JP2008141467A - アイモニタ方法およびアイモニタ回路並びに光受信方法および光受信器 - Google Patents

アイモニタ方法およびアイモニタ回路並びに光受信方法および光受信器 Download PDF

Info

Publication number
JP2008141467A
JP2008141467A JP2006325481A JP2006325481A JP2008141467A JP 2008141467 A JP2008141467 A JP 2008141467A JP 2006325481 A JP2006325481 A JP 2006325481A JP 2006325481 A JP2006325481 A JP 2006325481A JP 2008141467 A JP2008141467 A JP 2008141467A
Authority
JP
Japan
Prior art keywords
signal
circuit
optical
eye
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006325481A
Other languages
English (en)
Other versions
JP4671947B2 (ja
Inventor
Tomoaki Yoshida
智暁 吉田
Makoto Nakamura
誠 中村
Hirotaka Nakamura
浩崇 中村
Shunji Kimura
俊二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006325481A priority Critical patent/JP4671947B2/ja
Publication of JP2008141467A publication Critical patent/JP2008141467A/ja
Application granted granted Critical
Publication of JP4671947B2 publication Critical patent/JP4671947B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Dc Digital Transmission (AREA)

Abstract

【課題】光ファイバにおける波長分散による信号劣化量を検出するアイモニタ回路を簡便な構成で実現する。
【解決手段】一定振幅に増幅された受信NRZ信号を3つに分岐し、各分岐ごとに異なる閾値で判定して個々に積分し、各々の積分出力値を閾値の高い順又は低い順から列挙して結線したときに形成される線全体の傾きの大きさに基づき光ファイバ伝送路の波長分散による信号劣化量を得る。
【選択図】図1

Description

本発明は、光ファイバ伝送における波長分散による信号劣化を検出するアイモニタ方法および回路並びにそのアイモニタ回路を使用して波長分散による信号劣化を補償する光受信方法および光受信器に関するものである。
インターネットの普及に伴って、通信サービスの多様化が進むとともに所要ビットレートが目覚しく上昇している。光ファイバを用いた光アクセスサービスは、光ファイバの高速広帯域という特性を活用できるため、ビットレートの上昇に対応できる高速アクセスサービスとして注目されている。
ところが、信号が高速になるほど、光ファイバ中を伝搬する信号が光ファイバの波長分散の影響を受けることは非特許文献1などによってよく知られている。また、電気信号を光信号に変換する際に用いられるレーザダイオードは、例えば非特許文献2に示されるように、チャープ特性(発振波長の揺らぎ)を持ち、光ファイバの波長分散の影響をより大きく受けることがよく知られている。そこで、従来、この光ファイバの波長分散の影響を低減させるための様々な技術が用いられてきた。
例えば、光ファイバの屈折率分布を変化させ、使用する光信号の波長付近で波長分散値が零になる波長分散補償光ファイバを使用することにより、波長分散による劣化を最小限に抑えることが可能になる。また、レーザダイオードによつて発生するチャープを回避するために、レーザ自体は直流光を発生させ、ニオブ酸リチウム結晶などが有する電気的光学効果を利用した光変調器を用いることにより、チャープ量を小さくし、波長分散の影響を最小限に抑えることが可能である。これらの技術、製品などは、主に中継系光伝送システムに導入されてきた。
一方、ユーザ宅と通信事業者の収容局とを結ぶ区間で提供される光アクセスネットワークにおいては、設備の設置、運用保守などのコストを徹底的に低減させる経済性が求められる。よって、前述のような波長分散の影響が発生する場合においても、収容局とユーザ宅に設置される設備に、従来の中継系光伝送システムのネットワークで用いられた前述した技術を用いることは、コスト削減という観点からは望ましくない。
例えば、光アクセスネットワークにおいては、すでに敷設されているシングルモード光ファイバを、波長分散補償光ファイバに置き換えることは、現在敷設されている光ファイバを撤去すると共に、新しく光ファイバを敷設する費用が必要である。また、電気光学効果を用いる変調器を使用する方式は、従来用いられてきたレーザダイオードを直接変調させる方式よりも非常に高価になる。よって、経済性を実現するために、従来の技術やデバイスを用いることで、追加コスト負担が最小限となる新しい技術が求められる。
これらの問題を回避するために、受信光信号を電気信号に変換した後に、波長分散によって劣化した信号波形を補償する電気分散補償技術が多く提案されている。電気分散補償回路は集積回路によって実現されるため、大量生産や検査の自動化などにより、他の集積回路と同様に低価格で製造することが可能である。また、等化増幅回路など光受信器内に実装される他の集積回路と同じく、プリント基板上に一括して実装することが可能である。よって、電気分散補償回路を追加するコスト負担はわずかとなるため、コスト条件の厳しい光アクセスネットワークに適した補償技術である。
図4に電気分散補償技術を用いた光受信器の構成を示す。光ファイバ100を介して光受信器に入力された光信号は、受信光モジュール200において、フォトダイオード(PD)201によって光信号から電気信号に変換される。フォトダイオード201によって変換される電気信号は非常に緻弱であるため、光モジュール200内にフォトダイオード201と一体化して実装されるプリアンプ202によって増幅される。その後、電気分散補償部300Aにより、波長分散によって劣化した信号が補償される。補償された信号は後段のクロックデータリカバリ(CDR)回路400によって識別再生される。
図5にフィードバック型の電気分散補償部300Aの構成例を示す。光モジュール200のプリアンプ202から入力された電気信号は、増幅器350に入力される。この増幅器350は出力信号の振幅が一定になるよう利得が調整される自動利得制御型増幅器(Gain Controlled Amplifier:GCA)である。これは、後段の電気分散補償回路に受信レベルの異なる信号が入力されると、受信信号レベルに応じた補償を行わなければならず、電気分散補償回路に不必要なダイナミックレンジ特性を課すことを避けるためである。電気分散補償回路の一例として、非特許文献3に示すようなトランスバーサルフィルタ360が挙げられる。トランスバーサルフィルタ360は入力信号を分岐し、それぞれ異なる遅延を加え、それぞれ係数を乗じた後、分岐された信号の総和を出力する。トランスバーサルフィルタ360の各信号に乗ずる係数をタップ係数という。このタップ係数を変化させることによってトランスバーサルフィルタ360は異なる周波数、位相伝達特性を示し、タップ係数制御部370によってこのタップ係数を適応的に制御することによって、異なる距離の波長分散によって劣化した信号を、送信した波形と同じ波形になるよう自動等化を行うことが可能になる。
受信信号は電気分散補償回路としてのトランスバーサルフィルタ360から出力されるが、その一方で、出力から分岐された信号がアイモニタ回路380に入力される。アイモニタ回路380はアイパターンの中央部において“0”レベルと“1”レベルを判定する際に、どの程度余裕があるかの判定結果を出力する回路である。NRZ(Nonreturn to zero)信号やRZ(Return to zero)信号において、信号波形を、ビット間隔ごとに重ね書きすると、目のような波形になる。その目の開き具合(アイ開口度)をモニタリングすることで判定する。
図6にアイパターンの一例を示す。ここでは、図6におけるアイの中央の縦方向の広がりHをアイ開口度と定義する。一般的にアイ開口度が大きい場合は、“0”レベルと“1”レベルとを識別する場合の、閾値設定レベル、タイミングの許容範囲が大きくなる。逆にアイ開口度が小さい場合は、回路内外からの雑音によって、“0”レベルと“1”レベルとの判定が正しく行われず、ビット誤りが発生する。アイモニタ回路380によってアイ開口度をタップ係数制御部370に伝えることで、より品質の良い、開いたアイパターンが得られるよう、トランスバーサルフィルタ360のタップ係数を制御する。
アイモニタ回路380として、非特許文献4に記載の構成がある。非特許文献4におけるアイモニタ回路を図7に示す。アイモニタ回路380は2つの判定回路381,382、排他的論理和回路383、および積分器384から構成される。判定回路381,382はクロックCLK1,CLK2が入力された時点で、入力信号が閾値TH1,TH2を超えているかどうかを判定し、その判定結果を出力する。判定回路381はNRZ信号のビットが“0”か“1”かを判定する通常の判定回路である。よって、閾値TH1は通常“1”レベルと“0”レベルの中間に設定される。一方、判定回路382は判定回路381と同じ構成であるが、閾値TH2を掃引させる。閾値TH2を可変させることによって判定回路381とは異なる、擬以的なエラーが発生した信号となる。そして、判定回路381の出力と判定回路382の出力との排他的論理和を排他的論理和回路383で演算する。これは、判定回路381の出力と判定回路382の出力とを同時刻に重ねたとき、重ならない部分を出力させることに等しい。よって、その演算結果を後段の積分器384で積分することにより、判定回路382の疑似エラー成分を検出することが可能になる。たとえば、閾値TH2を大きくしてアイ上部に近づけると、ある入力信号は、判定回路381の出力はビット“1”であるにもかかわらず、判定回路382では閾値TH2を下回ることによっで“0”を出力してしまう。このとき、判定回路381の出力であるビット“1”が排他的論理和回路383から出力される。疑似エラーの数が多ければ多いほど、積分器384からの出力レベルが上昇する。横軸を閾値TH2のレベルとし、縦軸をアイモニタ回路380の出力として両者の関係をグラフにすると、図8に示すようにバスタブ曲線が出力される。アイ開口度が大きいほど、このバスタブ曲線のU字の底となる部分が広くなるため、図7の回路構成によってアイ開口度をモニタリングすることができる。
Govind P.Agrawal 著、"Fiber-optic communication systems、John Wiley & Sons 1997年 Amnon Yariv 著、多田・神谷監訳、「光エレクトロニクス 基礎編」、丸善 2000年 Simon Haykin 著、「適応フィルタ理論」、科学技術出版、pp.6、2001年 F.Buchali at al., "Fast eye monitor for 10Gbit/s and its application for optical PMD compensation" in Optical Fiber Communication Conference,OSA Technical Digest,2000,TuP5-1
ところが、図7によるアイモニタ回路380には、ビット判定を行う位置、すなわちビットスロットの中央で正確にモニタングするために、クロック信号CLK1,CLK2を入力しなくてはならない。通常、そのクロック信号CLK1,CLK2は図4に示した電気分散補償部300Aの後段に接続されるクロックデータリカバリ回路400から供給されるクロック信号を用いる。判定回路381,382からの出力に対して排他的論理和を出力するためには、クロック信号CLK1,CLK2が判定回路381,382それぞれに入力される際のタイミング位相の誤差を、できるだけ少なくする必要がある。そのためにはクロックデータリカバリ回路400から判定回路381,382までの線路長の厳密な等長化や、立ちがり、立ち下がり時間を短くする必要があり、回路設計や伝送線路設計が難しいという問題がある。
すなわち、従来技術例で用いられるアイモニタ回路380は、後段に接続されるクロックデータリカバリ回路400からの高品質なクロック信号が必要であり、2つの判定回路381,382の閾値TH1,TH2に同じ値を設定した場合は、同じ波形の信号が出力されるように、両者に入力されるクロック信号のスキューを可能な限り小さくしなくてはならない。また、排他的論理和回路383は判定回路381と判定回路382との差分信号を出力することから、1ビット幅よりも小さい幅のパルス信号を発生させるための、信号ビットレートより十分高い高周波特性が要求される。
本発明の目的は、光ファイバの波長分散による信号劣化を簡便な手法で検出できるようにしたアイモニタ方法および回路を提供することにある。また、別の目的は、そのアイモニタ方法又は回路を用いることで、光ファイバの波長分散による信号劣化の補償量を自動制御し、端局装置の運用保守に関するコストを低減できるようにした光受信方法および受信器を提供することである。
上記目的を達成するために、請求項1にかかる発明のアイモニタ方法は、光ファイバから到来したNRZの光信号を光電変換して得たNRZ信号を一定振幅に増幅し、該増幅された前記NRZ信号を少なくとも2つに分岐し、該分岐された前記NRZ信号を各分岐ごとに異なる閾値で判定し、得られた該各判定結果を個々に積分し、得られた各々の積分値を前記閾値の高い順又は低い順から列挙して結線したときに形成される線全体の傾きの大きさを検出し、得られた前記傾きの大きさに基づき前記光ファイバの波長分散による信号劣化量を検出することを特徴とする。
請求項2にかかる発明は、請求項1に記載のアイモニタ方法において、前記線全体の傾きの大きさの検出を、前記列挙した各積分値を最小自乗法により直線近似して行うことを特徴とする。
請求項3にかかる発明の光受信方法は、光ファイバから到来した光信号を光電変換し一定振幅に増幅したNRZ信号の波長分散による信号劣化を、請求項1又は2に記載のアイモニタ方法によって得られた前記信号劣化量に応じて補償することを特徴とする。
請求項4にかかる発明は、請求項3に記載の光受信方法において、前記補償を、前記アイモニタ方法によって得られた前記信号劣化量が少なくなるように適応的に行うことを特徴とする。
請求項5にかかる発明のアイモニタ回路は、一定振幅のNRZ信号を少なくとも2つに分岐した信号を異なる閾値で個々に判定する少なくとも2個の判定回路と、該各判定回路の出力信号を取り込みその積分値を出力する少なくとも2個の積分器と、該各積分器の出力積分値を前記判定回路の前記閾値の高い順又は低い順から列挙して結線したときに形成される線全体の傾きの大きさに基づき前記NRZ信号を伝送する光ファイバの波長分散による信号劣化を補償する補償量を得る補償量判定器とを備えることを特徴とする。
請求項6にかかる発明は、請求項5に記載のアイモニタ回路において、前記補償量判定器における前記線全体の傾きの大きさの検出を、前記列挙した各積分値を最小自乗法により直線近似して行うことを特徴とする。
請求項7にかかる発明は、光ファイバから入力するNRZの光信号を電気信号に変換する受光手段と、該受光手段から出力するNRZ信号を一定振幅に増幅する増幅器と、該増幅器の出力信号を入力し前記光ファイバの波長分散による信号劣化を補償する電気分散補償回路と、該電気分散補償回路における前記補償を制御する電気分散補償回路制御部と、請求項5又は6に記載のアイモニタ回路とを備え、前記電気分散補償回路の出力を分岐して前記アイモニタ回路に入力し、前記アイモニタ回路で得られた前記補償量を前記電気分散補償回路制御部に入力し、前記補償量に応じて前記電気分散補償回路制御部により前記電気分散補償回路において前記波長分散による信号劣化を補償することを特徴とする。
請求項8にかかる発明は、請求項7に記載の光受信器において、前記電気分散補償回路制御部が、前記アイモニタ回路から出力する前記補償量を小さくするように適応的に前記電気分散補償回路を制御することを特徴とする。
本発明のアイモニタ方法および回路によれば、後段からのクロック信号を必要しないためクロック信号のスキュー調整を必要としない。また、従来技術にあるような排他的論理和を用いないため、高速応答特性は判定回路のみに求められる。本発明を構成する判定回路および積分器は与える閾値を除きすべて同じ回路で構成することができる。よって、簡易な構成で信号劣化、つまり補償量の判定が可能になる。また、このアイモニタ方法および回路を使用して光受信方法および光受信器を実現すれば、補償量が自動制御されるので、端局装置の運用保守に関するコストを低減させることが可能となる。
図1に本発明の1つ実施例の電気分散補償部300の構成を示す。この電気分散補償部300は、図4で説明した光受信器において、電気分散補償部300Aと置き換えられて使用されるものである。
光電変換された受信信号は自動利得制御型増幅器(GCA)310に入力される。アイモニタ回路340は、受信信号のアイ波形における“0”レベルと“1”レベルが常に一定となることが前提となるため、この自動利得制御型増幅器310は必須である。次に受信信号は電気分散補償回路320に入力され、電気分散補償回路制御部330によって必要な信号補正が行われた後、受信電気信号として出力される。出力された受信電気信号はアイモニタ回路340に分岐して入力される。電気分散補償回路320としては、図5で説明したトランスバーサルフィルタ360を用いることができ、また、電気分散補償回路制御部330としては、図5で説明したタップ係数制御部370を用いることができる。
アイモニタ回路340は3つの判定回路341,342,343、3つの積分器344,345,346、補償量判定器347から構成される。判定回路と積分器はそれぞれで1対をなしている。各判定回路は、閾値レベル以上の入力の場合はマーク信号を出力し、閾値レベル以下の入力の場合は無信号を出力する回路である。判定回路341,342,343それぞれには、閾値H,M,L(H>M>L)が設定され、信号振幅の中央に閾値Mを、信号振幅中央と“1”レベルとの間に閾値Hを、信号振幅中央と“0”レベルとの間に閾値Lを設定する。判定回路341,342,343から出力された信号は、それぞれ積分器344,345,346に入力される。各積分器は対応する各判定回路から出力された信号を積分し直流レベルを出力する。補償量判定器347は、これら3つの積分器から出力された信号から、電気分散補償回路320に与える最適パラメータを判定し、電気分散補償回路制御部330に制御信号(アイ開口信号としての信号劣化量)を送出する。電気分散補償回路制御部330は、補償量判定器347から出力される信号劣化量に応じて、その劣化を補償するよう電気分散補償回路320を制御する。
図2の(a)、(b)に本実施例における判定回路341,342,343の出力例を示す。図2(a)は波長分散による劣化が補償された、理想的な波形の信号が入力された場合の出力を示す。理想的なNRZ信号波形とは、立ち上がり時間、立ち下がり時間が短く、またデューティ比が50%となる波形である。よって、理想的なNRZ信号が入力されると、判定回路341,342,343の出力信号の間の差分が小さく、デューティ比はそれぞれほぼ50%に近くなることがわかる。
一方、図2(b)に示すような、波長分散によって劣化した波形の信号が入力される場合は、判定回路341,342,343の出力が大きく変化する。光ファイバの波長分散によって、NRZ信号の立ち上がり、立ち下がり部分の傾きが小さくなり、符号間干渉が発生する。また、パルスの、特に01交番となる符号部分の高さが小さくなる。よって、波長分散量が大きいと、単位時間あたりに閾値Hを超える時間が短くなるため、判定回路341の出力の直流成分は小さくなる。一方、符号間干渉が発生するために閾値Lより信号波形が下回る時間が短くなるため、判定回路343の出力における信号のデューティ比が劣化し、パルス幅が大きくなる。よって積分器343の出力は理想的なNRZ信号を入力した場合よりも大きくなる。
図3には理想的なNRZ信号と波長分散による劣化したNRZ信号とを入力した場合の積分器出力を示す。点線が理想的なNRZ信号入力時、実線が波長分散によって劣化したNRZ信号入力時である。理想的なNRZ信号の入力時は、積分器344,345,346の順で左から出力値をプロットすると、わずかに右上がりの直線状に並ぶことがわかる。一方、波長分散によって劣化した信号を入力した場合は、右上がりの傾きが大きくなることがわかる。この傾きが大きければ大きいほど、パルスの振幅が小さくなり、また符号間干渉が増加したなまった波形になっていることを示す。
光ファイバの波長分散量が大きいほど、また、直接変調レーザのαパラメータが大きいほど、パルスの振幅が小さくなり、パルスの裾が広がる現象が顕著に現れるため、各積分器344,345,346の出力から作られる傾きが大きくなると推定できる。傾きの計算方法の一例としては、この3点の値を最小自乗法を用いて直線に近似し、その傾きを求める方法などがある。そして、得られた直線の傾きの大きさと、光ファイバ伝送路の波長分散量(信号劣化量)との関係を予め対応させておき、補償量判定器347においてこの傾きを計算して波長分散量を求め補償量(アイ開口度)を出力することにより、この出力を用いて、電気分散補償回路制御部330によって、電気分散補償回路320における補償動作を実現することが可能になる。
また、補償量判定器347において傾きが大きいほど推定波長分散量が大きいということは、その傾きを小さくするように逐次、電気分散補償回路320を制御すれば、信号劣化の適応的な補償が可能である。図1においては、電気分散補償回路制御部330で逐次アイモニタ回路340の出力値をモニタリングしながら、波長分散による信号劣化を除去し、最適な補償量が得られるよう、電気分散補償回路320をゆるやかに制御することが可能になる。
例えば、光通信においては、端局装置間の光ファイバ線路の距離は、区間によってそれぞれ異なるため、最適な補償量が異なる。これに対し、図1における実施例を用いることによって、補償量を自動的に判定して補償を行うため、区間個別に補償量を測定して設定、調整する必要がなくなり、また温度や環境によって波長分散量が変化する場合にも、その変化に適応して自動的に補償量が判定されるため、端局装置の設置、運用保守に関するコストを低減することが可能になる。
なお、図1に示す実施例は、判定回路と閾値をそれぞれ3つ用いる構成であるが、それらの数は3つに限定されるものではない。図3からもわかるとおり、傾きを検出するのであれば、積分器344の出力および積分器346の出力の2つを用いることでも傾きを検出することは可能である。また、判定回路と閾値をさらに多くしても、同様にそれらから最小自乗法などを用いて直線の傾きを求めることができる。すなわち、用いる判定回路と閾値は最低2つであるが、推定すべき波長分散量の精度や大きさに応じて、判定回路と閾値の数、すなわち判定回路と積分器の対を増減させることができる。また、積分器344,345,346で得られた各々の積分値は、判定回路341と343の閾値が反対の場合は、図3の直線の傾きが右下がりとなるが、この場合でもその傾きの大きさを検出することで、波長分散量を検出できる。すなわち、波長分散量は、前記閾値の高い順又は低い順から列挙して結線したときに形成される線全体の傾きの大きさから検出することにより得ることができる。
以上説明したとおり、本実施例のように3つの判定回路、3つの積分器、補償量判定器からなるアイモニタ回路により波長分散量を検出し、これを補償に用いることで、NRZ信号が光ファイバ伝送中に受けた波長分散による信号劣化を補償する手段を、簡便に実現することが可能になり、また、このアイモニタ回路を使用して光受信器を構成すれば、補償量が自動制御されるので、端局装置の運用保守に関するコストを低減させることが可能となる。
本発明の1つの実施例の電気分散補償部の構成を示すブロック図である。 (a)は図1の電気分散補償部のアイモニタ回路における通常波形入力時の各判定回路出力の波形図、(b)は、波長分散波形入力時の各判定回路出力の波形図である。 図1の電気分散補償部のアイモニタ回路による波長分散量の判定のための積分器出力レベルの特性図である。 従来の一般的な光受信器の構成を示すブロック図である。 従来のフイードバック型の電気分散補償部の構成を示すブロック図である。 アイパターンとアイ開口度の定義の説明図である。 非特許文献4におけるアイモニタ回路を示すブロック図である。 非特許文献4におけるアイモニタ出力とアイ開口度の関係を示す特性図である。
符号の説明
100:光ファイバ
200:受信光モジュール、201:フォトダイオード、202:プリアンプ
300、300A:電気分散補償部、310:自動利得制御型増幅器(GCA)、320:電気分散補償回路、330:電気分散補償回路制御部、340:アイモニタ回路、350:自動利得制御型増幅器(GCA)、360:トランスバーサルフィルタ、370:タップ係数制御部、380:アイモニタ回路
400:クロックデータリカバリ回路

Claims (8)

  1. 光ファイバから到来した光信号を光電変換して得たNRZ信号を一定振幅に増幅し、該増幅された前記NRZ信号を少なくとも2つに分岐し、該分岐された前記NRZ信号を各分岐ごとに異なる閾値で判定し、得られた該各判定結果を個々に積分し、得られた各々の積分値を前記閾値の高い順又は低い順から列挙して結線したときに形成される線全体の傾きの大きさを検出し、得られた前記傾きの大きさに基づき前記光ファイバの波長分散による信号劣化量を検出することを特徴とするアイモニタ方法。
  2. 請求項1に記載のアイモニタ方法において、
    前記線全体の傾きの大きさの検出は、前記列挙した各積分値を最小自乗法により直線近似して行うことを特徴とするアイモニタ方法。
  3. 光ファイバから到来した光信号を光電変換し一定振幅に増幅したNRZ信号の波長分散による信号劣化を、請求項1又は2に記載のアイモニタ方法によって得られた前記信号劣化量に応じて補償することを特徴とする光受信方法。
  4. 請求項3に記載の光受信方法において、
    前記補償は、前記アイモニタ方法によって得られた前記信号劣化量が少なくなるように適応的に行うことを特徴とする光受信方法。
  5. 一定振幅のNRZ信号を少なくとも2つに分岐した信号を異なる閾値で個々に判定する少なくとも2個の判定回路と、該各判定回路の出力信号を取り込みその積分値を出力する少なくとも2個の積分器と、該各積分器の出力積分値を前記判定回路の前記閾値の高い順又は低い順から列挙して結線したときに形成される線全体の傾きの大きさに基づき前記NRZ信号を伝送する光ファイバの波長分散による信号劣化を補償する補償量を得る補償量判定器とを備えることを特徴とするアイモニタ回路。
  6. 請求項5に記載のアイモニタ回路において、
    前記補償量判定器における前記線全体の傾きの大きさの検出は、前記列挙した各積分値を最小自乗法により直線近似して行うことを特徴とするアイモニタ回路。
  7. 光ファイバから入力するNRZの光信号を電気信号に変換する受光手段と、該受光手段から出力するNRZ信号を一定振幅に増幅する増幅器と、該増幅器の出力信号を入力し前記光ファイバの波長分散による信号劣化を補償する電気分散補償回路と、該電気分散補償回路における前記補償を制御する電気分散補償回路制御部と、請求項5又は6に記載のアイモニタ回路とを備え、
    前記電気分散補償回路の出力を分岐して前記アイモニタ回路に入力し、前記アイモニタ回路で得られた前記補償量を前記電気分散補償回路制御部に入力し、前記補償量に応じて前記電気分散補償回路制御部により前記電気分散補償回路において前記波長分散による信号劣化を補償することを特徴とする光受信器。
  8. 請求項7に記載の光受信器において、
    前記電気分散補償回路制御部は、前記アイモニタ回路から出力する前記補償量を小さくするように適応的に前記電気分散補償回路を制御することを特徴とする光受信器。
JP2006325481A 2006-12-01 2006-12-01 アイモニタ方法およびアイモニタ回路並びに光受信方法および光受信器 Expired - Fee Related JP4671947B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325481A JP4671947B2 (ja) 2006-12-01 2006-12-01 アイモニタ方法およびアイモニタ回路並びに光受信方法および光受信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325481A JP4671947B2 (ja) 2006-12-01 2006-12-01 アイモニタ方法およびアイモニタ回路並びに光受信方法および光受信器

Publications (2)

Publication Number Publication Date
JP2008141467A true JP2008141467A (ja) 2008-06-19
JP4671947B2 JP4671947B2 (ja) 2011-04-20

Family

ID=39602481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325481A Expired - Fee Related JP4671947B2 (ja) 2006-12-01 2006-12-01 アイモニタ方法およびアイモニタ回路並びに光受信方法および光受信器

Country Status (1)

Country Link
JP (1) JP4671947B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512529A (ja) * 2018-01-18 2021-05-13 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated 通信チャネルの信号インテグリティ診断

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173026A (ja) * 2002-11-21 2004-06-17 Fujitsu Ltd 光分散モニタ装置および方法、並びに、それを用いた光伝送システム
JP2005159553A (ja) * 2003-11-21 2005-06-16 Nec Corp 分散補償方法、wdm光伝送システム、光伝送システム及び光伝送装置
JP2009049728A (ja) * 2007-08-21 2009-03-05 Nippon Telegr & Teleph Corp <Ntt> 分散量判定方法、分散量判定プログラム、光受信方法、および光受信器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173026A (ja) * 2002-11-21 2004-06-17 Fujitsu Ltd 光分散モニタ装置および方法、並びに、それを用いた光伝送システム
JP2005159553A (ja) * 2003-11-21 2005-06-16 Nec Corp 分散補償方法、wdm光伝送システム、光伝送システム及び光伝送装置
JP2009049728A (ja) * 2007-08-21 2009-03-05 Nippon Telegr & Teleph Corp <Ntt> 分散量判定方法、分散量判定プログラム、光受信方法、および光受信器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512529A (ja) * 2018-01-18 2021-05-13 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated 通信チャネルの信号インテグリティ診断
JP7125490B2 (ja) 2018-01-18 2022-08-24 マイクロチップ テクノロジー インコーポレイテッド 通信チャネルの信号インテグリティ診断

Also Published As

Publication number Publication date
JP4671947B2 (ja) 2011-04-20

Similar Documents

Publication Publication Date Title
US7813655B2 (en) Signal waveform deterioration compensator
US7715669B2 (en) Fiber optic link, a transceiver for use in the link, and methods for designing and constructing fiber optic links and transceivers
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
US8855498B2 (en) Skew suppression method and optical transmission system
US8270843B2 (en) Optical transmission system
US8041226B2 (en) Optical transceiver with equalizing function and a method to setup the optical transceiver
US7561797B1 (en) Optical signal transmitter with active optical e-field degradation
US8488961B2 (en) Dispersion determining apparatus and automatic dispersion compensating system using the same
CN101496318B (zh) 用于为光传输系统确定光信噪比的方法与装置
US7324758B2 (en) Optical dispersion monitoring apparatus and optical dispersion monitoring method, and optical transmission system using same
JP6125988B2 (ja) コヒーレントcfp光送信器および損失特性補償方法
JP2008061167A (ja) トランスバーサルフィルタ
JP2008271073A (ja) 分散補償方法、光受信器および分散補償回路
US9020365B2 (en) Method and apparatus for compensating for polarization mode dispersion (PMD)
KR100310834B1 (ko) 고속광전송시스템에서의자동색분산등화장치
CA2394511C (en) System and method for automatic optimization of optical communication systems
JP2005159553A (ja) 分散補償方法、wdm光伝送システム、光伝送システム及び光伝送装置
JP2009253598A (ja) 位相変調信号受信装置
US20080158034A1 (en) Parallel Processed Electronic Dispersion Control
JP5263289B2 (ja) 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
JP4671947B2 (ja) アイモニタ方法およびアイモニタ回路並びに光受信方法および光受信器
KR101086213B1 (ko) 편광 모드 분산 모니터링 및 장해 상관
JP2010141683A (ja) 光伝送装置及び分散補償器
JP2006287695A (ja) 光受信器
JP2006287694A (ja) 光通信システム及び光送信器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees