的に同の一構造の少なくとも1つの像形成装置110を備えている。図1の例では、4つの像形成装置110があって、例えば、シアン、マゼンタ、イエロー及び/又はコパ/ブラックのトナーを付与することができる。像形成装置110は、トナーを中間転写ベルト111へ付与する。この中間転写ベルト111は、少なくとも1つの張力ローラー113、操向ローラー114、及び駆動ローラー115の周りに取り付けられる。駆動ローラー115が回転すると、中間転写ベルト111を矢印116の方向に移動し、中間転写ベルト111の経路に沿って配置された種々の処理ステーションを通して中間転写ベルト111を前進させる。各像形成装置110により適宜トナーを付着させることでベルト111上にトナー像が完成されると、完成したトナー像は、転写ステーション120へ移動される。転写ステーション120は、搬送システム140によりこの転写ステーションへ運ばれたペーパー又は他の媒体130にトナー像を転写する。この媒体は、次いで、溶融ステーション150へ通され、トナー像を媒体130に定着させる。多くのゼログラフィック装置100は、図示されたようにそしてこの実施形態により、シート型媒体130へ像トナーを転写するために少なくとも1つのバイアスされた転写ローラー124を使用しているが、この実施形態では、その広い観点から逸脱せずに、連続する媒体ロール又は他の形態の媒体を使用できることも理解されたい。
図1に示すように、転写ステーション120は、中間転写ベルト111の片側に少なくとも1つのバックアップローラー122を備えている。このバックアップローラー122は、バイアスされた転写ローラー124とでベルト111に挟み部を形成し、従って、媒体130は、中間転写ベルト111の完成したトナー像に密接接近するか又はそれに接触して転写ローラー124上を通過する。転写ローラー124は、バックアップローラー122と共に動作して、例えば、スチールローラーのような転写ローラー124の表面に高電圧を印加することによりトナー像を転写する。バックアップローラー122は、接地されたシャフト126に取り付けられ、これは、トナー像を中間転写ベルト111から基板130へ引っ張る電界を生成する。シート搬送システム140は、次いで、媒体130を溶融ステーション150へ、そして取り扱いシステム、捕獲トレー、等(図示せず)へ向ける。
或いは又、この実施形態において、バックアップローラー122は、バイアスされたシャフトに取り付けることができる。上述したように、バイアスされた転写ローラー124は、最初に、接地されたシャフト126に取り付けられ、これは、中間転写ベルト111から基板130へトナー像を引っ張る電界を生成する。或いは又、バックアップローラー122のシャフトをバイアスする一方、バイアスされた転写ローラー124のシャフト126を接地してもよい。シート搬送システム140は、次いで、媒体130を溶融ステーション150へ、そして取り扱いシステム、捕獲トレー、等(図示せず)へ向ける。
一例として図2に示す1つの像形成装置110を参照すれば、各像形成装置110は、光受容体200(OPCとも称される)と、荷電ステーション又はサブシステム210と、レーザスキャニング装置又はサブシステム220、例えば、ラスタ化出力スキャナ(ROS)と、トナー付着/現像ステーション又はサブシステム230と、前転写ステーション又はサブシステム240と、転写ステーション又はサブシステム250と、前清掃ステーション又はサブシステム260と、清掃/消去ステーション270とを備えている。この実施形態の光受容体200は、ドラムであるが、他の形式の光受容体もおそらく使用できる。この実施形態の光受容体ドラム210は、光伝導層204の表面202を含み、その上に静電荷を形成することができる。光導電層204は、暗い状態では誘電体のように振舞い、そして光に露出されると、伝導体のように振舞う。光伝導層204は、シリンダー206上に取り付け又は形成することができ、シリンダーは、シャフト208において矢印209の方向に回転するように取り付けられる。
この実施形態の荷電ステーション210は、高電圧電源(図3に示す)により供給されるDCバイアスのAC電圧を使用して光受容体200を荷電するバイアスされた荷電ローラー212を備えている。このバイアスされた荷電ローラー212は、スチールシリンダーのような内部シリンダー216上に形成されるか又は取り付けられた1つ以上のエラストマー層215の表面214を含むが、適当な伝導性材料を使用することができる。ローラー212は、ローラー212の長手軸に沿って延びるシャフト218と共に回転するように取り付けられるのが好ましい。
この実施形態のレーザスキャニング装置220は、ダイオードレーザのようなレーザ224の出力を変調するコントローラ222を備え、その変調されたビームは、モータ228により回転される回転ミラー又はプリズム226を照らす。ミラー又はプリズム226は、その変調されたレーザビームを荷電OPC表面202へ反射し、OPC表面202の巾を横切ってそれをパンし、従って、変調されたビームは、OPC表面202にプリントされるべき像の線221を形成することができる。このようにして、トナー像を受け取るべきエリアを選択的に放電することにより潜像が生成される。プリントされるべき像の描写部分は、トナー付着ステーション230へと進み、ここで、トナー232が像の描写/放電部分に接着する。接着トナーを伴う像の描写部分は、次いで、前転写ステーション240へ通過し、次いで、転写ステーション250へ通過する。前転写ステーション240は、転写性能を最適化するためにトナー及び光受容体の荷電状態の調整に使用される。
転写ステーション250は、中間転写ベルト111にトナー像を転写するためにOPC200とで中間転写ベルト111に挟み部253を形成するように構成されたバイアスされた転写ローラー252を備えている。この実施形態では、バイアスされた転写ローラー252は、内側シリンダー256上に形成され又は取り付けられる1つ以上のエラストマー層254を備え、そしてローラー252は、ローラー252の長手軸に沿って延びるシャフト258に取り付けられる。バイアスされた転写ローラー252は、図3に示すような高電圧電源352により供給されるDC電位を保持する。ローラー252に印加される電圧は、光受容体表面202から中間転写ベルト111へトナー像231を引き出す。転写の後に、OPC表面202は、前清掃サブシステム260へ回転し、次いで、清掃/消去サブステーション270へ回転し、そこで、ブレード272がOPC表面202から過剰トナーを削り取り、そして消去ランプ274がOPC表面上の静電荷を減少させる。
