JP2008124335A - 結晶化装置 - Google Patents

結晶化装置 Download PDF

Info

Publication number
JP2008124335A
JP2008124335A JP2006308226A JP2006308226A JP2008124335A JP 2008124335 A JP2008124335 A JP 2008124335A JP 2006308226 A JP2006308226 A JP 2006308226A JP 2006308226 A JP2006308226 A JP 2006308226A JP 2008124335 A JP2008124335 A JP 2008124335A
Authority
JP
Japan
Prior art keywords
substrate
temperature
optical system
light
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006308226A
Other languages
English (en)
Inventor
Noritaka Akita
典孝 秋田
Yoshio Takami
芳夫 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006308226A priority Critical patent/JP2008124335A/ja
Publication of JP2008124335A publication Critical patent/JP2008124335A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】結晶化装置において、エキシマ・レーザーの高繰り返し連続照射におけるレンズの熱膨張および基板の熱膨張を低減する。
【解決手段】結晶化装置は、レーザー光を照射する照明光学系と、このレーザー光を所定の光強度分布の光線に変調する光変調素子と、この光変調素子の変調光を基板上に結像させる結像光学系と、基板を支持すると共に基板上の二次元位置を定める位置決めステージとを備え、基板に設けられた薄膜を変調光により溶融して結晶化させる結晶化装置において、照明光学系、光変調素子、結像光学系を含む光学系、および位置決めステージを室内に収納し、室内温度を所定の一定温度に制御自在とする恒温室を備える。エキシマ・レーザーの高繰り返し連続照射による熱発生に対して、光学系および基板ステージを恒温室内に設置する構成とすることでレンズおよび基板の温度を一定とする。
【選択図】図2

Description

本発明は、非晶質もしくは多結晶半導体薄膜に光線を用いて溶融し結晶化させる結晶化装置に関し、特に、レーザー照射による熱膨張の抑制に関する。
ガラス基板等の絶縁体上に形成された非結晶半導体層を結晶化させて結晶質半導体層を得、この結晶質半導体層を活性層とした薄膜トランジスタ(TFT:thin film transistor)を形成する技術が知られている。
例えば、アクティブマトリックス型液晶表示装置では、シリコン膜等の半導体膜を設けガラス基板上に薄膜トランジスタを形成し、この薄膜トランジスタを切換え表示を行うためのスイッチング素子として用いている。
薄膜トランジスタの形成は、非晶質又は多結晶などの非単結晶半導体薄膜の結晶化工程を含んでいる。この結晶化技術として、例えば、大エネルギーの短パルス・レーザー光を用いて非単結晶半導体薄膜の照射領域を溶融して、結晶化するレーザー結晶化技術が知られている。
現在、生産に供されているレーザー結晶化装置では、長尺ビーム(例えば、500μm×300mm)形状で均一な強度分布のレーザー光を非晶質シリコンに照射する手法を採用している。しかしながら、この手法では、得られた半導体膜の結晶粒径が0.5μm以下と小さく、そのため、TFTのチャネル領域に結晶粒界が存在することになり、TFTの特性が抑制されるなど性能に限界がある。
このTFTの性能を向上させるために、大きな結晶粒を有する高品質な半導体膜を製造する技術が要求されている。この要求を満足させる結晶化法として、各種のレーザー結晶化技術の中で、特に、位相変調して形成した逆ピークパターン状の光強度分布を有するエキシマ・レーザー光を非単結晶半導体薄膜に照射して結晶化する技術(Phase Modulated Excimer Laser Annealing:PMELA)が注目されている。
PMELA技術は、所定の光強度分布を持つエキシマ・レーザー光を、非単結晶半導体薄膜に照射し、この半導体膜の照射部を溶融して、結晶化する方法である。所定の光強度分布を持つエキシマ・レーザー光は、位相変調素子等の光変調素子、例えば位相シフタ等の位相変調素子により入射レーザー光を位相変調させることにより得られる。非単結晶半導体薄膜は、例えば、ガラス基板上に形成した非晶質シリコン若しくは多結晶シリコンの薄膜である。
現在開発されているPMELA技術では、1回のエキシマ・レーザー光の照射で数mm角程度の大きさの領域を溶融・結晶化させる。この結晶化非単結晶半導体薄膜処理により、数μmから10μm程度の大きさで比較的一様な結晶粒を有する品質の優れた結晶化シリコン薄膜が形成されている(例えば、非特許文献1参照)。この手法で形成した結晶化シリコン薄膜に作成されたTFTは、優れた電気特性を有することが示されている。
井上弘毅、中田充、松村正清;電子情報通信学会論文誌 Vol.J85-C,No.8, pp.624-629, 2002、「シリコン薄膜の振幅・位相制御エキシマ・レーザー溶融再結晶化方法−新しい2−D位置制御大結晶粒形成法−」
このPMELA結晶化技術は、レーザー光の使用効率が高く、大粒径の結晶が得られるという優れた特徴を有する。しかしながら、安定した電気特性を得るためには結晶粒を高い精度で位置決めする必要がある。また、大面積の半導体膜を結晶化させるには、いわゆるステップ・アンド・リピート照射方式と呼ばれる、非単結晶半導体膜にレーザー光を照射後、次の照射位置までガラス基板を移動させ停止させた後再びレーザー光を照射する工程を繰り返す照射方式が用いられている。
結晶粒を高い精度で位置決めするには、光変調素子のパターンを精密に基板上に投影する必要があるが、レーザー光を高い頻度で繰り返して連続照射すると、光学系の雰囲気温度が上昇してレンズ系が熱膨張し、焦点位置の位置ずれを引き起こし、所定の光プロファイルを基板上に形成できなくなる。
また、ガラス基板自体がミリオーダーで熱膨張することにより、基板平面内に形成される数ミクロンの疑似単結晶粒が所定の位置座標に形成されなくなり、後工程のトランジスタ形成が結晶粒界をまたがり、スイッチング特性等の低下を引き起こす要因となる。
従来知られている一般的な結晶化技術においても、繰り返し連続照射を高い頻度で行う必要があるが、その光学系の性質上、焦点深度(D.O.F)は数十ミクロンあり、かつ形成される結晶粒がトランジスタよりも十分に小さいため、レンズの熱膨張、あるいは基板の熱膨張による顕著な性能低下は発生しない。
これに対して、本発明によるPMELA結晶化の技術は数ミクロンの疑似単結晶粒を形成することが求められる。従来の一般的な結晶化技術では数ミクロンの疑似単結晶粒を形成することは困難であり、従来の一般的な結晶化技術では影響が無かったレンズの熱膨張や基板の熱膨張が大きく影響する。
したがって、PMELA結晶化技術では、エキシマ・レーザーの高繰り返し連続照射におけるレンズの熱膨張および基板の熱膨張を低減することが求められている。
そこで、本発明は前記した従来の問題点を解決し、結晶化装置において、エキシマ・レーザーの高繰り返し連続照射におけるレンズの熱膨張および基板の熱膨張を低減することを目的とする。
本発明は、結晶化装置において、エキシマ・レーザーの高繰り返し連続照射による熱発生に対して、少なくともレンズおよび基板の温度を一定とすることによって、レンズおよび基板の熱膨張を抑制する。本発明は、このレンズおよび基板の温度を一定とするために、光学系および基板ステージを恒温室内に設置する構成とする。
本発明の結晶化装置は、レーザー光を照射する照明光学系と、このレーザー光を所定の光強度分布の光線に変調する光変調素子と、この光変調素子の変調光を基板上に結像させる結像光学系と、基板を支持すると共に基板上の二次元位置を定める位置決めステージとを備え、基板に設けられた薄膜を変調光により溶融して結晶化させる結晶化装置において、照明光学系、光変調素子、結像光学系を含む光学系、および位置決めステージを室内に収納し、室内温度を所定の一定温度に制御自在とする恒温室を備える。恒温室は、例えば、23±0.1℃に制御することができる。
恒温室は、室内のエアーを循環させる第1のエアー経路と、室外のエアーを室内に取り込む第2のエアー経路と備え、第1のエアー経路および第2のエアー経路は、経路上に温度調整手段および送気手段を有し、温度調整したエアーを室内に送気する。
第1のエアー経路および第2のエアー経路は、吸気口および排気口の少なくとも一方にフィルタを備える。このフィルタはHEPAフィルタを用いることができる。
また、温度調整手段および送気手段は、エアー経路上に設置したブロワにより構成することができる。ブロワによる温度制御では、インバータの周波数制御によって風速あるいは風量を調整し、これによって恒温室内で発生した発熱の排熱効率を向上させる。
また、本発明の結晶化装置は、室外のエアーを室内に取り込む第2のエアー経路を備えることで、結晶化装置内において作業者が作業する場合であっても、酸素濃度の低下による危険を低減して、作業の安全性を高めることができる。
本発明によれば、結晶化装置において、エキシマ・レーザーの高繰り返し連続照射におけるレンズの熱膨張および基板の熱膨張を低減することができる。
以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
図1は本発明の結晶化装置1の装置構成を説明するための概略図である。図1において、本発明の結晶化装置1は、エキシマ・レーザー光を出射するレーザー光源14と、レーザー光を照射する照明光学系10と、照明光学系10で照射されたレーザー光を所定の光強度分布の光線に変調する光変調素子11と、光変調素子11の変調光を基板20(被処理基板)上に結像させる結像光学系12と、基板20を支持すると共に基板上の二次元位置を定める位置決めステージ13を備える。結像光学系12を介して基板20に照射された変調光は、基板に設けられた薄膜を溶融して結晶化させる。
照明光学系10、光変調素子11、及び結像光学系12は結晶化光学系を構成する。照明光学系10はエキシマ照明光学系を構成し、レーザー光源14から射出されたエキシマ・レーザー光のビームを拡大するビーム・エキスパンダや、面内の光強度を均一化するホモジナイザを備え、光変調素子11を照明する結晶化用レーザー光を射出、調整する。なお、図では、ビーム・エキスパンダ及びホモジナイザは示していない。
光変調素子11は位相シフタを用いることができ、結晶化用レーザー光を位相変調して所望の光強度分布、例えば、逆ピーク・パターンの光強度分布を有する光に変調する。
結像光学系12は、光変調素子11により位相変調された結晶化用レーザー光を結晶化させる非単結晶半導体薄膜に縮小照射する。図1では、光変調素子11を照明光学系10と結像光学系12との間に設置したプロジェクション方式を示している。
レーザー光源14は、基板20に設けられた非単結晶半導体膜、例えば、非晶質若しくは多結晶半導体膜を溶融するために充分なエネルギー、例えば、非単結晶半導体膜上で1J/cm2を有する光を出力する。レーザー光源14は、例えば、エキシマ・レーザー光源であり、短パルス、例えば、半値幅が約25から30nsecのパルス・レーザー光を出力する。レーザー光は、例えば、波長248nmのKrFエキシマ・レーザー光、波長308nmのXeClエキシマ・レーザー光が好ましい。
エキシマ・レーザー光源は、例えば、発振周波数が100Hzから300Hzのパルス発振型である。
ビーム・エキスパンダは、入射されたレーザー光を拡大するもので、例えば、拡大する凹レンズと平行光にする凸レンズとにより構成することができる。また、ホモジナイザは、入射したレーザー光のXY断面方向の寸法を決定し、かつ決定した形状内の光強度分布を均一にする機能を有する。例えば、X方向シリンドリカル・レンズをY方向に複数個並べ、Y方向に並んだ複数の光束を形成し、X方向コンデンサ・レンズで各光束をY方向に重ね合わせて再分布させる。同様に、Y方向シリンドリカル・レンズをX方向に複数並べ、X方向に並んだ複数の光束を形成し、Y方向コンデンサ・レンズで各光束をX方向に重ね合わせて再分布させる。ホモジナイザによりエキシマ・レーザー光は、所定の角度広がりをもち断面内の光強度が均一化された照明光に調光される。
位相シフタは、位相変調素子11の一例であり、例えば、石英ガラス基板に段差をつけたものである。この段差の境界でレーザー光の回折と干渉をおこさせ、レーザー光強度に周期的な空間分布を付与し、例えば、左右で180°の位相差を付ける。左右で180°の位相差を付けた位相シフタは、入射光を左右対称な逆ピーク状光強度分布に位相変調する。
位相シフタは、例えば、入射光を位相変調して逆ピーク状光強度分布を形成するように段差が形成されており、エキシマ・レーザー光の位相を変調する。この結果、半導体膜を照射するレーザー光は、位相のシフト部(段差)に対応した箇所が強度変調された逆ピーク・パターンの光強度分布となる。
光変調素子11の位相シフタを透過したレーザー光は、収差補正されたエキシマ結像光学系12により位相シフタ(光変調素子11)と共役な位置に設置された基板20上に、所定の光強度分布で結像する。エキシマ結像光学系12は、例えば、複数枚のフッ化カルシウム(CaF2)レンズ及ぴ合成石英レンズからなるレンズ群により構成される。エキシマ結像光学系12は、例えば、縮小率:1/5、N.A.:0.13、解像力:2μm、焦点深度:±10μm、焦点距離:30mmから70mmの作動距離を有する片側テレセントリックレンズである。
また、結晶化の処理を受ける基板20は、一般に、例えば、ガラス基板、プラスチック基板等の絶縁基板、シリコン等の半導体基板(ウェーハ)等の保持基板に絶縁膜を介して非単結晶半導体膜(例えば、非晶質シリコン膜、多結晶シリコン膜、スパッタされたシリコン膜、シリコン・ゲルマニウム膜、若しくは脱水素処理をした非晶質シリコン膜)を形成し、この非単結晶半導体膜上にキャップ膜として絶縁膜を設けたものである。
非単結晶半導体膜の膜厚は、例えば脱水素処理をした非晶質シリコン膜の場合には30nmから300nmであり、例えば、50nmである。絶縁膜は、非単結晶半導体膜を結晶化する際に、保持基板から好ましくない不純物が非単結晶半導体膜に拡散することを防止するために、あるいは、レーザー照射によって生じるジュール熱を蓄積させる目的で設けられた膜である。
キャップ絶縁膜は、レーザー光に対するキャップ絶縁膜の透過特性及び光吸収特性を利用して、結晶化のために非単結晶半導体膜が受光して溶融したときの熱を蓄える機能を有する。キャップ絶縁膜の蓄熱効果は、非単結晶半導体膜の溶融領域に大粒径(5μm以上)の結晶化を可能にする。キャップ絶縁膜は、結晶化の効率を高めるためのものであるが、省賂することができる。
本発明の結晶化装置1は位置決めステージ13を備える。位置決めステージ13は、基板20を載置してXY方向の2次元で移動自在とするXYステージ(13a,13b)の他、XYステージ上の二次元位置を測定する位置測定部(図示していない)を備える。XYステージは、X軸方向に移動するX軸ステージ13aと、Y軸方向に移動するY軸ステージ13bと、このX軸ステージ13a及びY軸ステージ13bを支持する定盤(図2中の15)を備える。XYステージ(13a,13b)上には基板20が載置され、XYステージ(13a,13b)を二次元で移動させることによって、基板20の位置決めを行う。なお、図1では、X軸ステージ13a上に基板20を載置する構成を示しているが、Y軸ステージ13b上に基板を載置する構成としてもよい。
本発明の結晶化装置1によって基板20を結晶化する場合には、図示しないステージ駆動制御装置によって記憶部(図示していない)に記憶しておいた位置校正データを読み出し、この位置校正データに基づいてXYステージ13の位置ずれを補正しながら駆動し、レーザー光を基板20上で走査して結晶化を施す。
図2は、本発明の結晶化装置1が備える恒温室3の構成を説明するための図である。
図2において、恒温室3は、前記した結晶化装置1の少なくとも、照明光学系10,光変調素子11,結像光学系12を含む光学系と、位置決めステージ13とを室内部に設置する。光学系は、恒温室3の外部に設置したエキシマ・レーザー光源14からレーザー光の恒温室内に導入し、位置決めステージ13上に載置した基板20を照射する。光学系はレーザー光が通ることによって発熱する。また、位置決めステージ13は、レーザー光照射によって基板20から発せたられた熱を受ける。したがって、光学系および位置決めステージ13は発熱部となる。恒温室3は、少なくともこの発熱部となる光学系および位置決めステージ13を室内部に収納することで、発熱部の温度を一定に維持する。
恒温室3は、室内部のエアーを取り込み、取り込んだエアーの温度を所定温度に調整した後、再び室内部に送り込む第1のエアー経路と、室外のエアーを取り込み、取り込んだエアーの温度を所定温度に調整した後、室内部に送り込む第2のエアー経路の2系統のエアー経路を備える。
第1のエアー経路は、恒温室3の内壁部に設けて室内のエアーを取り込むフィルタ5と、取り込んだエアーの温度を設定温度となるように温度を調整するとともにエアーを送気するブロア4と、ブロア4からのエアーを室内に送気するフィルタ6とによって形成される。この第1のエアー経路は、恒温室3の室内部のエアーを循環させる循環経路を形成する。
第2のエアー経路は、恒温室3の外壁部に設けて室外のエアー32を取り込むフィルタ7と、取り込んだエアーの温度を設定温度となるように温度を調整するとともにエアーを送気するブロア4と、ブロア4からのエアーを室内に送気するフィルタ6とによって形成される。この第2のエアー経路は、恒温室3の室外から室内部に外部エアー32を導入する導入経路を形成する。
上記したフィルタ5,6,7はHEPAフィルタを用いることで、恒温室3内に浮遊する微粒子を低減することができる。
ブロア4により温度調整は、制御装置2によって行う。制御装置2は、インバータ制御を行うことでブロア4の駆動モータの回転を制御し、これによって恒温室内に噴き出す風量および風速を制御する。図3は、インバータの周波数と、風量および風速との一関係例を説明するための図である。なお、風量は、風速とエアー経路の断面積との積で定まる関係にある。なお、恒温室による設定温度は、例えば、23±0.1℃とすることができるが、この設定温度はこの温度に限られるものではない。
フィルタ6から恒温室2内に噴出されたエアーは、光学系および基板や位置決めステージに当たる。
恒温室内に導入されたエキシマ・レーザーの光エネルギーの一部は、光学系のレンズの温度を上昇させる。また、基板に照射されたエキシマ・レーザーの光エネルギーは、ジュール熱に変換され、一部は基板の結晶化に寄与されるが、一部は基板の温度を上昇させる。
このとき、光学系および基板や位置決めステージにエアーを当てることで、光学系や基板で発生した発熱をエアーとの間で熱交換させる。熱交換によって温度が上昇したエアーはフィルタ5を通してブロア4に戻され、ブロア4において熱媒体(図示していない)との間で熱交換されて設定温度に温度調整される。ブロア4で熱交換された熱は、熱媒体によって恒温室3の外部に排出される。
また、本発明が備える第2のエアー経路は、フィルタ7を通して恒温室3の室外のエアーを取り込み、取り込んだエアーの温度を所定温度に調整した後、室内部に導入する。この第2のエアー経路を備えることによって、恒温室3の室内で作業員が作業した場合であっても、酸素欠乏といった危険を避けることができる。
本発明の態様によれば、PMELA結晶化装置の温度を±0.1℃以内に制御し、位相シフタの結像位置ずれを焦点深度内に抑え、確実に位相シフタのパターンをa−Si膜基板上に転写して1μm以上の結晶粒群を形成することができる。
また、結像レンズの熱膨張を低減することで、位相シフタを1/5縮小して基板上に形成する光プロファイルの歪みを低減し、結晶粒の形成位置と結晶粒形状を制御することができる。
また、循環エアーと恒温室外からの導入エアーを混入することにより、恒温室内での作業者の酸欠の危険性を回避することができる。
また、PMELA結晶技術により形成される数μmサイズの疑似結晶粒の位置をショット領域内全域、あるいは基板全領域に対し、後工程でアライメントすることが可能となり、結晶粒の上にトランジスタを形成することができる。したがって、ばらつきの少ない高性能な回路あるいは液晶表示デバイスを期待することができる。
本発明の結晶化装置の装置構成を説明するための概略図である。 本発明の結晶化装置が備える恒温室の構成を説明するための図である。 インバータの周波数と、風量および風速との一関係例を説明するための図である。
符号の説明
1…結晶化装置、2…制御装置、3…恒温室、4…ブロア、5,6,7…フィルタ、10…照明光学系、11…光変調素子、12…結像光学系、13…位置決めステージ、13a…X軸ステージ、13b…Y軸ステージ、14…エキシマ・レーザー光源、15…定盤、20…基板、31…循環エアー、32…外部エアー。

Claims (4)

  1. レーザー光を照射する照明光学系と、
    前記レーザー光を所定の光強度分布の光線に変調する光変調素子と、
    前記光変調素子の変調光を基板上に結像させる結像光学系と、
    基板を支持すると共に基板上の二次元位置を定める位置決めステージとを備え、
    基板に設けられた薄膜を変調光により溶融して結晶化させる結晶化装置において、
    前記照明光学系、光変調素子、結像光学系を含む光学系、および前記位置決めステージを室内に収納し、室内温度を所定の一定温度に制御自在とする恒温室を備えることを特徴とする、結晶化装置。
  2. 前記恒温室は、室内のエアーを循環させる第1のエアー経路と、室外のエアーを室内に取り込む第2のエアー経路と備え、
    前記第1のエアー経路および前記第2のエアー経路は、経路上に温度調整手段および送気手段を有し、温度調整したエアーを室内に送気することを特徴とする、請求項1に記載の結晶化装置。
  3. 前記第1のエアー経路および前記第2のエアー経路は、吸気口および排気口の少なくとも一方にフィルタを備えることを特徴とする、請求項2に記載の結晶化装置。
  4. 前記温度調整手段および送気手段は、エアー経路上に設置したブロワにより構成することを特徴とする、請求項2又は3に記載の結晶化装置。
JP2006308226A 2006-11-14 2006-11-14 結晶化装置 Pending JP2008124335A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308226A JP2008124335A (ja) 2006-11-14 2006-11-14 結晶化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308226A JP2008124335A (ja) 2006-11-14 2006-11-14 結晶化装置

Publications (1)

Publication Number Publication Date
JP2008124335A true JP2008124335A (ja) 2008-05-29

Family

ID=39508748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308226A Pending JP2008124335A (ja) 2006-11-14 2006-11-14 結晶化装置

Country Status (1)

Country Link
JP (1) JP2008124335A (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144886A (ja) * 1986-12-05 1988-06-17 Nikon Corp レ−ザ加工装置
JPH10106939A (ja) * 1996-10-01 1998-04-24 Canon Inc 露光システムおよび基板搬送方法
JPH10172911A (ja) * 1996-12-12 1998-06-26 Semiconductor Energy Lab Co Ltd レーザーアニール方法およびレーザーアニール装置
JPH10284405A (ja) * 1997-04-07 1998-10-23 Nikon Corp リソク゛ラフィシステム
JP2003007580A (ja) * 2001-06-19 2003-01-10 Canon Inc 温調エア供給装置及び半導体製造装置
JP2003234306A (ja) * 2002-02-08 2003-08-22 Toshiba Corp レーザ加工方法及びその装置
JP2005005323A (ja) * 2003-06-09 2005-01-06 Hitachi Cable Ltd 半導体加工方法および半導体加工装置
JP2006040949A (ja) * 2004-07-22 2006-02-09 Advanced Lcd Technologies Development Center Co Ltd レーザー結晶化装置及びレーザー結晶化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144886A (ja) * 1986-12-05 1988-06-17 Nikon Corp レ−ザ加工装置
JPH10106939A (ja) * 1996-10-01 1998-04-24 Canon Inc 露光システムおよび基板搬送方法
JPH10172911A (ja) * 1996-12-12 1998-06-26 Semiconductor Energy Lab Co Ltd レーザーアニール方法およびレーザーアニール装置
JPH10284405A (ja) * 1997-04-07 1998-10-23 Nikon Corp リソク゛ラフィシステム
JP2003007580A (ja) * 2001-06-19 2003-01-10 Canon Inc 温調エア供給装置及び半導体製造装置
JP2003234306A (ja) * 2002-02-08 2003-08-22 Toshiba Corp レーザ加工方法及びその装置
JP2005005323A (ja) * 2003-06-09 2005-01-06 Hitachi Cable Ltd 半導体加工方法および半導体加工装置
JP2006040949A (ja) * 2004-07-22 2006-02-09 Advanced Lcd Technologies Development Center Co Ltd レーザー結晶化装置及びレーザー結晶化方法

Similar Documents

Publication Publication Date Title
JP5231234B2 (ja) ラインビームとして整形されたレーザー光を生成するためのシステム
US7964035B2 (en) Crystallization apparatus and crystallization method
US7847214B2 (en) Laser crystallization apparatus and crystallization method
US7317179B2 (en) Systems and methods to shape laser light as a homogeneous line beam for interaction with a film deposited on a substrate
JP4956987B2 (ja) レーザー結晶化装置及び結晶化方法
JP2009505431A (ja) 高周波レーザを用いた薄膜の均一な逐次的横方向結晶化のためのシステム及び方法
KR20060047591A (ko) 레이저 결정화장치 및 레이저 결정화방법
JP2004311906A (ja) レーザ処理装置及びレーザ処理方法
KR100913618B1 (ko) 결정화 장치 및 결정화 방법
JP4279498B2 (ja) 半導体薄膜の形成方法、半導体薄膜の形成装置および結晶化方法
JP2004153150A (ja) 表示装置の基板の製造方法及び結晶化装置
JP2008124335A (ja) 結晶化装置
JP5030130B2 (ja) 薄膜材料の結晶化装置
JP2003282442A (ja) 半導体層の製造方法および半導体層製造システム
US7679029B2 (en) Systems and methods to shape laser light as a line beam for interaction with a substrate having surface variations
JP4607669B2 (ja) レーザアニール用位相シフタ及びレーザアニール装置
JP2008098272A (ja) 結晶化装置
JP4377442B2 (ja) 半導体薄膜の形成方法、半導体薄膜の形成装置、結晶化方法および結晶化装置
JP2008135456A (ja) 結晶化装置
JP2010027933A (ja) 結像レンズ熱膨張補正方法、結像レンズ熱膨張補正装置、および結晶化装置
JP2007208015A (ja) 結晶化装置
JP2008130691A (ja) 結晶化装置及び結晶化方法
JP2003289052A (ja) 半導体の結晶化方法及びそれに用いるレーザ照射装置
CN114101902A (zh) 光学系统以及包括其的激光照射装置
JP2007067020A (ja) 投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090205

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A02 Decision of refusal

Effective date: 20120518

Free format text: JAPANESE INTERMEDIATE CODE: A02