JP5842373B2 - Surface defect detection method and surface defect detection apparatus - Google Patents
Surface defect detection method and surface defect detection apparatus Download PDFInfo
- Publication number
- JP5842373B2 JP5842373B2 JP2011096828A JP2011096828A JP5842373B2 JP 5842373 B2 JP5842373 B2 JP 5842373B2 JP 2011096828 A JP2011096828 A JP 2011096828A JP 2011096828 A JP2011096828 A JP 2011096828A JP 5842373 B2 JP5842373 B2 JP 5842373B2
- Authority
- JP
- Japan
- Prior art keywords
- detection
- metal band
- luminance
- wrinkle
- wrinkle candidate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
本発明は、表面欠陥検出方法、および表面欠陥検出装置に関する。 The present invention relates to a surface defect detection method and a surface defect detection apparatus.
鋼板、アルミ板等、連続した金属帯の製造工程において、その品質管理あるいは品質保証を推進するために、これらの表面に発生する種々の表面欠陥を連続的に検出することが重要であり、従来より、光学的手法による表面欠陥検査方法が実用化されてきている(特許文献1)。 In order to promote quality control or quality assurance in the manufacturing process of continuous metal strips such as steel plates and aluminum plates, it is important to continuously detect various surface defects occurring on these surfaces. Therefore, a surface defect inspection method using an optical method has been put into practical use (Patent Document 1).
例えば、走行する鋼板等の表面の被検査部を照明して、CCDカメラのような撮像装置により連続的に撮影して得られる画像信号に基づいて、鋼板等の表面の疵を検出している。より具体的には、得られた表面画像の画素ごとに所定の輝度値以上であるかを判断して、閾値以上(または以下)の画素を、疵を構成する可能性のある画素として抽出する。その後、抽出された画素を対象に、隣接する画素同士の連結処理を行う。 For example, the surface of the surface of the steel plate or the like is illuminated, and the surface wrinkles of the steel plate or the like is detected based on an image signal obtained by continuously photographing with an imaging device such as a CCD camera. . More specifically, for each pixel of the obtained surface image, it is determined whether or not the luminance value is equal to or higher than a predetermined luminance value, and pixels that are equal to or higher than the threshold value (or lower) are extracted as pixels that may constitute the eyelid. . After that, a connection process between adjacent pixels is performed on the extracted pixels.
鏡面に仕上げられた表面に対してわずかの疵があるという場合には、このような方法でも有効であるが、検査対象に地模様または汚れ等がある場合、これらを疵として検出してしまう、いわゆる「過検出」が引き起こされることがある。
このような過検出が生じた場合、従来の表面欠陥検出装置では正確な疵判定が困難となり、検出率に劣る目視検査に頼らざるを得なくなり、結果として重大欠陥の見逃しなどの懸念が発生する。
If there are slight wrinkles on the mirror-finished surface, this method is also effective, but if there is a ground pattern or dirt on the inspection object, these will be detected as wrinkles. So-called “overdetection” may be caused.
When such over-detection occurs, it is difficult to accurately determine wrinkles with conventional surface defect detection devices, and it is necessary to rely on visual inspection that is inferior in detection rate, resulting in concerns such as the oversight of serious defects. .
本発明は、上記実情に鑑みて、金属帯上の有害疵と、過検出とを弁別して検出することができる表面欠陥検出方法、および、該方法に使用される表面欠陥検出装置を提供することを目的とする。 In view of the above circumstances, the present invention provides a surface defect detection method capable of discriminating and detecting harmful defects on a metal strip and overdetection, and a surface defect detection apparatus used in the method. With the goal.
本発明者らは、従来技術の問題点について鋭意検討した結果、金属帯の表面の荒れなどによって過検出される場合、検出される疵領域の大きさ、および、疵領域内の画素の輝度値の総和との間に一定の関係があることを見出した。本発明者らは、該知見に基づいてさらに検討を行ったところ、以下の構成により上記課題が解決できることを見出した。 As a result of earnestly examining the problems of the prior art, the present inventors, as a result of over-detection due to the surface roughness of the metal band, the size of the wrinkle area to be detected, and the luminance value of the pixels in the wrinkle area We found that there is a certain relationship with the sum of The inventors of the present invention have further studied based on this finding, and found that the above problem can be solved by the following configuration.
(1) 走行する金属帯の表面欠陥を検出する表面欠陥検出方法であって、
走行する金属帯表面に光源から光を入射し、金属帯表面で反射した反射光を受光することにより、該金属帯表面の二次元画像を表す画像信号を取得する画像信号取得工程と、
該画像信号が表す輝度を、該金属帯表面の正常部の輝度を基準として正規化し、正規化された輝度値のそれぞれについて、正常部を示す輝度レベルを基準にして、正極性と負極性に対してあらかじめ定められた閾値を超える画素を疵候補点として抽出する疵候補点抽出工程と、
互いに所定距離範囲内に存在する複数の該疵候補点を連続した一つの疵候補領域として連結処理する連結処理工程と、
該疵候補領域に含まれる該疵候補点の正規化された輝度値の絶対値の総和(検出積算値)、該金属帯の走行方向での該疵候補領域の最大長さの画素数(検出長さ)、および、該金属帯の走行方向に直交する方向での該疵候補領域の最大長さの画素数(検出幅)を算出する算出工程と、
該検出幅と、該検出積算値を該検出長さで除して得られる密度幅(検出積算値/検出長さ)との比(検出幅/密度幅)が、該金属帯に応じて予め設定される基準値を超える場合は、検出した該疵候補領域を過検出と判定し、該基準値以下の場合は、検出した該疵候補領域を欠陥と判定する判定工程とを備える、表面欠陥検出方法。
(1) A surface defect detection method for detecting a surface defect of a traveling metal strip,
An image signal acquisition step of acquiring an image signal representing a two-dimensional image of the surface of the metal band by receiving light reflected from the surface of the metal band by receiving light from a light source on the surface of the traveling metal band,
The brightness represented by the image signal is normalized with reference to the brightness of the normal part of the surface of the metal band, and for each normalized brightness value, the brightness level indicating the normal part is used as a reference, and the polarity is positive and negative. A cocoon candidate point extracting step for extracting pixels that exceed a predetermined threshold as a cocoon candidate point;
A linking process step of linking a plurality of cocoon candidate points existing within a predetermined distance from each other as a continuous cocoon candidate region;
The sum of absolute values of the normalized luminance values of the wrinkle candidate points included in the wrinkle candidate region (detected integrated value), the number of pixels of the maximum length of the wrinkle candidate region in the traveling direction of the metal band (detection) A calculation step of calculating the number of pixels (detection width) of the maximum length of the wrinkle candidate region in a direction orthogonal to the traveling direction of the metal band,
A ratio (detection width / density width) between the detection width and the density width (detection integrated value / detection length) obtained by dividing the detection integrated value by the detection length is determined in advance according to the metal band. A surface defect comprising: determining that the detected wrinkle candidate region is overdetected when exceeding a set reference value; and determining the detected wrinkle candidate region as a defect if the detected value is equal to or less than the reference value Detection method.