図3を参照すれば、ゼログラフィック装置100の電子制御システム310は、少なくとも1つの各サブシステムに接続された少なくとも1つのサブシステムコントローラを含むことができる。図3に示す例では、3つのサブシステムコントローラ340、340’、及び340”が、ローカル転写サブシステム250、メイン転写サブシステム120、及び荷電サブシステム210に各々接続される。この実施形態の少なくとも1つのサブシステムコントローラ340、340’、340”の各々は、動作モード装置344、344’、344”と、診断モードで選択的に動作する装置346、346’、346”及びベースラインモードで選択的に動作する装置348、348’、348”とを備えている。コントローラ310は、更に、マイクロプロセッサ356を備え、これは、メモリ装置360を含むことができると共に、コード及び電圧評価装置354、354’、354”に応答して診断メッセージ364、364’、364”を発生することができる。これら診断メッセージは、ゼログラフィック装置のユーザインターフェイス(図示せず)に表示することができる。マイクロプロセッサ356は、第1転写サブシステム250、第2転写サブシステム120、及び荷電サブシステム210の高電圧電源352、352’、352”に各々接続されるのが好ましい。1つの電源は、制御電流及び/又は制御電圧をメイン転写サブシステムのバイアスされた転写ローラー122へ供給し、別の電源は、制御電流及び/又は制御電圧を1つの又は各バイアスされた荷電ローラー212へ供給し、そして別の電源は、制御電流及び/又は制御電圧を1つの又は各ローカルのバイアスされた転写ローラー252へ供給する。バイアスされた荷電ローラー212は、DCバイアスのAC高電圧電源352”によりしばしば給電される。バイアスされた荷電ローラー212に与えられるDC成分は、通常、一定制御電圧に維持され、AC成分は、通常、一定制御電流で作用される。バイアスされた転写ローラー252は、一定制御電流或いは一定制御電圧モードのいずれかで動作されるDC高電圧電源352’によりしばしば給電される。荷電又は転写ローラーの電圧又は電流設定点は、時間と共に変化し得る。
図9から12に示す実施形態は、バイアスされた荷電ローラー(BCR)212を使用して、光受容体表面202の電位(VOPC)と、光受容体誘電体204の厚み(DOPC)の両方を測定することができる。OPC電位VOPCは、BCRを一定のDC電流モードで動作し、そして電源によりシャフト218に印加されるDC電圧を測定することにより決定することができる。シャフト218の電圧は、VOPCに応答してシフトし、このシフトを使用して、OPC電圧の値を決定することができ、従って、BCRを電気力学電圧計として使用することができる。
より詳細には、DCバイアスされた荷電ローラーのための簡単な分析モデルによれば、BCR212の電圧は、光受容体表面202の電位に正比例する。数学的には、これは、ΔVBCR∝ΔV0 OPCと表わされ、ここで、V0 OPCは、バイアスされた荷電ローラーの挟み部に入る光受容体表面の電位であり、そしてVBCRは、一定DC電流モードで動作されるときに、バイアスされた荷電ローラー212に印加される電圧である。2つの値は、直接比例するので、バイアスされた荷電ローラーの電源電圧のシフトは、光受容体表面電位のシフトに比例する。
BCRをV0 OPCに関係付ける全方程式は、バイアスされた荷電ローラー212が、負の荷電モードで動作するか、正の荷電モードで動作するかに依存する。BCR212が負の荷電モードで動作するときには、次の式になるが、
Figure 2008158519
BCR212が正の荷電モードで動作するときには、次の式になる。
Figure 2008158519
両方のケースでは、Vは、エアブレークダウンの電圧スレッシュホールドであり、そしてβは、次のように決定され、
Figure 2008158519
ここで、DOPCは、光受容体の誘電体厚みで、これは、実際の厚みdを誘電体層の誘電率κで除算する(d/κ)ことにより決定できる。LBCRは、バイアスされた荷電ローラーのインボードからアウトボードの長さであり、vprocessは、プロセス速度であり、そしてε0は、自由空間の誘電率である。エアブレークダウンのスレッシュホールドは、次の式で与えられ、
Figure 2008158519
これは、バイアスされた荷電ローラーのエラストマー214内の電荷弛緩が挟み部のドウェルタイムと迅速比較され、そしてDOPCがミクロン単位で方程式に入力されると仮定している。
特に、図11に示す概略フローチャートを参照すれば、BCRをEDVとして使用する方法1100が開始され(ボックス1110)、光受容体を完全に放電し、V0 OPC=0とする(1111)。これは、消去ランプ274で実行できる(ボックス1113)。或いは又、これは、バイアスされた荷電ローラー212がVBCR,DC=0の通常のDCバイアスACモードで動作された状態で、OPC表面202を荷電することにより、達成することもできる(ボックス1112)。光受容体の電位がゼロにされると、この実施形態では、バイアスされた荷電ローラー212が一定DC電流モードで動作され(ボックス1114)、そして電源352によりシャフト218に印加された第1電圧VBCR1が測定される(ボックス1115)。次いで、この実施形態では、光受容体表面202が、テストされるべき動作条件により要求される値に荷電され(ボックス1116)、そしてバイアスされた荷電ローラー212が一定DC電流モードで再び動作される(ボックス1117)。電源352によりシャフト218に印加される第2の電圧VBCR2が測定され(ボックス1118)、この第2の電圧は、テストされる動作条件を表わす。次いで、この実施形態では、第1の電圧を第2の電圧から減算することにより実際の光受容体電位V0 OPCが決定され(ボックス1119)、従って、次のようになる。
0 OPC=VBCR2−VBCR1=ΔVBCR (5)
その後、この方法は、終了となる(ボックス1120)。理想的な性能ではないために、V0 OPCは、1の傾斜でΔVBCRに厳密に比例しないことがある。このケースでは、校正曲線を使用して、VBCR1及びVBCR2の測定値からV0 OPCを計算することができる。
図9に示す実施形態により誘電体の厚みを決定する方法900を説明するために、ゼログラフィックプロセスの他の変数に対する光受容体の表面電圧の振舞いを考えるのが有用である。例えば、ACバイアスされた荷電ローラーの特性荷電曲線、即ち図4に見られる光受容体表面電圧・対・バイアスされた荷電ローラー電圧成分のACピーク−ピーク電圧のグラフについて考える。この曲線は、最大印加電圧と、挟み部に入るOPCの初期表面電圧との間の差の絶対値がスレッシュホールド電圧VTHを越えるまで、傾斜をもたない。数学的に、これは、光受容体表面が負に荷電された場合には、次のように表わされる。
Figure 2008158519
この条件が満足されると、VOPCは、最大のOPC電圧が得られるまで一定の傾斜で増加し、この点の後は、荷電ローラーのピーク−ピーク電圧を増加しても、OPC表面電圧は不変であり、VOPC=VDCである。傾斜から最大OPC電圧へのこの遷移点は、曲線の「膝(knee)」であり、通常、荷電ローラーに印加されるDC電圧に等しい。この実施形態では、ピーク−ピークBCR電圧の膝値と、光受容体誘電体層204の厚みとの間のこの新たに発見された実質的に線形の、又は少なくとも単調な関係を利用して、光受容体200の誘電体層204の厚み及び誘電体厚みを決定する。
最も簡単なモデルでは、VOPC・対・Vp-p曲線における高電圧の膝が2*VTHに等しく、但し、エアブレークダウンのスレッシュホールドVTHは、次のように決定される。
Figure 2008158519
但し、DOPCは、光受容体の誘電体厚みであり、そしてDBCR,EQは、バイアスされた荷電ローラーの等価誘電体厚みである。典型的に、DBCR,EQは、DOPCより非常に小さくて、無視することができ、従って、式(4)で明らかなように、VTHの測定値は、光受容体誘電体厚みの直接的な尺度となる。DBCREQが顕著なものであって且つ温度及びRHに依存性する場合には、以下に述べる技術を依然適用できるが、DBCREQを独立して決定する必要がある。これは、センサで空洞の温度及びRHを測定し、この情報を使用して、式(7)に使用するためにルックアップテーブル(CPUメモリに位置する)からDBCREQの値を選択することができる。スレッシュホールド電圧のこのような測定は、図10に示して以下に説明する方法1000で達成することができる。上述したように、バイアスされた荷電ローラーを電気力学電圧計として使用し(1100)、膝より下の(1020)及び膝より上の(1023)ピーク−ピーク電圧Vp-pの複数の値に対して光受容体の表面電圧VOPCを測定することができる。もちろん、ゼログラフィック装置にESVが装備されている場合には、ESVを使用して、光受容体の表面電位のこれら測定を行うことができる(1021)。値の各セットに対して最良適合線が決定され(1022、1025)、そして最良適合線の交点が膝の位置を決定する(1026)。膝の位置が分ると、スレッシュホールド電圧VTH、ひいては、光受容体誘電体厚みDOPCを決定することができる(1027)。
それ故、例えば、図9に見られる実施形態により光受容体誘電体厚みDOPCを決定する方法900は、例えば、図10に示す方法1000でスレッシュホールド電圧を見出すステップ920を備え、これについては以下に述べる。スレッシュホールド電圧が分ると、この実施形態は、式(7)を使用してスレッシュホールド電圧VTHから誘電体厚みDOPCを直接決定し(921)、この点において、誘電体厚みの決定が終了する(930)。この実施形態は、光受容体の誘電率をkとすれば、dOPC=DOPC*kから光受容体の実際の厚みを決定するステップを含むことができる。システムが理想的な性能を示さない場合には、校正曲線を使用して、DOPC及び/又はdOPCをVTHから計算することができる。
この実施形態では、図9を再び参照すれば、スレッシュホールド電圧を決定する必要がない。むしろ、この誘電体厚み決定方法は、BCR又はBTRで表面電位を測定することにより開始でき(910)、これは、例えば、前記バイアスされた荷電ローラーに使用された同じ手順で表面電位VOPCを決定し(940)、BTR電流IBTRの固定値においてBTR電圧VBTRを測定し(941)、次いで、DOPCが増加するにつれてVBTR−VOPCが単調に増加するので、BTR電圧と表面電位との間の差を誘電体厚みの尺度として使用する(942)ことにより、行うことができる。例えば、誘電体厚み・対・電圧差のルックアップテーブルを使用して、VBTR−VOPCをDOPCへ変換することができる。又、このテーブルは、温度及びRH情報を使用して、BTR等価誘電体厚みDBTR,EQ及びITB(中間転写ベルト)誘電体厚みDITB,EQの変動により導入されるノイズ及び不正確さを減少することもできる。
或いは又、光受容体誘電体厚みは、BTRスレッシュホールド電圧VTH,BTRより高い図7に示すような動的I−V(電流・対・電圧差、即ちIBTR・対・VBTR−VOPC)曲線の傾斜を測定することにより決定できる。VTH,BTRは、ここでは、BTR動的I−V曲線のIBTR=0切片として定義される。VOPCを一定に保持しながら、動的I−V曲線のBTRスレッシュホールド電圧より上で2つ以上の点を測定することにより、傾斜を決定することができる。VOPCが各点においてBCR、BTR又はESVのいずれかで測定される場合には、BTR動的I−V曲線に適合する直線のIBTR=0切片からBTRスレッシュホールド電圧を決定することができる。BTRスレッシュホールド電圧VTH,BTR及び動的I−V曲線の傾斜は、両方とも、全誘電体厚みの関数であり、従って、次のようになる。
ΣD=DOPC+DITB,EQ+DBTR,EQ (8)
但し、DITB,EQは、弛緩し得る中間転写ベルトの等価誘電体厚みであり、そしてDBTR,EQは、弛緩し得るBTRの等価誘電体厚みである。DBTR,EQは、典型的なエンジンにおける優勢な項であり、従って、この技術は、エージング、温度シフト及び相対湿度シフトで誘起されるBTRエラストマーの抵抗率シフトによるこの項のシフトに敏感である。測定しようとする量であるDOPCに対するこの技術の敏感さは、実験により裏付けられ、その結果が、図8の対応電圧差・対・BTR電流曲線に示されている。従って、DOPCは、BTR電流・対・電圧特性曲線(IBTR・対・VBTR−VOPC)から少なくとも3つの方法で抽出することができる。曲線の傾斜を測定し(970)、そしてプロセスパラメータと共に使用して、誘電体厚みを決定することができる(971)。更に、IBTR=0切片(BTRスレッシュホールド電圧VTH,BTR)を測定し(972)、これを使用して誘電体厚みを決定することができる(973)。更に、差VBTR−VOPCは、ブロック940から943について上述したように、固定IBTRにおいて測定することができる。DOPCに対する特性曲線の3つの全特徴の敏感さが、図7に示す分析モデリング結果により示される。
又、図9に示すように、スレッシュホールド電圧を決定せずに厚みを決定する別の方法は、BCRインピーダンスを決定するステップ950を備えている。誘電体厚みDOPCを決定するためのこの別の方法は、ピーク−ピーク電圧・対・AC電流曲線(Vp-p・対・IAC曲線)の傾斜を測定することを含む。これは、一般に、ノイズが多く、上述した技術及びその代替物より正確さに欠ける測定方法である。この曲線の傾斜は、BCRのインピーダンスを与え、一般に、光受容体の誘電体厚みDOPCに直線的に関係している。例えば、図6において、印刷数の関数として光受容体を荷電するバイアスされた荷電ローラーに対してAC傾斜/インピーダンスがプロットされている。誘電体の厚みは、理想的には、印刷数と共に単調に減少するので、この曲線は、DOPCに対する傾斜/インピーダンスの敏感さを示す。この実施形態による手順は、BCRをAC定電圧又はAC定電流モードで動作し、2つ以上の電圧又は電流設定点においてAC電流又は電圧を測定し、測定されたデータから線の傾斜を決定し、そしてルックアップテーブルからDOPCを推論することを含み、これは、例えば、BCRのAC電流及びピーク−ピーク電圧を測定し、そしてルックアップテーブルのような、インピーダンスと厚みとの間の関係を使用する(951)ことにより行なわれる。
誘電体厚みを決定するための更に別の方法は、上述したように、BCR DC I−V曲線の傾斜βを測定し(960)、そしてこの傾斜β、プロセスパラメータ、及び前記式(3)を使用して誘電体厚みを決定すること(961)を含む。
上述したように、バイアスされた荷電ローラーを電気力学電圧計として使用する方法1100は、膝より低い(1020)及び膝より高い(1023)ピーク−ピーク電圧Vp-pの複数の値に対して光受容体表面電圧VOPCを測定するのに使用できる。もちろん、ゼログラフィック装置にESVが装備されている場合には、ESVを使用して、光受容体の表面電位のこれら測定を行うことができる(1021)。値の各セットに対して最良適合線が決定され(1022、1025)、そして最良適合線の交点が膝の位置を決定する(1026)。膝の位置が分ると、スレッシュホールド電圧VTH、ひいては、光受容体誘電体厚みDOPCを決定することができる(1027)。
電気力学電圧計として働くバイアスされた荷電ローラーは、光受容体が交差処理方向に一定表面電位を有するときに最良に機能することに注意されたい。従って、この実施形態では、これらの測定中に、BTR、消去、現像及び放電がディスエイブルされるのが好ましい。
図5は、関係を確認するために実際の実験により決定された膝値・対・光受容体厚みのグラフである。光受容体厚みは、渦電流プローブを使用して測定され、そして膝の位置は、上述した手順を使用して決定された。このグラフは、膝の位置(VP-P,KNEE)と、光受容体厚みとの間の明確な相関を示し、この実施形態の方法の有効性を確認するものである。
上述したように、最良適合線の交点を見出すのとは別に、図10を再び参照すれば、光受容体表面電圧・対・ピーク−ピーク電圧曲線の傾斜部分(膝より下)のy切片を決定することによりスレッシュホールド電圧VTH値を測定することができる(1028)。この別の形態では、この方法は、膝より下の複数の点について表面電圧を測定し(1020)、次いで、最良適合線を見出し(1022)、そして表面電圧軸上の切片値を決定する(1028)だけでよい。次いで、切片値VOPC(intercept)を使用し、式VTH=VOPC(intercept)−VDCを使用してスレッシュホールド電圧を見出すことができ(1029)、ここで、VDCは、バイアスされた荷電ローラーシャフトに印加されるDCバイアスである。
更に別の態様として、図10を見れば、バイアスされた荷電ローラーを純粋なDCモードで動作し、光受容体電位V0 OPCをゼロに保持しながら、BCR電流の少なくとも2つの値に対してBCR電圧の値を測定することにより、スレッシュホールド電圧及び誘電体厚みを測定することができる(1040)。バイアスされた荷電ローラーを使用して、光受容体表面電位VOPCを測定するセクションで述べたように、VOPCは、前記式(2)により、バイアスされた荷電ローラー電流IBCRに、次のように直線的に関係している。
Figure 2008158519
又は次のように書き直される。
Figure 2008158519
BCR及びVBCRが、V0 OPC=0となるように光受容体が放電した状態で電源により2つ以上の値において測定された場合には、測定点に線を適合することができ(1041)、そして直線適合から傾斜βを決定することができる(1042)。次いで、式(9)によりスレッシュホールド電圧を決定することができる(1043)。この場合も、好ましい実施形態によれば、前記手順において、各電源値に対してV0 OPCを一定、例えば、0ボルトに保持しなければならない。従って、この実施形態は、OPCを既知の値、好ましくは、0ボルトに荷電し、DC電源を第1電流値IBCRにセットし、そしてVBCRを測定することを含む。又、この実施形態は、IBCRの1つ以上の付加的な異なる値について電流値の設定を繰り返し、式(2)に適合する直線を計算し、傾斜βを決定し、そして傾斜βからOPCの誘電体厚みDOPCを直接計算することを含むのが好ましい。或いは又、式(8)に適合する直線のIBCRから、
Figure 2008158519
スレッシュホールド電圧を決定することができ、そしてスレッシュホールド電圧から光受容体誘電体厚みDOPCを決定することができる(920)。V0 OPC=0の設定が好ましいが、必要ではないことに注意されたい。VBCRに加えて、各電流設定点でV0 OPCが測定される場合には、VTHを傾斜又は切片から決定することができる。V0 OPCは、測定プロセス中に光受容体の電荷を変更することのないESV又は他の装置により測定されるのが好ましい。
光受容体の誘電体厚みが分ると、ゼログラフィックマシンの出力は、例えば、ROS、荷電、現像、消去、転写、及び他のゼログラフィック制御ファクタを順次に調整することにより、最適化することができる。変形態様では、VOPC・対・Vp-p曲線のy切片を使用するか、又はBCR電流とBCR電圧と光受容体表面電位との間の関係から、スレッシュホールド電圧が決定される。更に別の変形態様では、BCRのインピーダンスと、光受容体によりなされた印刷の回数との間の単調な関係に依存することにより、スレッシュホールド電圧の決定が排除される。
エンジンの既存のハードウェアを使用して光受容体表面電位VOPCを直接測定するこの実施形態を利用すると、より進歩したプロセス制御及びマシンの自己診断を可能にし、しかも、この機能を付加するために製造コストを著しく増加せず、且つバイアスされた荷電ローラーの電源に僅かな変更しか要求しない。光受容体の荷電に影響するサブシステムの性能(消去、前転写、転写、放電、等)は、サブシステムアクチュエータを使用して評価し及び/又は調整することができる。更に、サブシステムの故障を検出することができ、コントローラは、エラーメッセージを発生するか、又はリモート診断を通してサービスコールを開始することができる。
この実施形態では、エンジンにおける既存のハードウェアを使用して、光受容体誘電体厚みDOPC、ひいては、光受容体厚みの直接的な測定を行うことができる。多くのゼログラフィックマシンが、現在、光受容体のサイクル数に基づいてOPC誘電体厚みを推定する予想方程式を使用しているので、この実施形態を利用すると、非常に正確な厚み決定を行うことができ、より進歩したプロセス制御及びマシン自己診断を行なうことができる。従って、マーキングシステムの性能は、サブシステムアクチュエータ(現像、荷電、放電、転写、消去、等)をDOPCに基づいて調整することによって最適化することができる。更に、光受容体/CRUは、現在、固定サイクル数の後に交換されるので、DOPCのより正確な測定は、光受容体の年齢及び性能を良好に推定し、ユニットが交換される頻度を潜在的に減少することで運転コストを低減することができる。この実施形態を利用する他の利点は、マーキングの安定性及び像の一貫性を改善することを含む。この実施形態は、BCRを使用するエンジンにより安価に利用することができる。BCRは、ゼログラフィックエンジンの全ての大手製造者によりカラー及び白黒の事務機に広く使用されている。転写のためにBTRを使用するが、荷電のためにBCRを使用しないマーキングエンジンは、本発明から依然利益を得ることができる。というのは、VOPCは、既知の方法でBTRにより測定することができ、そしてDOPCは、本発明において教示されたようにBTRを使用して測定できるからである。
実施形態を使用できるゼログラフィック装置の概略図である。 実施形態を使用できる像形成装置であって、図1に示すようなゼログラフィック装置の一部分である像形成装置の概略図である。 実施形態に使用されるコンポーネントの概略図である。 光受容体の表面電位・対・ピーク−ピークバイアス荷電ローラー電圧Vp-pを示すグラフである。 p-pの膝値・対・光受容体厚みのグラフである。 バイアスされた荷電ローラーのACインピーダンス・対・光受容体により完成される印刷の数、の傾斜を示すグラフである。 バイアスされた転写ローラーの電流・対・バイアスされた転写ローラーの電圧と光受容体の表面電位との差を示すグラフである。 縦軸上のバイアスされた転写ローラー電圧と光受容体表面電位との間の差・対・横軸上のバイアスされた転写ローラー電流の実験値のグラフで、2つの既知の光受容体厚みに対応する2セットのデータポイントを示すグラフである。 実施形態により光受容体の誘電体厚みを決定する方法の概略フローチャートである。 実施形態によりスレッシュホールド電圧を決定する方法の概略フローチャートである。 実施形態によりバイアスされた荷電ローラーを電気力学電圧計として使用する方法の概略フローチャートである。 実施形態によりバイアスされた転写ローラーを電気力学電圧計として使用する方法の概略フローチャートである。
符号の説明
100:ゼログラフィック装置
110:像形成装置
111:中間転写ベルト
120:転写ステーション
122:バックアップローラー
124:バイアスされた転写ローラー
126:シャフト
130:媒体
140:シート搬送システム
150:溶融ステーション
200:光受容体(PC)
204:光伝導層
206:シリンダー
208:シャフト
210:荷電ステーション
212:バイアスされた荷電ローラー
215:エラストマー層
216:内側シリンダー
218:シャフト
220:レーザスキャン装置
222:コントローラ
224:レーザ
226:回転ミラー
228:モータ
230:トナー付着ステーション
240:前転写ステーション
250:転写ステーション
252:バイアスされた転写ローラー
253:挟み部
260:前清掃ステーション
270:清掃/消去ステーション
310:電子制御システム

Claims (6)

  1. 光受容体と、光受容体荷電サブシステムと、像形成サブシステムと、転写サブシステムとを備えたゼログラフィック装置において、光受容体厚み決定方法が、
    スレッシュホールド電圧を見出すステップと、
    前記スレッシュホールド電圧と誘電体厚みとの関係に基づいて誘電体厚みを決定するステップと、
    を備え、スレッシュホールド電圧を見出す前記ステップは、
    ピーク−ピーク電圧の膝(knee)より低いターゲット電位で前記光受容体を荷電する段階、
    実際の表面電位を測定する段階、
    前記荷電及び測定を繰り返し、前記膝より低い複数の実際の表面電位点を得る段階、
    前記膝より低い前記複数の点に第1の線を適合させる(fitting)段階、
    表面電位・対・ピーク−ピーク電圧空間においてピーク−ピーク電圧の特定値に表面電位軸が位置する状態で前記第1の線の切片値(intercept value)を決定する段階、及び
    前記切片値と、前記荷電サブシステムのコンポーネントに印加されるDC電圧との間の差として前記スレッシュホールド電圧を決定する段階、
    を含むような方法。
  2. 光受容体と、光受容体荷電サブシステムと、像形成サブシステムと、転写サブシステムとを備えたゼログラフィック装置において、光受容体厚み決定方法が、
    スレッシュホールド電圧を見出すステップと、
    前記スレッシュホールド電圧と誘電体厚みとの関係に基づいて誘電体厚みを決定するステップと、
    を備え、スレッシュホールド電圧を見出す前記ステップは、
    ピーク−ピーク電圧の膝より低いターゲット電位で前記光受容体を荷電する段階、
    実際の表面電位を測定する段階、
    前記荷電及び測定を繰り返し、前記膝より低い複数の実際の表面電位点を得る段階、
    前記膝より低い前記複数の点に第1の線を適合させる段階、
    ピーク−ピーク電圧の膝より高いターゲット電位で前記光受容体を荷電する段階、
    実際の表面電位を測定する段階、
    前記荷電及び測定を繰り返し、前記膝より高い複数の実際の表面電位点を得る段階、
    前記膝より高い前記複数の点に第2の線を適合させる段階、
    前記第1及び第2の線の交点を見出して、実際のピーク−ピーク電圧の膝値を見出す段階、及び
    前記実際のピーク−ピーク電圧の膝値の半分として前記スレッシュホールド電圧を決定する段階、
    を含むような方法。
  3. 少なくとも1つの光受容体と、少なくとも1つの光受容体荷電サブシステムと、少なくとも1つの像形成サブシステムと、少なくとも1つの転写サブシステムとを備えたゼログラフィック装置において、光受容体厚み決定方法が、
    光受容体を第1の所定値に荷電するステップと、
    サブシステムのコンポーネントへ第1の所定の電流値で電流を供給するステップと、
    前記コンポーネントの電圧を測定して、第1コンポーネント電圧を得るステップと、
    少なくとも第2の所定荷電値及び少なくとも第2の所定電流値に対して荷電、設定及び測定を繰り返して、少なくとも第2コンポーネント電圧を得るステップと、
    前記第1及び少なくとも第2電圧値に対して最良適合線を計算するステップと、
    前記最良適合線の傾斜を決定するステップと、
    前記傾斜に基づいて誘電体厚みDOPCを計算するステップと、
    を備え、前記誘電体厚みを計算するステップは、
    前記コンポーネントに対するDC電流・対・DC電圧曲線を表わす線の傾斜を決定する段階、
    コンポーネント電流値がゼロの場合のコンポーネント電圧の切片値を見出す段階、
    前記コンポーネント電圧切片値と前記光受容体表面電位との間の関係から前記スレッシュホールド電圧を決定する段階、及び
    前記スレッシュホールド電圧とDOPCとの関係からDOPCを決定する段階、
    によって行なわれる方法。
  4. 少なくとも1つの光受容体と、少なくとも1つの光受容体荷電サブシステムと、少なくとも1つの像形成サブシステムと、少なくとも1つの転写サブシステムとを備えたゼログラフィック装置において、サブシステムのコンポーネントで光受容体表面電位を測定する方法が、
    前記光受容体を放電するステップと、
    前記コンポーネントを一定DC電流モードで動作するステップと、
    前記一定電流動作から生じる前記コンポーネントにまたがる(across)第1電圧を測定するステップと、
    ターゲット表面電位を使用して前記光受容体を荷電するステップと、
    前記コンポーネントを前記一定DC電流モードで動作するステップと、
    前記一定電流動作から生じる前記コンポーネントにまたがる第2電圧を測定するステップと、
    前記ターゲット電位に対する実際の表面電位が、前記第2電圧と第1電圧との間の差となるように決定するステップと、
    を備えた方法。
  5. 少なくとも1つの光受容体と、少なくとも1つの光受容体荷電サブシステムと、少なくとも1つの像形成サブシステムと、少なくとも1つの転写サブシステムとを備えたゼログラフィック装置において、光受容体厚み決定方法が、
    ターゲット電位を使用して前記光受容体を荷電するステップと、
    前記荷電サブシステム、転写サブシステム及びESVの少なくとも1つを使用して実際の光受容体表面電位VOPCを見出すステップと、
    前記光受容体の誘電体厚みを決定するステップと、
    を備え、前記誘電体厚みを決定するステップは、
    転写サブシステムのコンポーネントを一定DC電流モードで動作し、そして誘電体厚みと、前記転写サブシステムにより使用されるDC転写電圧と実際の光受容体表面電位との差との間の関係を使用するか、又は
    少なくとも2つの転写サブシステムコンポーネント電流値に対する転写サブシステムコンポーネント印加電圧及び光受容体表面電位を測定し、転写サブシステムコンポーネント電圧及び表面電位値の各対間の差を決定し、電流及び差の値により表わされた点を結ぶ線の傾斜を決定し、そしてその傾斜を使用して前記誘電体厚みを見出すか、又は
    少なくとも2つの転写サブシステムコンポーネント電流値に対する転写サブシステムコンポーネント印加電圧及び光受容体表面電位を測定し、転写サブシステムコンポーネント電圧及び表面電位値の各対間の差を決定し、電流及び差の値により表わされた点を結ぶ線の傾斜を決定し、転写サブシステムコンポーネント電流に対する転写サブシステムコンポーネント電圧の切片値を見出し、この切片値は、スレッシュホールド電圧を表わすものであり、そして前記スレッシュホールド電圧から誘電体厚みを決定する、
    ことにより行なわれる方法。
  6. 少なくとも1つの光受容体と、少なくとも1つの光受容体荷電サブシステムと、少なくとも1つの像形成サブシステムと、少なくとも1つの転写サブシステムとを備えたゼログラフィック装置において、光受容体厚み決定方法が、荷電サブシステム及び転写サブシステムの一方のコンポーネントにおける電流に伴う電圧の変動を表わす曲線の傾斜を決定するステップを備えた方法。
JP2007324404A 2006-12-22 2007-12-17 バイアスされた荷電/転写ローラーをその場の電圧計及び光受容体厚み検出器として使用する方法並びにその結果でゼログラフィックプロセスを調整する方法 Expired - Fee Related JP4902515B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/644,277 US7747184B2 (en) 2006-12-22 2006-12-22 Method of using biased charging/transfer roller as in-situ voltmeter and photoreceptor thickness detector and method of adjusting xerographic process with results
US11/644,277 2006-12-22

Publications (3)

Publication Number Publication Date
JP2008158519A true JP2008158519A (ja) 2008-07-10
JP2008158519A5 JP2008158519A5 (ja) 2011-02-03
JP4902515B2 JP4902515B2 (ja) 2012-03-21

Family

ID=39542976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324404A Expired - Fee Related JP4902515B2 (ja) 2006-12-22 2007-12-17 バイアスされた荷電/転写ローラーをその場の電圧計及び光受容体厚み検出器として使用する方法並びにその結果でゼログラフィックプロセスを調整する方法

Country Status (2)

Country Link
US (1) US7747184B2 (ja)
JP (1) JP4902515B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306443B2 (en) * 2009-06-26 2012-11-06 Xerox Corporation Multi-color printing system and method for reducing the transfer field through closed-loop controls
US8452201B2 (en) * 2009-11-04 2013-05-28 Xerox Corporation Dynamic field transfer control in first transfer
JP5615004B2 (ja) 2010-03-05 2014-10-29 キヤノン株式会社 高圧制御装置、画像形成装置及び高電圧出力装置
US8200136B2 (en) 2010-08-26 2012-06-12 Xerox Corporation Image transfer roller (ITR) utilizing an elastomer crown
US9170518B2 (en) 2010-08-26 2015-10-27 Xerox Corporation Method and system for closed-loop control of nip width and image transfer field uniformity for an image transfer system
US8548621B2 (en) 2011-01-31 2013-10-01 Xerox Corporation Production system control model updating using closed loop design of experiments
US8526835B2 (en) 2011-04-19 2013-09-03 Xerox Corporation Closed loop controls for transfer control in first transfer for optimized image content
US8611769B2 (en) * 2011-11-22 2013-12-17 Xerox Corporation Method and system for troubleshooting charging and photoreceptor failure modes associated with a xerographic process
JP6445871B2 (ja) * 2015-01-07 2018-12-26 キヤノン株式会社 画像形成装置
JP6631284B2 (ja) * 2016-02-04 2020-01-15 コニカミノルタ株式会社 画像形成装置および感光体膜厚取得方法
WO2020131064A1 (en) * 2018-12-20 2020-06-25 Hewlett-Packard Development Company, L.P. Charge roller voltage determination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208477A (ja) * 2005-01-25 2006-08-10 Sharp Corp 画像形成装置
JP2006267739A (ja) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd 画像形成装置
JP2006276256A (ja) * 2005-03-28 2006-10-12 Fuji Xerox Co Ltd 画像形成装置及び画像欠陥抑制処理監視方法
JP2006276056A (ja) * 2005-03-25 2006-10-12 Fuji Xerox Co Ltd 画像形成装置及び帯電制御方法
JP2006309144A (ja) * 2005-03-29 2006-11-09 Fuji Xerox Co Ltd 画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611665B2 (en) 2002-01-18 2003-08-26 Xerox Corporation Method and apparatus using a biased transfer roll as a dynamic electrostatic voltmeter for system diagnostics and closed loop process controls
US6807390B2 (en) 2002-04-12 2004-10-19 Ricoh Company, Ltd. Image forming apparatus
KR100461298B1 (ko) 2002-07-03 2004-12-14 삼성전자주식회사 화상형성장치의 대전전압 제어장치 및 그 제어방법
US7024125B2 (en) 2003-06-20 2006-04-04 Fuji Xerox Co., Ltd. Charging device and image forming apparatus
US20060165424A1 (en) * 2005-01-26 2006-07-27 Xerox Corporation Xerographic photoreceptor thickness measuring method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208477A (ja) * 2005-01-25 2006-08-10 Sharp Corp 画像形成装置
JP2006267739A (ja) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd 画像形成装置
JP2006276056A (ja) * 2005-03-25 2006-10-12 Fuji Xerox Co Ltd 画像形成装置及び帯電制御方法
JP2006276256A (ja) * 2005-03-28 2006-10-12 Fuji Xerox Co Ltd 画像形成装置及び画像欠陥抑制処理監視方法
JP2006309144A (ja) * 2005-03-29 2006-11-09 Fuji Xerox Co Ltd 画像形成装置

Also Published As

Publication number Publication date
US20080152369A1 (en) 2008-06-26
US7747184B2 (en) 2010-06-29
JP4902515B2 (ja) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4902515B2 (ja) バイアスされた荷電/転写ローラーをその場の電圧計及び光受容体厚み検出器として使用する方法並びにその結果でゼログラフィックプロセスを調整する方法
JP4855379B2 (ja) 荷電装置設定の能動的制御による光伝導体の寿命の改善
US7684719B2 (en) Charging apparatus and image forming apparatus
EP2153285B1 (en) Development monitoring method and system
JP5393284B2 (ja) 画像形成装置
JP3422240B2 (ja) 画像形成装置
US7471906B2 (en) Image forming apparatus and image forming method
JPH10232521A (ja) 画像形成装置
US9298120B2 (en) Image forming apparatus
JP4393212B2 (ja) 画像形成装置
JP2010048950A (ja) 画像形成装置
JP2004054297A (ja) 印刷機及びその制御方法
EP3007006A1 (en) Image forming apparatus
CN108073054B (zh) 图像形成装置以及计算机可读取的记录介质
JP2009122444A (ja) 画像形成装置
JP2009020252A (ja) 電子写真画像形成装置
EP2444849A2 (en) Image forming apparatus capable of providing stable image quality
JP2005018059A (ja) トナー濃度の測定方法
JP2000305342A (ja) 帯電装置及び画像形成装置
JP4825577B2 (ja) 画像形成装置と帯電電圧印加方法および現像バイアス電圧印加方法
JP5489888B2 (ja) 画像形成装置
US9348287B2 (en) Detecting device and image forming apparatus
JP2006091368A (ja) 画像形成装置
JP7256989B2 (ja) 被帯電体表面層厚検知装置、画像形成装置、及び、被帯電体表面層厚検知方法
JP6589889B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees