JP2008147943A - Transmission and reception module device and driving method of transmission and reception module - Google Patents

Transmission and reception module device and driving method of transmission and reception module Download PDF

Info

Publication number
JP2008147943A
JP2008147943A JP2006332272A JP2006332272A JP2008147943A JP 2008147943 A JP2008147943 A JP 2008147943A JP 2006332272 A JP2006332272 A JP 2006332272A JP 2006332272 A JP2006332272 A JP 2006332272A JP 2008147943 A JP2008147943 A JP 2008147943A
Authority
JP
Japan
Prior art keywords
transmission
amplifier
period
drain voltage
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006332272A
Other languages
Japanese (ja)
Inventor
Koji Tanaka
宏治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006332272A priority Critical patent/JP2008147943A/en
Publication of JP2008147943A publication Critical patent/JP2008147943A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission and reception module device capable of reducing distortion of a transmission RF output pulse waveform by stabilizing drain voltage. <P>SOLUTION: The transmission and reception module device is provided with a control circuit 13 which alternately switches a first period of time for performing transmission and a second period of time for performing reception, performs pulse drain driving that applies drain voltage to a GaN amplifier 8 during transmission and disconnects the drain voltage from the GaN amplifier 8 during nontransmission when the first period of time is longer than a threshold (prescribed period of time), and performs pulse gate driving that applies a gate control signal to the GaN amplifier 8 during transmission when the first period of time is shorter than a threshold (prescribed period of time) and disconnects the gate control signal from the GaN amplifier 8 during nontransmission while keeping the drain voltage constant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、パルスレーダ装置等に搭載される送受信モジュールであって、特にGaN系材料で作製された半導体素子を実装する送受信モジュールを電源や制御回路とともに装備した送受信モジュール装置および送受信モジュールの駆動方法に関するものである。   The present invention relates to a transmission / reception module mounted on a pulse radar device or the like, and particularly a transmission / reception module device equipped with a transmission / reception module for mounting a semiconductor element made of a GaN-based material together with a power supply and a control circuit, and a method for driving the transmission / reception module It is about.

パルスレーダ装置等に搭載される送受信モジュールとして、従来、GaAs(ガリウムヒ素)で作製された半導体素子を実装する送受信モジュールが用いられている。そして、このGaAs増幅器の駆動方式としては、パルスゲート駆動方式、すなわち、ドレイン電圧を一定に保ちゲート制御信号によりオン・オフさせる駆動方式にて駆動する方法が一般的である(例えば、非特許文献1及び2)。   Conventionally, as a transmission / reception module mounted on a pulse radar device or the like, a transmission / reception module on which a semiconductor element made of GaAs (gallium arsenide) is mounted is used. As a driving method of the GaAs amplifier, a pulse gate driving method, that is, a driving method in which the drain voltage is kept constant and turned on / off by a gate control signal is generally used (for example, non-patent document). 1 and 2).

Introduction to Airborne Radar, George W. Stimson(p329〜p334、p473〜p477)Introduction to Airborne Radar, George W. Stimson (p329-p334, p473-p477) Introduction to Radar Systems, Merrill I. Skolnik(p423〜479)Introduction to Radar Systems, Merrill I. Skolnik (p423-479)

上記従来技術によれば、GaAs増幅器を内蔵する送受信モジュールは、GaAs素子の耐電圧の制約からドレイン電圧は低く電流も小さいため、上記パルスゲート駆動方式によってパルス幅にさほど左右されることなく比較的容易にドレイン電圧を安定化させることができる。   According to the above-described prior art, a transmission / reception module incorporating a GaAs amplifier has a low drain voltage and a small current due to restrictions on the withstand voltage of the GaAs element. Therefore, the transmission / reception module is relatively independent of the pulse width by the pulse gate driving method. The drain voltage can be easily stabilized.

一方、GaN(窒化ガリウム)増幅器を内蔵する送受信モジュールは、GaN素子の耐電圧が高く大電流を流せるという特徴により、高出力化が可能である反面、ドレイン端子にパルス状の大電流が流れるためサグ電圧ドロップが発生し、ドレイン電圧の安定化を図るためには、ドレイン電源側に大きな容量のコンデンサバンクを入れる等の手段を講じる必要がある。特に送信する送信RF出力パルス信号のパルス幅が長くなるほど充放電エネルギーが大きくなるため大きな容量のコンデンサバンクを必要とし、改善が望まれていた。   On the other hand, a transceiver module with a built-in GaN (gallium nitride) amplifier has a high GaN device withstand voltage and allows a large current to flow, so a high output is possible, but a large pulse current flows to the drain terminal. In order to stabilize the drain voltage when a sag voltage drop occurs, it is necessary to take measures such as inserting a capacitor bank having a large capacity on the drain power supply side. In particular, as the pulse width of the transmission RF output pulse signal to be transmitted increases, the charge / discharge energy increases, so a capacitor bank having a large capacity is required, and improvement has been desired.

この発明は上述のような課題を解決するためになされたもので、ドレイン電圧安定化を図り、送信RF出力パルス波形の歪みを削減することのできる送受信モジュール装置及び送受信モジュールの駆動方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a transmission / reception module device and a transmission / reception module driving method capable of stabilizing drain voltage and reducing distortion of a transmission RF output pulse waveform. For the purpose.

上記課題を解決するために、この発明に係る送受信モジュール装置は、送信を行う第1の期間と受信を行う第2の期間とを交互に切り替えながら信号の送受を行う送受信モジュール装置において、送信波を増幅する増幅器と、前記第1の期間が閾値(所定の期間)より長いときには、前記増幅器に対して、送信時にドレイン電圧を印加し非送信時にドレイン電圧を切断するパルスドレイン駆動を行い、前記第1の期間が閾値(所定の期間)より短いときには、前記増幅器に対して、ドレイン電圧を一定に保ち、送信時にゲート制御信号を印加し非送信時にゲート制御信号を切断するパルスゲート駆動を行う制御回路とを備えたことを特徴とする。   In order to solve the above-described problem, a transmission / reception module apparatus according to the present invention is a transmission / reception module apparatus that transmits and receives signals while alternately switching between a first period for transmission and a second period for reception. When the first period is longer than a threshold value (predetermined period), the amplifier performs pulse drain driving for applying a drain voltage during transmission and cutting the drain voltage during non-transmission. When the first period is shorter than the threshold (predetermined period), the amplifier is pulse-gate driven to keep the drain voltage constant, apply a gate control signal during transmission, and disconnect the gate control signal during non-transmission. And a control circuit.

また、この発明に係る送受信モジュール装置は、交互に切り替わる送信を行う第1の期間と受信を行う第2の期間とに応じて送受信信号の経路を切り替える切り替え手段、送受信信号の位相を調整する移相器、送受信信号の振幅を調整する減衰器、送信信号を所定のレベルに増幅する第1の増幅器、GaN系材料で作製された半導体素子を搭載し前記第1の増幅器の出力信号を大電力化する第2の増幅器、受信信号の不要波信号を除去するフィルタ、及び送信時にはブランキングをかけるとともに受信信号を適切なレベルに増幅する低雑音増幅器を有する送受信モジュールと、前記第2の増幅器のドレイン電圧を供給する電源と、前記第1の期間が閾値(所定の期間)より長いときには、前記第2の増幅器に対して、送信時にドレイン電圧を印加し非送信時にドレイン電圧を切断するパルスドレイン駆動を行い、前記第1の期間が閾値(所定の期間)より短いときには、前記第2の増幅器に対して、ドレイン電圧を一定に保ち、送信時にゲート制御信号を印加し非送信時にゲート制御信号を切断するパルスゲート駆動を行う制御回路とを備えたことを特徴とする。   Further, the transmission / reception module device according to the present invention includes a switching unit that switches a path of a transmission / reception signal according to a first period in which transmission is switched alternately and a second period in which reception is performed, and a shift that adjusts the phase of the transmission / reception signal. A phase shifter, an attenuator that adjusts the amplitude of a transmission / reception signal, a first amplifier that amplifies the transmission signal to a predetermined level, and a semiconductor element made of a GaN-based material are mounted, and the output signal of the first amplifier is a high power A transmission / reception module having a second amplifier for converting, a filter for removing an unnecessary wave signal of a reception signal, a low noise amplifier for performing blanking at the time of transmission and amplifying the reception signal to an appropriate level, and When the power source for supplying the drain voltage and the first period is longer than a threshold value (predetermined period), the drain voltage is set to the second amplifier during transmission. When the first period is shorter than a threshold value (predetermined period), the drain voltage is kept constant with respect to the second amplifier and the transmission is performed during transmission. And a control circuit for performing pulse gate driving for applying a gate control signal and cutting the gate control signal at the time of non-transmission.

さらにまた、この発明に係る送受信モジュールの駆動方法は、送信を行う第1の期間と受信を行う第2の期間とを交互に切り替えながら信号の送受を行う送受信モジュールの駆動方法において、送信波を増幅する増幅器に対して、前記第1の期間が閾値(所定の期間)より長いときには、送信時にドレイン電圧を印加し非送信時にドレイン電圧を切断するパルスドレイン駆動を行い、前記第1の期間が閾値(所定の期間)より短いときには、ドレイン電圧を一定に保ち、送信時にゲート制御信号を印加し非送信時にゲート制御信号を切断するパルスゲート駆動を行うことを特徴とする。   Furthermore, the transmission / reception module driving method according to the present invention is a transmission / reception module driving method for transmitting / receiving signals while alternately switching between a first period for transmission and a second period for reception. When the first period is longer than a threshold value (predetermined period) for the amplifier to be amplified, pulse drain driving is performed in which a drain voltage is applied during transmission and the drain voltage is disconnected during non-transmission. When it is shorter than a threshold value (predetermined period), the gate voltage is kept constant, the gate control signal is applied during transmission, and the gate control signal is cut off during non-transmission.

第1の期間が閾値(所定の期間)より長いとき、すなわち、送信する送信RF出力パルス信号のパルス幅が所定の長さより長い場合には、送信時にドレイン電圧を印加し非送信時にドレイン電圧を切断するパルスドレイン駆動を行うことで、ドレイン電圧安定化を図って送信RF出力パルス波形の歪みによる装置性能の劣化を緩和し、第1の期間が閾値(所定の期間)より短いときには、すなわち、送信する送信RF出力パルス信号のパルス幅が所定の長さより短い場合には、ドレイン電圧を一定に保ち、送信時にゲート制御信号を印加し非送信時にゲート制御信号を切断するパルスゲート駆動を行うことで、受信期間が短くなるデメリットを回避する。   When the first period is longer than the threshold (predetermined period), that is, when the pulse width of the transmission RF output pulse signal to be transmitted is longer than the predetermined length, the drain voltage is applied during transmission and the drain voltage is set during non-transmission. By performing the pulse drain driving to cut off, the drain voltage is stabilized to reduce the deterioration of the device performance due to the distortion of the transmission RF output pulse waveform, and when the first period is shorter than the threshold (predetermined period), that is, When the pulse width of the transmission RF output pulse signal to be transmitted is shorter than a predetermined length, pulse gate driving is performed to keep the drain voltage constant and apply the gate control signal during transmission and disconnect the gate control signal during non-transmission. Thus, the disadvantage of shortening the reception period is avoided.

以下、本発明に係る送受信モジュール装置及び送受信モジュールの駆動方法の実施の形態を図面に基づいて詳細に説明する。例えばパルスレーダ装置に搭載されるGaN増幅器内蔵の送受信モジュールに対しては、従来のパルスゲート駆動方式では、ドレイン端子にパルス状の大電流が流れることでドレイン電圧にサグ電圧ドロップが発生し、これを起因として送信RF出力パスル波形歪みが発生する。以下の実施の形態はこれを防ぐことを課題とするものである。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a transceiver module device and a transceiver module driving method according to the present invention will be described below in detail with reference to the drawings. For example, for a transmission / reception module with a built-in GaN amplifier mounted on a pulse radar device, a sag voltage drop occurs in the drain voltage due to a large pulsed current flowing through the drain terminal in the conventional pulse gate drive system. Causes transmission RF output pulse waveform distortion. The following embodiments are intended to prevent this. Note that the present invention is not limited to the embodiments.

実施の形態
図1は本発明に係る送受信モジュール装置の実施の形態の機能ブロック図である。図1において、本実施の形態の送受信モジュール装置は、送受信モジュール1、電源12、及び制御回路13から構成されている。図1中点線で囲まれた部分が送受信モジュール1である。
Embodiment FIG. 1 is a functional block diagram of an embodiment of a transceiver module device according to the present invention. In FIG. 1, the transmission / reception module device of the present embodiment includes a transmission / reception module 1, a power supply 12, and a control circuit 13. A portion surrounded by a dotted line in FIG.

送受信モジュール1は、送信時と受信時の信号経路の切り替えを行うスイッチ2,3,6と、送受信信号の位相を調整する移相器4と、送受信信号の振幅を調整する減衰器5と、送信信号を適切なレベルに増幅するドライバ増幅器(第1の増幅器)7と、GaNで作製された半導体素子(トランジスタ)を搭載しドライバ増幅器7の出力信号を大電力化する増幅器(第2の増幅器)8と、送受を切り替えて送信信号と受信信号とを分離するサーキュレータ9と、受信信号の不要波信号を除去するフィルタ10と、送信時にはブランキングをかけながら受信時には受信信号を適切なレベルに増幅する低雑音増幅器11とから構成されている。   The transmission / reception module 1 includes switches 2, 3, and 6 that switch signal paths during transmission and reception, a phase shifter 4 that adjusts the phase of the transmission / reception signal, an attenuator 5 that adjusts the amplitude of the transmission / reception signal, A driver amplifier (first amplifier) 7 that amplifies a transmission signal to an appropriate level and an amplifier (second amplifier) that includes a semiconductor element (transistor) made of GaN and increases the output signal of the driver amplifier 7 ) 8, a circulator 9 that switches between transmission and reception to separate a transmission signal and a reception signal, a filter 10 that removes an unnecessary wave signal from the reception signal, and a blanking signal at the time of transmission and a reception signal at an appropriate level at the time of reception And a low noise amplifier 11 for amplification.

スイッチ2,3,6とサーキュレータ9とは、上位装置から与えられる送受切替信号により、送受信モジュールの送信受信の切り替え及び送受信信号の経路の切り替えを行う切り替え手段を構成している。電源12は、増幅器8のドレイン電圧を供給する。制御回路13は、増幅器8に入力する増幅器ゲート信号と低雑音増幅器11に入力する受信ゲート信号を発生する。このような構成の送受信モジュール装置が、上位装置の一例としてパルスレーダ装置に搭載されているものとして説明する。   The switches 2, 3 and 6 and the circulator 9 constitute switching means for switching transmission / reception of the transmission / reception module and switching of the path of the transmission / reception signal by a transmission / reception switching signal given from the host device. The power supply 12 supplies the drain voltage of the amplifier 8. The control circuit 13 generates an amplifier gate signal input to the amplifier 8 and a reception gate signal input to the low noise amplifier 11. The transmission / reception module device having such a configuration will be described as being mounted on a pulse radar device as an example of a host device.

なお、本実施の形態の増幅器8は、GaNで作製された半導体素子を搭載するものであるが、GaNに限らずGaN系材料であれば概略同様の効果を得ることができる。ここで、GaN系材料とは、Ga組成の一部をAl(アルミニウム) やIn(インジウム) に置き換えたものを総称している。   The amplifier 8 of the present embodiment mounts a semiconductor element made of GaN. However, not only GaN but also a GaN-based material can provide substantially the same effect. Here, the GaN-based material is a generic term for materials in which a part of the Ga composition is replaced with Al (aluminum) or In (indium).

次ぎに動作を説明する。送信時に給電回路(図示せず)側から入力される送信RF入力信号は、スイッチ2、及びスイッチ3によって送信時に適宜信号の経路が切り替えられ、移相器4及び減衰器5により位相及び振幅がそれぞれ適切に調整された後に、スイッチ6を経由してドライバ増幅器7に送られ増幅器8に必要な入力レベルまで電力増幅された後に、増幅器8でさらに大電力化される。増幅器8は制御回路13から入力する増幅器ゲート信号によりゲードバイアスが印加された時のみ増幅し、それ以外のタイミングではピンチオフとなり増幅しない。大電力化された信号はサーキュレータ9を経由してアンテナ(図示せず)に送られる。   Next, the operation will be described. The transmission RF input signal inputted from the power feeding circuit (not shown) side at the time of transmission is appropriately switched at the time of transmission by the switch 2 and the switch 3, and the phase and amplitude are shifted by the phase shifter 4 and the attenuator 5. After each adjustment, the power is amplified by the amplifier 8 after being sent to the driver amplifier 7 via the switch 6 and amplified to the input level necessary for the amplifier 8. The amplifier 8 amplifies only when a gate bias is applied by an amplifier gate signal input from the control circuit 13, and does not amplify at other timings because it is pinched off. The high power signal is sent to an antenna (not shown) via the circulator 9.

一方、受信時にアンテナから入力される受信信号は、サーキュレータ9を経由してフィルタ10に送られて不要信号が除去され、低雑音増幅器11で適切なレベルに増幅される。低雑音増幅器11は、制御回路13から入力する受信ゲート信号によりゲードバイアスが印加された時のみ増幅し、それ以外のタイミングではピンチオフとなり増幅しない。そして、送信RFパルス出力信号を出力している間は、送信RFパルス出力信号が受信系に漏れこむことを防ぐ目的で、受信ゲート信号によって低雑音増幅器11のブランキングをかける。その後受信信号は、スイッチ3で切替えられて移相器4、減衰器5でそれぞれ位相と振幅を適宜調整され、スイッチ6、スイッチ2を経由して給電回路側に送られる。   On the other hand, the received signal input from the antenna at the time of reception is sent to the filter 10 via the circulator 9 to remove unnecessary signals, and is amplified to an appropriate level by the low noise amplifier 11. The low noise amplifier 11 amplifies only when a gate bias is applied by the reception gate signal input from the control circuit 13, and does not amplify at other timings because it is pinched off. While the transmission RF pulse output signal is being output, the low-noise amplifier 11 is blanked by the reception gate signal in order to prevent the transmission RF pulse output signal from leaking into the reception system. Thereafter, the received signal is switched by the switch 3, the phase and amplitude are appropriately adjusted by the phase shifter 4 and the attenuator 5, and sent to the power feeding circuit side via the switch 6 and the switch 2.

ここで、図1の送受信モジュール1を従来の駆動方式にて駆動した場合の各種制御信号と送信RF出力パルス信号の関係を図2で説明する。従来のゲートパルス駆動方式では、ドレイン電圧は一定に保たれ、送信RF入力パルス信号と同期したパルスゲート信号が印加されて増幅器8が駆動する。   Here, the relationship between the various control signals and the transmission RF output pulse signal when the transmission / reception module 1 of FIG. 1 is driven by the conventional driving method will be described with reference to FIG. In the conventional gate pulse driving method, the drain voltage is kept constant, and a pulse gate signal synchronized with the transmission RF input pulse signal is applied to drive the amplifier 8.

しかしながら、GaN素子を活用した増幅器8では、パルスゲート信号が印加された時にパルス状の大電流が流れるために、図2のドレイン電圧波形15に示されるようにドレイン電圧にサグ電圧ドロップが発生する。その結果、増幅器8で増幅された送信RF出力パルス信号の振幅レベルはドレイン電圧に比例してパルス後方に向かって減衰してしまう(図2の波形18)。この送信RF出力パルス信号は、サーキュレータ9を経由してそのままアンテナから送信されることになる。   However, in the amplifier 8 using the GaN element, a large pulse current flows when a pulse gate signal is applied, so that a sag voltage drop occurs in the drain voltage as shown by the drain voltage waveform 15 in FIG. . As a result, the amplitude level of the transmission RF output pulse signal amplified by the amplifier 8 is attenuated toward the rear of the pulse in proportion to the drain voltage (waveform 18 in FIG. 2). This transmission RF output pulse signal is transmitted as it is from the antenna via the circulator 9.

歪んだ送信RF出力パルス波形は、ターゲットからのエコー信号も歪ませることになり、レーダ装置の性能に悪影響を与えることになる。この現象は、パルス幅が長くなればなる程サグ電圧ドロップが大きくなるので、悪影響の現象が顕著になってくる。   The distorted transmission RF output pulse waveform also distorts the echo signal from the target, which adversely affects the performance of the radar apparatus. In this phenomenon, the sag voltage drop becomes larger as the pulse width becomes longer, so that the adverse effect phenomenon becomes remarkable.

次に、図1の送受信モジュール1を本実施の形態の駆動方式にて駆動した場合の各種制御信号と送信RF出力パルス信号の関係を説明する。まず、送信RF出力パルス信号のパルス幅が長い場合を図3で説明する。送信RF出力パルス信号のパルス幅が長い場合は、ドレイン電圧を送信RF入力パルス信号と同期したタイミングで印加するパルスドレイン駆動方式によって行う。GaN増幅器のドレイン電圧はGaAs増幅器のものよりもかなり高いので、図3のドレイン電圧波形21に示すように、パルスドレイン電圧の立上り及び立下り時間が長くなり、その結果、受信ゲート信号波形24に示すように、レーダ受信期間が短くなるデメリットが発生する。しかしながら、この場合、送信RF出力パルス信号が長パスルであり、パルスデューティーが極端に高くない限り一般的な運用では立上り及び立下り時間のレーダ受信期間への影響は問題にならない。   Next, the relationship between various control signals and transmission RF output pulse signals when the transmission / reception module 1 of FIG. 1 is driven by the driving method of the present embodiment will be described. First, the case where the pulse width of the transmission RF output pulse signal is long will be described with reference to FIG. When the pulse width of the transmission RF output pulse signal is long, it is performed by a pulse drain driving method in which the drain voltage is applied at a timing synchronized with the transmission RF input pulse signal. Since the drain voltage of the GaN amplifier is considerably higher than that of the GaAs amplifier, the rise and fall times of the pulse drain voltage are lengthened as shown in the drain voltage waveform 21 of FIG. As shown, there is a disadvantage that the radar reception period is shortened. However, in this case, as long as the transmission RF output pulse signal is a long pulse and the pulse duty is not extremely high, the influence of the rise and fall times on the radar reception period is not a problem in general operation.

ドレイン電圧は、送信RF出力パルス信号を出力している期間のみ安定化していれば良いので、電源12内の補助電源回路(図示せず)の導入等でドレイン電圧安定化の実現は容易である。また従来のゲートパルス駆動方式に比べてコンデンサバンクの容量を小さくできるというメリットも得られる。このように動作させることにより、増幅器8から出力される送信RF出力パルス波形の歪みを抑えることができる。   Since the drain voltage only needs to be stabilized only during the period during which the transmission RF output pulse signal is output, it is easy to realize the drain voltage stabilization by introducing an auxiliary power circuit (not shown) in the power source 12 or the like. . Further, there is an advantage that the capacity of the capacitor bank can be reduced as compared with the conventional gate pulse driving method. By operating in this way, distortion of the transmission RF output pulse waveform output from the amplifier 8 can be suppressed.

一方、本実施の形態の送信RF出力パルス信号のパルス幅が短い場合における各種制御信号と送信RF出力パルス信号の関係を図4で説明する。送信RF出力パルス信号のパルス幅が短い場合は、パルスドレイン電圧の立上り及び立下り時間が受信期間に入り込んでくる割合が高まり、パルスレーダ装置のターゲット検知性能への影響が大きくなるので、図4の増幅器ゲート信号波形27に示されるように、ゲートパルス駆動方式を採用してドレイン電圧の立上り及び立下りの影響を無くして受信期間を十分に確保する。   On the other hand, the relationship between various control signals and the transmission RF output pulse signal when the pulse width of the transmission RF output pulse signal of this embodiment is short will be described with reference to FIG. When the pulse width of the transmission RF output pulse signal is short, the rate at which the rise and fall times of the pulse drain voltage enter the reception period increases, and the influence on the target detection performance of the pulse radar device increases. As shown in the amplifier gate signal waveform 27, the gate pulse driving method is employed to eliminate the influence of the rise and fall of the drain voltage and to ensure a sufficient reception period.

上述の通り、ドレイン電圧のサグ電圧ドロップの大きさはパスル幅に比例するので、短パスル時のドレイン電圧ドロップは小さく、その結果送信RF出力パルス信号の歪みも小さくなり、パルスレーダ装置の性能劣化を抑えることができる。   As described above, since the magnitude of the sag voltage drop of the drain voltage is proportional to the pulse width, the drain voltage drop at the time of the short pulse is small, and as a result, the distortion of the transmission RF output pulse signal is also small, and the performance of the pulse radar device is deteriorated. Can be suppressed.

長パルスと短パルスの運用上の区切り、すなわち、パルスドレイン駆動方式とパルスゲート駆動方式の切り替えの閾値は、増幅器8のドレイン電圧供給電源12のコンデンサバンク容量、電源駆動能力、及びドレイン電圧立上り立下り時間による受信ゲート短縮許容期間等の兼ね合いで決定することができる。   The threshold for switching between the long pulse and the short pulse, that is, the threshold value for switching between the pulse drain drive system and the pulse gate drive system, is the capacitor bank capacity of the drain voltage supply power source 12 of the amplifier 8, the power supply drive capability, and the rise of the drain voltage. This can be determined by taking into account the reception gate shortening allowable period according to the down time.

上記の通り、パルスドレイン駆動方式とパルスゲート駆動方式を併用しながらパルス幅に応じてGaN増幅器の駆動方式を適宜変えることで、同じ送受信モジュールで使用できるパスル幅の最大値と最小値に幅を持たせることができ、レーダ捜索、追尾の対応領域を広げることができる。   As described above, by using the pulse drain drive method and the pulse gate drive method in combination, the GaN amplifier drive method is appropriately changed according to the pulse width, so that the maximum and minimum pulse widths that can be used in the same transceiver module are increased. Can be provided, and the corresponding area of radar search and tracking can be expanded.

この発明は、パルスレーダ装置やフェーズドアレイレーダ装置に搭載される送受信モジュールに適用されて好適なものである。   The present invention is suitably applied to a transmission / reception module mounted on a pulse radar device or a phased array radar device.

本発明に係る送受信モジュール装置の実施の形態の機能ブロック図である。It is a functional block diagram of an embodiment of a transceiver module device concerning the present invention. 図1の送受信モジュールを従来の駆動方式にて駆動した場合の各種制御信号と送信RF出力パルス信号の関係を示す図である。It is a figure which shows the relationship between the various control signals at the time of driving the transmission / reception module of FIG. 1 with the conventional drive system, and a transmission RF output pulse signal. 図1の送受信モジュールをこの発明に係る駆動方式にて駆動した場合の各種制御信号と送信RF出力パルス信号の関係のうち、送信RF出力パルス信号のパルス幅が長い場合を示す図である。It is a figure which shows the case where the pulse width of a transmission RF output pulse signal is long among the relationship between the various control signals at the time of driving the transmission / reception module of FIG. 1 with the drive system which concerns on this invention, and a transmission RF output pulse signal. 図1の送受信モジュールをこの発明に係る駆動方式にて駆動した場合の各種制御信号と送信RF出力パルス信号の関係のうち、送信RF出力パルス信号のパルス幅が短い場合を示す図である。It is a figure which shows the case where the pulse width of a transmission RF output pulse signal is short among the relationship between the various control signals at the time of driving the transmission / reception module of FIG. 1 by the drive system which concerns on this invention, and a transmission RF output pulse signal.

符号の説明Explanation of symbols

1 送受信モジュール
2,3,6 スイッチ(切り替え手段)
4 移相器
5 減衰器
7 増幅器(第1の増幅器)
8 GaN増幅器(第2の増幅器)
9 サーキュレータ(切り替え手段)
10 フィルタ
11 低雑音増幅器
12 電源
13 制御回路
14 送信RF入力パルス信号
15 ドレイン電圧
16 増幅器ゲート信号
17 送信RF出力パルス信号
18 送信RF出力パスル信号
19 受信ゲート信号
20 送信RF入力パルス信号
21 ドレイン電圧
22 増幅器ゲート信号
23 送信RF出力パルス信号
24 受信ゲート信号
25 送信RF入力パルス信号
26 ドレイン電圧
27 増幅器ゲート信号
28 送信RF出力パルス信号
29 受信ゲート信号
1 Transceiver module 2, 3, 6 Switch (switching means)
4 Phase shifter 5 Attenuator 7 Amplifier (first amplifier)
8 GaN amplifier (second amplifier)
9 Circulator (switching means)
DESCRIPTION OF SYMBOLS 10 Filter 11 Low noise amplifier 12 Power supply 13 Control circuit 14 Transmission RF input pulse signal 15 Drain voltage 16 Amplifier gate signal 17 Transmission RF output pulse signal 18 Transmission RF output pulse signal 19 Reception gate signal 20 Transmission RF input pulse signal 21 Drain voltage 22 Amplifier gate signal 23 Transmission RF output pulse signal 24 Reception gate signal 25 Transmission RF input pulse signal 26 Drain voltage 27 Amplifier gate signal 28 Transmission RF output pulse signal 29 Reception gate signal

Claims (8)

送信を行う第1の期間と受信を行う第2の期間とを交互に切り替えながら信号の送受を行う送受信モジュール装置において、
送信波を増幅する増幅器と、
前記第1の期間が閾値より長いときには、前記増幅器に対して、送信時にドレイン電圧を印加し非送信時にドレイン電圧を切断するパルスドレイン駆動を行い、前記第1の期間が閾値より短いときには、前記増幅器に対して、ドレイン電圧を一定に保ち、送信時にゲート制御信号を印加し非送信時にゲート制御信号を切断するパルスゲート駆動を行う制御回路と
を備えたことを特徴とする送受信モジュール装置。
In a transmission / reception module device that transmits and receives signals while alternately switching between a first period for transmission and a second period for reception,
An amplifier for amplifying the transmission wave;
When the first period is longer than a threshold, the amplifier is subjected to pulse drain driving that applies a drain voltage during transmission and disconnects the drain voltage during non-transmission, and when the first period is shorter than the threshold, A transmission / reception module device comprising: a control circuit that performs pulse gate driving for maintaining a drain voltage constant, applying a gate control signal during transmission, and cutting the gate control signal during non-transmission to the amplifier.
前記増幅器がGaN系材料で作製された半導体素子を搭載する
ことを特徴とする請求項1に記載の送受信モジュール装置。
The transceiver module device according to claim 1, wherein the amplifier includes a semiconductor element made of a GaN-based material.
前記GaN系材料がGaNである
ことを特徴とする請求項2に記載の送受信モジュール装置。
The transmission / reception module device according to claim 2, wherein the GaN-based material is GaN.
前記閾値は、前記増幅器のドレイン電圧供給電源のコンデンサバンク容量、電源駆動能力、及びドレイン電圧立上り立下り時間による受信ゲート短縮許容期間の少なくともいずれか1つから決定される
ことを特徴とする請求項1から3のいずれか1項に記載の送受信モジュール装置。
The threshold value is determined from at least one of a capacitor bank capacity of a drain voltage supply power source of the amplifier, a power supply driving capability, and a reception gate shortening allowable period according to a drain voltage rising / falling time. 4. The transmission / reception module device according to any one of 1 to 3.
交互に切り替わる送信を行う第1の期間と受信を行う第2の期間とに応じて送受信信号の経路を切り替える切り替え手段、
送受信信号の位相を調整する移相器、
送受信信号の振幅を調整する減衰器、
送信信号を所定のレベルに増幅する第1の増幅器、
GaN系材料で作製された半導体素子を搭載し前記第1の増幅器の出力信号を大電力化する第2の増幅器、
受信信号の不要波信号を除去するフィルタ、及び
送信時にはブランキングをかけるとともに受信信号を適切なレベルに増幅する低雑音増幅器を有する送受信モジュールと、
前記第2の増幅器のドレイン電圧を供給する電源と、
前記第1の期間が閾値より長いときには、前記第2の増幅器に対して、送信時にドレイン電圧を印加し非送信時にドレイン電圧を切断するパルスドレイン駆動を行い、
前記第1の期間が閾値より短いときには、前記第2の増幅器に対して、ドレイン電圧を一定に保ち、送信時にゲート制御信号を印加し非送信時にゲート制御信号を切断するパルスゲート駆動を行う制御回路と
を備えたことを特徴とする送受信モジュール装置。
Switching means for switching the path of the transmission / reception signal in accordance with a first period in which transmission is switched alternately and a second period in which reception is performed;
A phase shifter that adjusts the phase of transmitted and received signals,
An attenuator that adjusts the amplitude of transmitted and received signals,
A first amplifier for amplifying the transmission signal to a predetermined level;
A second amplifier which mounts a semiconductor element made of a GaN-based material and increases the output signal of the first amplifier;
A filter that removes unwanted wave signals from the received signal, and a transmission / reception module having a low-noise amplifier that applies blanking during transmission and amplifies the received signal to an appropriate level;
A power supply for supplying a drain voltage of the second amplifier;
When the first period is longer than a threshold value, pulse drain driving is performed on the second amplifier to apply a drain voltage during transmission and cut the drain voltage during non-transmission,
When the first period is shorter than a threshold value, the second amplifier is controlled to perform pulse gate driving that maintains a drain voltage constant, applies a gate control signal during transmission, and disconnects the gate control signal during non-transmission. And a transmission / reception module device.
送信を行う第1の期間と受信を行う第2の期間とを交互に切り替えながら信号の送受を行う送受信モジュールの駆動方法において、
送信波を増幅する増幅器に対して、
前記第1の期間が閾値より長いときには、送信時にドレイン電圧を印加し非送信時にドレイン電圧を切断するパルスドレイン駆動を行い、
前記第1の期間が閾値より短いときには、ドレイン電圧を一定に保ち、送信時にゲート制御信号を印加し非送信時にゲート制御信号を切断するパルスゲート駆動を行う
ことを特徴とする送受信モジュールの駆動方法。
In a driving method of a transmission / reception module that transmits and receives signals while alternately switching between a first period for transmitting and a second period for receiving,
For an amplifier that amplifies the transmitted wave,
When the first period is longer than a threshold value, pulse drain driving is performed to apply a drain voltage during transmission and disconnect the drain voltage during non-transmission,
When the first period is shorter than a threshold value, the drain voltage is kept constant, and the gate control signal is applied during transmission and the gate control signal is disconnected during non-transmission. .
前記増幅器をGaN系材料で作製された半導体素子を搭載する増幅器とする
ことを特徴とする請求項6に記載の送受信モジュールの駆動方法。
The transmission / reception module driving method according to claim 6, wherein the amplifier is an amplifier on which a semiconductor element made of a GaN-based material is mounted.
前記閾値を、前記増幅器のドレイン電圧供給電源のコンデンサバンク容量、電源駆動能力、及びドレイン電圧立上り立下り時間による受信ゲート短縮許容期間の少なくともいずれか1つから決定する
ことを特徴とする請求項6または7に記載の送受信モジュールの駆動方法。
The threshold value is determined from at least one of a capacitor bank capacity of a drain voltage supply power source of the amplifier, a power supply driving capability, and a reception gate shortening allowable period depending on a drain voltage rising / falling time. Or a transmitting / receiving module driving method according to 7;
JP2006332272A 2006-12-08 2006-12-08 Transmission and reception module device and driving method of transmission and reception module Pending JP2008147943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332272A JP2008147943A (en) 2006-12-08 2006-12-08 Transmission and reception module device and driving method of transmission and reception module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332272A JP2008147943A (en) 2006-12-08 2006-12-08 Transmission and reception module device and driving method of transmission and reception module

Publications (1)

Publication Number Publication Date
JP2008147943A true JP2008147943A (en) 2008-06-26

Family

ID=39607631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332272A Pending JP2008147943A (en) 2006-12-08 2006-12-08 Transmission and reception module device and driving method of transmission and reception module

Country Status (1)

Country Link
JP (1) JP2008147943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181268A (en) * 2009-02-05 2010-08-19 Toshiba Corp Transmission module for radar system
JP2010197295A (en) * 2009-02-26 2010-09-09 Toshiba Corp Phased array radar
CN111239739A (en) * 2020-01-10 2020-06-05 上海眼控科技股份有限公司 Weather radar echo map prediction method and device, computer equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873210A (en) * 1981-10-27 1983-05-02 Nec Corp Pulsively operated amplifying circuit
JPS63269815A (en) * 1987-04-28 1988-11-08 Nec Corp Waveform correction circuit
JP2000269748A (en) * 1999-03-19 2000-09-29 Japan Radio Co Ltd High-frequency pulse power amplifier
JP2001016045A (en) * 1999-06-29 2001-01-19 Toshiba Corp Bias circuit
WO2005091496A1 (en) * 2004-03-23 2005-09-29 Murata Manufacturing Co., Ltd. Fet amplifier, pulse modulation module, and radar device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873210A (en) * 1981-10-27 1983-05-02 Nec Corp Pulsively operated amplifying circuit
JPS63269815A (en) * 1987-04-28 1988-11-08 Nec Corp Waveform correction circuit
JP2000269748A (en) * 1999-03-19 2000-09-29 Japan Radio Co Ltd High-frequency pulse power amplifier
JP2001016045A (en) * 1999-06-29 2001-01-19 Toshiba Corp Bias circuit
WO2005091496A1 (en) * 2004-03-23 2005-09-29 Murata Manufacturing Co., Ltd. Fet amplifier, pulse modulation module, and radar device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181268A (en) * 2009-02-05 2010-08-19 Toshiba Corp Transmission module for radar system
JP2010197295A (en) * 2009-02-26 2010-09-09 Toshiba Corp Phased array radar
CN111239739A (en) * 2020-01-10 2020-06-05 上海眼控科技股份有限公司 Weather radar echo map prediction method and device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
US7660564B2 (en) High-power amplifier apparatus for TDD wireless communication system
US8493142B2 (en) Amplifier, transmission device, and amplifier control method
JP4088415B2 (en) Apparatus and method for amplifying a signal
US8994579B2 (en) RF pulse signal generation switching circuit, RF pulse signal generating circuit, and target object detecting apparatus
JP2006217362A (en) Limiter circuit
US9041469B1 (en) High-efficiency power module
JP5508729B2 (en) Power amplifier
WO2011158466A1 (en) High frequency amplifier
JP2008147943A (en) Transmission and reception module device and driving method of transmission and reception module
JP4648861B2 (en) Pulse radar transmitter
KR101169548B1 (en) Transceiving module
CN109981080B (en) Method and circuit for improving overshoot suppression efficiency of power amplifier under same pulse trigger signal and power amplifier
JP2005277572A (en) Semiconductor power amplifier and radar transmitter
US8107893B2 (en) Method and apparatus for transmission and reception of signals
JP2014096794A (en) Rf channel amplifier module having instantaneous power limiting function
JP2008245081A (en) Amplifier, receiving module, transmitting/receiving module and antenna arrangement
CN113660004A (en) Multimode multiplexing transceiving front-end circuit and control method
JP2009506696A (en) Apparatus and method for amplifying pulsed RF signals
KR20110131577A (en) Multi-function chip of transmitting/receiving module
JP2019068293A (en) RF module
JP5140611B2 (en) Power amplifier adjustment method
JP6463292B2 (en) Antenna device
JP2011099786A (en) Radar apparatus
JP6649217B2 (en) Received signal amplifier and transceiver
JP2001221844A (en) Jamming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405