JP2008154376A - モータ制御装置および電気式動力舵取装置 - Google Patents
モータ制御装置および電気式動力舵取装置 Download PDFInfo
- Publication number
- JP2008154376A JP2008154376A JP2006340255A JP2006340255A JP2008154376A JP 2008154376 A JP2008154376 A JP 2008154376A JP 2006340255 A JP2006340255 A JP 2006340255A JP 2006340255 A JP2006340255 A JP 2006340255A JP 2008154376 A JP2008154376 A JP 2008154376A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- current value
- control
- determination
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
- Power Steering Mechanism (AREA)
Abstract
【課題】モータ電流値の急変動を抑制し得るモータ制御装置および電気式動力舵取装置を提供する。
【解決手段】電気式動力舵取装置10では、ECU50によって、アシストモータ40のq軸実電流値Iqを進み遅れ補償した判定用電流値Ijに基づき比例積分制御が行われる。これにより、比例積分制御では、進み遅れ補償されたq軸実電流値に基づいた制御ができるので、例えば、このような進み遅れ補償のないq軸実電流値に基づいて制御する場合に比べて、q軸実電流値の変動に対する制御の応答を速くすることが可能となる。したがって、モータ電流値の変動に対する比例積分制御を速めてモータ電流値の急変動を抑制することができる。
【選択図】図3
【解決手段】電気式動力舵取装置10では、ECU50によって、アシストモータ40のq軸実電流値Iqを進み遅れ補償した判定用電流値Ijに基づき比例積分制御が行われる。これにより、比例積分制御では、進み遅れ補償されたq軸実電流値に基づいた制御ができるので、例えば、このような進み遅れ補償のないq軸実電流値に基づいて制御する場合に比べて、q軸実電流値の変動に対する制御の応答を速くすることが可能となる。したがって、モータ電流値の変動に対する比例積分制御を速めてモータ電流値の急変動を抑制することができる。
【選択図】図3
Description
本発明は、モータ制御装置および電気式動力舵取装置に関するものである。
従来より、車両のステアリングホイールによる操舵に対応してアシスト力を出力するモータのオーバーシュート電流を抑制する装置として、下記特許文献1に開示されている電動パワーステアリング装置が採用されている。
この電動パワーステアリング装置では、例えば、電動機(10)の駆動軸がロックされて電動機電流(IM)が急変した場合、それに対応した電動機電流信号(IMO)が過電流判定閾値に対する所定値(IMR)を超える。
すると、制御手段(15A)では、電動機電流(IM)に、過電流の原因となるオーバーシュートを生じたと推定して、比例感度(KP)および/または積分ゲイン(KI)を大きくした状態(以下「ゲイン増大状態」という)で比例積分制御を行うことで、上記電動機(10)のロックによる電動機電流(IM)の急変動を抑制している。
特開平11−078919号公報
しかしながら、上述のように、電動機電流信号(IMO)が上記所定値(IMR)を超えたことに基づきゲイン増大状態で比例積分制御を行う場合、電動機(10)がロック状態であっても電動機電流信号(IMO)が上記所定値(IMR)を超えるまでの間は、通常の比例感度(KP)および積分ゲイン(KI)で比例積分制御を行うこととなる。
このため、電動機電流信号(IMO)が上記所定値(IMR)を超えるまでの間、電動機電流(IM)の急変動を抑制することができず、電動機電流信号(IMO)が上記所定値(IMR)を超えてゲイン増大状態になっても直ちにゲイン増大状態の効果が反映されないので、電動機電流(IM)が過電流判定閾値を大きく超え得るという問題がある。
一方、過電流判定閾値を低く設定することにより、上記ロック状態が始まってからゲイン増大状態になるまでの時間を短縮することができる。しかし、このように過電流判定閾値を低く設定すると、上記ロック状態とは無関係に発生する電流ノイズ等に起因して電動機電流信号(IMO)が所定値(IMR)を超えて、本来必要ないゲイン増大状態での比例積分制御を行ってしまうという誤動作が生じ得る問題がある。
本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、モータ電流値の急変動を抑制し得るモータ制御装置および電気式動力舵取装置を提供することにある。
上記目的を達成するため、特許請求の範囲に記載の請求項1のモータ制御装置では、モータの電流値を取得する取得手段と、前記取得手段により取得した電流値(I)を、位相進み時定数をτ1、ラプラス演算素子をSとした場合、「I×(1+τ1×S)」に基づき進み補償した判定用電流値を演算する演算手段と、前記判定用電流値に基づいて前記モータの駆動制御として比例積分制御を行う制御手段と、を備えることを技術的特徴とする。
特許請求の範囲に記載の請求項2のモータ制御装置では、請求項1記載のモータ制御装置において、モータの電流値が所定の閾値よりも大きいか否かまたは小さいか否かを判定する判定手段を備え、制御手段が所定の比例積分利得に基づいて比例積分制御を行うモータ制御装置において、前記判定手段は、前記モータの電流値に代えて前記判定用電流値が前記所定の閾値よりも大きいか否かまたは小さいか否かを判定し、前記制御手段は、前記判定手段による判定結果に基づいて前記所定の比例積分利得を増加させることを技術的特徴とする。
特許請求の範囲に記載の請求項3のモータ制御装置では、請求項1または2記載のモータ制御装置において、前記演算手段は、位相遅れ時定数をτ2とした場合、前記「I×(1+τ1×S)」に代えて、「I×(1+τ1×S)/(1+τ2×S)」に基づき、前記電流値(I)を進み遅れ補償した判定用電流値を演算することを技術的特徴とする。
特許請求の範囲に記載の請求項4の電気式動力舵取装置では、操舵状態を検出し、この操舵状態に応じたアシスト力をモータにより発生させて操舵をアシストする電気式動力舵取装置において、請求項1〜3のいずれか一項に記載のモータ制御装置によって前記モータの駆動制御を行うことを技術的特徴とする。
請求項1の発明では、取得手段により取得したモータの電流値(I)を「I×(1+τ1×S)」に基づき進み補償した判定用電流値に基づいてモータの駆動制御として比例積分制御を行う。これにより、比例積分制御では、進み補償されたモータ電流値に基づいた制御ができるので、例えば、このような進み補償のないモータ電流値に基づいて制御する場合に比べて、モータ電流値の変動に対する制御の応答を速くすることが可能となる。したがって、モータ電流値の変動に対する比例積分制御を速めるので、モータ電流値の急変動を抑制することができる。
請求項2の発明では、判定用電流値が所定の閾値よりも大きいか否かまたは小さいか否かを判定する判定手段の判定結果に基づき比例積分利得を増加させて比例積分制御を行う。これにより、進み補償されたモータ電流値と所定の閾値との関係に基づき比例積分利得を変更して比例積分制御が行われるので、モータ電流値の変動に対する制御の応答を速くし得るモータ制御を可能にする。したがって、モータ電流値の変動に対する比例積分制御を速めるので、モータ電流値の急変動を抑制することができる。
請求項3の発明では、演算手段において、「I×(1+τ×S)/(1+τ2×S)」に基づきモータ電流値を進み遅れ補償する。これにより、位相遅れ時定数τ2を適宜設定することで判定用電流値の耐ノイズ性および応答特性を最適にした状態で、比例積分利得を変更して比例積分制御が行われる。したがって、モータ電流値の急変動を抑制することができる。
請求項4の発明では、請求項1〜3のいずれか一項に記載のモータ制御装置によって、操舵状態を検出し、この操舵状態に応じたアシスト力をモータにより発生させて操舵をアシストする。これにより、モータ電流値の変動に対する制御の応答を速くすることが可能となる等の、請求項1〜3の各発明によるによる作用・効果を享受した電気式動力舵取装置を実現することができる。したがって、モータ電流値の急変動を抑制することができる電気式動力舵取装置を提供することができる。
以下、本発明の実施形態について図を参照して説明する。本実施形態では、本発明のモータ制御装置を、車両に搭載される電気式動力舵取装置に適用した例を説明する。まず、本実施形態に係る電気式動力舵取装置10の構成を図1〜図3に基づいて説明する。
図1〜図3に示すように、電気式動力舵取装置10は、主に、ステアリングホイール21、ステアリング軸22、ピニオン軸23、ラック軸24、トルクセンサ30、アシストモータ40、モータレゾルバ42、ボールねじ機構44等を備える操舵機構20と、この操舵機構20のアシストモータ40を駆動制御するモータ制御装置としてのECU(Electronic Control Unit )50とから構成されている。
電気式動力舵取装置10は、トルクセンサ30により検出された操舵状態に基づいて、アシストモータ40を駆動して運転者による操舵をアシストするものである。なお、ラック軸24の両側には、それぞれタイロッド等を介して図略の操舵輪が連結されている。
図1に示すように、ステアリングホイール21には、ステアリング軸22の一端側が連結され、このステアリング軸22の他端側には、ピニオンハウジング25内に収容されたトルクセンサ30の入力軸23aおよび図略のトーションバーが連結されている。またこのトーションバーの他端側には、ピニオン軸23の出力軸23bがスプライン結合により連結されている。なお、ピニオン軸23の出力軸23bの端部にはピニオンギヤが形成されている。
トルクセンサ30は、入力軸23aとピニオンハウジング25との間に介在する第1レゾルバ35と、出力軸23bとピニオンハウジング25との間に介在する第2レゾルバ37とによって構成されている。このトルクセンサ30は、ステアリングホイール21による操舵状態(操舵トルクや操舵角)を検出する機能を有するもので、ECU50に電気的に接続されている(図2参照)。これにより、後述するように、トルクセンサ30は、第1レゾルバ35により検出される第1操舵角と第2レゾルバ37により検出される第2操舵角との角度差や角度比等から得られるトーションバーの捻れ角相当のトルク信号TsをECU50に出力している。
ラック軸24は、ラックハウジング26およびモータハウジング27内に収容されており、ピニオン軸23のピニオンギヤに噛合可能な図略のラック溝を備えている。これにより、ピニオン軸23とともにラックアンドピニオン機構を構成している。またラック軸24の中間部には、螺旋状にボールねじ溝24aが形成されている。
アシストモータ40は、ラック軸24と同軸に回転可能にベアリング29により軸受される円筒形状のモータ軸43、このモータ軸43の外周に設けられた図略の永久磁石、図略のステータや励磁コイル等により構成されている電動機である。
即ち、このアシストモータ40は、ステータに巻回された例えば3相(U相、V相、W相)分の励磁コイルにより発生する界磁が、回転子に相当するモータ軸43の永久磁石に作用することよって、モータ軸43が回転し得るように構成されている。なお、この励磁コイルに印加される電圧を検出し得る図略の電圧センサおよび励磁コイルに流れる電流(U相実電流値Iu、V相実電流値Iv、W相実電流値Iw)を検出し得る電流センサ47が、それぞれU相、V相、W相ごとにアシストモータ40またはECU50に設けられている。
モータレゾルバ42は、アシストモータ40が収容されているモータハウジング27とモータ軸43との間に設けられており、モータ軸43の回転角(以下「モータ回転角」という。)θmを検出する機能を有するように構成されている。このモータレゾルバ42も、トルクセンサ30と同様、ECU50に電気的に接続され(図2参照)、モータ回転角θmに対応する信号をECU50に出力している。
ボールねじ機構44は、ラック軸24とモータ軸43との間に介在して、モータ軸43の正逆回転の回転トルクをラック軸24の軸線方向における往復動に変換する機能を有するものである。これにより、この往復動は、ラック軸24とともにラックアンドピニオン機構を構成するピニオン軸23を介してステアリングホイール21の操舵力を軽減するアシストカにすることができる。
このように操舵機構20を構成することにより、ステアリングホイール21による操舵状態をトルクセンサ30から出力されるトルク信号Tsにより検出することができ、またモータレゾルバ42から出力されるモータ回転角θmの信号や電流センサ47から出力される3相実電流値Iu,Iv,Iwによってアシストモータ40の動作状態を検出することができる。
次に、このような操舵機構20を構成するアシストモータ40の駆動制御を担うECU50の電気的構成を図2に基づいて説明する。図2に示すように、ECU50は、主に、インターフェイス52、インバータ54、入出力バッファ56、CPU60等により構成されており、CPU60を中心に入出力バスを介してインターフェイス52、インバータ54や入出力バッファ56が接続されている。
CPU60は、例えば、マイコン、半導体メモリ装置(ROM、RAM、EEPROM等)等から構成されており、電気式動力舵取装置10の基本的なモータ制御を所定のコンピュータプログラムにより実行する機能を有するものである。即ち、CPU60は、モータレゾルバ42により検出されたモータ回転角θmに基づいてアシストモータ40をベクトル制御する。
インターフェイス52は、前述したトルクセンサ30やモータレゾルバ42あるいは電流センサ47等から入力される各種センサ信号を、A/D変換器等を介してCPU60の所定ポートに入力したり、またCPU60から出力されるレゾルバ励磁信号をA/D変換器等を介してモータレゾルバ42やトルクセンサ30(第1レゾルバ35、第2レゾルバ37)に出力したりする機能を有するものである。なお、図2では、CPU60からレゾルバに出力されるレゾルバ励磁信号やレゾルバからCPU60に入力される sin相信号や cos相信号は、便宜上、入出力バッファ56を介して入出力されているように図示されているが、この入出力バッファ56はインターフェイス52の概念に含まれるものである。
インバータ54は、直流電源Battから供給される電力を制御可能な3相交流電力に変換する機能を有するもので(図3参照)、PWM回路とスイッチング回路等から構成されている。
これにより、図3に示すECU50では、次述するPI制御(比例積分制御)により、トルクセンサ30のトルク信号Tsやモータレゾルバ42のモータ回転角θmあるいは電流センサ47の3相実電流値Iu,Iv,Iwに基づいて、操舵状態に適したアシストトルクをアシストモータ40に発生させ得るため、電気式動力舵取装置10の操舵機構20では、ステアリングホイール21により操舵する運転者の操舵を補助可能にしている。
次に、ECU50によるアシストモータ40に対するPI制御系の演算処理を図3に基づいて説明する。なおこの演算処理は、ECU50のCPU60により、所定周期(例えば1mSec(ミリ秒))ごとに実行される、例えばタイマ割り込み処理によって行われている。
図3に示すように、トルクセンサ30からCPU60に入力されるトルク信号Tsは、図略のフィルタ回路によりノイズ成分が除去された後、位相補償部61に入力される。位相補償部61では、トルクセンサ30の出力に対する応答性を速くするため位相を進める処理を行った後、位相補償されたトルク信号Tsをアシスト制御部62に出力する。
アシスト制御部62では、位相補償部61から入力されたトルク信号Tsによる検出トルクに基づいて操舵力を補助するため、アシストモータ40に発生させる二次磁束に対する電流値、つまり界磁電流値(d軸電流指令値Id*)と、アシストトルクに対応する電流値、つまりトルク指令電流値(q軸電流指令値Iq*)とを設定する処理を行う。例えば、d軸電流指令値Id*は弱め界磁制御による設定が行われ、q軸電流指令値Iq*は検出トルクに基づいて所定のマップや演算式による設定が行われる。このように設定されたd軸電流指令値Id*およびq軸電流指令値Iq*は、それぞれPI制御部63、64の前段に位置する加算部に出力される。
PI制御部63、64の前段に位置する加算部では、アシスト制御部62から出力される電流指令値Id*,Iq* と、後述する3相2相変換部67から帰還されるインバータ54のd軸,q軸実電流値Id,Iq との偏差を求める加算処理を行う。これにより、d軸電流指令値Id*とd軸実電流値Idとの偏差およびq軸電流指令値Iq*とq軸実電流値Iqとの偏差が、それぞれ算出されてPI制御部63、64に出力される。
PI制御部63、64では、比例積分制御が行われる。即ち、PI制御部63では、前段の加算部から出力されたd軸電流指令値Id*とd軸実電流値Idとの偏差、および、所定の比例感度と積分ゲイン(以下「比例積分利得」という)に後述する利得調整係数設定部68から出力された利得調整係数Kをそれぞれ乗算した値に基づいて比例積分演算を行い、目標値に達するまで積分値の訂正動作としてd軸の電圧指令値Vd*を2相3相変換部65に出力する処理を行う。つまり、PI制御部63は、加算部および利得調整係数設定部68とともにフィードバック演算処理を行う。
またPI制御部64も同様に、q軸電流指令値Iq*とq軸実電流値Iqとの偏差、および比例積分利得に利得調整係数Kを乗算した値に基づいて比例積分演算を行い、目標値に達するまで積分値の訂正動作としてq軸の電圧指令値Vq*を2相3相変換部65に出力する処理を行う。
2相3相変換部65は、PI制御部63、64から、それぞれ入力されたd軸の電圧指令値Vd*およびq軸の電圧指令値Vq*をdq逆変換(3相変換)して、各相の電圧指令値Vu*,Vv*,Vw*を演算する処理を行う。2相3相変換部65により逆変換された電圧指令値は、U相電圧指令値Vu*、V相電圧指令値Vv*、W相電圧指令値Vw*としてPWM変換部66に出力される。PWM変換部66では、各相の電圧指令値Vu*,Vv*,Vw*を各相ごとのPWM指令値PWMu*,PWMv*,PWMw*に変換する処理を行う。
インバータ54では、PWM変換部66から出力される各相のPWM信号PWMu*,PWMv*,PWMw*に基づいて、U相、V相、W相ごとに図略のスイッチング回路をオンオフする。これにより、インバータ54は、直流電源Battから供給される直流電力を3相交流電力に変換してアシストモータ40に駆動電力を供給するので、トルクセンサ30により検出された操舵状態に適したアシストトルクをアシストモータ40に発生させる。そして、インバータ54から出力される出力電流は、各相ごとに電流センサ47に検出され、それぞれU相実電流値Iu、V相実電流値Iv、W相実電流値Iwとして3相2相変換部67に出力される。
モータ回転角演算部69は、モータレゾルバ42から入力される2相出力信号( sin相信号、 cos相信号)に基づいてモータ回転角θmを演算する処理を行う。これにより算出されたモータ回転角θmは、3相2相変換部67に出力される。
3相2相変換部67は、電流センサ47から、それぞれ入力された各相(3相)の実電流値Iu,Iv,Iwをdq変換(2相変換)して、d軸実電流値Idとq軸実電流値Iqとを演算する処理を行う。なおこの3相2相変換部67には、モータ回転角演算部69からモータ回転角θmも入力される。3相2相変換部67により変換されたインバータ54の出力電流値は、d軸,q軸実電流値Id,Iq として前述のPI制御部63、64の前段に位置する加算部にそれぞれフィードバック入力される。これにより、前述したようにPI制御部63、64によるフィードバック演算処理が可能となる。さらにq軸実電流値Iqは、利得調整係数設定部68にも出力される。
利得調整係数設定部68は、まず、3相2相変換部67から入力されたq軸実電流値Iqを次の式(1)により進み遅れ補償して、判定用電流値Ijを算出する。
Ij=Iq×(1+τ1×S)/(1+τ2×S) (1)
なお、τ1およびτ2は、位相進み時定数および位相遅れ時定数であり、Sは、ラプラス演算素子である。
なお、τ1およびτ2は、位相進み時定数および位相遅れ時定数であり、Sは、ラプラス演算素子である。
そして、この判定用電流値Ijの絶対値が過電流判定閾値I0よりも小さいか否かを判定し(以下「過電流判定」という)、判定用電流値Ijの絶対値が過電流判定閾値I0よりも小さい場合には、利得調整係数K=1がPI制御部63、64に出力される。
一方、例えば、アシストモータ40の駆動軸がロック状態(以下「ロック状態」という)となり、判定用電流値Ijの絶対値が過電流判定閾値I0以上になると、利得調整係数K=5がPI制御部63、64に出力される。
この利得調整係数Kは、上述したようにPI制御部63、64にて、比例積分利得に乗算される。このように利得調整係数Kを乗算した比例積分利得に基づいて比例積分制御することにより、比例積分利得を直接変更して比例積分制御する場合と同様の役割、すなわち、急変動するモータ電流値を抑制する役割を果たす。なお、この利得調整係数Kを設定する過程については後述する図4に示すフローチャートにて詳細に説明する。
具体的には、例えば、q軸実電流値Iqを6.0mSec程度位相を進めた判定用電流値Ijで判定するため、位相進み時定数τ1を5.3mSecに設定する。これに対し、位相遅れ時定数τ2は、例えば1.6mSecに設定される。
この位相遅れ時定数τ2の値を大きくすると、判定用電流値Ijの応答が遅くなる反面、電流に含まれるノイズの影響を判定用電流値Ijが受けにくくなることから耐ノイズ性が向上する。一方、位相遅れ時定数τ2を小さくすると、電流に含まれるノイズの影響を判定用電流値Ijが受けやすくなり耐ノイズ性が悪化し誤判定を起こしやすくなる反面、判定用電流値Ijの応答特性が向上する。このため、位相遅れ時定数τ2の値は、耐ノイズ性の向上と応答性の向上とのトレードオフにより適宜決定される。
また、過電流判定閾値I0は、例えば85A(アンペア)に設定される。この過電流判定閾値I0を大きくすると、上記過電流判定において電流に含まれるノイズの影響を受けにくくなり誤判定が起きにくくなる反面、判定用電流値Ijの絶対値が過電流判定閾値I0を超えにくくなるため比例積分利得を大きく変更した状態での比例積分制御の開始時期が遅れる。一方、過電流判定閾値I0を小さくすると、上記過電流判定において電流に含まれるノイズの影響を受けやすくなり誤判定が起きやすくなる反面、判定用電流値Ijの絶対値が過電流判定閾値I0を超えやすくなり比例積分利得を大きく変更した状態での比例積分制御の開始時期が早くなる。
このため、過電流判定閾値I0は、アシストモータ40の最大電流値(例えば、60A(アンペア))よりも大きく、q軸実電流値Iqの最大電流値(例えば、88A(アンペア))よりも小さい値として、適宜決定される。
このようなアシストモータ40のベクトル制御をCPU60により行うことによって、電気式動力舵取装置10の制御が可能となる。ここで、上述した利得調整係数設定部68にて利得調整係数Kを設定する過程を、図4に示すフローチャートを用いて詳細に説明する。
まず、ステップS101にて3相2相変換部67からq軸実電流値Iqを取得すると、ステップS102にて示すように、判定用電流値Ijが上記式(1)にて算出される。なお、ステップS101における処理は、特許請求の範囲に記載の「取得手段」に相当し、ステップS102における処理は、特許請求の範囲に記載の「演算手段」に相当するものである。
次に、ステップS103によって、判定用電流値Ijの絶対値が過電流判定閾値I0よりも小さいか否かについて判定される。ここで、判定用電流値Ijの絶対値が過電流判定閾値I0よりも小さい場合には(S103でYES)、ステップS104にて、利得調整係数K=1と設定される。
一方、判定用電流値Ijの絶対値が過電流判定閾値I0以上である場合には(S103でNO)、ステップS105にて、利得調整係数K=5と設定される。なお、ステップS103における処理は、特許請求の範囲に記載の「判定手段」に相当するものである。
上述のようにステップS104またはステップS105のどちらか1つのステップにて利得調整係数Kが設定されると、ステップS106にて、この設定された利得調整係数KがPI制御部63、64に出力される。なお、ステップS104およびステップS106またはステップS105およびステップS106のどちらか一方における処理は、特許請求の範囲に記載の「制御手段」に相当するものである。
以上のように構成した電気式動力舵取装置10のアシストモータ40におけるq軸実電流値Iqのロック状態前後の時間経過を図5を用いて説明する。なお、図5において実線で示すI1は、本発明を適用したq軸実電流値Iqのロック状態前後における時間経過を示すものであり、細い破線で示すI2は、比較例としてq軸実電流値Iqのロック状態前後における時間経過を示すものである。また、太い破線で示すIjは、q軸実電流値I1を進み遅れ補償して得られた判定用電流値のロック状態前後における時間経過を示すものである。
図5に示すように、q軸実電流値I1は、ロック状態になった後(図5に示す0.002Sec(2mSec)付近)、判定用電流値Ijが過電流判定閾値I0(=85A(アンペア))を超えた時点(図5に示す0.003Sec(3mSec)付近)で、利得調整係数を増加(K=1からK=5に変更)させて得られたものである。
また、図5に示すように、q軸実電流値I2は、上述のようにロック状態になった後、q軸実電流値自体が過電流判定閾値I0を超えた時点(図5に示す0.007Sec(7mSec)付近)で、利得調整係数を増加させて得られたものである。
図5から判るように、本発明を適用した場合、比較例の場合に比べてロック状態になってから利得調整係数Kを増加させるまでの時間が約0.004Sec(4mSec)だけ短縮されている。このため、約0.004Sec(4mSec)だけ早く、増加させた利得調整係数Kで比例積分制御が行われるので、利得調整係数Kを増加させた効果が、q軸実電流の変動の抑制に迅速に反映されることとなる。
具体的には、本発明を適用したq軸実電流値I1の最大値(図5に示す約88A(アンペア))は、比較例のq軸実電流値I2の最大値(図5に示す約92A(アンペア))よりも約4A(アンペア)だけ小さくなるように抑制される。
このように本実施形態に係る電気式動力舵取装置10では、ECU50(モータ制御装置)によって、アシストモータ40のq軸実電流値Iqを進み遅れ補償した判定用電流値Ijに基づき比例積分制御が行われる。これにより、比例積分制御では、進み遅れ補償されたq軸実電流値に基づいた制御ができるので、例えば、このような進み遅れ補償のないq軸実電流値に基づいて制御する場合に比べて、q軸実電流値の変動に対する制御の応答を速くすることが可能となる。したがって、q軸実電流値、すなわち、モータ電流値の変動に対する比例積分制御を速めるので、モータ電流値の急変動を抑制することができる。
また、図5に示すように、本実施形態に係る電気式動力舵取装置10では、ECU50(モータ制御装置)によって、判定用電流値Ijの絶対値が過電流判定閾値I0よりも小さいか否かを判定する過電流判定の判定結果に基づき利得調整係数Kを変更することにより、比例積分利得を増加させて比例積分制御を行う。これにより、進み遅れ補償されたq軸実電流値と過電流判定閾値I0との関係に基づき比例積分利得を変更して比例積分制御が行われるので、q軸実電流値の変動に対する制御の応答を速くし得るモータ制御を可能にする。したがって、q軸実電流値、すなわち、モータ電流値の変動に対する比例積分制御を速めるので、モータ電流値の急変動を抑制することができる。
さらに、本実施形態に係る電気式動力舵取装置10では、ECU50(モータ制御装置)によって、操舵状態を検出し、この操舵状態に応じたアシスト力をモータにより発生させて操舵をアシストすることから、q軸実電流値、すなわち、モータ電流値の変動に対する制御の応答を速くすることが可能となる等の、請求項1〜3の各発明によるによる作用・効果を享受した電気式動力舵取装置を実現することができる。したがって、モータ電流値の急変動を抑制することができる電気式動力舵取装置を提供することができる。
なお、本発明は上記実施形態に限定されるものではなく、以下のように具体化してもよく、その場合でも、上記実施形態と同等もしくはそれ以上の作用・効果が得られる。
(1)判定用電流値Ijの絶対値が過電流判定閾値I0以上になる場合、大きく変更した利得調整係数Kを、軸電流指令値Id*とd軸実電流値Idとの偏差およびq軸電流指令値Iq*とq軸実電流値Iqとの偏差にそれぞれ乗算して比例積分制御することに限らず、比例積分利得を直接大きく変更して比例積分制御するようにしてもよい。
(2)モータの電流値(I)を、上述のごとく「I×(1+τ1×S)/(1+τ2×S)」に基づき進み遅れ補償した判定用電流値Ijに基づいてモータの駆動制御として比例積分制御を行うことに限らす、モータの電流値(I)を「I×(1+τ1×S)」に基づき進み補償した判定用電流値に基づいてモータの駆動制御として比例積分制御を行うようにしてもよい。
10…電気式動力舵取装置
20…操舵機構
40…アシストモータ(モータ)
47…電流センサ(取得手段)
50…ECU(モータ制御装置)
60…CPU(演算手段、制御手段、判定手段)
63,64…PI制御部
67…3相2相変換部
68…利得調整係数設定部
I0…過電流判定閾値
I1,I2…q軸実電流値
Id…d軸実電流値
Id*…d軸電流指令値
Ij…判定用電流値
Iq…q軸実電流値
Iq*…q軸電流指令値
K…利得調整係数
Vd*…d軸の電圧指令値
Vq*…q軸の電圧指令値
τ1…位相進み時定数
τ2…位相遅れ時定数
20…操舵機構
40…アシストモータ(モータ)
47…電流センサ(取得手段)
50…ECU(モータ制御装置)
60…CPU(演算手段、制御手段、判定手段)
63,64…PI制御部
67…3相2相変換部
68…利得調整係数設定部
I0…過電流判定閾値
I1,I2…q軸実電流値
Id…d軸実電流値
Id*…d軸電流指令値
Ij…判定用電流値
Iq…q軸実電流値
Iq*…q軸電流指令値
K…利得調整係数
Vd*…d軸の電圧指令値
Vq*…q軸の電圧指令値
τ1…位相進み時定数
τ2…位相遅れ時定数
Claims (4)
- モータの電流値を取得する取得手段と、
前記取得手段により取得した電流値(I)を、位相進み時定数をτ1、ラプラス演算素子をSとした場合、「I×(1+τ1×S)」に基づき進み補償した判定用電流値を演算する演算手段と、
前記判定用電流値に基づいて前記モータの駆動制御として比例積分制御を行う制御手段と、
を備えるモータ制御装置。 - モータの電流値が所定の閾値よりも大きいか否かまたは小さいか否かを判定する判定手段を備え、制御手段が所定の比例積分利得に基づいて比例積分制御を行うモータ制御装置において、
前記判定手段は、前記モータの電流値に代えて前記判定用電流値が前記所定の閾値よりも大きいか否かまたは小さいか否かを判定し、
前記制御手段は、前記判定手段による判定結果に基づいて前記所定の比例積分利得を増加させることを特徴とする請求項1記載のモータ制御装置。 - 前記演算手段は、位相遅れ時定数をτ2とした場合、前記「I×(1+τ1×S)」に代えて、「I×(1+τ1×S)/(1+τ2×S)」に基づき、前記電流値(I)を進み遅れ補償した判定用電流値を演算することを特徴とする請求項1または2記載のモータ制御装置。
- 操舵状態を検出し、この操舵状態に応じたアシスト力をモータにより発生させて操舵をアシストする電気式動力舵取装置において、
請求項1〜3のいずれか一項に記載のモータ制御装置によって前記モータの駆動制御を行うことを特徴とする電気式動力舵取装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006340255A JP2008154376A (ja) | 2006-12-18 | 2006-12-18 | モータ制御装置および電気式動力舵取装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006340255A JP2008154376A (ja) | 2006-12-18 | 2006-12-18 | モータ制御装置および電気式動力舵取装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008154376A true JP2008154376A (ja) | 2008-07-03 |
Family
ID=39655987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006340255A Pending JP2008154376A (ja) | 2006-12-18 | 2006-12-18 | モータ制御装置および電気式動力舵取装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008154376A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2221235A3 (en) * | 2009-02-23 | 2010-11-03 | Showa Corporation | Electric power steering apparatus, control method thereof and program |
CN112550434A (zh) * | 2019-09-10 | 2021-03-26 | 株式会社捷太格特 | 转向控制装置 |
-
2006
- 2006-12-18 JP JP2006340255A patent/JP2008154376A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2221235A3 (en) * | 2009-02-23 | 2010-11-03 | Showa Corporation | Electric power steering apparatus, control method thereof and program |
EP2409898A1 (en) * | 2009-02-23 | 2012-01-25 | Showa Corporation | Electric power steering apparatus |
US8260500B2 (en) | 2009-02-23 | 2012-09-04 | Showa Corporation | Electric power steering apparatus, control method thereof and computer readable medium |
US8818636B2 (en) | 2009-02-23 | 2014-08-26 | Showa Corporation | Electric power steering apparatus, control method thereof and computer readable medium |
CN112550434A (zh) * | 2019-09-10 | 2021-03-26 | 株式会社捷太格特 | 转向控制装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4737402B2 (ja) | 電動パワーステアリング装置 | |
JP5396948B2 (ja) | モータ制御装置及び電動パワーステアリング装置 | |
EP2398142B1 (en) | Motor control device and electric power steering device | |
US8272474B2 (en) | Electric power steering system | |
WO2011077589A1 (ja) | 電動パワーステアリング装置 | |
JP5672191B2 (ja) | 電動パワーステアリング装置 | |
JP5453714B2 (ja) | モータ制御装置および電動パワーステアリング装置 | |
JP5262931B2 (ja) | 電動パワーステアリング装置 | |
US11251732B2 (en) | Motor control device and motor control method | |
US10696323B2 (en) | Steering control device | |
JP2010167854A (ja) | 電気式動力舵取装置 | |
JP5263079B2 (ja) | 電動パワーステアリング装置 | |
JP5406226B2 (ja) | 電動パワーステアリング装置 | |
US10243489B2 (en) | Rotary electric machine control apparatus and electric power steering apparatus using the same | |
US10343710B2 (en) | Vehicle steering system | |
JP2009046005A (ja) | 電気式動力舵取装置 | |
JP6394885B2 (ja) | 電動パワーステアリング装置 | |
JP2008154376A (ja) | モータ制御装置および電気式動力舵取装置 | |
JP2011057163A (ja) | 電動パワーステアリング装置 | |
JP2008006919A (ja) | 電動パワーステアリング装置 | |
JP2019047568A (ja) | モータ制御装置 | |
JP2008183987A (ja) | 電気式動力舵取装置 | |
JP2008155683A (ja) | 電気式動力舵取装置 | |
JP2008254491A (ja) | 電動パワーステアリング装置 | |
JP5007935B2 (ja) | 電気式動力舵取装置 |