(2) 走行する金属帯表面で反射した反射光を受光して、該金属帯表面の二次元画像を表す画像信号を取得する受光部と、
該画像信号が表す輝度を、該金属帯表面の正常部の輝度を基準として正規化し、正規化された輝度値のそれぞれについて、正常部を示す輝度レベルを基準にして、正極性と負極性に対してあらかじめ定められた閾値を超える画素を疵候補点として抽出する疵候補点抽出手段と、
互いに所定距離範囲内に存在する複数の該疵候補点を連続した一つの疵候補領域として連結処理する連結処理手段と、
該疵候補領域に含まれる該疵候補点の正規化された輝度値の絶対値の総和(検出積算値)、該金属帯の走行方向での該疵候補領域の最大長さの画素数(検出長さ)、および、該金属帯の走行方向に直交する方向での該疵候補領域の最大長さの画素数(検出幅)を算出する算出手段と、
該検出幅と、該検出積算値を該検出長さで除して得られる密度幅(検出積算値/検出長さ)との比(検出幅/密度幅)が、該金属帯に応じて予め設定される基準値より大きい場合は、検出した該疵候補領域を過検出と判定し、該基準値以下の場合は、検出した該疵候補領域を欠陥と判定する判定手段とを備える、表面欠陥検出装置。
(2) a light receiving unit that receives reflected light reflected by the surface of the traveling metal strip and acquires an image signal representing a two-dimensional image of the surface of the metal strip;
The brightness represented by the image signal is normalized with reference to the brightness of the normal part of the surface of the metal band, and for each normalized brightness value, the brightness level indicating the normal part is used as a reference, and the polarity is positive and negative.疵 candidate point extracting means for extracting pixels exceeding a predetermined threshold as 疵 candidate points;
A connection processing means for connecting and processing a plurality of eyelid candidate points existing within a predetermined distance from each other as a continuous eyelid candidate area;
The sum of absolute values of the normalized luminance values of the wrinkle candidate points included in the wrinkle candidate region (detected integrated value), the number of pixels of the maximum length of the wrinkle candidate region in the traveling direction of the metal band (detection) Length) and a calculation means for calculating the maximum number of pixels (detection width) of the wrinkle candidate region in a direction orthogonal to the traveling direction of the metal strip,
A ratio (detection width / density width) between the detection width and the density width (detection integrated value / detection length) obtained by dividing the detection integrated value by the detection length is determined in advance according to the metal band. A surface defect comprising: a determination unit that determines that the detected wrinkle candidate region is over-detected when larger than a set reference value, and determines the detected wrinkle candidate region as a defect when equal to or less than the reference value Detection device.
本発明によれば、金属帯上の有害疵と、過検出とを弁別して検出することができる表面欠陥検出方法、および、該方法に使用される表面欠陥検出装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the surface defect detection method which can discriminate and detect the harmful | toxic harm on a metal strip, and an overdetection, and the surface defect detection apparatus used for this method can be provided.
以下に、本発明の表面欠陥検出方法、および表面欠陥検出装置について、図面を参照して説明する。 Hereinafter, a surface defect detection method and a surface defect detection apparatus according to the present invention will be described with reference to the drawings.
<表面欠陥検出装置(第1の実施形態)>
まず、以下に、本発明の表面欠陥検出装置の第1の実施形態を図面を参照して説明する。
図1は、本発明の表面欠陥検出装置の第1の実施形態の概略構成図である。
図1では、金属帯100と、光源12と、表面欠陥検出装置10と、表示手段24とが示される。表面欠陥検出装置10は、受光部14、疵候補点抽出手段16、連結処理手段18、算出手段20、および判定手段22を備える。
以下に、各構成について詳述する。
<Surface Defect Detection Device (First Embodiment)>
First, a first embodiment of a surface defect detection device of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a first embodiment of a surface defect detection apparatus of the present invention.
In FIG. 1, the metal strip 100, the light source 12, the surface defect detection apparatus 10, and the display means 24 are shown. The surface defect detection apparatus 10 includes a light receiving unit 14, a wrinkle candidate point extraction unit 16, a connection processing unit 18, a calculation unit 20, and a determination unit 22.
Below, each structure is explained in full detail.
(金属帯100)
金属帯100は長尺状の鋼板であればその種類は限定されず、例えば、冷延鋼板、各種めっき鋼板(亜鉛系めっき鋼板(溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、亜鉛−アルミニウムめっき鋼板等))、ステンレス鋼板、アルミニウム板などが挙げられる。
金属帯100の搬送方法は特に制限されないが、例えば、一定間隔で配置された複数の搬送ロールの回転により搬送ライン上の金属帯100を搬送する。金属帯100表面の撮像を行うために、搬送ラインの上方に後述する光源12および受光部14を配置すればよい。
(Metal strip 100)
The type of the metal strip 100 is not limited as long as it is a long steel plate. Steel plate, etc.), stainless steel plate, aluminum plate and the like.
The method for transporting the metal strip 100 is not particularly limited. For example, the metal strip 100 on the transport line is transported by the rotation of a plurality of transport rolls arranged at regular intervals. In order to take an image of the surface of the metal strip 100, a light source 12 and a light receiving unit 14, which will be described later, may be disposed above the transport line.
(光源)
光源12は、金属帯100に対して光を照射する装置である。光源12は、金属帯100に対して一定入射角で、金属帯100の幅方向全体に光を入射するように配置される。例えば、図1で示されるように、金属帯100の搬送路の上方位置に1台の線状光源が金属帯100の幅方向の全幅にわたり配置されている。
光源12としては、拡散特性を持つ線状の光源、すなわち線状拡散光源を用いることが好ましい。また、金属帯100の正反射方向から鏡面反射成分と鏡面拡散反射成分とを分離して抽出する場合は、偏光を用いることが好ましい。線状拡散光源の効果に関しては、特許3275811号の段落[0050]〜[0092]に記載の通りである。
なお、線状拡散光源としては、蛍光灯を使用することもできる。また、バンドルファイバの出射端を直線上に整列させたファイバ光源を使用することもできる。
光源12の配置場所や数は、金属帯100の種類に合わせて適宜選択できる。
(light source)
The light source 12 is a device that irradiates the metal strip 100 with light. The light source 12 is arranged so that light enters the entire width direction of the metal strip 100 at a constant incident angle with respect to the metal strip 100. For example, as shown in FIG. 1, one linear light source is disposed over the entire width of the metal strip 100 in the upper position of the transport path of the metal strip 100.
As the light source 12, it is preferable to use a linear light source having diffusion characteristics, that is, a linear diffused light source. In addition, when the specular reflection component and the specular diffuse reflection component are extracted separately from the regular reflection direction of the metal strip 100, it is preferable to use polarized light. The effect of the linear diffused light source is as described in paragraphs [0050] to [0092] of Japanese Patent No. 3275811.
A fluorescent lamp can also be used as the linear diffused light source. A fiber light source in which the exit ends of the bundle fiber are aligned on a straight line can also be used.
The location and number of the light sources 12 can be appropriately selected according to the type of the metal strip 100.
(受光部)
受光部14は、金属帯100で反射された反射光を受光し、画像信号を得る装置である。例えば、CCDカメラが使用され、金属帯100表面上の光が照射された箇所に視野を設定する。受光部14は、1台で金属帯100の幅方向(搬送方向に対し直交方向)全てを測定できない場合には、幅方向に複数台設置してもよい。
受光部14が取得したアナログ画像信号は、図示しない受光部14内部に配置されるA/D変換部において、デジタル画像信号に変換される。生成された画像信号は後述する疵候補点抽出手段16に出力される。
なお、受光部14によって取得された画像信号は、必要に応じて、図示しない前処理部において輝度むらの補正処理(シェーディング補正)がされて、その後疵候補点抽出手段16に出力される。
(Light receiving section)
The light receiving unit 14 is a device that receives the reflected light reflected by the metal strip 100 and obtains an image signal. For example, a CCD camera is used, and a field of view is set at a position irradiated with light on the surface of the metal strip 100. If one light receiving unit 14 cannot measure all the width direction of the metal strip 100 (the direction perpendicular to the transport direction), a plurality of light receiving units 14 may be installed in the width direction.
The analog image signal acquired by the light receiving unit 14 is converted into a digital image signal by an A / D conversion unit arranged inside the light receiving unit 14 (not shown). The generated image signal is output to the eyelid candidate point extracting means 16 described later.
Note that the image signal acquired by the light receiving unit 14 is subjected to luminance unevenness correction processing (shading correction) in a preprocessing unit (not shown) as necessary, and is then output to the eyelid candidate point extracting unit 16.
(疵候補点抽出手段)
疵候補点抽出手段16は、受光部14によって取得された画像信号に基づいて、疵候補点を抽出する手段である。
より具体的には、まず、疵候補点抽出手段16は受光部14によって取得された画像信号が表す輝度を、金属帯100表面の正常部の輝度を基準として正規化し、正常部に対する相対的な偏差を示す輝度信号(輝度値)に変換する。言い換えると、画像信号を、金属帯100表面の正常部の輝度が全階調の所定の輝度になるように正規化し、偏差を示す輝度信号に変換する。正常部に対して明るい高輝度の画素は正極性の輝度信号として検出され、正常部に対して暗い低輝度の画素は負極性の輝度信号として検出される。
次に、疵候補点抽出手段16では、この各画素の正規化された輝度値のそれぞれについて、正常部を示す輝度レベルを基準にして、正極性と負極性に対して、金属帯100の種類に応じてあらかじめ定められた閾値を超える画素領域を疵候補領域として抽出する。つまり、正常部を示す輝度値を基準にして、正極性輝度信号と負極性輝度信号に対してあらかじめ定められた閾値を超える画素を疵候補点として抽出する。言い換えると、金属帯100に応じて設定された正常部からの所定偏差より大きい画素を疵候補点として抽出する。疵候補点抽出手段16で得られたデータは、後述する連結処理手段18に出力される。
(Mass candidate point extraction means)
The cocoon candidate point extracting unit 16 is a unit that extracts the cocoon candidate point based on the image signal acquired by the light receiving unit 14.
More specifically, the eyelid candidate point extraction unit 16 first normalizes the luminance represented by the image signal acquired by the light receiving unit 14 with reference to the luminance of the normal part of the surface of the metal band 100, and relative to the normal part. It converts into the luminance signal (luminance value) which shows a deviation. In other words, the image signal is normalized so that the luminance of the normal part of the surface of the metal band 100 becomes a predetermined luminance of all gradations, and converted into a luminance signal indicating deviation. Pixels with high brightness that are brighter than the normal part are detected as positive-polarity luminance signals, and pixels with low brightness that are darker than normal parts are detected as negative-polarity luminance signals.
Next, the eyelid candidate point extraction means 16 uses, for each of the normalized luminance values of each pixel, the type of the metal strip 100 for the positive polarity and the negative polarity on the basis of the luminance level indicating the normal part. Accordingly, a pixel area exceeding a predetermined threshold is extracted as a wrinkle candidate area. That is, with reference to the luminance value indicating the normal portion, pixels that exceed a predetermined threshold for the positive polarity luminance signal and the negative polarity luminance signal are extracted as wrinkle candidate points. In other words, pixels that are larger than the predetermined deviation from the normal part set according to the metal band 100 are extracted as wrinkle candidate points. The data obtained by the heel candidate point extraction means 16 is output to the connection processing means 18 described later.
(連結処理手段)
連結処理手段18は、疵候補点抽出手段16によって抽出された疵候補点を基に、疵候補領域を生成する手段である。
より具体的には、連結処理手段18は、疵候補点抽出手段16によって抽出された疵候補点のうち、互いに所定距離範囲内に存在する複数の疵候補点を連続した一つの疵候補領域として連結処理する手段である。
連結処理の一例を、図2に示す。図2(A)は、受光部14で得られた画像信号から疵候補点抽出手段16によって疵候補点が抽出された図である。図2(A)中の一マスは一画素に対応し、着色部が疵候補点として抽出された画素である。次に、ある疵候補点から2画素離れた位置にある疵候補点までを連結処理する場合、図2(B)中の黒太線で囲まれた疵候補領域Xが疵候補領域となる。なお、連結処理を施す疵候補点間の所定距離とは金属帯100の種類によって適宜変更されるが、例えば、一つの疵候補点と縦横斜めのいずれかで隣り合う疵候補点同士を連結処理してもよい。
連結処理手段18で得られたデータは、後述する算出手段20に出力される。
(Consolidation processing means)
The connection processing unit 18 is a unit that generates a cocoon candidate region based on the cocoon candidate points extracted by the cocoon candidate point extracting unit 16.
More specifically, the connection processing means 18 uses a plurality of eyelid candidate points existing within a predetermined distance range among the eyelid candidate points extracted by the eyelid candidate point extracting means 16 as a continuous eyelid candidate region. It is a means to perform connection processing.
An example of the connection process is shown in FIG. FIG. 2A is a diagram in which wrinkle candidate points are extracted from the image signal obtained by the light receiving unit 14 by the wrinkle candidate point extracting means 16. One square in FIG. 2A corresponds to one pixel, and the colored portion is a pixel extracted as a wrinkle candidate point. Next, when the linking candidate point located at a position two pixels away from a certain cocoon candidate point is connected, the cocoon candidate region X surrounded by the thick black line in FIG. 2B becomes the cocoon candidate region. Note that the predetermined distance between the wrinkle candidate points to be connected is appropriately changed depending on the type of the metal band 100. For example, one wrinkle candidate point is adjacent to either one of the wrinkle candidate points vertically or horizontally diagonally. May be.
Data obtained by the connection processing means 18 is output to the calculation means 20 described later.
(算出手段)
算出手段20は、連結処理手段18で得られた疵候補領域に関する特徴値を算出する手段である。
より具体的には、算出手段20は、連結処理手段18で得られた疵候補領域に含まれる疵候補点の正規化された輝度値の絶対値の総和(検出積算値)、金属帯100の走行方向での疵候補領域の最大長さの画素数(検出長さ)、および、金属帯100の走行方向に直交する方向での疵候補領域の最大長さの画素数(検出幅)を算出する手段である。得られた検出積算値、検出長さ、および検出幅に関するデータは、後述する判定手段22に出力される。
(Calculation means)
The calculating unit 20 is a unit that calculates a feature value related to the wrinkle candidate region obtained by the connection processing unit 18.
More specifically, the calculation means 20 calculates the sum of absolute values (detected integrated values) of normalized luminance values of the wrinkle candidate points included in the wrinkle candidate area obtained by the connection processing means 18, the metal band 100. Calculate the maximum number of pixels (detection length) of the heel candidate region in the traveling direction and the maximum number of pixels (detection width) of the heel candidate region in the direction orthogonal to the traveling direction of the metal strip 100. It is means to do. Data on the detected integrated value, detection length, and detection width obtained is output to the determination means 22 described later.
(判定手段)
判定手段22は、上記算出手段20で算出された疵候補領域の特徴値(検出積算値、検出長さ、検出幅)から算出される密度幅と、金属帯100に応じて設定される基準値とを比較して、疵候補領域を過検出または欠陥と判定する手段である。
(Judgment means)
The determining means 22 is a density value calculated from the feature values (detected integrated value, detected length, detected width) of the wrinkle candidate area calculated by the calculating means 20, and a reference value set according to the metal band 100 Is a means for determining that the wrinkle candidate region is overdetected or defective.
(表示手段24)
表示手段24では、金属帯100表面の二次元画像と共に、判定手段22で得られた判定データを表示する装置である。表示画像範囲に、欠陥がある場合には、推定部の外枠表示、点滅表示、色変更表示等を行うとともに、検査員の注意を喚起し、検査見逃しの防止のために、警報音、アナウンスなどを行ってもよい。
(Display means 24)
The display unit 24 is a device that displays the determination data obtained by the determination unit 22 together with the two-dimensional image of the surface of the metal strip 100. If there is a defect in the display image range, the outer frame display, blinking display, color change display, etc. of the estimation unit will be performed, alerting the inspector, and warning sounds, announcements to prevent missed inspections Etc. may be performed.
<表面欠陥検出方法>
図3のフローチャートを参照して、本発明の表面欠陥検出方法の一例について説明する。
まず、上述した光源12から走行する金属帯100に光が照射され、金属帯100表面からの反射光が受光部14(例えば、CCD)で受光され、金属帯100表面の画像信号が取得される(ステップS101)。取得された画像信号をアナログ信号からデジタル信号に変換する為、A/D変換され、金属帯100表面の二次元画像を表すデジタル画像信号の取得が行われる(ステップS102)。
<Surface defect detection method>
An example of the surface defect detection method of the present invention will be described with reference to the flowchart of FIG.
First, the metal band 100 traveling from the light source 12 described above is irradiated with light, and reflected light from the surface of the metal band 100 is received by the light receiving unit 14 (for example, CCD), and an image signal on the surface of the metal band 100 is acquired. (Step S101). In order to convert the acquired image signal from an analog signal to a digital signal, A / D conversion is performed, and a digital image signal representing a two-dimensional image of the surface of the metal strip 100 is acquired (step S102).
次に、デジタル画像信号に光源12からの照明光に起因した輝度むら等を補正するシェーディング補正等を行ってから、画像信号を、正常部の信号を基準レベルとして、正常部の信号が256階調の中心階調値「128」になるように正規化する(ステップS103)。より具体的には、各画素の輝度について基準値「128」を「0」とし、該基準値より高い輝度を有する画素(明るい画素)を正極性輝度信号として検出し(例えば、「+10」)、該基準値より低い輝度を有する画素(暗い画素)は負極性輝度信号として検出する(例えば、「−10」)。
なお、正規化する際の階調度は上記では256階調であるが、その階調度は特に制限されず、128階調、512階調、1024階調であってもよい。例えば、正常部の信号が128階調の中心階調値「64」になるように正規化してもよい。
上記一態様では、金属帯表面の正常部が全階調の中心輝度になるように正規化し、正常部を示す全階調の中心レベルを基準にして、正極性輝度信号および負極性輝度信号を検出している。なお、正常部からの輝度変化が正常部からひとつの方向に偏っている場合などは、偏りを考慮して、全階調の中心以外に正常部の輝度を設定する。
Next, the digital image signal is subjected to shading correction or the like for correcting the luminance unevenness caused by the illumination light from the light source 12, and the image signal is converted to the normal level signal with the normal level signal as the reference level. Normalization is performed so that the central tone value of the key becomes “128” (step S103). More specifically, the reference value “128” is set to “0” for the luminance of each pixel, and a pixel (bright pixel ) having a luminance higher than the reference value is detected as a positive luminance signal (for example, “+10”). A pixel having a luminance lower than the reference value (dark pixel ) is detected as a negative luminance signal (for example, “−10”).
Note that the gradation at the time of normalization is 256 gradations above, but the gradation is not particularly limited, and may be 128 gradations, 512 gradations, 1024 gradations. For example, normalization may be performed so that the signal of the normal part becomes the central gradation value “64” of 128 gradations.
In the above aspect, the normal part of the surface of the metal band is normalized so as to have the central luminance of all gradations, and the positive luminance signal and the negative luminance signal are obtained based on the central level of all gradations indicating the normal part. Detected. When the luminance change from the normal part is biased in one direction from the normal part, the brightness of the normal part is set in addition to the center of all gradations in consideration of the bias.
次に、正規化された輝度値と、金属帯100に応じてあらかじめ設定された閾値とを比較する(ステップS104)。閾値は、金属帯100の種類によって適宜設定されるが、通常、正極性信号と負極性信号のそれぞれに設けられる。例えば、合金化溶融亜鉛めっき鋼板の正常部の信号を256階調の中心階調値「128」になるように正規化し、正常部の輝度値を「0」として、「40」および「−40」をそれぞれ閾値として設定した場合、正常部を基準にした偏差が「40」を超えるか否かで判定がなされる。
正規化された輝度値が閾値を超えない画素は、正常部と判断される(ステップS105)。正規化された輝度値が閾値を超える画素は、疵候補点として抽出される。
Next, the normalized luminance value is compared with a threshold value set in advance according to the metal band 100 (step S104). The threshold is appropriately set depending on the type of the metal strip 100, but is usually provided for each of the positive signal and the negative signal. For example, the signal of the normal part of the alloyed hot-dip galvanized steel sheet is normalized so as to have a central gradation value “128” of 256 gradations, the luminance value of the normal part is set to “0”, and “40” and “−40” Is set as a threshold value, the determination is made based on whether or not the deviation based on the normal part exceeds “40”.
A pixel whose normalized luminance value does not exceed the threshold value is determined to be a normal part (step S105). Pixels whose normalized luminance values exceed the threshold are extracted as wrinkle candidate points.
疵候補点があると判断された場合、互いに所定距離範囲内に存在する複数の疵候補点を連続した一つの疵候補領域として連結処理する(ステップS106)。
図4では、ステップS104において疵候補点をして抽出された点を着色画素部で表し、それらを連結処理して得られる領域を疵候補領域として示す。着色画素部内に示される数値は、正常部の輝度値を「0」として計算される各着色画素部の正規化された輝度値である。
If it is determined that there is a wrinkle candidate point, a plurality of wrinkle candidate points existing within a predetermined distance range are connected as a single continuous wrinkle candidate region (step S106).
In FIG. 4, the points extracted as wrinkle candidate points in step S104 are represented by colored pixel portions, and regions obtained by connecting them are indicated as wrinkle candidate regions. The numerical value shown in the colored pixel portion is a normalized luminance value of each colored pixel portion calculated by setting the luminance value of the normal portion as “0”.
次に、疵候補領域に含まれる疵候補点の正規化された輝度値の絶対値の総和(検出積算値)、金属帯100の走行方向での疵候補領域の最大長さの画素数(検出長さ)、および、金属帯100の走行方向に直交する方向での疵候補領域の最大長さの画素数(検出幅)を算出する(ステップS107)。
例えば、図4において縦方向が走行方向に該当し、この場合、検出長さは「10」と算出され、検出幅は「4」と算出される。さらに、図4において、検出積算値は、疵候補領域内の各疵候補点の正規化された輝度値を足して1000と算出される。
Next, the sum of the absolute values of the normalized luminance values of the heel candidate points included in the heel candidate area (detected integrated value), the number of pixels of the maximum length of the heel candidate area in the traveling direction of the metal strip 100 (detection) Length) and the maximum number of pixels (detection width) of the heel candidate region in the direction orthogonal to the traveling direction of the metal strip 100 (step S107).
For example, the vertical direction in FIG. 4 corresponds to the traveling direction. In this case, the detection length is calculated as “10” and the detection width is calculated as “4”. Further, in FIG. 4, the detected integrated value is calculated as 1000 by adding the normalized luminance value of each cocoon candidate point in the cocoon candidate region.
次に、検出幅と、検出積算値を検出長さで除して得られる密度幅(検出積算値/検出長さ)との比(検出幅/密度幅)を算出し、金属帯100に応じて設定される基準値との比較を行う(ステップS108)。例えば、図4をもとにすると、密度幅は「100」と算出される。
設定される基準値は金属帯100の種類、および、上記正規化した際の階調度によって異なるが、例えば、正常部の信号が256階調の中心階調値「128」になるように正規化し、金属帯100として溶融亜鉛めっき鋼板を使用した場合、その基準値は「10」と算出される。
Next, a ratio (detection width / density width) between the detection width and the density width (detection integrated value / detection length) obtained by dividing the detection integrated value by the detection length is calculated, and according to the metal band 100 Is compared with the reference value set in step S108. For example, based on FIG. 4, the density width is calculated as “100”.
The reference value to be set differs depending on the type of the metal band 100 and the gradation level at the time of normalization. For example, normalization is performed so that the signal of the normal part becomes the central gradation value “128” of 256 gradations. When a hot-dip galvanized steel sheet is used as the metal strip 100, the reference value is calculated as “10”.
上記比(検出幅/密度幅)が金属帯100に応じて設定される基準値より大きい場合、検出した疵領域を過検出と判定する(ステップS109)。
また、上記比(検出幅/密度幅)が金属帯100に応じて設定される基準値以下の場合、検出した疵領域を欠陥(有害疵)と判定する(ステップS110)。
When the ratio (detection width / density width) is larger than a reference value set according to the metal strip 100, the detected wrinkle region is determined as overdetection (step S109).
If the ratio (detection width / density width) is equal to or less than a reference value set according to the metal strip 100, the detected wrinkle region is determined as a defect (harmful flaw) (step S110).
欠陥と判定された疵候補領域は、正常部からの輝度値が大きく異なり、互いに密に隣接して存在する画素が多数連結されて構成される。
一方、過検出と判定された疵候補領域は、散逸して存在する疵候補点が連結されて検出幅及び検出長さが大きな疵として構成される傾向にある。
本発明者らは、このような知見に基づいて、密度幅と検出幅とを比較することにより、過検出と欠陥との判定ができることを見出している。
The wrinkle candidate area determined to be defective has a luminance value greatly different from the normal part, and is configured by connecting a large number of pixels that are closely adjacent to each other.
On the other hand, a wrinkle candidate region determined to be over-detected tends to be configured as a wrinkle having a large detection width and detection length by connecting disperse wrinkle candidate points.
The present inventors have found that overdetection and defect can be determined by comparing the density width and the detection width based on such knowledge.
<表面欠陥検出装置(第2の実施形態)>
まず、以下に、本発明の表面欠陥検出装置の第2の実施形態を図面を参照して説明する。図5(A)は、本発明の表面疵検査装置の第2の実施形態の受光部付近の側面図であり、図5(B)は同装置の上面図である。
図5(A)および(B)では、金属帯100と、線状拡散光源30と、シリンドリカルレンズ32と、偏光板34と、表面欠陥検出装置50と、表示手段24とが示される。表面欠陥検出装置50は、受光部36、疵候補点抽出手段16、連結処理手段18、算出手段20、および判定手段22を備える。受光部36は、検光子38a、38b、38cおよび受光カメラ40a、40b、40cとから構成される。
図5(A)および(B)では、線状拡散光源30と、シリンドリカルレンズ32と、偏光板34と、受光部36の点を除いて、図1に示す態様と同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略し、主として線状拡散光源30と、シリンドリカルレンズ32と、偏光板34と、受光部36について説明する。
<Surface Defect Detection Device (Second Embodiment)>
First, a second embodiment of the surface defect detection device of the present invention will be described below with reference to the drawings. FIG. 5 (A) is a side view of the vicinity of the light receiving portion of the second embodiment of the surface defect inspection apparatus of the present invention, and FIG. 5 (B) is a top view of the apparatus.
5A and 5B, the metal strip 100, the linear diffused light source 30, the cylindrical lens 32, the polarizing plate 34, the surface defect detection device 50, and the display means 24 are shown. The surface defect detection device 50 includes a light receiving unit 36, a wrinkle candidate point extraction unit 16, a connection processing unit 18, a calculation unit 20, and a determination unit 22. The light receiving unit 36 includes analyzers 38a, 38b, and 38c and light receiving cameras 40a, 40b, and 40c.
FIGS. 5A and 5B have the same configuration as that shown in FIG. 1 except for the linear diffused light source 30, the cylindrical lens 32, the polarizing plate 34, and the light receiving unit 36. Therefore, the same reference numerals are assigned to the same components, and the description thereof is omitted, and the linear diffused light source 30, the cylindrical lens 32, the polarizing plate 34, and the light receiving unit 36 will be mainly described.
第2の実施形態においては、金属帯100表面からの反射光に含まれる鏡面反射成分と鏡面拡散反射成分とを区別して検出することよって、被検査面における表面の割れ・抉れ・めくれ上がりのような顕著な凹凸性を持たない模様状ヘゲ欠陥を確実に検出でき、より高い欠陥検出精度を発揮することができる。
なお、鏡面反射成分と鏡面拡散反射成分との検出メカニズムについては、特開平11−183398号の段落[0022]〜[0092]に記載の通りである。
In the second embodiment, by detecting the specular reflection component and the specular diffuse reflection component included in the reflected light from the surface of the metal strip 100, the surface of the surface to be inspected is cracked, curled or turned up. Such a pattern-like bald defect having no remarkable unevenness can be reliably detected, and higher defect detection accuracy can be exhibited.
The detection mechanism of the specular reflection component and the specular diffuse reflection component is as described in paragraphs [0022] to [0092] of JP-A No. 11-183398.
線状拡散光源30は、一部に拡散反射塗料を塗布した透明導光棒の両端から内部へメタルハライド光源の光を投光することによって、幅方向に一様の出射光を得る。
線状拡散光源30の各位置から出射された金属帯100に対する入射光は、シリンドリカルレンズ32と偏光板34を介して走行状態の金属帯100の全幅に対して、例えば60°の入射角θで照射する。偏光板34の方位角(偏光角)αは45°に設定されている。
The linear diffused light source 30 projects the light of the metal halide light source from both ends of the transparent light guide rod, which is partially coated with diffuse reflection paint, to obtain uniform emitted light in the width direction.
The incident light with respect to the metal strip 100 emitted from each position of the linear diffused light source 30 has an incident angle θ of 60 °, for example, with respect to the entire width of the metal strip 100 in the traveling state via the cylindrical lens 32 and the polarizing plate 34. Irradiate. The azimuth angle (polarization angle) α of the polarizing plate 34 is set to 45 °.
受光部36は、レンズの前に検光角βがそれぞれ−45°、45°、90°に設定された検光子38a、38b、38cを有する3台のリニアアレイカメラからなる受光カメラ40a、40b、40cから構成されている。
各受光カメラ40a、40b、40cの各光軸は互いに平行に維持されている。このように各受光カメラ40a、40b、40cの光軸が平行に維持されていると、3台の受光カメラ40a、40b、40cの各画素は同一視野サイズで一対一に対応する。
The light receiving unit 36 includes light receiving cameras 40a and 40b including three linear array cameras having analyzers 38a, 38b, and 38c in which the light detection angles β are set to −45 °, 45 °, and 90 °, respectively, in front of the lens. , 40c.
The optical axes of the light receiving cameras 40a, 40b, and 40c are maintained parallel to each other. When the optical axes of the light receiving cameras 40a, 40b, and 40c are maintained in parallel as described above, the pixels of the three light receiving cameras 40a, 40b, and 40c correspond one-to-one with the same visual field size.
各受光カメラ40a、40b、40cで受光された反射光における金属帯100の幅方向の1ライン分の各画素の輝度値はそれぞれ輝度信号a,b,cに正規化されて疵候補点抽出手段16へ送信される。 The luminance value of each pixel for one line in the width direction of the metal band 100 in the reflected light received by each light receiving camera 40a, 40b, 40c is normalized to the luminance signal a, b, c, respectively, and the eyelid candidate point extracting means 16 is transmitted.
疵候補点抽出手段16においては、各輝度信号a〜cが表す輝度を金属帯100表面の正常部の輝度を基準として正規化し、正常部に対する相対的な偏差を示す画像信号に変換する。
その後、あらかじめ定めた疵候補判定基準により、疵を確定する。
The eyelid candidate point extraction means 16 normalizes the luminance represented by the luminance signals a to c on the basis of the luminance of the normal part of the surface of the metal band 100 and converts it into an image signal indicating a relative deviation from the normal part.
Thereafter, the wrinkle is determined according to a predetermined wrinkle candidate determination criterion.
その後、上述した連結処理工程、算出工程、判定工程を経て、「欠陥」または「過検出」の検出が行われる。 Thereafter, “defect” or “overdetection” is detected through the above-described connection processing step, calculation step, and determination step.
図1に記載の表面欠陥検出装置を使用して、合金化溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板の表面欠陥の検出を行った。なお、疵候補点抽出工程においては、得られた画像信号を、正常部の信号が256階調の中心階調値「128」になるように正規化し、該基準値「128」を「0」として正常部に対する相対的な偏差を示す輝度信号に変換した。該基準値より高い輝度を有する画素(明るい画素)を正極性輝度信号として検出し、該基準値より低い輝度を有する画素(暗い画素)は負極性輝度信号として検出した。その後、正常部からの所定偏差を「40」と設定し(言い換えると、輝度値「+40」および「−40」を閾値として設定し)、正規化された輝度値が該閾値(偏差)を超える画素を疵候補点として抽出した。 The surface defect detection apparatus shown in FIG. 1 was used to detect surface defects in the alloyed hot-dip galvanized steel sheet and hot-dip galvanized steel sheet. In the wrinkle candidate point extracting step, the obtained image signal is normalized so that the signal of the normal part becomes the central gradation value “128” of 256 gradations, and the reference value “128” is set to “0”. As a luminance signal indicating a relative deviation from the normal part. A pixel having a luminance higher than the reference value (bright pixel ) was detected as a positive luminance signal, and a pixel having a luminance lower than the reference value (dark pixel ) was detected as a negative luminance signal. Thereafter, the predetermined deviation from the normal part is set to “40” (in other words, the luminance values “+40” and “−40” are set as threshold values), and the normalized luminance value exceeds the threshold value (deviation). Pixels were extracted as wrinkle candidate points.
なお、判定工程において、「過検出」または「欠陥」を判定する基準値は、この場合「10」とした。 In the determination step, the reference value for determining “overdetection” or “defect” is “10” in this case.
算出工程で得られた比(検出幅/密度幅)を縦軸、検出幅を横軸として各疵候補領域をプロットすると共に、目視確認により各疵候補領域を「過検出」または「欠陥」を判定した(図6:合金化溶融亜鉛めっき鋼板、図7:溶融亜鉛めっき鋼板)。 While plotting each wrinkle candidate area with the ratio (detection width / density width) obtained in the calculation step as the vertical axis and the detection width as the horizontal axis, each checkered area is identified as “overdetected” or “defect” by visual confirmation. Determination was made (FIG. 6: galvannealed steel plate, FIG. 7: hot dip galvanized steel plate).
図6から確認できるように、比(検出幅/密度幅)が基準値「10」以下の場合の疵候補領域は、目視確認から「欠陥」であることが確認された。一方、比(検出幅/密度幅)が基準値「10」超の場合の疵候補領域は、目視確認から「過検出」であることが確認された。
つまり、比(検出幅/密度幅)と基準値「10」とを比較することにより、「過検出」または「欠陥」を判定できることが確認された。
As can be confirmed from FIG. 6, it was confirmed that the wrinkle candidate region when the ratio (detection width / density width) is equal to or less than the reference value “10” is “defect” from the visual confirmation. On the other hand, when the ratio (detection width / density width) is greater than the reference value “10”, it was confirmed from visual confirmation that “overdetection” occurred.
That is, it was confirmed that “overdetection” or “defect” can be determined by comparing the ratio (detection width / density width) with the reference value “10”.
なお、図7においても同様に、比(検出幅/密度幅)と基準値「10」とを比較することにより、「過検出」または「欠陥」を判定できることが確認された。 Similarly in FIG. 7, it was confirmed that “overdetection” or “defect” can be determined by comparing the ratio (detection width / density width) with the reference value “10”.
100 金属帯
10、50 表面欠陥検出装置
12 光源
14 受光部
16 疵候補点抽出手段
18 連結処理手段
20 算出手段
22 判定手段
24 表示手段
30 線状拡散光源
32 シリンドリカルレンズ
34 偏光板
36 受光部
38a、38b、38c 検光子
40a、40b、40c 受光カメラ
DESCRIPTION OF SYMBOLS 100 Metal strips 10, 50 Surface defect detection apparatus 12 Light source 14 Light-receiving part 16 Haze candidate point extraction means 18 Connection processing means 20 Calculation means 22 Determination means 24 Display means 30 Linear diffused light source 32 Cylindrical lens 34 Polarizing plate 36 Light-receiving part 38a, 38b, 38c Analyzer 40a, 40b, 40c Light receiving camera
Claims (2)
走行する金属帯表面に光源から光を入射し、金属帯表面で反射した反射光を受光することにより、前記金属帯表面の二次元画像を表す画像信号を取得する画像信号取得工程と、
前記画像信号が表す輝度を、前記金属帯表面の正常部の輝度を基準として正規化し、正規化された輝度値のそれぞれについて、正常部を示す輝度レベルを基準にして、正極性と負極性に対して予め定められた閾値を超える画素を疵候補点として抽出する疵候補点抽出工程と、
互いに所定距離範囲内に存在する複数の前記疵候補点を連続した一つの疵候補領域として連結処理する連結処理工程と、
前記疵候補領域に含まれる前記疵候補点の正規化された輝度値の絶対値の総和(検出積算値)、前記金属帯の走行方向での前記疵候補領域の最大長さの画素数(検出長さ)、および、前記金属帯の走行方向に直交する方向での前記疵候補領域の最大長さの画素数(検出幅)を算出する算出工程と、
前記検出幅と、前記検出積算値を前記検出長さで除して得られる密度幅(検出積算値/検出長さ)との比(検出幅/密度幅)が、前記金属帯に応じて予め設定される基準値を超える場合は、検出した前記疵候補領域を過検出と判定し、前記基準値以下の場合は、検出した前記疵候補領域を欠陥と判定する判定工程とを備える、表面欠陥検出方法。 A surface defect detection method for detecting a surface defect of a traveling metal strip,
An image signal acquisition step of acquiring an image signal representing a two-dimensional image of the surface of the metal band by receiving light reflected from the surface of the metal band by receiving light from the light source on the traveling metal band surface;
The luminance represented by the image signal is normalized on the basis of the luminance of the normal portion of the surface of the metal band, and for each normalized luminance value, the luminance level indicating the normal portion is used as a reference, and the positive polarity and the negative polarity are obtained. A wrinkle candidate point extracting step for extracting pixels that exceed a predetermined threshold as wrinkle candidate points;
A connection processing step of connecting a plurality of wrinkle candidate points existing within a predetermined distance from each other as a continuous wrinkle candidate region;
The sum of absolute values of the normalized luminance values of the wrinkle candidate points included in the wrinkle candidate area (detected integrated value), the number of pixels of the maximum length of the wrinkle candidate area in the traveling direction of the metal band (detection) Length), and a calculation step of calculating the number of pixels (detection width) of the maximum length of the wrinkle candidate region in a direction orthogonal to the traveling direction of the metal band,
A ratio (detection width / density width) between the detection width and the density width (detection integrated value / detection length) obtained by dividing the detection integrated value by the detection length is determined in advance according to the metal band. A surface defect comprising: determining that the detected wrinkle candidate area is overdetected if it exceeds a set reference value; and determining the detected wrinkle candidate area as a defect if it is equal to or less than the reference value Detection method.
前記画像信号が表す輝度を、前記金属帯表面の正常部の輝度を基準として正規化し、正規化された輝度値のそれぞれについて、正常部を示す輝度レベルを基準にして、正極性と負極性に対してあらかじめ定められた閾値を超える画素を疵候補点として抽出する疵候補点抽出手段と、
互いに所定距離範囲内に存在する複数の前記疵候補点を連続した一つの疵候補領域として連結処理する連結処理手段と、
前記疵候補領域に含まれる前記疵候補点の正規化された輝度値の絶対値の総和(検出積算値)、前記金属帯の走行方向での前記疵候補領域の最大長さの画素数(検出長さ)、および、前記金属帯の走行方向に直交する方向での前記疵候補領域の最大長さの画素数(検出幅)を算出する算出手段と、
前記検出幅と、前記検出積算値を前記検出長さで除して得られる密度幅(検出積算値/検出長さ)との比(検出幅/密度幅)が、前記金属帯に応じて予め設定される基準値を超える場合は、検出した前記疵候補領域を過検出と判定し、前記基準値以下の場合は、検出した前記疵候補領域を欠陥と判定する判定手段とを備える、表面欠陥検出装置。 A light receiving unit that receives reflected light reflected from the surface of the traveling metal band and obtains an image signal representing a two-dimensional image of the surface of the metal band;
The luminance represented by the image signal is normalized on the basis of the luminance of the normal portion of the surface of the metal band, and for each normalized luminance value, the luminance level indicating the normal portion is used as a reference, and the positive polarity and the negative polarity are obtained.疵 candidate point extracting means for extracting pixels exceeding a predetermined threshold as 疵 candidate points;
A connection processing means for connecting and processing a plurality of eyelid candidate points existing within a predetermined distance from each other as a continuous eyelid candidate area;
The sum of absolute values of the normalized luminance values of the wrinkle candidate points included in the wrinkle candidate area (detected integrated value), the number of pixels of the maximum length of the wrinkle candidate area in the traveling direction of the metal band (detection) Calculating means for calculating the number of pixels (detection width) of the maximum length of the wrinkle candidate region in a direction orthogonal to the traveling direction of the metal band,
A ratio (detection width / density width) between the detection width and the density width (detection integrated value / detection length) obtained by dividing the detection integrated value by the detection length is determined in advance according to the metal band. A surface defect comprising: a determination unit that determines that the detected wrinkle candidate region is overdetected when exceeding a set reference value, and determines the detected wrinkle candidate region as a defect when equal to or less than the reference value Detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011096828A JP5842373B2 (en) | 2011-04-25 | 2011-04-25 | Surface defect detection method and surface defect detection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011096828A JP5842373B2 (en) | 2011-04-25 | 2011-04-25 | Surface defect detection method and surface defect detection apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012229928A JP2012229928A (en) | 2012-11-22 |
JP5842373B2 true JP5842373B2 (en) | 2016-01-13 |
Family
ID=47431603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011096828A Active JP5842373B2 (en) | 2011-04-25 | 2011-04-25 | Surface defect detection method and surface defect detection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5842373B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106530292B (en) * | 2016-10-28 | 2019-07-05 | 鞍钢未来钢铁研究院有限公司 | A kind of steel strip surface defect image Fast Identification Method based on line scan camera |
JP2018112470A (en) * | 2017-01-11 | 2018-07-19 | リコーエレメックス株式会社 | Inspection system and inspection method |
CN109709099B (en) * | 2018-12-29 | 2022-02-08 | 宝钢湛江钢铁有限公司 | Method and device for intelligently identifying surface defects of strip steel |
JP7276650B2 (en) * | 2019-03-27 | 2023-05-18 | 大同特殊鋼株式会社 | Method for judging quality of metal surface |
CN112927189B (en) * | 2021-01-28 | 2024-09-06 | 江苏大学 | Edge reflection light spot eliminating method in visual inspection of surface flaws of electroplated workpiece |
CN113325001B (en) * | 2021-04-12 | 2024-08-23 | 浙江花园新能源股份有限公司 | Automatic distinguishing and detecting equipment and method for appearance flaws on surface of copper foil |
CN114708226B (en) * | 2022-04-01 | 2024-06-21 | 辽宁中科力勒检测技术服务有限公司 | Copper pipe inner wall crack detection method based on illumination influence |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09178668A (en) * | 1995-10-24 | 1997-07-11 | Nkk Corp | Surface inspection device |
JP2000065755A (en) * | 1998-08-24 | 2000-03-03 | Nkk Corp | Surface inspection apparatus |
JP2003344300A (en) * | 2002-05-21 | 2003-12-03 | Jfe Steel Kk | Surface defect determination method |
JP5163505B2 (en) * | 2008-04-03 | 2013-03-13 | 新日鐵住金株式会社 | Acupuncture learning device, acupuncture learning method, and computer program |
-
2011
- 2011-04-25 JP JP2011096828A patent/JP5842373B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012229928A (en) | 2012-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5842373B2 (en) | Surface defect detection method and surface defect detection apparatus | |
KR101832081B1 (en) | Surface defect detection method and surface defect detection device | |
JP4511978B2 (en) | Surface flaw inspection device | |
US7471383B2 (en) | Method of automated quantitative analysis of distortion in shaped vehicle glass by reflected optical imaging | |
KR100399507B1 (en) | How to recognize and evaluate defects in reflective surface coatings | |
JP5659540B2 (en) | Steel plate surface defect inspection method and apparatus | |
JP2017009523A (en) | Surface defect detection method, surface defect detection device, and method of manufacturing steel | |
JP2012078144A (en) | Surface defect inspection device for transparent body sheet-like material | |
JP2012002792A (en) | Transparent film inspection device and defect detection method | |
JP2008275424A (en) | Surface inspection device | |
US10955354B2 (en) | Cylindrical body surface inspection device and cylindrical body surface inspection method | |
JP2012251983A (en) | Wrap film wrinkle inspection method and device | |
JP2012037425A (en) | Method for inspecting polycrystal silicon wafer and device thereof | |
JP2001209798A (en) | Method and device for inspecting outward appearance | |
JP2008286646A (en) | Surface flaw inspection device | |
JP2005189113A (en) | Surface inspecting device and surface inspection method | |
EP4411317A1 (en) | Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method | |
JP2013134185A (en) | Detect inspection method and device for glass container | |
JP7074202B2 (en) | Chemical conversion film inspection method, chemical conversion film inspection equipment, surface treatment steel sheet manufacturing method, surface treatment steel sheet quality control method and surface treatment steel sheet manufacturing equipment | |
JP2001124538A (en) | Method and device for detecting defect in surface of object | |
JP5201014B2 (en) | Scale remaining inspection equipment for pickled steel sheet | |
JP2004138417A (en) | Method and apparatus for inspecting scratch in steel plate | |
JPH09113465A (en) | Detection apparatus for surface fault for galvanized steel plate | |
JPH10115514A (en) | Method and apparatus for inspection of surface smoothness | |
JP5768349B2 (en) | Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141104 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150519 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150819 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151020 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5842373 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |