JP2008145318A - Device and method for inspecting member surface - Google Patents

Device and method for inspecting member surface Download PDF

Info

Publication number
JP2008145318A
JP2008145318A JP2006334101A JP2006334101A JP2008145318A JP 2008145318 A JP2008145318 A JP 2008145318A JP 2006334101 A JP2006334101 A JP 2006334101A JP 2006334101 A JP2006334101 A JP 2006334101A JP 2008145318 A JP2008145318 A JP 2008145318A
Authority
JP
Japan
Prior art keywords
light
line
light receiving
reflected
dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006334101A
Other languages
Japanese (ja)
Other versions
JP4967125B2 (en
Inventor
Idaku Ishii
抱 石井
Kenkichi Yamamoto
健吉 山本
Shinichi Tsunoda
真一 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2006334101A priority Critical patent/JP4967125B2/en
Publication of JP2008145318A publication Critical patent/JP2008145318A/en
Application granted granted Critical
Publication of JP4967125B2 publication Critical patent/JP4967125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable precise judgment for normality of a surface at a low cost within a short time when the surface of a member 1 to be inspected is inspected automatically. <P>SOLUTION: A device for inspecting a member surface linearly irradiates light on the surface of the member 1 to be inspected. The device receives reflection light passing through each angle dividing section formed by dividing equally in angle an angle range between two predetermines straight lines passing a light irradiating section A in view of the above line from among the reflection light reflected by a corresponding line dividing section for each line diving section formed by equally dividing a light irradiating section A on the surface with an imaging element 8 through a cylindrical lens 5 arranged between the above surface and an imaging element 8 respectively. The device judges whether the surface of the member 1 to be inspected is normal based on light intensity of the reflection light of each angle dividing section for each line dividing section. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板やフィルム等の部材表面にライン状に照射された光の該部材表面での反射光を受光して、該受光した反射光の光強度に基づいて部材表面を検査する部材表面検査装置及び部材表面検査方法に関する技術分野に属する。   The present invention relates to a member surface that receives reflected light on the surface of a member such as a substrate or a film in a line shape and inspects the member surface based on the light intensity of the received reflected light. The present invention belongs to a technical field related to an inspection apparatus and a member surface inspection method.

従来より、人間が目視で検査していた基板等の部材表面の検査を自動で行うことが可能な検査装置がよく知られている。この検査装置は、部材表面に光を照射する照明装置と、該照射装置により該部材表面に照射された光の該部材表面での反射光を受光するCMOSカメラ等の撮像装置とを備えている。そして、照射装置により部材表面に光を照射し、該照射された光の部材表面での反射光を撮像装置へと導き、その画像信号の明暗により微少な凹凸等の有無を判定する。   Conventionally, inspection apparatuses capable of automatically inspecting the surface of a member such as a substrate that have been visually inspected by humans are well known. This inspection apparatus includes an illumination device that irradiates light on the surface of a member, and an imaging device such as a CMOS camera that receives light reflected on the surface of the member by the irradiation device. . Then, the irradiation device irradiates light on the surface of the member, and the reflected light of the irradiated light on the surface of the member is guided to the imaging device, and the presence / absence of minute unevenness is determined by the brightness of the image signal.

上記照射装置としては、例えば特許文献1に示されているように、ラインファイバ照明装置等が用いられて、部材表面に光をライン状に照射する。   As the irradiation device, for example, as shown in Patent Document 1, a line fiber illumination device or the like is used to irradiate the member surface with light in a line shape.

ところが、このような照射装置が1つのみでは、検出不能な凹凸等が存在し、このような凹凸は、人間が目視で検査する場合でも、見る角度を変えることで漸く検出可能なものである。   However, with only one such irradiation device, there are irregularities that cannot be detected, and such irregularities can be detected gradually by changing the viewing angle even when a human visually inspects. .

そこで、例えば特許文献2に示されているように、複数の照明装置を設けて、該複数の照明装置により光を互いに異なる角度で部材表面に照射することで、1つの照射装置では検出不能な凹凸等をも検出できるようにしている。
特開平10−123060号公報 特開2006−275836号公報
Therefore, for example, as shown in Patent Document 2, a plurality of illumination devices are provided, and the plurality of illumination devices irradiate light on the surface of the member at different angles. Unevenness etc. can be detected.
JP 10-123060 A JP 2006-275836 A

しかし、上記従来例のように複数の照明装置を設ける場合には、コストアップを招くとともに、より一層細かい凹凸等を検出しようとすると、多数の照明装置を設ける必要があるが、照明装置の数には一定の限界がある。   However, in the case where a plurality of lighting devices are provided as in the above-described conventional example, it is necessary to provide a large number of lighting devices in order to increase costs and detect even finer irregularities. Have certain limits.

一方、1つの照明装置で撮像装置を複数設けることも考えられるが、この場合も、コストアップを招くとともに、撮像装置の数には一定の限界がある。   On the other hand, it is conceivable to provide a plurality of imaging devices with one illumination device, but in this case as well, the cost increases and the number of imaging devices has a certain limit.

また、1つの照明装置及び1つの撮像装置を用いて、照明装置若しくは撮像装置又は部材を可動にすることも考えられるが、この場合も、その可動に時間がかかって、部材表面が正常であるか否かの判定に時間がかかり、このため、短時間で良否を判定する必要がある工場の製造ライン等に用いることは困難となる。   In addition, it is possible to make the illumination device or the imaging device or member movable by using one illumination device and one imaging device. However, in this case as well, it takes time to move and the member surface is normal. It takes time to determine whether or not the product is used, and therefore, it is difficult to use it for a production line or the like in a factory where it is necessary to determine whether the product is good or bad in a short time.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、部材表面を自動で検査する場合に、低コストでかつ短時間で部材表面が正常であるか否かを正確に判定することができるようにすることにある。   The present invention has been made in view of such a point, and an object of the present invention is to determine whether or not a member surface is normal at a low cost and in a short time when the member surface is automatically inspected. The purpose is to enable accurate determination.

上記の目的を達成するために、請求項1の発明では、部材表面に光をライン状に照射する照射手段と、該照射手段により該部材表面に照射された光の該部材表面での反射光を受光する受光手段とを備え、該受光手段で受光した反射光の光強度に基づいて上記部材表面を検査する部材表面検査装置を対象として、上記部材表面と受光手段との間に、上記ライン方向から見て上記部材表面上の光照射部を通る2つの異なる所定の直線の間を通る上記反射光を上記受光手段へと導くことが可能なレンズが配設され、上記受光手段は、上記部材表面上の光照射部を上記ライン方向に等分割してなる各ライン分割部毎に、該ライン分割部で反射した上記反射光のうち、上記ライン方向から見て上記2つの直線間の角度範囲を等角度分割してなる各角度分割部を通った反射光を、上記レンズを通してそれぞれ受光することが可能に構成されており、上記受光手段により受光した各ライン分割部毎の各角度分割部の反射光の光強度に基づいて、上記部材表面が正常であるか否かを判定する判定手段を備えている構成とした。   In order to achieve the above object, according to the first aspect of the present invention, there is provided irradiation means for irradiating the member surface with light in a line shape, and reflected light on the member surface of the light irradiated on the member surface by the irradiation means. A member surface inspection device that inspects the surface of the member based on the light intensity of the reflected light received by the light receiving unit, and the line between the member surface and the light receiving unit. A lens capable of guiding the reflected light passing between two different predetermined straight lines passing through the light irradiating portion on the surface of the member when viewed from the direction to the light receiving means is disposed, The angle between the two straight lines when viewed from the line direction among the reflected light reflected by the line dividing unit for each line dividing unit obtained by equally dividing the light irradiation unit on the member surface in the line direction. For each angle formed by dividing the range into equal angles The reflected light passing through the part is configured to be received through the lens, and based on the light intensity of the reflected light of each angle dividing part for each line dividing part received by the light receiving means, It was set as the structure provided with the determination means which determines whether the member surface is normal.

上記の構成により、部材表面にライン状に照射された光が部材表面で例えば鏡面反射すれば、その反射光は、ライン方向から見て部材表面上の光照射部から決まった方向のみに進行する一方、拡散反射すれば、ライン方向から見て上記光照射部から種々の方向に拡散して進行する。この種々の方向に拡散して進行する反射光のうち、ライン方向から見て2つの異なる所定の直線の間を通る反射光は、部材表面と受光手段との間に配設されたレンズによって受光手段へと導かれて、受光手段は、各ライン分割部毎に、各角度分割部を通った反射光を、上記レンズを通してそれぞれ受光する。すなわち、受光手段は、ライン方向の1次元である光照射部を、ライン方向と角度方向との2次元で撮像していると見做すことができ、ライン分割部の数をm(mは2以上の自然数)、角度分割部の数をn(nは2以上の自然数)として、受光手段を、m個の受光部を有する受光部列がn列ある撮像素子等で構成して、該各受光部で、それぞれ各ライン分割部毎の各角度分割部の反射光を受光して、該反射光の光強度を検出することが可能になる。このことから、ライン分割部の数m及び角度分割部の数nは、撮像素子等の画素数に応じて決めればよい。但し、両分割部の数m,nは、微少な凹凸等の有無をより正確に判定する観点からは、出来る限り多く(数百程度)することが好ましい。   With the above configuration, if the light irradiated in a line on the surface of the member is specularly reflected on the surface of the member, the reflected light travels only in a predetermined direction from the light irradiation portion on the surface of the member as viewed from the line direction. On the other hand, when diffusely reflected, the light diffuses in various directions as viewed from the line direction. Of the reflected light that diffuses and travels in various directions, the reflected light that passes between two different straight lines when viewed from the line direction is received by a lens disposed between the member surface and the light receiving means. Guided to the means, the light receiving means receives the reflected light that has passed through each angle dividing section for each line dividing section through the lens. That is, the light receiving unit can be regarded as imaging the light irradiation unit that is one-dimensional in the line direction in two dimensions, that is, the line direction and the angular direction, and the number of line division units is m (m is A natural number of 2 or more), the number of angle division parts is n (n is a natural number of 2 or more), and the light receiving means is configured by an imaging element or the like having n light receiving part rows having m light receiving parts, Each light receiving unit can receive the reflected light of each angle dividing unit for each line dividing unit and detect the light intensity of the reflected light. Therefore, the number m of line dividing units and the number n of angle dividing units may be determined according to the number of pixels such as an image sensor. However, it is preferable to increase the number m and n of both divided portions as much as possible (about several hundreds) from the viewpoint of more accurately determining the presence or absence of minute irregularities.

そして、上記鏡面反射の場合には、全てのライン分割部で上記決まった方向に対応する角度分割部を通った反射光のみが受光手段で受光されるので、その角度分割部に対応する受光部列の全ての受光部が反射光を受光し、他の受光部列の受光部では反射光が受光されない。しかし、或るライン分割部に凹凸が存在した場合、当該ライン分割部で反射した反射光は、上記決まった方向とは異なる方向に進行するので、このライン分割部に対応する受光部は、上記角度分割部に対応する受光部列とは異なる受光部列の受光部で受光される。一方、上記拡散反射の場合には、全ての受光部が反射光を一様に受光するので、全ての受光部で受光された反射光の光強度は略同じ程度であるが、或るライン分割部に凹凸が存在した場合、当該ライン分割部に対応する受光部で受光された反射光の光強度は、他のライン分割部に対応する受光部で受光された反射光の光強度とは異なる。   In the case of the specular reflection, since only the reflected light that has passed through the angle dividing unit corresponding to the determined direction is received by the light receiving means in all the line dividing units, the light receiving unit corresponding to the angle dividing unit All the light receiving portions in the row receive the reflected light, and the light receiving portions in the other light receiving portion rows do not receive the reflected light. However, when there is unevenness in a certain line division part, the reflected light reflected by the line division part travels in a direction different from the determined direction, so the light receiving part corresponding to this line division part is Light is received by a light receiving unit in a light receiving unit row different from the light receiving unit row corresponding to the angle division unit. On the other hand, in the case of diffuse reflection, all the light receiving parts receive the reflected light uniformly, so that the light intensity of the reflected light received by all the light receiving parts is substantially the same, but a certain line division If there is unevenness in the part, the light intensity of the reflected light received by the light receiving part corresponding to the line dividing part is different from the light intensity of the reflected light received by the light receiving part corresponding to the other line dividing part. .

このように各ライン分割部毎の各角度分割部の反射光の光強度に基づいて、凹凸等が無い正常な場合と、凹凸等が存在する異常な場合とを区別することができ、部材表面が正常であるか否かを正確に判定することが可能になる。   Thus, based on the light intensity of the reflected light of each angle division part for each line division part, it is possible to distinguish between a normal case where there are no irregularities and an abnormal case where there are irregularities, etc. It is possible to accurately determine whether or not is normal.

しかも、ライン分割部の数m及び角度分割部の数nは、撮像素子等の画素数により決まり、通常、照明装置や撮像装置を複数設ける場合よりもはるかに多くの数(数百程度)にそれぞれ設定することができ、微少な凹凸等の有無を正確に判定することができる。   In addition, the number m of the line dividing units and the number n of the angle dividing units are determined by the number of pixels such as an image sensor, and are usually much larger (about several hundreds) than when a plurality of illumination devices and imaging devices are provided. Each can be set, and the presence or absence of minute irregularities can be accurately determined.

また、部材表面上の光照射部を一瞬で撮像することができるので、例えば、上記部材を、上記ライン方向と垂直な方向でかつ該部材表面に沿った方向に所定速度で移動させながら撮像するようにすれば、部材表面全体の良否判定を短時間で行うことができ、工場の製造ライン等に用いることが可能になる。   Moreover, since the light irradiation part on the member surface can be captured in an instant, for example, the member is imaged while moving at a predetermined speed in a direction perpendicular to the line direction and along the member surface. By doing so, it is possible to determine the quality of the entire member surface in a short time, and it can be used for a production line of a factory.

請求項2の発明では、請求項1の発明において、上記レンズは、シリンドリカルレンズであるものとする。   According to a second aspect of the present invention, in the first aspect of the present invention, the lens is a cylindrical lens.

このことにより、ライン方向から見て2つの異なる所定の直線の間を通る反射光を、受光手段へと容易にかつ確実に導くことができる。   As a result, reflected light passing between two different predetermined straight lines when viewed from the line direction can be easily and reliably guided to the light receiving means.

請求項3の発明では、請求項1又は2の発明において、上記部材を、上記ライン方向と垂直な方向でかつ該部材表面に沿った方向に所定速度で移動させる移動手段を更に備えているものとする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the apparatus further comprises moving means for moving the member at a predetermined speed in a direction perpendicular to the line direction and along the surface of the member. And

こうすることで、部材表面において検査すべき部分(光照射部)を移動させながら順次検査を行うことができ、部材表面全体の検査を容易に行うことができる。よって、工場の製造ライン等に用いるものとして最適なものとなる。   By carrying out like this, it can test | inspect sequentially, moving the part (light irradiation part) which should be test | inspected in the member surface, and can test | inspect the whole member surface easily. Therefore, it is optimal for use in a factory production line or the like.

請求項4の発明は、部材表面に光をライン状に照射する照射手段と、該照射手段により該部材表面に照射された光の該部材表面での反射光を受光する受光手段とを用いて、該受光手段で受光した反射光の光強度に基づいて上記部材表面を検査する部材表面検査方法の発明である。   According to a fourth aspect of the present invention, there is provided an irradiating means for irradiating light on the surface of a member in a line shape, and a light receiving means for receiving reflected light on the surface of the member by the irradiating means. The invention is a member surface inspection method for inspecting the member surface based on the light intensity of the reflected light received by the light receiving means.

そして、この発明では、予め、上記部材表面と受光手段との間に、上記ライン方向から見て上記部材表面上の光照射部を通る2つの異なる所定の直線の間を通る上記反射光を上記受光手段へと導くことが可能なレンズを配設しておき、上記照射手段により上記部材表面に光をライン状に照射する照射工程と、上記受光手段により、上記部材表面上の光照射部を上記ライン方向に等分割してなる各ライン分割部毎に、該ライン分割部で反射した上記反射光のうち、上記ライン方向から見て上記2つの直線間の角度範囲を等角度分割してなる各角度分割部を通った反射光を、上記レンズを通してそれぞれ受光する受光工程と、上記受光手段により受光した各ライン分割部毎の各角度分割部の反射光の光強度に基づいて上記部材表面が正常であるか否かを判定する判定工程とを含むものとする。   In the present invention, the reflected light passing between two different predetermined straight lines passing through the light irradiating portion on the member surface as viewed from the line direction between the member surface and the light receiving means in advance. A lens capable of being guided to the light receiving means is disposed, and an irradiation step of irradiating the member surface with light in a line shape by the irradiation means, and a light irradiation portion on the member surface by the light receiving means. For each line dividing part that is equally divided in the line direction, the angle range between the two straight lines as seen from the line direction out of the reflected light reflected by the line dividing part is equally divided. The light receiving step for receiving the reflected light passing through each angle dividing portion through the lens, and the surface of the member based on the light intensity of the reflected light at each angle dividing portion for each line dividing portion received by the light receiving means. Is it normal Or a is intended to include a determination step.

この発明により、請求項1の発明と同様の作用効果が得られる。   According to the present invention, the same effect as that attained by the 1st aspect can be attained.

請求項5の発明では、請求項4の発明において、上記部材を、上記ライン方向と垂直な方向でかつ該部材表面に沿った方向に所定速度で移動させる移動工程を更に含み、上記移動工程中に、上記照射工程、受光工程及び判定工程を順次繰り返すようにする。   The invention of claim 5 further includes a moving step of moving the member at a predetermined speed in a direction perpendicular to the line direction and along the surface of the member. In addition, the irradiation process, the light receiving process, and the determination process are sequentially repeated.

このことにより、請求項3の発明と同様の作用効果が得られる。   Thus, the same effect as that attained by the 3rd aspect can be attained.

以上説明したように、本発明の部材表面検査装置及び部材表面検査方法によると、部材表面に光をライン状に照射し、受光手段により、該部材表面上の光照射部を上記ライン方向に等分割してなる各ライン分割部毎に、該ライン分割部で反射した反射光のうち、上記ライン方向から見て上記光照射部を通る2つの所定の直線間の角度範囲を等角度分割してなる各角度分割部を通った反射光を、部材表面と受光手段との間に配設したレンズを通してそれぞれ受光し、この受光手段により受光した各ライン分割部毎の各角度分割部の反射光の光強度に基づいて、上記部材表面が正常であるか否かを判定するようにしたことにより、低コストでかつ短時間で部材表面が正常であるか否かを正確に判定することができ、工場の製造ライン等に好適に用いることができる。   As described above, according to the member surface inspection apparatus and the member surface inspection method of the present invention, the surface of the member is irradiated with light in a line shape, and the light irradiation unit on the surface of the member is irradiated in the line direction by the light receiving means. For each line dividing unit formed by dividing, the angle range between two predetermined straight lines passing through the light irradiating unit as seen from the line direction out of the reflected light reflected by the line dividing unit is equally divided. The reflected light that has passed through each angle dividing portion is received through a lens disposed between the surface of the member and the light receiving means, and the reflected light of each angle dividing portion for each line dividing portion received by this light receiving means. By determining whether the member surface is normal based on the light intensity, it is possible to accurately determine whether the member surface is normal at a low cost and in a short time, Suitable for factory production lines Rukoto can.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る部材表面検査装置を示し、この部材表面検査装置は、基板やフィルム等の部材(以下、被検査部材1という)の表面の検査を自動で行うものである。   FIG. 1 shows a member surface inspection apparatus according to an embodiment of the present invention, which automatically inspects the surface of a member such as a substrate or a film (hereinafter referred to as a member 1 to be inspected). is there.

同図において、2はスリットレーザ光を出射するレーザ装置である。このレーザ装置2から略水平に出射されたスリットレーザ光は、ハーフミラー3により鉛直下向きに進行方向が変更され、後述のシリンドリカルレンズ5を通って被検査部材1の表面(上面)にライン状に照射される。この表面上の光照射部Aは、図1の紙面に垂直な方向に延びている(図4参照)。このことで、レーザ装置2は、被検査部材1の表面に光をライン状に照射する照射手段を構成する。   In the figure, reference numeral 2 denotes a laser device that emits slit laser light. The slit laser beam emitted substantially horizontally from the laser device 2 is changed in the vertical downward direction by the half mirror 3, passes through a cylindrical lens 5 described later, and forms a line on the surface (upper surface) of the member 1 to be inspected. Irradiated. The light irradiation part A on the surface extends in a direction perpendicular to the paper surface of FIG. 1 (see FIG. 4). Thus, the laser device 2 constitutes an irradiation unit that irradiates the surface of the member 1 to be inspected with light in a line shape.

上記被検査部材1の表面が鏡面である場合に、該表面に照射された光の該表面での反射光が進む方向の先(つまり上記光照射部Aの真上)に、該反射光を受光する受光手段としての撮像素子8を有するカメラ7が配設されている。このカメラ7には、テレセントリックレンズ9(例えば、最良焦点距離60mm、視野角2倍のもの)が取り付けられている。   When the surface of the member 1 to be inspected is a mirror surface, the reflected light is applied to the tip of the direction in which the light reflected on the surface travels (that is, directly above the light irradiation part A). A camera 7 having an image sensor 8 as a light receiving means for receiving light is disposed. A telecentric lens 9 (for example, one having the best focal length of 60 mm and a viewing angle twice) is attached to the camera 7.

ここで、上記ライン方向(図1の紙面に垂直な方向)から見て、上記被検査部材1の表面上の光照射部A(図1では点になる)から真上に延びる線を基準線L1とする。   Here, a line extending right above the light irradiation part A (a point in FIG. 1) on the surface of the member 1 to be inspected as viewed from the line direction (direction perpendicular to the paper surface of FIG. 1) is a reference line. Let L1.

上記被検査部材1の表面とカメラ7(撮像素子8)との間には、上記ライン方向から見て被検査部材1の表面上の光照射部Aを通る2つの異なる所定の直線L2,L3(図2参照)の間を通る上記反射光を上記撮像素子8へと導くことが可能なシリンドリカルレンズ5が配設されている。すなわち、被検査部材1の表面が拡散面である場合、被検査部材1の表面に照射された光の該表面での反射光は、上記ライン方向から見て、上記基準線L1に対して±90°の範囲で一様に拡散する。この拡散する反射光のうち、上記基準線L1に対して±θ(基準線L1と直線L2(又はL3)との間のなす角度がθ)の角度範囲を通る反射光を、シリンドリカルレンズ5によって、上記カメラ7の撮像素子8へと導くようにしている。上記θの値は、シリンドリカルレンズ5の特性によって決まる。本実施形態では、有効焦点距離が15mmのシリンドリカルレンズ5を用いており、θ=18°としている。尚、被検査部材1の表面上の出来る限り小さな凹凸等を検出しようとするためには、θの値は出来る限り大きいことが好ましい。   Between the surface of the member 1 to be inspected and the camera 7 (image sensor 8), two different predetermined straight lines L2, L3 passing through the light irradiation part A on the surface of the member 1 to be inspected as viewed from the line direction. A cylindrical lens 5 capable of guiding the reflected light passing between (see FIG. 2) to the image sensor 8 is provided. That is, when the surface of the member 1 to be inspected is a diffusing surface, the reflected light of the light irradiated on the surface of the member 1 to be inspected is +/- with respect to the reference line L1 when viewed from the line direction. Spreads uniformly in the range of 90 °. Of the diffused reflected light, the reflected light passing through the angle range of ± θ (the angle between the reference line L1 and the straight line L2 (or L3) is θ) with respect to the reference line L1 is reflected by the cylindrical lens 5. The camera 7 is guided to the image sensor 8. The value of θ is determined by the characteristics of the cylindrical lens 5. In the present embodiment, the cylindrical lens 5 having an effective focal length of 15 mm is used, and θ = 18 °. In order to detect as small unevenness as possible on the surface of the member 1 to be inspected, the value of θ is preferably as large as possible.

上記ライン方向から見て、上記2つの直線L2,L3間の角度範囲を通る反射光は、シリンドリカルレンズ5によって、進路を基準線L1と平行になるように曲げられ、その平行の進路を維持したままハーフミラー3を通過しかつテレセントリックレンズ9を通ってカメラ7の撮像素子8に達する。被検査部材1の表面が鏡面である場合の反射光は、上記ライン方向から見て基準線L1上のみを通って撮像素子8に達する。   The reflected light passing through the angle range between the two straight lines L2 and L3 as viewed from the line direction is bent by the cylindrical lens 5 so that the path is parallel to the reference line L1, and the parallel path is maintained. The light passes through the half mirror 3 and passes through the telecentric lens 9 to reach the image sensor 8 of the camera 7. The reflected light in the case where the surface of the member 1 to be inspected is a mirror surface reaches the image sensor 8 only through the reference line L1 when viewed from the line direction.

上記撮像素子8は、図3に示すように、m個(mは2以上の自然数)の受光部8aからなる受光部列がn列(nは2以上の自然数)並ぶものであって、全部でm×n個の受光部8aを有している。すなわち、撮像素子8の画素数はm×nである。尚、これらm及びnの値は、微少な凹凸等の有無をより正確に判定する観点からは、出来る限り大きく(数百程度)することが好ましい。   As shown in FIG. 3, the imaging element 8 includes m (m is a natural number of 2 or more) light receiving units 8 a arranged in n rows (n is a natural number of 2 or more). It has m × n light receiving portions 8a. That is, the number of pixels of the image sensor 8 is m × n. The values of m and n are preferably as large as possible (about several hundreds) from the viewpoint of more accurately determining the presence or absence of minute irregularities.

上記m×n個の受光部8aは、上記光照射部Aを上記ライン方向にm個に等分割してなる各ライン分割部毎に、該ライン分割部で反射した上記反射光のうち、上記ライン方向から見て上記2つの直線L2,L3間の角度範囲をn個に等角度分割してなる各角度分割部を通った反射光を、上記シリンドリカルレンズ5を通してそれぞれ受光するようになっている。以下、受光部列が延びる方向(図3の左右方向)の一端側からx番目及び該方向と垂直な方向(図3の上下方向)の一端側からy番目の受光部8aを、(x,y)の受光部8aという。   The m × n light receiving units 8a include, among the reflected lights reflected by the line dividing unit, for each line dividing unit obtained by equally dividing the light irradiation unit A into m pieces in the line direction. Reflected light that has passed through each angle division unit obtained by dividing the angular range between the two straight lines L2 and L3 into n equal angles when viewed from the line direction is received through the cylindrical lens 5, respectively. . Hereinafter, the x-th light receiving portion 8a from one end side in the direction in which the light receiving portion row extends (left and right direction in FIG. 3) and the y th light receiving portion 8a from one end side in the direction perpendicular to the direction (up and down direction in FIG. 3) This is referred to as y) light receiving portion 8a.

具体的には、図4に示すように、光照射部Aはm個のライン分割部に等分割され、図2に示すように、上記ライン方向から見て上記2つの直線L2,L3間の角度範囲はn個の角度分割部に等角度分割されている。そして、ライン方向一端側からx(x=1,2,…,m)番目のライン分割部で反射した反射光のうち、一方の直線側(図2では直線L2側)からy(y=1,2,…,n)番目の角度分割部を通った反射光は、(x,y)の受光部8aで受光される。例えば1番目のライン分割部で反射した反射光のうち、1番目の角度分割部を通った反射光は、(1,1)の受光部8aで受光され、m番目のライン分割部で反射した反射光のうち、n番目の角度分割部を通った反射光は、(m,n)の受光部8aで受光される。このように、各ライン分割部毎の各角度分割部の反射光は、それぞれ対応する受光部8aで受光される。   Specifically, as shown in FIG. 4, the light irradiation part A is equally divided into m line division parts, and as shown in FIG. 2, between the two straight lines L2 and L3 as seen from the line direction. The angle range is equiangularly divided into n angle division parts. Of the reflected light reflected by the x (x = 1, 2,..., M) -th line dividing portion from one end in the line direction, y (y = 1) from one straight side (the straight line L2 side in FIG. 2). , 2,..., N) the reflected light that has passed through the angle dividing section is received by the (x, y) light receiving section 8a. For example, out of the reflected light reflected by the first line dividing unit, the reflected light passing through the first angle dividing unit is received by the (1, 1) light receiving unit 8a and reflected by the mth line dividing unit. Of the reflected light, the reflected light that has passed through the nth angle division unit is received by the (m, n) light receiving unit 8a. As described above, the reflected light of each angle dividing unit for each line dividing unit is received by the corresponding light receiving unit 8a.

上記各受光部8aで受光された反射光の光強度のデータは、コンピュータからなる演算判定部20へ送信され、この演算判定部20で演算処理されて、被検査部材1の表面が正常であるか否かが判定される。すなわち、演算判定部20は、上記各ライン分割部毎の各角度分割部の反射光の光強度に基づいて、被検査部材1の表面が正常であるか否かを判定する判定手段を構成する。   The data of the light intensity of the reflected light received by each of the light receiving portions 8a is transmitted to the calculation determination portion 20 formed of a computer, and is calculated by the calculation determination portion 20 so that the surface of the member 1 to be inspected is normal. It is determined whether or not. That is, the operation determination unit 20 constitutes a determination unit that determines whether the surface of the member 1 to be inspected is normal based on the light intensity of the reflected light of each angle division unit for each line division unit. .

具体的には、演算判定部20は、下記の数1式により、L種類の荷重和に基づく特徴量M(x)(i=0,1,2,…,L−1)を求める。 Specifically, the calculation determination unit 20 obtains a feature value M i (x) (i = 0, 1, 2,..., L−1) based on L types of load sums using the following equation (1).

Figure 2008145318
Figure 2008145318

尚、上記数1式中のI(x,y)は、(x,y)の受光部8aで受光された反射光の光強度の値であり、a(y)は、重み付け量である。 In the above equation 1, I (x, y) is a value of the light intensity of the reflected light received by the light receiving unit 8a of (x, y), and a i (y) is a weighting amount. .

例えば、下記の数2式、数3式及び数4式により、3種類の特徴量M(x)、M(x)及びM(x)を求める。すなわち、本例では、M(x)を求める際の重み付け量a(y)は1であり、M(x)を求める際の重み付け量a(y)は1であり、M(x)を求める際の重み付け量a(y)はyである。 For example, three types of feature values M 0 (x), M 1 (x), and M 2 (x) are obtained by the following formulas 2, 3 and 4. That is, in this example, the weighting amount a 0 (y) for determining M 0 (x) is 1, the weighting amount a 1 (y) for determining M 1 (x) is 1, and M 2 The weighting amount a 2 (y) for obtaining (x) is y 2 .

Figure 2008145318
Figure 2008145318

Figure 2008145318
Figure 2008145318

Figure 2008145318
Figure 2008145318

(x)は、ライン方向一端側からx番目のライン分割部において全角度分割部トータルの光強度の総和S(x)に等しい。 M 0 (x) is equal to the total light intensity S (x) of all the angle division parts in the x-th line division part from one end side in the line direction.

また、ライン方向一端側からx番目のライン分割部における光強度の重心位置Y(x)を、
Y(x)=M(x)/M(x)
より求めることができ、これにより、x番目のライン分割部においてどの角度分割部を通った反射光の光強度が最も大きいかが分かる。つまり、光強度がピークとなる角度分割部の位置が分かる。本実施形態では、凹凸等が存在しない正常な場合には、上記基準線L1を含む角度分割部を通った反射光の光強度が最も大きくなり、異常な場合には、ピークとなる角度分割部の位置が、基準線L1を含む角度分割部とは異なる角度分割部を通った反射光の光強度が最も大きくなる。
Further, the barycentric position Y (x) of the light intensity at the x-th line dividing portion from one end side in the line direction is
Y (x) = M 1 (x) / M 0 (x)
Thus, it can be determined which angle division portion through which the x-th line division portion has the highest light intensity of the reflected light. That is, the position of the angle division part where the light intensity reaches a peak is known. In the present embodiment, the light intensity of the reflected light that has passed through the angle dividing unit including the reference line L1 is the highest when there is no unevenness, and the angle dividing unit that becomes the peak when it is abnormal. The light intensity of the reflected light that passes through the angle dividing portion different from the angle dividing portion including the reference line L1 becomes the highest.

さらに、ライン方向一端側からx番目のライン分割部における光強度の分散V(x)を、
V(x)=M(x)/n−(M(x)/M(x))
より求めることができ、これにより、x番目のライン分割部において光強度のピークの先鋭度が分かる。
Further, the dispersion V (x) of the light intensity in the x-th line dividing portion from the one end side in the line direction,
V (x) = M 2 (x) / n− (M 1 (x) / M 0 (x)) 2
Thus, the sharpness of the peak of the light intensity can be found at the x-th line dividing portion.

鏡面反射に近い場合には、V(x)の値は比較的小さくなり、x番目のライン分割部における各角度分割部の光強度の分布は、図5に実線で示すようになる。この場合、被検査部材1の表面に照射された光の大部分は、重心位置Y(x)に対応する角度分割部を通る方向に反射したことになる。一方、拡散反射に近い場合には、V(x)の値はかなり大きくなり、x番目のライン分割部における各角度分割部の光強度の分布は、図5に破線で示すようになる。この場合、被検査部材1の表面に照射された光は、全ての角度分割部を通るようにほぼ一様に反射したことになる。   When close to specular reflection, the value of V (x) is relatively small, and the light intensity distribution of each angle division unit in the x-th line division unit is as shown by a solid line in FIG. In this case, most of the light irradiated on the surface of the member 1 to be inspected is reflected in the direction passing through the angle dividing portion corresponding to the gravity center position Y (x). On the other hand, when it is close to diffuse reflection, the value of V (x) becomes considerably large, and the light intensity distribution of each angle division unit in the x-th line division unit is as shown by a broken line in FIG. In this case, the light irradiated on the surface of the member to be inspected 1 is reflected almost uniformly so as to pass through all the angle division portions.

このように複数種類の特徴量からS(x)、Y(x)、V(x)等を求めることで、反射した方向や鏡面反射に近いか又は拡散反射に近いかが分かることになる。そして、測定しようとする被測定物1の表面が正常である場合に、S(x)、Y(x)、V(x)等がどのような値になるかを事前に調べておき、凹凸等が存在して異常がある場合には、これらS(x)、Y(x)、V(x)等の値が、正常である場合の値と異なることとなり、実際に測定して得られた結果と正常である場合の値とを比較することで、被測定物1の表面が正常であるか否かを判定することが可能になる。尚、上記の判定方法に限らず、種々の判定アルゴリズムによって、被測定物1の表面の正常/異常を判定することは可能である。   In this way, by obtaining S (x), Y (x), V (x), etc. from a plurality of types of feature amounts, it is possible to know whether the reflected direction is close to specular reflection or close to diffuse reflection. Then, when the surface of the DUT 1 to be measured is normal, the values of S (x), Y (x), V (x), etc. are examined in advance, Etc. exist and there is an abnormality, the values of these S (x), Y (x), V (x), etc. will be different from the values when normal, and are obtained by actual measurement. It is possible to determine whether or not the surface of the DUT 1 is normal by comparing the measured result with the value when it is normal. Note that the normality / abnormality of the surface of the DUT 1 can be determined not only by the above-described determination method but also by various determination algorithms.

上述の如く、被測定物1の表面に光をライン状に照射し、各ライン分割部毎に、各角度分割部を通った反射光をシリンドリカルレンズ5を通してカメラ7の撮像素子8の受光部8aでそれぞれ受光し、該受光した各ライン分割部毎の各角度分割部の反射光の光強度に基づいて被測定物1の表面が正常であるか否かを判定するようにすれば、被測定物1の表面における1つのライン部分の検査を行うことができる。そして、被測定物1を、例えば1軸方向に一定速度で移動させることが可能な移動台に載せて該移動台を移動させることで、被測定物1をライン方向と垂直な方向でかつ該被測定物1の表面に沿った方向に所定速度で移動させながら、上記1ライン毎の検査方法を繰り返し実行するようにすれば、被測定物1の表面全体の検査を容易に行うことができ、工場の製造ライン等に用いるものとして最適なものとなる。ここで、上記所定速度は、カメラ7の撮像素子8の単位時間当たりの撮像可能なコマ数により決めればよく、例えば高速ビジョンカメラを用いれば、かなり短時間で被測定物1の表面全体の検査を行うことができるようになる。   As described above, the surface of the object to be measured 1 is irradiated with light in a line shape, and the reflected light that has passed through each angle dividing unit is passed through the cylindrical lens 5 for each line dividing unit, and the light receiving unit 8a of the image sensor 8 of the camera 7. And determining whether or not the surface of the DUT 1 is normal based on the light intensity of the reflected light of each angle division unit for each line division unit received. One line portion on the surface of the object 1 can be inspected. Then, by placing the DUT 1 on a moving table that can be moved at a constant speed, for example, in one axis direction, the DUT is moved in a direction perpendicular to the line direction and the DUT. If the inspection method for each line is repeatedly executed while moving at a predetermined speed in the direction along the surface of the device under test 1, the entire surface of the device under test 1 can be easily inspected. It is optimal for use in factory production lines. Here, the predetermined speed may be determined by the number of frames that can be imaged per unit time of the image sensor 8 of the camera 7. For example, if a high-speed vision camera is used, the entire surface of the DUT 1 is inspected in a considerably short time. Will be able to do.

したがって、本実施形態では、各ライン分割部毎の各角度分割部の反射光の光強度に基づいて、凹凸等が無い正常な場合と、凹凸等が存在する異常な場合とを区別することができ、被測定物1の表面が正常であるか否かを正確に判定することが可能になる。   Therefore, in this embodiment, based on the light intensity of the reflected light of each angle division unit for each line division unit, it is possible to distinguish between a normal case without irregularities and an abnormal case where irregularities exist. It is possible to accurately determine whether or not the surface of the DUT 1 is normal.

しかも、ライン分割部の数m及び角度分割部の数nは、撮像素子8の画素数(受光部8aの数)により決まり、通常、照明装置や撮像装置を複数設ける場合よりもはるかに多くの数(数百程度)にそれぞれ設定することができ、微少な凹凸の有無を正確に判定したり、塗装の光沢が正常であるか否かを正確に判定したりすることができる。   In addition, the number m of the line division units and the number n of the angle division units are determined by the number of pixels of the image sensor 8 (the number of the light receiving units 8a), and are usually much more than when a plurality of illumination devices and imaging devices are provided. Each can be set to several (several hundreds), and it is possible to accurately determine the presence or absence of minute irregularities, or to accurately determine whether or not the gloss of the coating is normal.

また、被測定物1を移動手段により移動させるようにすることで、被測定物1の表面全体の良否判定を短時間で行うことができ、基板やプリント配線板等を製造する工場の製造ラインや、自動車製造工場の塗装ライン等に容易に適用することができる。   In addition, by moving the DUT 1 by the moving means, the quality of the entire surface of the DUT 1 can be judged in a short time, and the production line of a factory that manufactures boards, printed wiring boards, etc. It can be easily applied to a painting line of an automobile manufacturing factory.

尚、上記実施形態では、被測定物1の表面に対してスリットレーザ光を真上から照射するようにしたが、斜め上側から照射するようにしてもよい。この場合、カメラ7及びシリンドリカルレンズ5は、光照射部Aの真上に配設する必要はなく、被検査部材1の表面で反射する反射光を適切に受光できる位置に配設すればよい。特に上記実施形態の如く、光照射部Aで鏡面反射した場合の反射光が進む方向の先に配置するのが好ましい。   In the above embodiment, the surface of the DUT 1 is irradiated with the slit laser beam from directly above, but it may be irradiated obliquely from above. In this case, the camera 7 and the cylindrical lens 5 do not need to be disposed directly above the light irradiation part A, and may be disposed at a position where the reflected light reflected from the surface of the member 1 to be inspected can be received appropriately. In particular, as in the above-described embodiment, it is preferable that the light irradiation unit A is disposed ahead of the direction in which the reflected light travels when it is specularly reflected.

また、上記実施形態では、スリットレーザ光を、反射光を撮像素子8へ導くためのシリンドリカルレンズ5を通して被測定物1の表面に照射しているが、例えば上記の如くスリットレーザ光を被測定物1の表面に対して斜め上側から照射する場合には、シリンドリカルレンズ5を通さないようにすることも可能である。   In the above embodiment, the slit laser light is irradiated on the surface of the device under test 1 through the cylindrical lens 5 for guiding the reflected light to the image sensor 8. For example, as described above, the slit laser light is applied to the device under test. When irradiating the surface of 1 obliquely from above, it is possible to prevent the cylindrical lens 5 from passing therethrough.

さらに、上記実施形態では、被測定物1の表面に光をライン状に照射するために、スリットレーザ光を出射するレーザ装置を用いたが、これに限らず、ラインファイバ照明等を用いてもよい。この場合には、シリンドリカルレンズ5とは別個のシリンドリカルレンズを用いて、光を確実にライン状にするようにすればよい。   Furthermore, in the above embodiment, a laser device that emits slit laser light is used to irradiate the surface of the DUT 1 in a line shape. However, the present invention is not limited thereto, and line fiber illumination or the like may be used. Good. In this case, it is only necessary to use a cylindrical lens separate from the cylindrical lens 5 to ensure that the light is in a line shape.

さらにまた、反射光を撮像素子8へ導くためのレンズは、必ずしもシリンドリカルレンズ5である必要はなく、各ライン分割部毎の各角度分割部の反射光を撮像素子8の異なる受光部8aでそれぞれ受光することが可能であれば、どのようなレンズであってもよい。   Furthermore, the lens for guiding the reflected light to the image sensor 8 does not necessarily need to be the cylindrical lens 5, and the reflected light of each angle division unit for each line division unit is received by a different light receiving unit 8 a of the image sensor 8. Any lens may be used as long as it can receive light.

本発明は、基板やフィルム等の部材表面にライン状に照射された光の該部材表面での反射光を受光して、該受光した反射光の光強度に基づいて部材表面を自動で検査する部材表面検査装置及び部材表面検査方法に有用である。   The present invention receives light reflected on the surface of a member such as a substrate or a film in a line, and automatically inspects the surface of the member based on the intensity of the received reflected light. It is useful for a member surface inspection apparatus and a member surface inspection method.

本発明の実施形態に係る部材表面検査装置を示す概略構成図である。It is a schematic block diagram which shows the member surface inspection apparatus which concerns on embodiment of this invention. 被検査部材及びシリンドリカルレンズ間部分における各角度分割部を示す、光照射部のライン方向から見た図である。It is the figure seen from the line direction of the light irradiation part which shows each angle division part in the to-be-inspected member and the part between cylindrical lenses. 撮像素子を示す被検査部材側から見た図である。It is the figure seen from the to-be-inspected member side which shows an image sensor. 被検査部材の表面上における光照射部の各ライン分割部を示す平面図である。It is a top view which shows each line division part of the light irradiation part on the surface of a to-be-inspected member. ライン方向一端側からx番目のライン分割部における各角度分割部の反射光の光強度の分布の例を示すグラフである。It is a graph which shows the example of distribution of the light intensity of the reflected light of each angle division part in the x-th line division part from the line direction one end side.

符号の説明Explanation of symbols

1 被検査部材
2 レーザ装置(照射手段)
5 シリンドリカルレンズ
8 撮像素子(受光手段)
20 演算判定部(判定手段)
1 Inspected member 2 Laser device (irradiation means)
5 Cylindrical lens 8 Image sensor (light receiving means)
20 Operation determination unit (determination means)

Claims (5)

部材表面に光をライン状に照射する照射手段と、該照射手段により該部材表面に照射された光の該部材表面での反射光を受光する受光手段とを備え、該受光手段で受光した反射光の光強度に基づいて上記部材表面を検査する部材表面検査装置であって、
上記部材表面と受光手段との間に、上記ライン方向から見て上記部材表面上の光照射部を通る2つの異なる所定の直線の間を通る上記反射光を上記受光手段へと導くことが可能なレンズが配設され、
上記受光手段は、上記部材表面上の光照射部を上記ライン方向に等分割してなる各ライン分割部毎に、該ライン分割部で反射した上記反射光のうち、上記ライン方向から見て上記2つの直線間の角度範囲を等角度分割してなる各角度分割部を通った反射光を、上記レンズを通してそれぞれ受光することが可能に構成されており、
上記受光手段により受光した各ライン分割部毎の各角度分割部の反射光の光強度に基づいて、上記部材表面が正常であるか否かを判定する判定手段を備えていることを特徴とする部材表面検査装置。
Reflecting light received by the light receiving means, comprising: an irradiating means for irradiating light on the surface of the member in a line; and a light receiving means for receiving the reflected light from the surface of the member irradiated by the irradiating means. A member surface inspection apparatus for inspecting the member surface based on the light intensity of light,
Between the surface of the member and the light receiving means, the reflected light passing between two different predetermined straight lines passing through the light irradiation part on the surface of the member when viewed from the line direction can be guided to the light receiving means. A simple lens,
The light receiving means includes, for each line dividing unit obtained by equally dividing the light irradiation unit on the member surface in the line direction, out of the reflected light reflected by the line dividing unit as viewed from the line direction. Reflected light that has passed through each angle division unit obtained by dividing an angle range between two straight lines into equal angles can be received through the lens, respectively.
And determining means for determining whether or not the surface of the member is normal based on the light intensity of the reflected light of each angle dividing unit received by the light receiving unit. Member surface inspection device.
請求項1記載の部材表面検査装置において、
上記レンズは、シリンドリカルレンズであることを特徴とする部材表面検査装置。
In the member surface inspection apparatus according to claim 1,
The member surface inspection apparatus, wherein the lens is a cylindrical lens.
請求項1又は2記載の部材表面検査装置において、
上記部材を、上記ライン方向と垂直な方向でかつ該部材表面に沿った方向に所定速度で移動させる移動手段を更に備えていることを特徴とする部材表面検査装置。
In the member surface inspection apparatus according to claim 1 or 2,
A member surface inspection apparatus further comprising a moving means for moving the member at a predetermined speed in a direction perpendicular to the line direction and along the surface of the member.
部材表面に光をライン状に照射する照射手段と、該照射手段により該部材表面に照射された光の該部材表面での反射光を受光する受光手段とを用いて、該受光手段で受光した反射光の光強度に基づいて上記部材表面を検査する部材表面検査方法であって、
予め、上記部材表面と受光手段との間に、上記ライン方向から見て上記部材表面上の光照射部を通る2つの異なる所定の直線の間を通る上記反射光を上記受光手段へと導くことが可能なレンズを配設しておき、
上記照射手段により上記部材表面に光をライン状に照射する照射工程と、
上記受光手段により、上記部材表面上の光照射部を上記ライン方向に等分割してなる各ライン分割部毎に、該ライン分割部で反射した上記反射光のうち、上記ライン方向から見て上記2つの直線間の角度範囲を等角度分割してなる各角度分割部を通った反射光を、上記レンズを通してそれぞれ受光する受光工程と、
上記受光手段により受光した各ライン分割部毎の各角度分割部の反射光の光強度に基づいて上記部材表面が正常であるか否かを判定する判定工程とを含むことを特徴とする部材表面検査方法。
The light receiving means receives the light on the surface of the member in a line, and the light receiving means for receiving the light reflected on the surface of the member by the irradiation means. A member surface inspection method for inspecting the member surface based on the light intensity of reflected light,
In advance, between the member surface and the light receiving means, the reflected light passing between two different predetermined straight lines passing through the light irradiation part on the member surface as viewed from the line direction is guided to the light receiving means. A lens that can
An irradiation step of irradiating the member surface with light in a line shape by the irradiation means;
For each line division part obtained by equally dividing the light irradiation part on the member surface in the line direction by the light receiving means, the reflected light reflected by the line division part is seen from the line direction. A light receiving step for receiving the reflected light that has passed through each angle division unit obtained by dividing the angle range between the two straight lines through equal angles;
A member surface comprising: a step of determining whether or not the surface of the member is normal based on the light intensity of the reflected light of each angle dividing unit received by the light receiving unit. Inspection method.
請求項4記載の部材表面検査方法において、
上記部材を、上記ライン方向と垂直な方向でかつ該部材表面に沿った方向に所定速度で移動させる移動工程を更に含み、
上記移動工程中に、上記照射工程、受光工程及び判定工程を順次繰り返すことを特徴とする部材表面検査方法。
In the member surface inspection method according to claim 4,
A moving step of moving the member at a predetermined speed in a direction perpendicular to the line direction and along the surface of the member;
A member surface inspection method, wherein the irradiation step, the light receiving step, and the determination step are sequentially repeated during the moving step.
JP2006334101A 2006-12-12 2006-12-12 Member surface inspection apparatus and member surface inspection method Active JP4967125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334101A JP4967125B2 (en) 2006-12-12 2006-12-12 Member surface inspection apparatus and member surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334101A JP4967125B2 (en) 2006-12-12 2006-12-12 Member surface inspection apparatus and member surface inspection method

Publications (2)

Publication Number Publication Date
JP2008145318A true JP2008145318A (en) 2008-06-26
JP4967125B2 JP4967125B2 (en) 2012-07-04

Family

ID=39605653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334101A Active JP4967125B2 (en) 2006-12-12 2006-12-12 Member surface inspection apparatus and member surface inspection method

Country Status (1)

Country Link
JP (1) JP4967125B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791403A (en) * 1980-10-04 1982-06-07 Gasuto Teodooru Optoelectronic measuring method of and apparatus for roughness of surface
JPS62251641A (en) * 1986-04-25 1987-11-02 Fuji Electric Co Ltd Optical inspection device
JPS6361111A (en) * 1986-09-01 1988-03-17 Nec Corp Surface roughness measuring machine
JPH01165941A (en) * 1987-12-22 1989-06-29 Kobe Steel Ltd Detecting method and apparatus of surface defect
JPH0694515A (en) * 1992-09-11 1994-04-05 Olympus Optical Co Ltd Light divergence characteristic measuring apparatus
JPH10123060A (en) * 1996-10-17 1998-05-15 Olympus Optical Co Ltd Apparatus for defect inspection
JP2001052107A (en) * 1999-08-12 2001-02-23 Konica Corp Optical surface displacement detector
JP2002346925A (en) * 2001-05-29 2002-12-04 Ryoei Engineering Kk Method of determining grinding surface quality and device therefor
JP2004101505A (en) * 2002-03-26 2004-04-02 Japan Science & Technology Corp Method and apparatus for measuring thickness of film
JP2006275836A (en) * 2005-03-30 2006-10-12 Dainippon Screen Mfg Co Ltd Substrate inspection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791403A (en) * 1980-10-04 1982-06-07 Gasuto Teodooru Optoelectronic measuring method of and apparatus for roughness of surface
JPS62251641A (en) * 1986-04-25 1987-11-02 Fuji Electric Co Ltd Optical inspection device
JPS6361111A (en) * 1986-09-01 1988-03-17 Nec Corp Surface roughness measuring machine
JPH01165941A (en) * 1987-12-22 1989-06-29 Kobe Steel Ltd Detecting method and apparatus of surface defect
JPH0694515A (en) * 1992-09-11 1994-04-05 Olympus Optical Co Ltd Light divergence characteristic measuring apparatus
JPH10123060A (en) * 1996-10-17 1998-05-15 Olympus Optical Co Ltd Apparatus for defect inspection
JP2001052107A (en) * 1999-08-12 2001-02-23 Konica Corp Optical surface displacement detector
JP2002346925A (en) * 2001-05-29 2002-12-04 Ryoei Engineering Kk Method of determining grinding surface quality and device therefor
JP2004101505A (en) * 2002-03-26 2004-04-02 Japan Science & Technology Corp Method and apparatus for measuring thickness of film
JP2006275836A (en) * 2005-03-30 2006-10-12 Dainippon Screen Mfg Co Ltd Substrate inspection device

Also Published As

Publication number Publication date
JP4967125B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US20210341353A1 (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
JP2009512839A (en) Glass plate optical inspection system and method
KR101120226B1 (en) Surface inspecting apparatus
KR20100075371A (en) Wiring pattern inspection apparatus
JP6038434B2 (en) Defect inspection equipment
CN109313133A (en) Surface inspection system and surface inspecting method
US20100309309A1 (en) Method for precisely detecting crack width
JP4486320B2 (en) Sensor alignment method in three-dimensional measurement system
JP2006200957A (en) Through hole inspection device and through hole inspection method using the same
JP2008286646A (en) Surface flaw inspection device
JP4630945B1 (en) Defect inspection equipment
KR20160121716A (en) Surface inspection apparatus based on hybrid illumination
JP4967125B2 (en) Member surface inspection apparatus and member surface inspection method
JP2017207288A (en) Surface inspection device-purpose calibration plate and surface inspection device calibration method
JP2007333608A (en) Inspection device and inspection method of irregular flaw on sheet
JP2001124538A (en) Method and device for detecting defect in surface of object
JPH11248643A (en) Detection device for foreign matter in transparent film
KR101785069B1 (en) Darkfield illumination device
JP2003042971A (en) Pattern inspection device and inspection method
JP2009222614A (en) Surface inspection apparatus
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP2011007498A (en) Surface inspection device for cylindrical body
WO1999006868A1 (en) Light projecting method, surface inspection method, and apparatus used to implement these methods
WO2021176650A1 (en) Method and device for inspecting borehole condition
JP7178001B2 (en) inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A977 Report on retrieval

Effective date: 20110729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Effective date: 20111031

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Effective date: 20120127

Free format text: JAPANESE INTERMEDIATE CODE: A7422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150