JP2007333608A - Inspection device and inspection method of irregular flaw on sheet - Google Patents

Inspection device and inspection method of irregular flaw on sheet Download PDF

Info

Publication number
JP2007333608A
JP2007333608A JP2006166946A JP2006166946A JP2007333608A JP 2007333608 A JP2007333608 A JP 2007333608A JP 2006166946 A JP2006166946 A JP 2006166946A JP 2006166946 A JP2006166946 A JP 2006166946A JP 2007333608 A JP2007333608 A JP 2007333608A
Authority
JP
Japan
Prior art keywords
light
imaging
defect
inspected
uneven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006166946A
Other languages
Japanese (ja)
Inventor
Kazufumi Ishimaru
和史 石丸
Yasuhiro Nakai
康博 中井
Atsushi Sakuma
敦士 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006166946A priority Critical patent/JP2007333608A/en
Publication of JP2007333608A publication Critical patent/JP2007333608A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device capable of detecting irregular flaws generated on a surface of an inspection target along the longitudinal direction by means of an optical technique, and capable of accurately calculating the height and the width of the irregular flaw in a short time. <P>SOLUTION: A light irradiation means is disposed on one surface of a sheetlike article continuously conveyed which is the inspection target, and an imaging means is disposed on the other surface, and a data processing means is provided for detecting and quantifying the irregular flaw existing on the surface of the inspection target based on the transmission light imaged by the imaging means. In the data processing means, the height of the irregular flaw can be calculated in a short time by the product of the lateral width and the longitudinal amplitude of two peaks of an output signal wave of the irregular flaw part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シートにおける凹凸状欠点の検査装置および検査方法に関する。   The present invention relates to an inspection apparatus and an inspection method for uneven defects in a sheet.

プラスチックフィルムなどのシートを連続的に製造する工程において、ポリマ吐出口で局所的な凹凸状の厚みムラが流れ方向に連続的に発生することがある。この厚みムラは凹凸の高さと幅が所定の大きさ以上になるとスジ状欠点となり、このスジ状欠点はユーザーの加工工程で問題となるために、シートの製造者としては、スジ状欠点を持つシートが製品として出荷されることを避けなければならない。したがって、スジ状欠点を持つシートに対して、良品と不良品とを判別するときには、スジ状欠点の有無だけではなく、上記のスジ状欠点が幅何mm以下で高さ何μm以下ならば良品といった定量的な基準が定められている。よって、スジ状欠点の形状を定量的に評価し、良品と不良品とを判定することが望ましい。また、製造されたシートを検査する際に、巻き取った後では、ロールの内部状態が判らないため、製造されたシートの一部を抜き取って検査するのではなく、インラインでの全長全幅検査が望まれる。さらに、製造工程においてシートは長さ方向に毎分数m〜数百mで搬送されているので、シート長さ方向の検査間隔を短くするために、定量評価は短時間で行うことが望ましい。   In the process of continuously producing sheets such as plastic films, local uneven thickness unevenness may occur continuously in the flow direction at the polymer discharge port. This uneven thickness becomes a streak-like defect when the height and width of the unevenness exceeds a predetermined size, and this streak-like defect becomes a problem in the user's processing process, so the sheet manufacturer has a streak-like defect. It must be avoided that the sheet is shipped as a product. Therefore, when discriminating between a non-defective product and a defective product with respect to a sheet having a streak-like defect, not only the presence or absence of the streak-like defect but also a non-defective product if the above-mentioned streak-like defect has a width of several mm or less and a height of several μm or less. Quantitative standards are established. Therefore, it is desirable to quantitatively evaluate the shape of the streak-like defect and determine a good product and a defective product. In addition, when the manufactured sheet is inspected, since the internal state of the roll is not known after winding up, it is not possible to inspect a part of the manufactured sheet by pulling out, but in-line full length inspection is performed. desired. Furthermore, since the sheet is conveyed at several meters to several hundred meters per minute in the length direction in the manufacturing process, it is desirable to perform quantitative evaluation in a short time in order to shorten the inspection interval in the sheet length direction.

被検査体表面に存在する凹凸状欠点の形状を定量化する場合、被検査体に光を照射し、その反射光の状態を参照することで、被検査体表面の凹凸状欠点を検出し、定量化する方法が用いられている。例えば、特許文献1、特許文献2および特許文献3に記載の方法が知られている。   When quantifying the shape of the concave and convex defects present on the surface of the object to be inspected, the surface of the object to be inspected is detected by irradiating light to the object and referring to the state of the reflected light. A method of quantification is used. For example, methods described in Patent Literature 1, Patent Literature 2, and Patent Literature 3 are known.

特許文献1に記載の方法を、図1を用いて説明する。図1は特許文献1に記載の検査装置の原理図である。図1において、1は被検査体、2は光照射手段、3は撮像手段、9は凹凸状欠点、8はデータ処理装置を表している。   The method described in Patent Document 1 will be described with reference to FIG. FIG. 1 is a principle diagram of the inspection apparatus described in Patent Document 1. In FIG. 1, 1 denotes an object to be inspected, 2 denotes a light irradiation means, 3 denotes an imaging means, 9 denotes an uneven defect, and 8 denotes a data processing apparatus.

特許文献1に記載の方法は、照射する光の強度または波長が、照射面に沿って大から小へ徐々に変化する平面状の光照射手段2を用いて、被検査体1に光を照射して、被検査体表面での反射光を撮像手段3で受光する。この方法では、撮像手段3は、被検査体1に凹凸状欠点が存在した場合は凹凸状欠点がない場合と比較して、光照射手段2の異なる位置からの光を受光する。   The method described in Patent Document 1 irradiates light to the object 1 by using a planar light irradiation means 2 in which the intensity or wavelength of light to be irradiated gradually changes from large to small along the irradiation surface. Then, the reflected light on the surface of the inspection object is received by the imaging means 3. In this method, the imaging means 3 receives light from a different position of the light irradiating means 2 when there is an uneven defect in the inspection object 1 compared to when there is no uneven defect.

撮像手段3が受光する受光量は被検査体1表面の斜度に応じて変化するため、撮像手段3より出力された信号を微分処理する。さらに、微分信号の値により被検査体表面の凹凸状欠点の発生箇所と大きさを検出し、撮像した反射光の光の強度または波長が凹凸状欠点の斜面の傾きに関係する事実に基づいて凹凸状欠点の高さまたは深さを測定するものである。   Since the amount of light received by the imaging unit 3 changes according to the inclination of the surface of the object 1 to be inspected, the signal output from the imaging unit 3 is differentiated. Furthermore, based on the fact that the intensity or wavelength of the reflected light imaged is related to the slope of the slope of the uneven defect, by detecting the location and size of the uneven defect on the surface of the object to be inspected based on the value of the differential signal The height or depth of the irregular defect is measured.

特許文献2に記載の方法を、図2Aを用いて説明する。図2Aは特許文献2に記載の検査装置の斜視図である。図2Aにおいて、1は被検査体、2は光照射手段、3は撮像手段、4は再帰型反射スクリーン、6はスジ状欠点、8はデータ処理装置を表している。   The method described in Patent Document 2 will be described with reference to FIG. 2A. FIG. 2A is a perspective view of the inspection apparatus described in Patent Document 2. FIG. In FIG. 2A, 1 is a to-be-inspected object, 2 is a light irradiation means, 3 is an imaging means, 4 is a retroreflection screen, 6 is a streak-like defect, 8 is a data processor.

同図に示すように、被検査体1の表面を再帰型反射スクリーン4と光照射手段2の間に配置し、光照射手段2の光が被検査体1の表面に当たり、反射して再帰型反射スクリーン4に向かうような光路を形成する。上記配置により、光照射手段2からの光は被検査体1で反射し、再帰型反射スクリーン4に入って入射光軸と同じ方向に反射するので、再び被検査体1の表面で反射して光照射手段2の上方に配置された撮像手段3に捕らえられる。この構成によって被検査体1の表面の凹凸状欠点が光学的に強調された画像を撮像手段3で捕えることができ、平滑であるべき表面の凹凸状欠点場所を容易に発見することができる。   As shown in the figure, the surface of the object to be inspected 1 is arranged between the recursive reflection screen 4 and the light irradiating means 2, and the light of the light irradiating means 2 hits the surface of the object 1 to be inspected and is reflected to be recursive. An optical path toward the reflection screen 4 is formed. With the above arrangement, the light from the light irradiation means 2 is reflected by the inspection object 1 and enters the recursive reflection screen 4 and is reflected in the same direction as the incident optical axis, so that it is reflected again by the surface of the inspection object 1. It is captured by the image pickup means 3 disposed above the light irradiation means 2. With this configuration, an image in which the uneven defects on the surface of the object 1 to be inspected are optically emphasized can be captured by the imaging means 3, and the uneven defects on the surface that should be smooth can be easily found.

上記再帰型反射スクリーンによる表面検査の検出原理を図2Bにより説明する。図2Bは特許文献2の検査装置の表面検査の原理を示す説明図である。図2Bにおいて、1は被検査体、4は再帰型反射スクリーン、41はビーズ状反射球である。再帰型反射スクリーン4は、その表面にビーズ状反射球41が密設されており、各反射球41は入射光に対し、図示するような指向性の反射パターンを有している。図2Bに示すように、光源方向からきた光は、被検査体1の表面で再帰型反射スクリーン4の方向に反射する。一方、光照射手段2の上方に配置された撮像手段3は、図中のカメラビューイング方向から被検査体1表面に向いており、再帰型反射スクリーン4からの反射光が被検査体1で再反射する光を捕えている。被検査体1のA、B、Cの各点をカメラから見るとき、点Cのように凹凸状欠点のない平面では、撮像手段3は中間的な明るさをもった面として捕える。一方、凹凸状欠点の撮像手段3側から見て下り坂である点Aでは、再帰型反射スクリーン4からの光は凹凸状欠点で反射角が変化し、強い光を捕える。凹凸状欠点の撮像手段3側から見て上り坂である点Bでは、再帰型反射スクリーン4からの光は凹凸状欠点で反射角が変化し、弱い光を捕える。従って、撮像手段3で受光した光量により、被検査体1の表面の凹凸状欠点を検出することができる。
特許文献2に記載の方法は、光照射手段2を用いて被検査体1に光を照射し、被検査体表面での反射光を、再帰型反射スクリーン4にて反射させ、再度被検査体1に照射し、被検査体表面での反射光を撮像手段3で撮像する。
The detection principle of the surface inspection using the recursive reflection screen will be described with reference to FIG. 2B. FIG. 2B is an explanatory diagram showing the principle of surface inspection of the inspection apparatus of Patent Document 2. In FIG. 2B, 1 is a test object, 4 is a retroreflection screen, and 41 is a bead-like reflection sphere. The recursive reflection screen 4 has a bead-shaped reflection sphere 41 densely provided on the surface thereof, and each reflection sphere 41 has a directional reflection pattern as shown in the figure with respect to incident light. As shown in FIG. 2B, the light coming from the light source direction is reflected in the direction of the retroreflection screen 4 on the surface of the inspection object 1. On the other hand, the image pickup means 3 arranged above the light irradiation means 2 is directed to the surface of the inspection object 1 from the camera viewing direction in the figure, and the reflected light from the recursive reflection screen 4 is the inspection object 1. It captures the light that re-reflects. When viewing each point A, B, and C of the inspection object 1 from the camera, the imaging means 3 captures it as a surface having intermediate brightness on a plane that does not have an uneven defect like the point C. On the other hand, at point A, which is a downhill as viewed from the imaging means 3 side of the uneven defect, the reflection angle of the light from the recursive reflection screen 4 changes due to the uneven defect and captures strong light. At point B, which is an uphill as viewed from the imaging means 3 side of the uneven defect, the reflection angle of the light from the recursive reflection screen 4 changes due to the uneven defect, and weak light is captured. Therefore, the uneven defect on the surface of the inspection object 1 can be detected by the amount of light received by the imaging means 3.
The method described in Patent Document 2 irradiates the inspection object 1 with light using the light irradiation means 2, reflects the reflected light on the inspection object surface with the retroreflective screen 4, and again the inspection object. 1 and the reflected light on the surface of the object to be inspected is imaged by the imaging means 3.

また、撮像手段3で撮像した画像の濃淡値は、被検査体表面の凹凸の斜度に応じて変化するため、被検査体の種別に対応する濃淡値―斜度のテーブルをあらかじめ作成し、そのテーブルにより、画像の濃淡値をスジ状欠点の斜度に変換し、求めた斜度を積分することにより、被検査体1の表面形状を定量化するものである。   Further, since the gray value of the image picked up by the image pickup means 3 changes according to the slope of the unevenness on the surface of the object to be inspected, a gray value-gradient table corresponding to the type of the object to be inspected is created in advance. By using the table, the gray value of the image is converted to the slope of the streak defect, and the obtained slope is integrated to quantify the surface shape of the object 1 to be inspected.

特許文献3に記載の方法を、図3を用いて説明する。図3は特許文献3に記載の検査装置の斜視図である。図3において、1は被検査体、2は光照射手段、3は撮像手段、5は拡散スクリーン、9は凹凸状欠点を表している。   The method described in Patent Document 3 will be described with reference to FIG. FIG. 3 is a perspective view of the inspection apparatus described in Patent Document 3. In FIG. 3, 1 denotes an object to be inspected, 2 denotes a light irradiation means, 3 denotes an imaging means, 5 denotes a diffusion screen, and 9 denotes an uneven defect.

特許文献3に記載の方法は、光照射手段2を用いて被検査体1に光を照射し、被検査体表面での反射光を撮像手段3で撮像する。被検査体1に凹凸状欠点9が存在した場合、光照射手段2からの光は、前記凹凸状欠点により反射角が変化し、撮像手段3での撮像画像の濃淡値に変化が生じる。この凹凸状欠点での濃淡値の変化を検出するために、撮像手段3により撮像した画素データの一測定ラインの輝度平均値を求め、各画素データの輝度値と前記輝度平均値の差分を積分(累積的に加算)する。これによって、被検査体表面の凹凸状欠点が強調される。さらに、前記積分値と被検査体の曲率や色を補正するための変換係数を用いて、被検査体表面の凹凸の形状を求めるものである。
特許第2926365号公報 特開2006−003168号公報 特許第3107628号公報
In the method described in Patent Document 3, light is irradiated on the inspection object 1 using the light irradiation means 2, and the reflected light on the surface of the inspection object is imaged by the imaging means 3. When the uneven defect 9 is present on the object 1 to be inspected, the reflection angle of the light from the light irradiation means 2 changes due to the uneven defect, and the gray value of the image captured by the imaging means 3 changes. In order to detect a change in the gray value due to the uneven defect, the luminance average value of one measurement line of the pixel data imaged by the imaging means 3 is obtained, and the difference between the luminance value of each pixel data and the luminance average value is integrated. (Cumulative addition). Thereby, the uneven defect on the surface of the object to be inspected is emphasized. Furthermore, using the integration value and the conversion coefficient for correcting the curvature and color of the object to be inspected, the shape of the unevenness on the surface of the object to be inspected is obtained.
Japanese Patent No. 2926365 JP 2006-003168 A Japanese Patent No. 3107628

しかしながら、上記背景技術において、連続走行しているシート状物に適用することは困難である。   However, in the above background art, it is difficult to apply to a sheet-like object that is continuously running.

特許文献1に記載の方法は、光照射手段からの光を被検査体で反射させて、その反射光を撮像手段により撮像している。しかし、連続走行されているシート状物は上下変動、角度変動が大きく、このシート状物の変動により、撮像手段で撮像する光の光量が変化する。   In the method described in Patent Document 1, light from the light irradiation unit is reflected by an object to be inspected, and the reflected light is imaged by the imaging unit. However, the sheet-like object that is continuously running has large vertical and angular fluctuations, and the amount of light picked up by the imaging means changes due to the fluctuation of the sheet-like object.

つまり、同じ高さの凹凸状欠点が発生した場合であっても、シート状物の上下変動、角度変動により、撮像手段で撮像する光の光量に違いが生じ、求めるべき凹凸状欠点の高さとは違う値となる。   In other words, even when uneven defects with the same height occur, the amount of light picked up by the imaging means varies due to the vertical and angular fluctuations of the sheet-like material, and the height of the uneven defects to be obtained. Is a different value.

このように、凹凸状欠点の高さを高精度に検査することができないという問題点があった。   As described above, there is a problem that the height of the uneven defect cannot be inspected with high accuracy.

特許文献2に記載の方法では、光照射手段からの光と再帰型反射スクリーンからの反射光を、被検査体において反射させ、エリアセンサカメラにより撮像しているが、シート状物に適用した場合、連続走行されているシート状物の上下変動、角度変動によって、同じ高さのスジ状欠点が発生した場合であっても、エリアセンサカメラで撮像する光の光量に違いが生じ、求めるべきスジ状欠点の高さとは違う値となる。さらに、撮像手段がエリアセンサカメラであるため、連続走行するシート状物の全長検査が困難である。   In the method described in Patent Document 2, the light from the light irradiation means and the reflected light from the retroreflective screen are reflected by the object to be inspected and imaged by the area sensor camera. Even if a streak-like defect with the same height occurs due to up-down fluctuations and angle fluctuations of a sheet that is continuously running, the amount of light captured by the area sensor camera varies, and the streak to be obtained The value is different from the height of the shape defect. Furthermore, since the image pickup means is an area sensor camera, it is difficult to inspect the full length of a continuously traveling sheet-like object.

また、プラスチックフィルムの製造ラインでは、多種多様の品種が製造されており、品種や厚み変更が頻繁に行われている。そのため、被検査体の種別に対応する濃淡値―斜度のテーブルを作成する必要があり、複数の品種についての濃淡値―斜度のテーブルを作成することは困難であるという問題点があった。   Also, a variety of varieties are manufactured on the plastic film production line, and the varieties and thickness are frequently changed. Therefore, it is necessary to create a gray value-slope table corresponding to the type of object to be inspected, and it is difficult to create a gray value-slope table for multiple varieties. .

さらに、スジ状欠点の画素データを累積的に加算することで、スジ状欠点の高さを求めている。ここで、シート状物は数百mで搬送されることもあり、被検査体面にスジ状欠点が多数発生した場合は、画素データを累積的に加算することでスジ状欠点の高さを定量的に求めるための時間的に十分でないという問題がある。   Furthermore, the height of the stripe defect is obtained by cumulatively adding pixel data of the stripe defect. Here, the sheet-like material may be transported by several hundred meters, and when a large number of streak defects occur on the surface of the object to be inspected, the height of the streak defect is quantified by cumulatively adding pixel data. There is a problem that it is not sufficient in terms of time to find out.

特許文献3に記載の方法では、特許文献1、2と同様に、光照射手段からの光を被検査体で反射させて、その反射光を撮像手段により撮像しているため、シート状物の生産ラインでは、シート状物の上下変動、角度変動により、高精度に定量化ができないという問題点、撮像手段で撮像した凹凸状欠点の信号波形を積分(累積的に加算)することに要する時間に関して、シート表面に凹凸状欠点が多数発生した場合、フィルムなどのシートにおける製造に適用するには時間的に十分ではなく、また、被検査体表面の凹凸状欠点形状の定量化の精度は、変換係数に依存され、変換係数を精度良く求めなければならないという問題点があった。   In the method described in Patent Document 3, as in Patent Documents 1 and 2, the light from the light irradiation means is reflected by the object to be inspected, and the reflected light is imaged by the imaging means. In the production line, the problem is that the sheet cannot be quantified with high accuracy due to the vertical and angular fluctuations of the sheet-like material, and the time required to integrate (cumulatively add) the signal waveform of the uneven defect imaged by the imaging means. With regard to, when a large number of uneven defects occur on the sheet surface, it is not sufficient in time to apply to the production of a sheet such as a film, and the accuracy of quantification of the uneven defect shape on the surface of the object to be inspected is Depending on the conversion coefficient, there is a problem that the conversion coefficient must be obtained with high accuracy.

本発明の目的は、従来技術の上記問題を解決し、シートにおける凹凸状欠点を精度良く検出、定量化することができる検査装置ならびに検査方法を提供することにある。   An object of the present invention is to provide an inspection apparatus and an inspection method capable of solving the above-described problems of the prior art and accurately detecting and quantifying uneven defects in a sheet.

上記目的を達成するために本発明によれば、被検査体の片方の面側から光を照射する光照射手段と、前記被検査体の他方の面に対向して配設され前記被検査体からの透過光を撮像する複数の光電変換素子を有し撮像した光量を出力信号波形として出力する撮像手段と、前記撮像手段で撮像した前記透過光の信号波形に基づいて前記被検査体の表面に存在する凹凸状欠点を検出するデータ処理手段とを備えたシートの検査装置であって、前記光照射手段は長手方向と前記撮像手段の撮像軸とに直交する面内の方向に連続的に発光光量が変化するよう前記撮像手段によって出力されるよう発光する発光部を有し、前記撮像手段は撮像軸が、前記光照射手段と交わるよう配設され、前記データ処理手段は前記撮像手段の出力信号波形の所定の閾値を超えるピークを検出することにより前記被検査体上の凹凸状欠点の位置を検出する位置検出手段と、前記光電変換素子の出力信号波形における隣り合う2つのピークの位置の差と前記2つのピークの出力値の差との積に比例する出力に基づいて前記凹凸状欠点の形状を求める定量化手段と、を備えるシートにおける凹凸状欠点の検査装置が提供される。   In order to achieve the above object, according to the present invention, a light irradiating means for irradiating light from one side of an object to be inspected, and the object to be inspected disposed opposite to the other surface of the object to be inspected. An imaging unit having a plurality of photoelectric conversion elements for imaging the transmitted light from the light source and outputting the imaged light quantity as an output signal waveform; and a surface of the inspected object based on the signal waveform of the transmitted light imaged by the imaging unit And a data processing means for detecting uneven defects present in the sheet, wherein the light irradiation means is continuously in a longitudinal direction and a direction in a plane perpendicular to the imaging axis of the imaging means. A light-emitting unit that emits light to be output by the imaging unit so that the amount of emitted light changes, the imaging unit is disposed so that an imaging axis intersects the light irradiation unit, and the data processing unit Predetermined threshold value of output signal waveform A position detecting means for detecting the position of the concave / convex defect on the object to be inspected, and a difference between positions of two adjacent peaks in the output signal waveform of the photoelectric conversion element and the two peaks There is provided an inspection device for uneven defects in a sheet, comprising: quantification means for obtaining a shape of the uneven defects based on an output proportional to a product of a difference between output values.

また、本発明の好ましい形態によれば、前記光照射手段として、該光照射手段と被検査体との間に前記光照射手段の長手方向と平行な方向に延在する減光部材を備えたライン状光源を用い、前記撮像手段は前記撮像軸が前記減光部と交わり、かつ、前記被検査体に欠点が存在しない場合において前記ライン状光源からの光が入射するよう構成されるシートにおける凹凸状欠点の検査装置が提供される。   According to a preferred embodiment of the present invention, the light irradiating means includes a dimming member extending between the light irradiating means and the object to be inspected in a direction parallel to the longitudinal direction of the light irradiating means. In a sheet that uses a line-shaped light source, and the imaging means is configured such that light from the line-shaped light source is incident when the imaging axis intersects with the dimming unit and there is no defect in the inspection object An inspection device for uneven defects is provided.

また、本発明の好ましい形態によれば、前記撮像手段として、複数の光電変換素子を前記光照射手段と平行に配列したものを用いるシートにおける凹凸状欠点の検査装置が提供される。   Moreover, according to the preferable form of this invention, the inspection apparatus of the uneven | corrugated shaped defect in the sheet | seat which uses what arranged the some photoelectric conversion element in parallel with the said light irradiation means as said imaging means is provided.

また、本発明の別の形態によれば、走行方向に走行している被検査体に存在する凹凸状欠点の形状を求める凹凸状欠点の検査方法であって、前記被検査体の片方の面側から長手方向と前記撮像手段の撮像軸とに直交する軸方向に連続的に変化する光量を照射する光照射手段によって前記被検査体に光を照射し、光量が単調に変化する場所を撮像する複数の光電変換素子を有する撮像手段によって前記被検査体からの透過光を撮像し、前記各光電変換素子の出力信号波形の所定の閾値を超えるピークを検出する位置検出手段によって凹凸状欠点の位置を検出し、前記光電変換素子の出力信号波形における隣り合う2つのピークの位置の差と前記2つのピークの出力値の差分値との積に比例する出力に基づく定量化手段によって前記凹凸状欠点の形状を求めるシートにおける凹凸状欠点の検査方法が提供される。   Further, according to another aspect of the present invention, there is provided a method for inspecting a concave / convex defect that obtains the shape of the concave / convex defect present in a test object traveling in a traveling direction, wherein one surface of the test object is provided. The light is irradiated on the object to be inspected by the light irradiation means that irradiates the light quantity continuously changing in the axial direction perpendicular to the longitudinal direction and the imaging axis of the imaging means from the side, and the place where the light quantity changes monotonously is imaged Imaging the transmitted light from the object to be inspected by an imaging means having a plurality of photoelectric conversion elements, and detecting a peak exceeding a predetermined threshold of the output signal waveform of each photoelectric conversion element by the position detection means The concavo-convex shape is detected by a quantifying means that detects a position and is based on an output proportional to a product of a difference between positions of two adjacent peaks in the output signal waveform of the photoelectric conversion element and a difference value of the output values of the two peaks. Flawed Method of inspecting uneven defect in the seat to determine the Jo is provided.

また、本発明の好ましい形態によれば、前記光照射手段の長手方向と前記撮像手段の撮像軸とに直交する軸方向の光量は連続的に変化し、単調に変化する部分が存在するシートにおける凹凸状欠点の検査方法が提供される。   Further, according to a preferred embodiment of the present invention, the amount of light in the axial direction perpendicular to the longitudinal direction of the light irradiating means and the imaging axis of the imaging means changes continuously, and in a sheet where there is a monotonously changing portion. An inspection method for uneven defects is provided.

また、本発明の好ましい形態によれば、前記撮像手段は前記光照射手段に平行な一次元の画像を得るシートにおける凹凸状欠点の検査方法が提供される。   Further, according to a preferred embodiment of the present invention, there is provided a method for inspecting concave and convex defects in a sheet from which the imaging unit obtains a one-dimensional image parallel to the light irradiation unit.

また、本発明の別の形態によれば、前記シートにおける凹凸状欠点の検査方法を用いて前記シートの凹凸状欠点を検査するシートの製造方法が提供される。   Moreover, according to another form of this invention, the manufacturing method of the sheet | seat which test | inspects the uneven | corrugated defect of the said sheet | seat using the inspection method of the uneven | corrugated defect in the said sheet | seat is provided.

本発明において、「凹凸状欠点」とは、被検査体表面に存在する凹状または凸状の欠点をいう。例えば、凹凸状の被検査体の走行方向に連続的に発生する厚みムラや、被検査体に別の物体を塗布する場合に発生する塗布ムラなどである。   In the present invention, the “concavo-convex defect” refers to a concave or convex defect present on the surface of the object to be inspected. For example, there are thickness unevenness continuously generated in the traveling direction of the uneven object to be inspected, and application unevenness generated when another object is applied to the object to be inspected.

本発明において、「光照射手段」とは、被検査体を挟んで撮像手段と対向する位置に設置され、被検査体上の撮像手段の撮像範囲に光を照らすことができる発光体のことをいう。光照射手段は、複数の光ファイバを線状に配置したものや、円柱状のロッド照明であると所定の検査範囲を均一に照射できるので好ましい。また、円柱状の蛍光灯を使用することにより、安く装置を実現することが可能である。   In the present invention, the “light irradiating means” refers to a light emitting body that is installed at a position facing the imaging means with the object to be inspected therebetween and can illuminate the imaging range of the imaging means on the object to be inspected. Say. The light irradiating means is preferably one in which a plurality of optical fibers are arranged in a line or a cylindrical rod illumination because a predetermined inspection range can be uniformly irradiated. In addition, the apparatus can be realized at low cost by using a columnar fluorescent lamp.

本発明において、「連続的に発光光量が変化する」とは、光照射手段の長手方向と前記撮像軸とに直交する軸方向において、光照射手段の中心部で光量が最大となり、中心から離れるほど明から暗に一意に、直線または曲線状に変化する光量のことをいう。連続的な光量は、山形でもよいし、一方で光量が多く、もう一方で光量が少ない右上がり形、右下がり形などでも良い。また、光照射手段に光を遮る減光部材を設けることにより、連続的な光量の変化を急峻にでき、被検査体上の凹凸状欠点をより精度良く検出することが可能である。   In the present invention, “the amount of emitted light continuously changes” means that the light amount is maximized at the center of the light irradiating means in the axial direction perpendicular to the longitudinal direction of the light irradiating means and the imaging axis, and away from the center. The amount of light that changes from light to dark uniquely and linearly or curvedly. The continuous light amount may be a mountain shape, or may be a right-up type or a right-down type with a large amount of light on the one hand and a small amount of light on the other hand. Further, by providing the light irradiating means with a light reducing member that blocks light, a continuous change in the amount of light can be made steep, and uneven defects on the object to be inspected can be detected with higher accuracy.

また、本発明において、「撮像手段」とは、被検査体を挟んで、光照射手段と対向する位置に設置され、複数の光電変換素子を有し、各光電変換素子の受光量を電気信号として出力するものをいう。撮像手段として、複数の光電変換素子が一列に配置されたラインセンサカメラを用いると、連続走行するフィルムを高速に連続的に撮像できるということから好ましい。   In the present invention, the “imaging means” is installed at a position facing the light irradiation means across the object to be inspected, has a plurality of photoelectric conversion elements, and the received light amount of each photoelectric conversion element is an electric signal. As output. When a line sensor camera in which a plurality of photoelectric conversion elements are arranged in a row is used as the imaging means, it is preferable because continuous film can be continuously imaged at high speed.

また、本発明において、「減光部材」とは、光照射手段の発光部と被検査体との間に、前記発光部の長手方向に平行に配設され、光照射手段からの光量に指向性を持たせるための部材をいう。減光部材としては、鉄製、アルミ製のような光を通さない材質のものを使い、光照射手段の長手方向に直交する断面の光を遮ることが好ましい。   In the present invention, the “light-reducing member” is disposed between the light-emitting portion of the light-irradiating means and the object to be inspected in parallel to the longitudinal direction of the light-emitting portion, and is directed to the amount of light from the light-irradiating means. It is a member for giving the property. As the light reducing member, it is preferable to use a material that does not transmit light, such as iron or aluminum, to block light in a cross section perpendicular to the longitudinal direction of the light irradiation means.

本発明のシートにおける凹凸状欠点の検査装置によれば、シート状被検査体の良品・不良品を判別する重要な基準である、シート状被検査体表面に生じるスジ状欠点などの凹凸状欠点の形状の撮像信号波形から、短時間でスジ状欠点の形状を定量評価する検査装置および検査方法を実現できる。   According to the inspection device for uneven defects in the sheet of the present invention, uneven defects such as streak defects generated on the surface of the sheet-like object, which is an important criterion for discriminating between non-defective products and defective products of the sheet-like object. Thus, it is possible to realize an inspection apparatus and an inspection method for quantitatively evaluating the shape of a streak-like defect in a short time from an imaging signal waveform of the shape.

以下、本発明の一実施形態を、図面を参照しながら説明する。図4は、被検査体1であるプラスチックフィルムに生じるスジ状欠点の形状を表した図である。図4において、1は被検査体であるプラスチックフィルム、6はスジ状欠点を表している。図4に示すプラスチックフィルムの表面に生じるスジ状欠点は、プラスチックフィルム1の流れ方向に平行に発生し、フィルム長さ方向に垂直な断面において微小な凸状を形成する。このスジ状欠点の幅および高さを、透過光を受光することで定量評価する場合を例にとって説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a diagram showing the shape of streak-like defects that occur in the plastic film that is the device under test 1. In FIG. 4, reference numeral 1 denotes a plastic film as an object to be inspected, and 6 denotes a streak-like defect. The streaky defects generated on the surface of the plastic film shown in FIG. 4 occur parallel to the flow direction of the plastic film 1 and form a minute convex shape in a cross section perpendicular to the film length direction. A case where the width and height of the streak-like defect are quantitatively evaluated by receiving transmitted light will be described as an example.

図5は、本発明の一実施形態におけるシートの検査装置の構成を示す斜視図である。図5において、1は被検査体であるプラスチックフィルム、2は光照射手段、3は撮像手段、7はスリット、8はデータ処理手段、10は減光部材、θはフィルムの幅方向と光照射手段の長手方向のなす角度フィルムの走行方向と撮像手段の撮像軸のなす角度、θ2はフィルムの走行方向と撮像手段の撮像軸のなす角度を表している。図5のシートの検査装置は、フィルム長さ方向に走行しているフィルム1の片方の面に光照射手段2、他方の面に撮像手段3が配置されており、撮像手段3で撮像した透過光を光電変換素子により出力信号波形に変換され、データ処理手段へ入力される。ここで、透過式とすることにより、連続走行しているフィルムの上下振動、角度変動に強くすることができ、精度良く定量化を実施することができる。   FIG. 5 is a perspective view showing a configuration of a sheet inspection apparatus according to an embodiment of the present invention. In FIG. 5, 1 is a plastic film which is an object to be inspected, 2 is a light irradiation means, 3 is an imaging means, 7 is a slit, 8 is a data processing means, 10 is a dimming member, and θ is the width direction of the film and light irradiation. Angle formed by the longitudinal direction of the means The angle formed by the traveling direction of the film and the imaging axis of the imaging means, and θ2 represent the angle formed by the traveling direction of the film and the imaging axis of the imaging means. In the sheet inspection apparatus of FIG. 5, the light irradiation means 2 is arranged on one surface of the film 1 traveling in the film length direction, and the imaging means 3 is arranged on the other surface. The light is converted into an output signal waveform by the photoelectric conversion element and input to the data processing means. Here, by adopting the transmission type, it is possible to increase the vertical vibration and angle fluctuation of the continuously running film, and it is possible to perform quantification with high accuracy.

データ処理手段8は入力された出力信号波形に基づいて、フィルム表面に存在する凹凸部の形状を定量的に求める。   The data processing means 8 quantitatively obtains the shape of the concavo-convex portions present on the film surface based on the input output signal waveform.

光照射手段2はスリット部7を画成するための減光部材10を備えたライン状光源とし、長手方向と撮像手段の撮像軸とに直交する軸方向の光量は、連続的に変化することを特徴とし、撮像手段3の視野幅は、光照射手段2の長手方向と平行に配置されており、撮像手段3の撮像軸の延長は、光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向に備えられた減光部材と一致することを特徴とする。   The light irradiating means 2 is a line light source provided with a dimming member 10 for defining the slit portion 7, and the light quantity in the axial direction perpendicular to the longitudinal direction and the imaging axis of the imaging means is continuously changed. The visual field width of the imaging means 3 is arranged in parallel with the longitudinal direction of the light irradiation means 2, and the extension of the imaging axis of the imaging means 3 is the longitudinal direction of the light irradiation means and the imaging axis of the imaging means. It corresponds to the light-reducing member provided in the axial direction orthogonal to.

図6Aは光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向に撮像手段の撮像軸が変化したときの光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の撮像手段で受光した光量分布を示す概略図である。図6Aにおいて、2は光照射手段を表している。図6Aの撮像手段により受光した光量分布は光照射手段2の発光部の中心部が最も明るく、周辺ほど暗くなる山形の分布である。撮像手段で受光した濃淡値がなだらかに変化するのは、撮像手段のフォーカスが被検査体1の表面に合わせられており、フォーカスが合わせられていない光照射手段近傍から広く光を取り入れるためである。   FIG. 6A shows an axial direction orthogonal to the longitudinal direction of the light irradiation means and the imaging axis of the imaging means when the imaging axis of the imaging means is changed in the axial direction orthogonal to the longitudinal direction of the light irradiation means and the imaging axis of the imaging means. It is the schematic which shows the light quantity distribution received with the imaging means. In FIG. 6A, 2 represents a light irradiation means. The light quantity distribution received by the imaging unit in FIG. 6A is a mountain-shaped distribution in which the central part of the light emitting part of the light irradiating unit 2 is brightest and becomes darker at the periphery. The gradation value received by the image pickup means changes gently because the focus of the image pickup means is adjusted to the surface of the inspected object 1 and light is widely taken from the vicinity of the light irradiation means that is not in focus. .

図6Bはスリットを画成するための減光部材を備えた光照射手段2の長手方向と撮像手段とに直交する軸方向に撮像手段の撮像軸が変化したときの光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の撮像手段で受光した光量分布を示す概略図である。図6Bにおいて、2は光照射手段、7はスリット、10は減光部材を表している。図6Bのように、光照射手段2にスリット7を画成する減光部材10を設置することにより、光照射手段2の長手方向と撮像手段の撮像軸とに直交する軸方向に撮像手段の撮像軸を変化させたとき、光照射手段の長手方向と撮像手段の撮像軸とに直交する断面方向に急峻な光量分布を得ることができる。この減光部材10は、光照射手段2の長手方向と撮像手段の撮像軸とに直交する軸方向に対し、発光部の近くに設置するほど急峻な光量分布を得ることができるので、スジ状欠点が発生した場合、撮像手段によって受光する光量が十分に変化できるので好ましい。しかし、近くに設置しすぎると、必要な光量を得ることができず、検出精度が低下する。また、減光部材10が発光部と離れてしまうと、急峻な光量分布を得ることができず、検出精度が低下するため、光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の減光部材と発光部の中心部との位置は、5mm〜30mmの間とすることが好ましい。   FIG. 6B shows the longitudinal direction of the light irradiating means when the imaging axis of the imaging means is changed in the longitudinal direction of the light illuminating means 2 provided with the dimming member for defining the slit and the axial direction orthogonal to the imaging means. It is the schematic which shows the light quantity distribution received with the imaging means of the axial direction orthogonal to the imaging axis of an imaging means. In FIG. 6B, 2 represents a light irradiation means, 7 represents a slit, and 10 represents a light reducing member. As shown in FIG. 6B, by installing the light reducing member 10 that defines the slit 7 in the light irradiation means 2, the image pickup means is arranged in the axial direction orthogonal to the longitudinal direction of the light irradiation means 2 and the image pickup axis of the image pickup means. When the imaging axis is changed, a steep light amount distribution can be obtained in the cross-sectional direction orthogonal to the longitudinal direction of the light irradiation means and the imaging axis of the imaging means. Since this dimming member 10 can obtain a steep light amount distribution as it is installed closer to the light emitting portion with respect to an axial direction orthogonal to the longitudinal direction of the light irradiation means 2 and the imaging axis of the imaging means, When a defect occurs, it is preferable because the amount of light received by the imaging means can be changed sufficiently. However, if it is installed too close, the required amount of light cannot be obtained, and the detection accuracy is reduced. In addition, when the dimming member 10 is separated from the light emitting unit, a steep light amount distribution cannot be obtained, and the detection accuracy is lowered. Therefore, an axis orthogonal to the longitudinal direction of the light irradiation unit and the imaging axis of the imaging unit. The position of the direction dimming member and the central part of the light emitting part is preferably between 5 mm and 30 mm.

以下に、被検査体であるプラスチックフィルム1を挟んで対向している光照射手段2と撮像手段3から、プラスチックフィルム1に存在するスジ状欠点を検出する原理について説明する。図7Aは、本発明の一実施形態における光照射手段の長手方向に平行な方向から見た撮像手段の撮像軸を表した概略図である。図7Bは本発明の一実施形態における光照射手段の長手方向に平行な方向から見たフィルム上にスジが発生した場合のスジの左斜面での撮像手段の撮像軸の変化の概略図である。図7Cは本発明の一実施形態における光照射手段の長手方向に平行な方向から見たフィルム上にスジが発生した場合のスジの右斜面での撮像手段の撮像軸の変化の概略図である。   Hereinafter, the principle of detecting streak-like defects existing in the plastic film 1 from the light irradiation means 2 and the imaging means 3 facing each other with the plastic film 1 as an object to be inspected in between will be described. FIG. 7A is a schematic diagram illustrating the imaging axis of the imaging unit viewed from a direction parallel to the longitudinal direction of the light irradiation unit in one embodiment of the present invention. FIG. 7B is a schematic diagram of a change in the imaging axis of the imaging unit on the left slope of the streak when a streak occurs on the film viewed from a direction parallel to the longitudinal direction of the light irradiation unit in one embodiment of the present invention. . FIG. 7C is a schematic diagram of a change in the imaging axis of the imaging unit on the right slope of the streak when a streak occurs on the film viewed from a direction parallel to the longitudinal direction of the light irradiation unit in one embodiment of the present invention. .

図7A、図7B、図7Cにおいて、1は被検査体であるプラスチックフィルム、2は光照射手段、3は撮像手段、6はスジ状欠点、7はスリット、8はデータ処理手段、10は減光部材、aは撮像手段の撮像軸の延長と光照射手段2に設置されている減光部材10の平面上との交点、bはスジ状欠点発生時のスジ状欠点の左斜面で変化した撮像手段の撮像軸の延長と光照射手段2に設置されている減光部材10の平面上との交点、cはスジ状欠点発生時のスジ状欠点の右斜面で変化した撮像手段の撮像軸の延長と光照射手段2に設置されている減光部材10の平面上との交点を表している。
図8はフィルム上にスジが発生した場合に撮像手段で撮像した光量の変化を示したものである。図8において、2は光照射手段、10は減光部材を表している。なお、a,b,cはそれぞれ図7のa,b,cに対応している。
7A, 7B, and 7C, 1 is a plastic film as an object to be inspected, 2 is a light irradiation means, 3 is an imaging means, 6 is a streak defect, 7 is a slit, 8 is a data processing means, and 10 is a reduction. The optical member, a is the intersection of the extension of the imaging axis of the imaging means and the plane of the dimming member 10 installed in the light irradiation means 2, and b is changed on the left slope of the streak-like defect when the streak-like defect occurs The intersection of the extension of the imaging axis of the imaging means and the plane of the dimming member 10 installed in the light irradiation means 2, c is the imaging axis of the imaging means changed on the right slope of the streak-like defect when the streak-like defect occurs And the intersection of the light-reducing member 10 installed on the light irradiating means 2 with the plane.
FIG. 8 shows changes in the amount of light imaged by the imaging means when streaks occur on the film. In FIG. 8, 2 represents a light irradiation means, and 10 represents a light reducing member. Note that a, b, and c correspond to a, b, and c in FIG. 7, respectively.

図7B、図7Cのように、フィルム上にスジ状欠点6が発生した場合、スジ状欠点の斜面で屈折率が変化し、撮像手段3の撮像軸の延長と光照射手段の交点が変化する。図7Bのように、スジ状欠点の左斜面では、撮像手段の撮像軸と光照射手段の交点は光照射手段の中央部近くに変化し、撮像手段で撮像する光量も多くなる。反対に、図7Cにように、スジ状欠点の右斜面では、撮像手段の撮像軸と光照射手段の交点は光照射手段の中央部から遠ざかるように変化し、撮像手段で撮像する光量も少なくなる。   As shown in FIGS. 7B and 7C, when the streak-like defect 6 occurs on the film, the refractive index changes on the slope of the streak-like defect, and the intersection between the extension of the imaging axis of the imaging means 3 and the light irradiation means changes. . As shown in FIG. 7B, on the left slope of the streak-like defect, the intersection of the imaging axis of the imaging unit and the light irradiation unit changes near the center of the light irradiation unit, and the amount of light captured by the imaging unit increases. On the other hand, as shown in FIG. 7C, on the right slope of the streak-like defect, the intersection of the imaging axis of the imaging unit and the light irradiation unit changes away from the center of the light irradiation unit, and the amount of light captured by the imaging unit is small. Become.

スジ状欠点の高さを精度良く定量化するためには、図7B、図7Cのように、スジ状欠点で光の屈折が変化し、光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の撮像位置が変化した場合、図8のように光量が十分に変化できるようにすることが好ましい。そのため、撮像手段3による欠点がない場合における撮像位置は光量の最大値と最小値の中間となるように設置することが好ましい。また、光照射手段の長手方向に平行に光を遮る減光部材を配設することにより、光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の撮像位置が変化した場合に、撮像手段で撮像した出力信号波形の光量の変化量が大きくなり、精度良くスジ状欠点の高さを定量化することができる。   In order to accurately quantify the height of the streak-like defect, as shown in FIGS. 7B and 7C, the light refraction changes due to the streak-like defect, and the longitudinal direction of the light irradiation means and the imaging axis of the imaging means are changed. When the imaging position in the orthogonal axial direction changes, it is preferable that the amount of light can be changed sufficiently as shown in FIG. For this reason, it is preferable that the imaging position in the case where there is no defect by the imaging means 3 is set so as to be between the maximum value and the minimum value of the light amount. In addition, when a dimming member that blocks light parallel to the longitudinal direction of the light irradiating means is disposed, the imaging position in the axial direction perpendicular to the longitudinal direction of the light irradiating means and the imaging axis of the imaging means changes. The amount of change in the amount of light of the output signal waveform picked up by the image pickup means increases, and the height of the streak-like defect can be quantified with high accuracy.

また、図5において、フィルム1と撮像手段3のなす角度θ2が小さくなるほど、スジ状欠点の斜面での角度変化が大きくなり、スジ状欠点がない場合とある場合の光軸のずれが大きくなるため、スジ状欠点の検出性能は向上する。しかし、角度θ2が小さくなると、機器構成に必要な場所が広くなるため、30°<θ2<75°が好ましい。 In FIG. 5, the smaller the angle θ 2 formed by the film 1 and the image pickup means 3, the greater the angle change on the slope of the streak-like defect, and the greater the deviation of the optical axis when there is no streak-like defect. Therefore, the detection performance of streak-like defects is improved. However, as the angle θ 2 becomes smaller, the space required for the device configuration becomes wider, so 30 ° <θ 2 <75 ° is preferable.

フィルム表面に凹凸状欠点が生じた場合、光を透過するフィルム表面に光を照射すると、凹凸状欠点の斜面に垂直な平面方向に、照射された光の光路が偏向される。フィルム表面に生じるフィルム長さ方向に続くスジ状欠点の場合も同様に、スジの斜面に垂直な平面方向に光は屈折する。ここで、光照射手段と撮像手段は長手方向がフィルムの走行方向に対して垂直となるように設置し、光照射手段からの光がスジ状欠点に照射された場合、スジ状欠点の斜面の法線方向はフィルム走行方向に垂直な方向のみであるため、スジ状欠点で屈折された光はフィルムの走行方向に対して垂直な方向に変化する。この方向は光照射手段の長手方向に平行であるため、フィルム表面にスジ状欠点がある場合とない場合との光の光量は同じとなる。そのため、スジ状欠点を検出することが不可能である。   In the case where an uneven defect is generated on the film surface, when the film surface that transmits light is irradiated with light, the optical path of the irradiated light is deflected in a plane direction perpendicular to the slope of the uneven defect. Similarly, in the case of a streak-like defect that occurs on the film surface in the film length direction, light is refracted in a plane direction perpendicular to the slope of the streak. Here, the light irradiation means and the image pickup means are installed so that the longitudinal direction is perpendicular to the traveling direction of the film, and when the light from the light irradiation means is applied to the streak-like defect, the slope of the streak-like defect is Since the normal direction is only the direction perpendicular to the film running direction, the light refracted by the streak defect changes in a direction perpendicular to the film running direction. Since this direction is parallel to the longitudinal direction of the light irradiation means, the amount of light is the same when there is a streak-like defect on the film surface. Therefore, it is impossible to detect streak-like defects.

このことから図5に示すように、光照射手段と撮像手段は、フィルムの走行方向に垂直な方向から、0°<θ<90°である角度θ傾けて設置することを特徴とする。   Therefore, as shown in FIG. 5, the light irradiating means and the imaging means are installed at an angle θ that satisfies 0 ° <θ <90 ° from a direction perpendicular to the running direction of the film.

ここで、θは、0°に近くなると、フィルム1にスジ状欠点が発生した場合の光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の撮像手段3の撮像軸の変化量が小さいため、スジ状欠点部の出力信号波形が小さくなり、検出精度は低い。そのため、θは15°以上とすることが好ましい。一方、90°に近くなるに従い、スジ状欠点でのフィルム走行方向に屈折される光量は多くなり、検出信号は大きくなるが、フィルム幅方向に対する検査できる範囲が狭くなるので、60°以下とすることが好ましい。   Here, when θ is close to 0 °, the change in the imaging axis of the imaging means 3 in the axial direction orthogonal to the longitudinal direction of the light irradiation means and the imaging axis of the imaging means when a streak-like defect occurs in the film 1 Since the amount is small, the output signal waveform of the streak-like defect portion becomes small and the detection accuracy is low. For this reason, θ is preferably set to 15 ° or more. On the other hand, as it approaches 90 °, the amount of light refracted in the film running direction with streak-like defects increases and the detection signal increases, but the range that can be inspected in the film width direction is narrowed. It is preferable.

次に、得られた撮像手段での信号波形からスジ状欠点の位置を検出し、定量化する方法について説明する。図9は、本発明の一実施形態における撮像手段で撮像した撮像信号波形を表した図である。図9のように撮像手段3により撮像した信号の濃淡値が急激に変化している場所が、フィルム表面の斜度が急激に変化しているスジ状欠点である。   Next, a method for detecting and quantifying the position of the streak-like defect from the signal waveform obtained by the imaging means will be described. FIG. 9 is a diagram illustrating an imaging signal waveform captured by the imaging unit according to the embodiment of the present invention. The place where the gray value of the signal imaged by the image pickup means 3 changes rapidly as shown in FIG. 9 is a streak-like defect in which the slope of the film surface changes abruptly.

また、データ処理手段は、各光電変換素子の出力信号波形のピークを検出することによるスジ状欠点の位置検出手段と、2つのピークの位置の間隔と値の差分とを用いてスジ状欠点の形状を求める定量化手段とを備えることを特徴とするものである。   Further, the data processing means uses the position detection means of the streak-like defect by detecting the peak of the output signal waveform of each photoelectric conversion element, and the distance between the positions of the two peaks and the difference between the values of the streak-like defect. And quantifying means for obtaining the shape.

図10は、本発明の一実施形態による撮像信号波形からのスジ状欠点の位置検出方法を表した図である。位置検出手段では、図10のように、撮像手段により撮像された透過光を光電変換素子により信号波形に変換し、その信号波形から照明ムラ、フィルムのバタツキの影響を除去する。さらに、照明ムラ、フィルムのバタツキの除去後の波形から、極大値と極小値の2つのピークを抽出し、極大値と極小値の差分値の絶対値が閾値を超えていた場合に、その位置をスジ状欠点部として検出する。ここで、スジ状欠点の位置を検出するために使用した、隣り合う極大値と極小値の差分値の閾値は、検出したいスジ状欠点の高さに応じて決まり、予め検出したい最小のスジ状欠点を検出しておき、その時の隣り合う極大値と極小値の差分値を閾値とすることにより、最小のスジ状欠点以上の高さのスジ状欠点を検出することが可能となる。   FIG. 10 is a diagram showing a method for detecting a position of a streak-like defect from an imaging signal waveform according to an embodiment of the present invention. In the position detection means, as shown in FIG. 10, the transmitted light imaged by the imaging means is converted into a signal waveform by a photoelectric conversion element, and the influence of illumination unevenness and film fluttering is removed from the signal waveform. Furthermore, if two peaks of maximum value and minimum value are extracted from the waveform after removal of illumination unevenness and film flutter, and the absolute value of the difference value between the maximum value and the minimum value exceeds the threshold, the position Is detected as a streak-like defect portion. Here, the threshold value of the difference value between the adjacent maximum value and minimum value used for detecting the position of the streak-like defect is determined according to the height of the streak-like defect to be detected, and the minimum streak shape to be detected in advance. By detecting the defect and using the difference value between the adjacent maximum value and minimum value at that time as a threshold value, it becomes possible to detect a stripe defect having a height higher than the minimum stripe defect.

照明ムラ、フィルムのバタツキの影響の除去方法として、照明ムラの信号波形パターンをあらかじめ認識しておき、撮像信号波形との差分を取る方法、または、撮像信号波形の移動平均をとり、撮像信号との差分を取る方法がある。   As a method of removing the effects of illumination unevenness and film flutter, a method of recognizing the signal waveform pattern of illumination unevenness in advance and taking the difference from the imaging signal waveform, or taking a moving average of the imaging signal waveform, There is a method to take the difference of.

図11は、本発明の一実施形態によるスジ状欠点部を切り出した撮像信号波形の定量化手段を表した図である。図11において、wはスジ状欠点部の極大値と極小値の画素位置の差分値、hはスジ状欠点部の極大値と極小値の差分値を表している。定量化手段では、図11に示すように検出したスジ状欠点部の極大値と極小値を各1つ含む撮像信号波形から、短時間でスジ状欠点部の高さ、幅を求めることを特徴とするものである。   FIG. 11 is a diagram showing an imaging signal waveform quantification unit obtained by cutting out a streak-like defect portion according to an embodiment of the present invention. In FIG. 11, w represents the difference value between the maximum and minimum pixel positions of the streak-like defect portion, and h represents the difference value between the maximum and minimum values of the streak-like defect portion. In the quantification means, as shown in FIG. 11, the height and width of the streak-like defect portion are obtained in a short time from the imaging signal waveform including one maximum value and one minimum value of the streak-like defect portion detected. It is what.

本発明者らは、定量化手段を適用するために、プラスチックフィルム表面に発生するスジ状欠点を多数採取し、スジ状欠点の形状を測定した結果、スジ状欠点の断面はコサイン波形と近似できることを確認した。さらに、本発明者らは、撮像手段によってフィルム表面のスジ状欠点を撮像した場合、撮像波形はフィルム表面の斜度の大きさに応じて変化することから、コサイン波形と近似したフィルム表面の斜度は、コサイン波形の微分であるサイン波形で近似できることを見出した。   In order to apply the quantification means, the present inventors have collected a large number of streak-like defects generated on the surface of the plastic film and measured the shape of the streak-like defects. As a result, the cross-section of the streak-like defects can be approximated to a cosine waveform. It was confirmed. Furthermore, the present inventors have taken an image of a streak-like defect on the film surface by the imaging means, and the imaging waveform changes depending on the slope of the film surface. It has been found that the degree can be approximated by a sine waveform that is a derivative of a cosine waveform.

図12は、コサイン波形近似されたスジ状欠点を表した図である。図13は、コサイン波形近似されたスジ状欠点の信号波形を表した図である。ここで、図12と図13の線種は対応しており、図12のコサイン波形近似されたスジ状欠点(1)の信号波形は図13の(1)である。同様に、図12のスジ状欠点(2)(3)の信号波形も図13の(2)(3)にそれぞれ対応する。
スジ状欠点(1)とスジ高さが(1)の2倍である(2)を比較すると、信号波形において、(2)の振幅は(1)の振幅の2倍となっている。また、スジ状欠点(1)とスジの幅が(1)の2倍である(3)を比較すると、信号波形において、(3)の振幅は(1)の振幅の2分の1で、(3)の周期は(1)の2倍となっている。
FIG. 12 is a diagram showing streaky defects approximated by a cosine waveform. FIG. 13 is a diagram showing a signal waveform of a streak-like defect approximated by a cosine waveform. Here, the line types in FIGS. 12 and 13 correspond to each other, and the signal waveform of the streak-like defect (1) approximated to the cosine waveform in FIG. 12 is (1) in FIG. Similarly, the signal waveforms of the stripe-like defects (2) and (3) in FIG. 12 also correspond to (2) and (3) in FIG.
When comparing the streak-like defect (1) with (2) where the streak height is twice that of (1), the amplitude of (2) is twice that of (1) in the signal waveform. Further, when comparing the streak-like defect (1) with (3) where the width of the streak is twice that of (1), the amplitude of (3) is half of the amplitude of (1) in the signal waveform. The period of (3) is twice that of (1).

撮像信号波形の振幅はフィルム表面の傾き(一次微分量)に比例しているので、撮像信号のスジ状欠点部の信号波形の半周期分を積分することにより、フィルム表面のスジ状欠点部の高さに比例した情報を算出することが可能である。   Since the amplitude of the imaging signal waveform is proportional to the slope (first derivative) of the film surface, integrating the half period of the signal waveform of the streak-like defect portion of the imaging signal results in integration of the streak-like defect portion of the film surface. It is possible to calculate information proportional to the height.

スジ状欠点部の信号波形を正弦波と近似できることから、フィルム表面の高さHは以下の式により、画素位置に関して積分することによって算出することができる。hはスジ状欠点部の極大値と極小値の差分値、wはスジ状欠点部の極大値と極小値の画素位置の差分値である。また、積分範囲はスジ状欠点部の信号波形の半周期である。   Since the signal waveform of the streak-like defect portion can be approximated as a sine wave, the height H of the film surface can be calculated by integrating with respect to the pixel position by the following equation. h is a difference value between the maximum value and the minimum value of the streak-like defect portion, and w is a difference value between pixel values of the maximum value and the minimum value of the stripe-like defect portion. The integration range is a half cycle of the signal waveform of the streak defect portion.

Figure 2007333608
Figure 2007333608

さらに、数式のスジ状欠点部の高さHは、単位が画素である。そのため、以下の式のように、実際の数値に変換する変換定数を掛け合わせることにより、実際のスジ高さを求めることができる。ここで、A,Bは変換定数であり、光照射手段の光量分布に合わせて設定する。
変換定数の調整方法として、高さの判っているスジ状凹凸部を検査装置によって撮像し、高さと信号の関係を求めることにより、簡単に調整することができる。
Furthermore, the unit of the height H of the streak-like defect portion in the mathematical expression is a pixel. Therefore, the actual streak height can be obtained by multiplying the conversion constant to be converted into an actual numerical value as in the following equation. Here, A and B are conversion constants, which are set according to the light amount distribution of the light irradiation means.
As a method for adjusting the conversion constant, it can be easily adjusted by imaging a streak-like uneven portion having a known height with an inspection device and obtaining the relationship between the height and the signal.

Figure 2007333608
Figure 2007333608

以上のように、スジ状欠点の断面形状をコサイン形に近似したので、フィルム表面のスジ状欠点の高さHは積分計算をすることなく、スジ状欠点部の撮像信号波形の特徴量であるhとwとの掛け合わせという簡単な数式によって求めることができる。実際の計算においては、wやhと比例する量を信号から検出し、それらを掛け合わせることでも同様の結果が得られる。例えば、wの替わりに信号の変化の開始点と終了点の位置の差を用いたりすることもできる。
図13のスジ信号波形について、波形の振幅と半周期を掛け合わせて高さを求めると、波形(1)を基準とした場合、波形(2)の高さは(1)の2倍、波形(3)の高さは(1)と同じとなり、図12と一致することが確認できる。
As described above, since the cross-sectional shape of the streak-like defect is approximated to a cosine shape, the height H of the streak-like defect on the film surface is a feature amount of the imaging signal waveform of the streak-like defect part without performing integral calculation. It can be obtained by a simple mathematical formula of multiplication of h and w. In actual calculation, the same result can be obtained by detecting an amount proportional to w or h from a signal and multiplying them. For example, instead of w, a difference between the start point and end point of the signal change can be used.
The height of the streak signal waveform of FIG. 13 is obtained by multiplying the amplitude of the waveform by a half cycle. When the waveform (1) is used as a reference, the height of the waveform (2) is twice that of (1). The height of (3) is the same as that of (1), and it can be confirmed that it coincides with FIG.

フィルム表面のスジ状欠点の幅Wはスジ部の撮像信号波形の2つのピーク位置の画素の差分に撮像手段の分解能を掛け合わせて2倍することによって求めることが可能である。   The width W of the streak-like defect on the film surface can be obtained by multiplying the difference between the pixels at the two peak positions of the image signal waveform of the streak portion by the resolution of the image pickup means and multiplying it by two.

分解能とは、撮像手段の視野幅を撮像手段である複数の一列に並んだ光電変換素子の数で割った、1つの光電変換素子が撮像する範囲である。   The resolution is a range in which one photoelectric conversion element takes an image obtained by dividing the visual field width of the imaging unit by the number of photoelectric conversion elements arranged in a plurality of rows as the imaging unit.

以下に本発明の実施例として、製膜中の延伸前の透明プラスチックフィルムの表面に生じる、フィルム長さ方向に垂直な断面において凸形状で、かつ、フィルムの長さ方向に平行に続くスジ状欠点の高さおよび幅を定量評価した。   As an example of the present invention, a streak shape that occurs on the surface of a transparent plastic film before stretching during film formation, has a convex shape in a cross section perpendicular to the film length direction, and continues parallel to the length direction of the film. The height and width of the defects were quantitatively evaluated.

撮像手段としてのラインセンサカメラは、撮像素子が7500個直線状に配置されたものを、光照射手段には、長手方向に平行にスリット部を設けた円柱状の蛍光灯を用いた。ラインセンサカメラ、蛍光灯とフィルムの幅方向との角度θは20°とした。また、ラインセンサカメラの撮像軸とフィルムの為す角度θ2は65°とした。また、蛍光灯の長手方向と撮像手段の撮像軸とに直交する軸方向の蛍光灯の中心部と減光部材の間の距離は20mmとした。 The line sensor camera as the image pickup means has 7500 image pickup elements arranged in a straight line, and the light irradiation means uses a columnar fluorescent lamp provided with a slit portion parallel to the longitudinal direction. The angle θ between the line sensor camera, the fluorescent lamp and the film width direction was 20 °. Further, the angle θ 2 formed by the imaging axis of the line sensor camera and the film was set to 65 °. The distance between the central portion of the fluorescent lamp and the light reducing member in the axial direction orthogonal to the longitudinal direction of the fluorescent lamp and the imaging axis of the imaging means was 20 mm.

データ処理手段として、ラインセンサカメラからの出力信号波形から、移動平均によって照明ムラおよびフィルムのバタツキの影響を除去し、隣り合う極大値と極小値の差分値を検出し、検出したいスジ状欠点の最小の高さである1.0μmのスジ状欠点を検出したときの隣り合う極大値と極小値の差分と閾値とし、出力信号波形と比較することにより、スジ状欠点部を検出することができた。
さらに、出力信号波形の隣り合う極大値と極小値の差分値が閾値以上であったスジ状欠点部において隣り合う極大値と極小値の位置の間隔と振幅を掛け合わせて、フィルムの種類、光源の特性から決定した定数を掛け合わせ、足すことにより、短時間かつ高精度でスジ状欠点部を定量化することができた。
As a data processing means, from the output signal waveform from the line sensor camera, the effect of uneven illumination and film fluttering is removed by moving average, the difference value between the adjacent maximum value and minimum value is detected, and the streak-like defect to be detected is detected. The streak-like defect portion can be detected by comparing the difference between the maximum value and the minimum value adjacent to each other when the 1.0-μm streak-like defect, which is the minimum height, is detected, and comparing it with the output signal waveform. It was.
Furthermore, in the streak defect where the difference between the adjacent maximum value and the minimum value of the output signal waveform is greater than or equal to the threshold value, the distance between the adjacent maximum value and the minimum value is multiplied by the amplitude, and the film type, light source By multiplying and adding the constants determined from the above characteristics, the streak-like defects could be quantified in a short time and with high accuracy.

そして、このスジ状欠点の定量化情報に基づいてフィルムの製造工程を管理し、フィルム全長に亘ってスジ状欠点を検出し、大きさを定量化することができ、フィルムの製造工程にフィードバックし、フィルムの製造方法を改善することができた。   Then, the film manufacturing process is managed based on the quantification information of the streak-like defects, the streak-like defects can be detected over the entire length of the film, and the size can be quantified and fed back to the film manufacturing process. The film production method could be improved.

本発明は、連続走行するプラスチックフィルム表面に生じるスジ状欠点の定量評価を行う凹凸状欠点の検査装置に限らず、鉄鋼板表面に生じる凹凸状欠点の幅および高さや、高反射材料で表面をコーティングされたフィルム表面の局所的コーティング抜け度合いの定量評価などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention is not limited to an inspection apparatus for uneven defects that quantitatively evaluate streaky defects that occur on the surface of a continuously running plastic film, but the width and height of uneven defects that occur on a steel sheet surface, and the surface with a highly reflective material. Although it can be applied to the quantitative evaluation of the degree of local coating loss on the coated film surface, the application range is not limited thereto.

特許文献1の検査装置の原理図である。It is a principle figure of the inspection device of patent documents 1. 特許文献2の検査装置の斜視図である。It is a perspective view of the inspection device of patent documents 2. 特許文献2の検査装置の表面検査の原理を示す説明図である。It is explanatory drawing which shows the principle of the surface inspection of the inspection apparatus of patent document 2. FIG. 特許文献3の検査装置の斜視図である。It is a perspective view of the inspection device of patent documents 3. スジ状欠点の形状図である。It is a shape figure of a stripe-like fault. 本発明の一実施形態における検査装置構成を示す斜視図である。It is a perspective view which shows the test | inspection apparatus structure in one Embodiment of this invention. 本発明の一実施形態における光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の光量分布の概略図である。It is the schematic of the light quantity distribution of the axial direction orthogonal to the longitudinal direction of the light irradiation means in one Embodiment of this invention, and the imaging axis of an imaging means. 本発明の一実施形態におけるスリットを画成するための減光部材を備えた光照射手段の長手方向と撮像手段の撮像軸とに直交する軸方向の光量分布の概略図である。It is the schematic of the light quantity distribution of the axial direction orthogonal to the longitudinal direction of the light irradiation means provided with the light reduction member for defining the slit in one Embodiment of this invention, and the imaging axis of an imaging means. 本発明の一実施形態における光照射手段の長手方向に平行な方向から見た撮像手段の光軸を表した概略図である。It is the schematic showing the optical axis of the imaging means seen from the direction parallel to the longitudinal direction of the light irradiation means in one Embodiment of this invention. 本発明の一実施形態における光照射手段の長手方向に平行な方向から見たフィルム上にスジが発生した場合のスジの左斜面での撮像手段の光軸の変化の概略図である。It is the schematic of the change of the optical axis of the imaging means in the left slope of a stripe, when a stripe has generate | occur | produced on the film seen from the direction parallel to the longitudinal direction of the light irradiation means in one Embodiment of this invention. 本発明の一実施形態における光照射手段の長手方向に平行な方向から見たフィルム上にスジが発生した場合のスジの右斜面での撮像手段の光軸の変化の概略図である。It is the schematic of the change of the optical axis of the imaging means in the right slope of a streak when a streak has arisen on the film seen from the direction parallel to the longitudinal direction of the light irradiation means in one Embodiment of this invention. 本発明の一実施形態におけるフィルム上にスジが発生した場合の撮像手段により撮像した濃淡値の変化を表した概略図である。It is the schematic showing the change of the light and dark value imaged with the imaging means when a stripe generate | occur | produces on the film in one Embodiment of this invention. 本発明の一実施形態における撮像信号波形を表した概念図である。It is a conceptual diagram showing the imaging signal waveform in one Embodiment of this invention. 本発明の一実施形態における撮像信号波形からの凹凸状欠点の位置検出方法を表した概念図である。It is a conceptual diagram showing the position detection method of the uneven | corrugated defect from the imaging signal waveform in one Embodiment of this invention. 本発明の一実施形態による撮像信号波形の定量化手段を表した概念図である。It is a conceptual diagram showing the quantification means of the imaging signal waveform by one Embodiment of this invention. コサイン波形近似されたスジ状欠点を表した模式図である。It is a schematic diagram showing a stripe-like defect approximated by a cosine waveform. コサイン波形近似されたスジ状欠点の信号波形を表した模式図である。It is the schematic diagram showing the signal waveform of the stripe defect by which cosine waveform approximation was carried out.

符号の説明Explanation of symbols

1 被検査体
2 光照射手段
3 撮像手段
4 再帰型反射スクリーン
41 ビーズ型反射球
5 拡散スクリーン
6 スジ状欠点
7 スリット
8 データ処理装置
9 凹凸状欠点
10 減光部材
θ フィルムの幅方向と光照射手段の長手方向のなす角度
θ2 フィルムの走行方向と撮像手段の撮像軸のなす角度
h スジ状欠点部の極大値と極小値の差分値
w スジ状欠点部の極大値と極小値の画素位置の差分値
a 撮像手段の撮像軸の延長と光照射手段の交点
b スジ状欠点発生時の撮像手段の撮像軸の延長と光照射手段の交点
c スジ状欠点発生時の撮像手段の撮像軸の延長と光照射手段の交点
DESCRIPTION OF SYMBOLS 1 To-be-inspected object 2 Light irradiation means 3 Image pickup means 4 Retroreflective reflection screen 41 Bead type reflection sphere 5 Diffusion screen 6 Stripe defect 7 Slit 8 Data processing device 9 Uneven defect 10 Light reducing member θ Film width direction and light irradiation The angle formed by the longitudinal direction of the means θ 2 The angle formed by the traveling direction of the film and the imaging axis of the imaging means h The difference value between the maximum value and the minimum value of the stripe-like defect portion The pixel position of the maximum value and the minimum value of the stripe-like defect portion Of the imaging axis of the imaging means and the intersection of the light irradiation means b Extension of the imaging axis of the imaging means when the stripe defect occurs and intersection of the light irradiation means c of the imaging axis of the imaging means when the stripe defect occurs Intersection of extension and light irradiation means

Claims (7)

被検査体の片方の面側から光を照射する光照射手段と、前記被検査体の他方の面に対向して配設され前記被検査体からの透過光を撮像する複数の光電変換素子を有し撮像した光量を出力信号波形として出力する撮像手段と、前記撮像手段で撮像した前記透過光の信号波形に基づいて前記被検査体の表面に存在する凹凸状欠点を検出するデータ処理手段とを備えたシートの検査装置であって、前記光照射手段は該光照射手段の長手方向と前記撮像手段の撮像軸とに直交する軸の方向に連続的に発光光量が変化するよう前記撮像手段によって出力されるよう発光する発光部を有し、前記撮像手段は、撮像軸が、前記光照射手段と交わるよう配設され、前記データ処理手段は前記撮像手段の出力信号波形の所定の閾値を超えるピークを検出することにより前記被検査体上の凹凸状欠点の位置を検出する位置検出手段と、前記撮像手段の出力信号波形における隣り合う2つのピークの位置の差と前記2つのピークの出力値の差との積に比例する出力に基づいて前記凹凸状欠点の形状を求める定量化手段と、を備えることを特徴とするシートにおける凹凸状欠点の検査装置。 A light irradiating means for irradiating light from one surface side of the object to be inspected, and a plurality of photoelectric conversion elements arranged opposite to the other surface of the object to be inspected and imaging the transmitted light from the object to be inspected. An imaging unit that outputs an imaged light amount as an output signal waveform; and a data processing unit that detects an uneven defect on the surface of the object to be inspected based on a signal waveform of the transmitted light imaged by the imaging unit; A sheet inspection apparatus comprising: the imaging means so that the amount of emitted light continuously changes in a direction perpendicular to a longitudinal direction of the light irradiation means and an imaging axis of the imaging means. The imaging means is arranged so that the imaging axis intersects the light irradiation means, and the data processing means sets a predetermined threshold value of the output signal waveform of the imaging means. Detecting peaks that exceed A product of a position detecting means for detecting the position of the uneven defect on the object to be inspected, and a difference between the positions of two adjacent peaks in the output signal waveform of the imaging means and a difference between the output values of the two peaks An inspection device for uneven defects in a sheet, comprising: quantification means for obtaining a shape of the uneven defects based on an output proportional to 前記光照射手段は、該光照射手段と被検査体との間に前記光照射手段の長手方向と平行な方向に延在する減光部材を備えたライン状光源であり、前記撮像手段は、前記撮像軸が前記減光部と交わり、かつ、前記被検査体に欠点が存在しない場合において前記ライン状光源からの光が入射するよう構成されていることを特徴とする請求項1に記載のシートにおける凹凸状欠点の検査装置。 The light irradiating means is a line light source including a dimming member extending in a direction parallel to the longitudinal direction of the light irradiating means between the light irradiating means and the object to be inspected. The light from the line-shaped light source is configured to be incident when the imaging axis intersects with the dimming unit and the test object has no defect. Inspection device for uneven defects in sheets. 前記撮像手段は、複数の光電変換素子を前記光照射手段と平行に配列したものであることを特徴とする請求項1または2に記載のシートにおける凹凸状欠点の検査装置。 The inspection device for uneven defects in a sheet according to claim 1 or 2, wherein the imaging means comprises a plurality of photoelectric conversion elements arranged in parallel with the light irradiation means. 走行している被検査体に存在する凹凸状欠点の形状を求める凹凸状欠点の検査方法であって、前記被検査体の片方の面側から光照射手段の長手方向と撮像手段の撮像軸とに直交する軸の方向に連続的に変化する光量を照射する光照射手段によって前記被検査体に光を照射し、撮像軸が前記光照射手段と交わるように配設された複数の光電変換素子を有する撮像手段によって前記被検査体からの透過光を撮像し、前記各光電変換素子の出力信号波形の所定の閾値を超えるピークを検出する位置検出手段によって凹凸状欠点の位置を検出し、前記光電変換素子の出力信号波形における隣り合う2つのピークの位置の差と前記2つのピークの出力値の差との積に比例する出力に基づく定量化手段によって前記凹凸状欠点の形状を求めることを特徴とするシートにおける凹凸状欠点の検査方法。 A method for inspecting a concave / convex defect that obtains the shape of a concave / convex defect present in a traveling object to be inspected, comprising: a longitudinal direction of a light irradiation means and an imaging axis of an imaging means from one surface side of the inspection object; A plurality of photoelectric conversion elements arranged so that the object to be inspected is irradiated with light by a light irradiating unit that irradiates an amount of light that continuously changes in a direction perpendicular to the axis, and an imaging axis intersects the light irradiating unit The transmitted light from the object to be inspected is picked up by the image pickup means having the above, and the position of the concavo-convex defect is detected by the position detection means for detecting a peak exceeding a predetermined threshold of the output signal waveform of each photoelectric conversion element, Obtaining the shape of the uneven defect by quantification means based on an output proportional to the product of the difference between the positions of two adjacent peaks in the output signal waveform of the photoelectric conversion element and the difference between the output values of the two peaks. Features and Inspection method of uneven shortcomings in the sheet that. 前記光照射手段として、光照射手段の長手方向と前記撮像手段の撮像軸とに直交する光量は連続的に変化するものを用い、単調に変化する部分が存在することを特徴とする請求項4に記載のシートにおける凹凸状欠点の検査方法。 5. The light irradiating means uses a light quantity that continuously changes in the amount of light orthogonal to the longitudinal direction of the light irradiating means and the imaging axis of the imaging means, and has a monotonously changing portion. A method for inspecting irregularities in the sheet according to claim 1. 前記撮像手段として、前記光照射手段に平行な一次元の画像を得るものを用いることを特徴とする請求項4または5に記載のシートにおける凹凸状欠点の検査方法。 6. The method for inspecting a concave-convex defect in a sheet according to claim 4 or 5, wherein the imaging means is one that obtains a one-dimensional image parallel to the light irradiation means. 請求項4〜6のいずれかに記載のシートにおける凹凸状欠点の検査方法を用いて前記シートの凹凸状欠点を検査することを特徴とするシートの製造方法。 A method for producing a sheet, wherein the uneven defect of the sheet is inspected by using the method for inspecting an uneven defect in the sheet according to claim 4.
JP2006166946A 2006-06-16 2006-06-16 Inspection device and inspection method of irregular flaw on sheet Pending JP2007333608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166946A JP2007333608A (en) 2006-06-16 2006-06-16 Inspection device and inspection method of irregular flaw on sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166946A JP2007333608A (en) 2006-06-16 2006-06-16 Inspection device and inspection method of irregular flaw on sheet

Publications (1)

Publication Number Publication Date
JP2007333608A true JP2007333608A (en) 2007-12-27

Family

ID=38933213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166946A Pending JP2007333608A (en) 2006-06-16 2006-06-16 Inspection device and inspection method of irregular flaw on sheet

Country Status (1)

Country Link
JP (1) JP2007333608A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236825A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Defect detector and defect detection method
CN113252557A (en) * 2021-04-08 2021-08-13 成都小淞科技有限公司 Light source device for detecting stripe structure light spraying flaw
JP2021148557A (en) * 2020-03-18 2021-09-27 株式会社メック Defect inspection device and defect inspection method
CN113646624A (en) * 2019-04-11 2021-11-12 住友化学株式会社 Inspection device, inspection method, and film manufacturing method
CN114324168A (en) * 2022-01-04 2022-04-12 广东奥普特科技股份有限公司 Surface defect detection method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236825A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Defect detector and defect detection method
CN101587081A (en) * 2008-03-28 2009-11-25 富士胶片株式会社 Defect detecting method and device
CN113646624A (en) * 2019-04-11 2021-11-12 住友化学株式会社 Inspection device, inspection method, and film manufacturing method
JP2021148557A (en) * 2020-03-18 2021-09-27 株式会社メック Defect inspection device and defect inspection method
CN113252557A (en) * 2021-04-08 2021-08-13 成都小淞科技有限公司 Light source device for detecting stripe structure light spraying flaw
CN113252557B (en) * 2021-04-08 2023-02-03 成都小淞科技有限公司 Light source device for detecting stripe structure light spraying flaw
CN114324168A (en) * 2022-01-04 2022-04-12 广东奥普特科技股份有限公司 Surface defect detection method and system

Similar Documents

Publication Publication Date Title
JP4132046B2 (en) Device for inspecting defects of sheet-like transparent body
JP4511978B2 (en) Surface flaw inspection device
US9841383B2 (en) Multiscale uniformity analysis of a material
JP4943237B2 (en) 疵 inspection device and 疵 inspection method
CN105745523B (en) System and method for inspecting wound optical fiber
JP2013108058A5 (en)
US20080204741A1 (en) Method for quantifying defects in a transparent substrate
JP4615532B2 (en) Defect inspection equipment, lighting equipment
JP2007333608A (en) Inspection device and inspection method of irregular flaw on sheet
JP5842373B2 (en) Surface defect detection method and surface defect detection apparatus
JP2008275424A (en) Surface inspection device
JPH11311510A (en) Method and apparatus for inspection of very small uneven part
KR102409084B1 (en) Cylindrical surface inspection apparatus and cylindrical surface inspection method
EP1906171A3 (en) Detection apparatus, detection method, and optically transparent member
JP4630945B1 (en) Defect inspection equipment
JP2005189113A (en) Surface inspecting device and surface inspection method
US6947150B2 (en) Method and apparatus for determining out-of-plane defects in a paper sample
CN112005104B (en) Measuring method and measuring device
CN113189002B (en) Online detection method and device for stripe defects of ultrathin electronic glass substrate
JP2015200544A (en) Surface irregularity inspection device and surface irregularity inspection method
JP2009025269A (en) Defect inspection apparatus and defect inspection method of optically-transparent sheet
JP5787668B2 (en) Defect detection device
JP6679942B2 (en) Sheet defect inspection device
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP2014186030A (en) Defect inspection device