JP2008121574A - Runner for hydraulic machine and method for manufacturing runner for hydraulic machine - Google Patents

Runner for hydraulic machine and method for manufacturing runner for hydraulic machine Download PDF

Info

Publication number
JP2008121574A
JP2008121574A JP2006306759A JP2006306759A JP2008121574A JP 2008121574 A JP2008121574 A JP 2008121574A JP 2006306759 A JP2006306759 A JP 2006306759A JP 2006306759 A JP2006306759 A JP 2006306759A JP 2008121574 A JP2008121574 A JP 2008121574A
Authority
JP
Japan
Prior art keywords
blade
runner
inlet
short
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006306759A
Other languages
Japanese (ja)
Other versions
JP4861132B2 (en
Inventor
Kiyoshi Matsumoto
貴與志 松本
Kotaro Tezuka
光太郎 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006306759A priority Critical patent/JP4861132B2/en
Publication of JP2008121574A publication Critical patent/JP2008121574A/en
Application granted granted Critical
Publication of JP4861132B2 publication Critical patent/JP4861132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a runner useful in application to a Francis turbine runner which has a relatively large number of blades and capable of improving manufacturing performance and hydraulic power performance. <P>SOLUTION: This runner 3 provided in a hydraulic machine comprises an outlet side blade part 7b composing a blade part at an runner outlet side and an inlet side blade part 7a having a length of 60%-80% of the whole blade length and composing the blade part at the runner inlet side, and is provided with a plurality of long blades 7 arranged at predetermined intervals along a runner rotation direction (m), and a plurality of short blades 8 arranged alternately with the long blades along a runner rotation direction (m), and formed in the same blade length as the inlet side blade part 7b of the long blade 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水車などの構成部品として用いられる水力機械のランナ及び水力機械用ランナの製造方法に関する。   The present invention relates to a runner for a hydraulic machine used as a component such as a water turbine and a method for producing a runner for a hydraulic machine.

一般に、水力発電設備に用いられる水力機械1としては、図9に示すような、いわゆるフランシス型の水車が比較的多く用いられている。そして、このフランシス型の水車は主に、渦巻きケーシング2、スピードリング10、ステーベーン12、ガイドベーン9、ランナ3、主軸16、吸出し管(ドラフトチューブ)14から構成されている。そして、水力機械1のランナ3は、主軸16を介して図示しない発電機に連結される一方、上池(図示せず)からの水が、渦巻きケーシング2に導かれ、さらにこの渦巻きケーシング2の内周側の環状のスピードリング10、ステーベーン12及びガイドベーン9を通過する過程で増速しつつ角運動が付与されてランナ3内に流入し、ランナ3を回転させる。ランナ3の回転運動は主軸を介して発電機を回転させて電気を発生させる。一方、ランナ3を回転させた水は出口側(内周側)から流出し、吸出し管14を経て下流の下池(図示せず)へと流れる。   In general, a so-called Francis type turbine as shown in FIG. 9 is used as the hydraulic machine 1 used in the hydroelectric power generation facility. The Francis type turbine is mainly composed of a spiral casing 2, a speed ring 10, a stay vane 12, a guide vane 9, a runner 3, a main shaft 16, and a suction pipe (draft tube) 14. The runner 3 of the hydraulic machine 1 is connected to a generator (not shown) via the main shaft 16, while water from the upper pond (not shown) is guided to the spiral casing 2, and the spiral casing 2 Angular motion is imparted while increasing the speed in the process of passing through the inner peripheral speed ring 10, stay vane 12 and guide vane 9, and the runner 3 is rotated. The rotational motion of the runner 3 rotates the generator via the main shaft to generate electricity. On the other hand, the water that has rotated the runner 3 flows out from the outlet side (inner peripheral side) and flows to the downstream lower pond (not shown) through the suction pipe 14.

ここで、水力機械に用いられるランナは、上記のように流体と水力機械との間でのエネルギ授受を行う最も重要な構成要素であり、その性能が水力機械全体の性能を大きく左右する。したがって、高性能なランナを開発することは、水力機械の設計における重要な項目となり、ランナについては以前より様々な性能向上施策が提案されている。   Here, the runner used in the hydraulic machine is the most important component for transferring energy between the fluid and the hydraulic machine as described above, and its performance greatly affects the performance of the entire hydraulic machine. Therefore, developing a high-performance runner is an important item in the design of hydraulic machines, and various performance improvement measures have been proposed for the runner.

近年では、上記の性能向上施策の一つとして、互いに翼長の異なる短翼と長翼とをランナ回転方向に沿って交互に配置した、いわゆるスプリッタランナが実用化されている。ここで、翼長の均一な通常のランナとスプリッタランナとの特性の相違について図10〜図12に基づき説明を行う。なお、図10は、通常のランナ51及びスプリッタランナ52を重ね合わせて各翼の子午面に沿った断面でみた図である。また、図11は、通常のランナ51の翼54の配置を翼の子午面における1つの流線を主軸回りに回転させた曲面でみた断面図であり、図12は、スプリッタランナ52の長翼61及び短翼62の配置を翼の子午面における1つの流線を主軸回りに回転させた曲面でみた断面図である。   In recent years, as one of the performance improvement measures, a so-called splitter runner in which short blades and long blades having different blade lengths are alternately arranged along the runner rotation direction has been put into practical use. Here, a difference in characteristics between a normal runner having a uniform blade length and a splitter runner will be described with reference to FIGS. FIG. 10 is a cross-sectional view taken along the meridian plane of each wing with the normal runner 51 and the splitter runner 52 overlapped. 11 is a cross-sectional view of the arrangement of the blades 54 of the ordinary runner 51 as a curved surface obtained by rotating one streamline on the meridian surface of the blades around the main axis. FIG. 12 shows the long blades of the splitter runner 52. 6 is a cross-sectional view of the arrangement of 61 and short blades 62 as viewed from a curved surface obtained by rotating one streamline on the meridian surface of the blades around the main axis. FIG.

図10〜図12に示すように、スプリッタランナ52は、羽根の総数が通常のランナ51に比べて多くなる一方で、ランナ出口側が長翼61のみで構成されることから、ランナ出口側の羽根間の間隙hが過度に小さくならず、多翼ランナとしての利点を最大限に活かすことが可能であり、優れた水力性能を発揮することが確認されている。   As shown in FIGS. 10 to 12, the splitter runner 52 has a larger number of blades than the ordinary runner 51, while the runner outlet side is composed of only the long blades 61. It has been confirmed that the gap h is not excessively small, the advantages of the multi-blade runner can be maximized, and excellent hydraulic performance is exhibited.

すなわち、スプリッタランナ52は、多翼ランナであるにもかかわらず、ランナ出口側の羽根枚数を実質的に少なくできるので、羽根(長翼61)をランナ出口側に向けて長く延ばすことができる。したがって、スプリッタランナ52では、ランナ出口側で生じ得る旋回流を小さくできるとともに、短翼による長翼流路間の整流効果が得られ、水流k2の流量変化などを小さく抑えることができる。これにより、図10に示すように、ランナ出口側において、通常のランナ51では、遠心力の影響を直接的に受けて、ランナバンド56側への水流k1の偏りが生じるのに対し、上記の長翼及び短翼を有するスプリッタランナ52では、ランナバンド56側への水流k2の偏りが解消され水車効率が改善される。   That is, although the splitter runner 52 is a multi-blade runner, the number of blades on the runner outlet side can be substantially reduced, so that the blades (long blades 61) can be extended toward the runner outlet side. Therefore, the splitter runner 52 can reduce the swirling flow that can occur on the runner outlet side, and can also provide a rectifying effect between the long blade flow paths by the short blades, and can suppress a change in the flow rate of the water flow k2. As a result, as shown in FIG. 10, on the runner outlet side, the normal runner 51 is directly affected by the centrifugal force, and the deviation of the water flow k1 toward the runner band 56 occurs. In the splitter runner 52 having long blades and short blades, the deviation of the water flow k2 toward the runner band 56 is eliminated, and the turbine efficiency is improved.

さらに、図11及び図12に示すように、スプリッタランナ52は、ランナ入口側での羽根枚数が多く、ランナ入口側での羽根一枚あたりの翼負荷を小さくできるので、通常のランナ51の翼54のランナ入口側の端部における翼回りの循環(翼負荷)γ1に対し、長翼61及び短翼62のランナ入口側の端部における翼回りの循環(翼負荷)γ2を低減させることができる。したがって、スプリッタランナ52では、翼回りの循環γ2が小さくなることで、それに基づく流体に対する偏向力を小さくすることができる。すなわち、流体の絶対流入速度ベクトルvと、m方向に回転する長翼61及び短翼62の周速度ベクトルuと、から求められる流体流入速度ベクトルwの角度成分(流入角度)δ2を大きくすることができる。これにより、流入角度δ2と羽根入口角度β2との角度差α2を、通常のランナ51の流入角度δ1と羽根入口角度β1との角度差α1よりも、実質的に小さく抑えることができる。これにより、スプリッタランナ52では、長翼61及び短翼62のランナ入口側の端部で流れの剥離を防止でき、ランナ入口側のキャビテーション(運転中の水力機械内のある点の圧力が、飽和蒸気圧以下になった場合に気泡が生じる沸騰現象)の発生を抑制することができる。   Furthermore, as shown in FIGS. 11 and 12, the splitter runner 52 has a large number of blades on the runner inlet side and can reduce the blade load per blade on the runner inlet side. It is possible to reduce the circulation (blade load) γ2 around the blades at the end portions on the runner inlet side of the long blades 61 and 62 with respect to the circulation (blade load) γ1 around the blades at the end of the 54 runner inlet side. it can. Therefore, in the splitter runner 52, since the circulation γ2 around the blade is reduced, the deflection force with respect to the fluid based thereon can be reduced. That is, the angle component (inflow angle) δ2 of the fluid inflow velocity vector w obtained from the absolute fluid inflow velocity vector v and the peripheral velocity vector u of the long blade 61 and the short blade 62 rotating in the m direction is increased. Can do. As a result, the angle difference α2 between the inflow angle δ2 and the blade inlet angle β2 can be suppressed to be substantially smaller than the angle difference α1 between the inflow angle δ1 of the normal runner 51 and the blade inlet angle β1. Thereby, in the splitter runner 52, the separation of the flow can be prevented at the end of the long blade 61 and the short blade 62 on the runner inlet side, and the cavitation on the runner inlet side (pressure at a certain point in the hydraulic machine in operation is saturated). It is possible to suppress the occurrence of a boiling phenomenon in which bubbles are generated when the vapor pressure is reduced.

また、このようなスプリッタランナに関連する技術としては、例えば、9枚以下の羽根枚数の主羽根の間に主羽根の長さ以下の中間羽根を配置し、ポンプ水車の効率及びキャビテーション特性の改善を図ったポンプ水車用の羽根車が提案されている(例えば特許文献1参照)。また、長翼間のランナ回転方向に沿った中間位置から、短翼を長翼の負圧面側にシフトして配置しキャビテーションの発生を抑制しつつ低出力運転幅を拡張させたフランシス型のポンプ水車ランナなども知られている(例えば特許文献2参照)。   Further, as a technique related to such a splitter runner, for example, an intermediate blade having a length equal to or less than the length of the main blade is arranged between the main blades having the number of blades of nine or less, thereby improving the efficiency and cavitation characteristics of the pump turbine. There has been proposed an impeller for a pump turbine (see, for example, Patent Document 1). In addition, a Francis-type pump that extends the low-power operation range while suppressing the occurrence of cavitation by shifting the short blade to the suction surface side of the long blade from the intermediate position along the runner rotation direction between the long blades A water turbine runner is also known (see, for example, Patent Document 2).

さらに、長翼及びクラウンを一体鋳造した後、短翼、バンドを順次溶接するといった作製手順を採ることで、スプリッタランナにおけるランナ内流路面の仕上げ精度の向上や組立作業性の向上を図れるランナの製法なども提案されている(例えば、特許文献3参照)。
特開2000−54944 特開2001−329937 特開2001−304088
Furthermore, after the long blade and the crown are integrally cast, the production procedure of welding the short blade and the band in sequence is adopted to improve the finish accuracy of the runner channel surface in the splitter runner and the assembly workability. A manufacturing method has also been proposed (see, for example, Patent Document 3).
JP 2000-54944 A JP 2001-329937 A JP2001-304088

ところで、フランシス型水車に用いられるランナは、一般に主翼(長翼)の羽根枚数が13〜17枚で構成され、その主翼間に短翼を配置する場合、26〜34枚もの多数の羽根で構成されることになる。この場合のスプリッタランナは、上記文献3のように一体鋳造を利用した製法や、また、長翼、短翼、クラウン、バンドをそれぞれ個別に製作しさらに長翼、短翼をクラウン及びバンドに溶接する製法などが採られる。前者の一体鋳造を利用する場合、研削による羽根形状の整形が要求され、一方、後者の溶接組立の場合も、溶接作業及び溶接部の研削整形など、翼間の狭隘部に対する困難な作業が要求される。   By the way, a runner used for a Francis type turbine is generally composed of 13 to 17 blades of main wings (long blades), and is composed of 26 to 34 blades when short blades are arranged between the main wings. Will be. In this case, the splitter runner is manufactured by using integral casting as described in Reference 3 above, and long blades, short blades, crowns and bands are individually manufactured, and the long blades and short blades are welded to the crowns and bands. The manufacturing method to do is taken. When using the former integral casting, shaping of the blade shape by grinding is required. On the other hand, in the case of the latter welding assembly, difficult operations such as welding work and grinding shaping of the welded part are required. Is done.

したがって、このようなスプリッタランナの製作の難易性は、スプリッタランナ自体の適用や、スプリッタランナに対しての最適設計の適用を阻害する要因となっている。ここで、上述した文献1、2の技術は、主に、羽根枚数の少ないポンプ水車用ランナの性能を向上させるためのものであり、羽根枚数の多いフランシス型水車ランナの水力性能や製作性を高めることについてはあまり考慮されていない。   Therefore, the difficulty of manufacturing such a splitter runner is a factor that hinders the application of the splitter runner itself and the application of the optimum design to the splitter runner. Here, the techniques of the above-mentioned documents 1 and 2 are mainly for improving the performance of a pump turbine runner with a small number of blades, and the hydraulic performance and manufacturability of a Francis turbine runner with a large number of blades. There is not much consideration for increasing the value.

そこで本発明は、このような課題を解決するためになされたもので、比較的羽根枚数の多い例えばフランシス型水車ランナなどに適用した場合に有用であり、しかも製作性及び水力性能を向上させることができる水力機械のランナ及び水力機械用ランナの製造方法の提供を目的とする。   Therefore, the present invention has been made to solve such a problem, and is useful when applied to, for example, a Francis type turbine runner having a relatively large number of blades, and also improves manufacturability and hydraulic performance. It is an object of the present invention to provide a hydraulic machine runner capable of producing a hydraulic machine and a method for producing a hydraulic machine runner.

上記目的を達成するために、本発明に係る水力機械のランナは、ランナ出口側の羽根部分を構成する出口側羽根部と全翼長の60%以上、80%以下の長さでランナ入口側の羽根部分を構成する入口側羽根部とからなり、ランナ回転方向に沿って所定の間隔を空けてそれぞれ配置された複数の長翼と、前記ランナ回転方向に沿って前記長翼と交互に配置され、前記長翼の前記入口側羽根部と同じ翼長で形成された複数の短翼と、を具備することを特徴とする。   In order to achieve the above-mentioned object, the runner of the hydraulic machine according to the present invention has an outlet side blade portion constituting a blade portion on the runner outlet side and a length of 60% or more and 80% or less of the entire blade length. And a plurality of long blades arranged at predetermined intervals along the runner rotation direction and alternately arranged with the long blades along the runner rotation direction. And a plurality of short blades formed with the same blade length as the inlet-side blade portion of the long blade.

本発明は、比較的羽根枚数の多い例えばフランシス型水車ランナなどに適用した場合に有用であり、しかも製作性及び水力性能を向上させることが可能な水力機械のランナ及び水力機械用ランナの製造方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention is useful when applied to, for example, a Francis type turbine runner having a relatively large number of blades, and is capable of improving manufacturability and hydraulic performance, and a hydraulic machine runner manufacturing method. Can be provided.

以下、本発明を実施するための最良の形態を図面に基づき説明する。
[第1の実施の形態]
図1は、水力機械が備えるランナ3の長翼7及び短翼8を翼の子午面における1つの流線を主軸回りに回転させた曲面でみた断面図である。なお、図1では、図面の煩雑化を回避するために長翼7及び短翼8を2ピッチ分のみ図示している。
The best mode for carrying out the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a cross-sectional view of a long blade 7 and a short blade 8 of a runner 3 provided in a hydraulic machine as viewed from a curved surface obtained by rotating one streamline on the meridian surface of the blade around a main axis. In FIG. 1, only two pitches of the long blades 7 and the short blades 8 are shown in order to avoid complication of the drawing.

ランナ3は、図1に示すように、翼長(キャンバーラインの長さ)の長い複数の長翼7と、この長翼7よりも翼長の短い複数の短翼(中間翼とも称する)8と、が主軸16の回転方向、つまりランナ回転方向mに沿って交互に配置されたスプリッタランナである。また、ランナ3は、長翼7及び短翼8がそのランナ本体内に例えば13枚〜17枚ずつそれぞれ配置されており、合計羽根枚数が26枚〜34枚となる。すなわち、ランナ3は、フランシス型水車ランナとして好適な多翼ランナとして構成されている。   As shown in FIG. 1, the runner 3 includes a plurality of long blades 7 having a long blade length (camber line length) and a plurality of short blades (also referred to as intermediate blades) 8 having a blade length shorter than the long blade 7. Are splitter runners arranged alternately along the rotation direction of the main shaft 16, that is, along the runner rotation direction m. In the runner 3, the long blades 7 and the short blades 8 are disposed in the runner main body, for example, 13 to 17, respectively, and the total number of blades is 26 to 34. That is, the runner 3 is configured as a multi-blade runner suitable as a Francis type turbine runner.

次に、ランナベーンとして上記長翼7及び短翼8を有するランナ3の特徴的な構造について、図1に加え、図2A〜図2Cに基づき説明を行う。ここで、図2A〜図2Cは、ランナ3の構造及びその製造方法を説明するための図であって、図2Aは、ランナクラウン5及びランナバンド6に対し長翼7の入口側羽根部7a及び短翼8が接合される直前の状態を示す図である。また、図2Bは、図2Aのランナクラウン5及びランナバンド6に対し入口側羽根部7aと短翼8とが接合された後、さらに長翼7の出口側羽根部7bが接合される直前の状態を示す図である。さらに、図2Cは、図2Bの入口側羽根部7bと短翼8とが接合されたランナクラウン5及びランナバンド6に対し、長翼7の出口側羽根部7bが接合されてランナ3が形成された状態を示す図である。   Next, the characteristic structure of the runner 3 having the long blades 7 and the short blades 8 as runner vanes will be described based on FIGS. 2A to 2C in addition to FIG. Here, FIGS. 2A to 2C are views for explaining the structure of the runner 3 and the manufacturing method thereof, and FIG. 2A is the inlet side blade portion 7a of the long blade 7 with respect to the runner crown 5 and the runner band 6. And it is a figure which shows the state just before the short blade 8 is joined. 2B shows a state immediately after the inlet blade portion 7a and the short blade 8 are joined to the runner crown 5 and the runner band 6 of FIG. 2A and immediately before the outlet blade portion 7b of the long blade 7 is joined. It is a figure which shows a state. Further, FIG. 2C shows that the runner 3 is formed by joining the outlet side blade portion 7b of the long blade 7 to the runner crown 5 and the runner band 6 in which the inlet blade portion 7b and the short blade 8 of FIG. 2B are joined. It is a figure which shows the state made.

すなわち、図1及び図2A〜図2Cに示すように、ランナ3の各長翼7は、ランナ入口側の羽根部分を構成する入口側羽根部7aとランナ出口側の羽根部分を構成する出口側羽根部7bとからなる2ピース構造で形成されている。ここで、ランナ入口側とは、水車運転時(発電運転時)に上池から下池へ向かう水が、ランナ3内に導入される側、つまり渦巻きケーシング側(ガイドベーン側)である。一方、ランナ出口側とは、水車運転時に上池から下池へ向かう水が、ランナ3内から外部に流れ出す側、すなわち、吸出し管側である。   That is, as shown in FIG. 1 and FIGS. 2A to 2C, each long blade 7 of the runner 3 has an inlet side blade portion 7 a constituting a blade portion on the runner inlet side and an outlet side constituting a blade portion on the runner outlet side. It is formed with a two-piece structure including the blade portion 7b. Here, the runner inlet side is the side where water from the upper pond to the lower pond is introduced into the runner 3 during water turbine operation (power generation operation), that is, the spiral casing side (guide vane side). On the other hand, the runner outlet side is the side from which water flowing from the upper pond to the lower pond flows out of the runner 3 during the water turbine operation, that is, the suction pipe side.

入口側羽根部7aは、長翼7のランナ入口側の端部23と長翼7のランナ出口側の端部26とを当該長翼7が延びている方向に沿って結んだキャンバーライン7dの長さLn(長翼7の全翼長)の60%〜80%(60%以上、80%以下)の長さで構成されている。一方、出口側羽根部7bは、長翼7の全翼長から入口側羽根部7aの長さを除いた翼長で形成された羽根部分とこの羽根部分のランナ入口側の端部25を入口側羽根部7aのランナ出口側の端部24に接合した溶接部分7cとで構成される。また、短翼8は、長翼7のランナ入口側の端部23と同一の部材で形成されている。したがって、入口側羽根部7aと同じ翼形状(及び同一サイズ)である短翼8のそのランナ入口側の端部8aと、当該短翼8のランナ出口側の端部8bと、を当該短翼8が延びている方向に沿って結んだキャンバーライン8fの長さLsは、入口側羽根部7aと同じ長さ、つまり、長翼7の全翼長Lnの60%〜80%の長さで構成されている。また、互いに同じ翼形状で形成された入口側羽根部7aと短翼8とは、ランナ入口側の端部23、8a及びランナ出口側の端部24、8bを除き、一定の厚さ(等肉厚)t1で形成されている。   The inlet-side blade portion 7a includes a camber line 7d that connects the end portion 23 on the runner inlet side of the long blade 7 and the end portion 26 on the runner outlet side of the long blade 7 along the direction in which the long blade 7 extends. The length Ln (the total blade length of the long blade 7) is 60% to 80% (60% or more and 80% or less). On the other hand, the outlet blade portion 7b has a blade portion formed by a blade length obtained by subtracting the length of the inlet blade portion 7a from the entire blade length of the long blade 7 and an end portion 25 on the runner inlet side of the blade portion. It is comprised with the welding part 7c joined to the edge part 24 by the side of the runner exit of the side blade | wing part 7a. The short blade 8 is formed of the same member as the end 23 on the runner inlet side of the long blade 7. Therefore, the end 8a on the runner inlet side of the short blade 8 having the same blade shape (and the same size) as the inlet blade portion 7a and the end portion 8b on the runner outlet side of the short blade 8 are connected to the short blade. The length Ls of the camber line 8f connected along the direction in which the blade 8 extends is the same length as the inlet blade portion 7a, that is, 60% to 80% of the total blade length Ln of the long blade 7. It is configured. Further, the inlet blade portion 7a and the short blade 8 formed in the same blade shape have a constant thickness (such as the end portions 23 and 8a on the runner inlet side and the end portions 24 and 8b on the runner outlet side). (Thickness) It is formed at t1.

ここで、このような構造のランナ3の製造方法を概略的に説明すると、まず、図2A及び図2Bに示すように、ランナクラウン5及びランナバンド6に対し長翼7の入口側羽根部7aと短翼8とをそれぞれ溶接により接合する。次に、図2B及び図2Cに示すように、入口側羽根部7aと短翼8とがそれぞれ接合されたランナクラウン5及びランナバンド6、並びに当該入口側羽根部7a(のランナ出口側の端部24)に対し、出口側羽根部7bを溶接にて接合する。さらにこの後、溶接部分の研削整形などを経てランナ3が製作される。   Here, the manufacturing method of the runner 3 having such a structure will be schematically described. First, as shown in FIGS. 2A and 2B, the inlet blade portion 7 a of the long blade 7 with respect to the runner crown 5 and the runner band 6. And the short blade 8 are joined together by welding. Next, as shown in FIGS. 2B and 2C, the runner crown 5 and the runner band 6 in which the inlet blade portion 7a and the short blade 8 are joined, respectively, and the inlet blade portion 7a (the end on the runner outlet side). The outlet blade portion 7b is joined to the portion 24) by welding. Thereafter, the runner 3 is manufactured through grinding and shaping of the welded portion.

一般に、スプリッタランナの製作上、最も難易性の高い作業は、ランナ出口側の長翼間からアクセスする短翼のランナ出口側の溶接作業及び研削作業である。上述した本実施形態のランナ3の製造方法では、出口側羽根部7bを取り付ける前の状態で、ランナクラウン5及びランナバンド6に対し入口側羽根部7aと短翼8との溶接及び研削を容易に行うことができる。つまり、上記ランナ3の長翼7が2ピース構造で構成されていることで、溶接作業、及び翼間の狭隘部分や溶接部分の研削整形などの作業を容易に行うことができる。これにより、ランナ3がフランシス水車用の多翼ランナであるにもかかわらず、溶接部分の接合の信頼性及び羽根形状の仕上げ精度を向上させることができる。また、入口側羽根部7aと短翼8とは、同じ翼形状で構成され、しかもほぼ全体が等肉厚で構成されているので、翼形状の機械加工を排除した板材によるプレス成形が可能となり、ランナの製作コストの低減に大きく寄与することができる。   In general, the most difficult work in manufacturing a splitter runner is welding work and grinding work on the runner outlet side of the short blade accessed from between the long blades on the runner exit side. In the method of manufacturing the runner 3 according to the present embodiment described above, welding and grinding of the inlet blade portion 7a and the short blade 8 to the runner crown 5 and the runner band 6 are easy before the outlet blade portion 7b is attached. Can be done. That is, since the long blades 7 of the runner 3 are configured in a two-piece structure, it is possible to easily perform welding operations and operations such as narrowing between the blades and grinding and shaping the welded portions. Thereby, although the runner 3 is a multiblade runner for Francis turbines, it is possible to improve the reliability of the welded joint and the finishing accuracy of the blade shape. Further, the inlet blade portion 7a and the short blade 8 are configured with the same blade shape, and almost the entire blade portion is formed with the same thickness, so that it is possible to perform press molding with a plate material that eliminates blade-shaped machining. This can greatly contribute to the reduction of runner manufacturing costs.

なお、上記のランナ3を製造する場合においては、ランナクラウン5並びに入口側羽根部7a及び短翼8を一体で鋳造しておき、このユニットに対してランナバンド6を溶接しさらに、出口側羽根部7bを溶接することでランナ3を製作してもよい。また、これに代えて、ランナクラウン5に対し入口側羽根部7a及び短翼8を接合した後、短翼8を接合し、さらにこの後、このユニットに対しランナバンド6を接合してランナ3を製作するようにしてもよい。   When the runner 3 is manufactured, the runner crown 5, the inlet blade portion 7a, and the short blade 8 are integrally cast, the runner band 6 is welded to the unit, and the outlet blade The runner 3 may be manufactured by welding the portion 7b. Alternatively, after the inlet blade portion 7a and the short blade 8 are joined to the runner crown 5, the short blade 8 is joined, and then the runner band 6 is joined to this unit. May be produced.

次に、ランナ3の水力特性に関係する長翼7及び短翼8の形状及びその配置関係について図1に加え、図3〜図6に基づきその説明を行う。ここで、図3は、長翼に対する短翼の長さ比の変化に対応する長翼及び短翼の翼負荷の変化を表す図であり、また、図4は、ランナ3の長翼及び短翼の翼回りの翼面圧力分布を表す図である。さらに、図5は、長翼に対する短翼の相対位置の変化に応じた長翼及び短翼の翼負荷の変化を表す図であり、また、図6は、短翼及び長翼のランナ入口側のキャビテーション特性を表す図である。   Next, the shape of the long blades 7 and the short blades 8 related to the hydraulic characteristics of the runner 3 and the arrangement relationship thereof will be described based on FIGS. 3 to 6 in addition to FIG. Here, FIG. 3 is a diagram showing a change in blade load of the long blade and the short blade corresponding to a change in the length ratio of the short blade to the long blade, and FIG. 4 is a diagram showing the long blade and the short blade of the runner 3. It is a figure showing the blade surface pressure distribution around the wing | blade of a wing | blade. Further, FIG. 5 is a diagram showing a change in blade load of the long blade and the short blade according to a change in a relative position of the short blade with respect to the long blade, and FIG. 6 is a runner inlet side of the short blade and the long blade. It is a figure showing the cavitation characteristic.

つまり、上述した図3は、詳細には、短翼8の翼長を長さ0〜長翼7の全翼長と同じ長さ(長さ比1.00)になるまで延ばしていった場合の長翼7の翼負荷と短翼8の翼負荷の変化を、CFD(Computational Fluid Dynamics)などの流れ解析の結果にて示すものである。縦軸の相対翼負荷は、短翼8がない場合(短翼8の長さ比が0.00の場合)の長翼1枚当りの翼負荷を1とした相対値で表わしている。この図3において、短翼7の長さが1.00、すなわち、長翼7の羽根枚数が2倍になると、羽根1枚当りの翼負荷は1/2となる。また、短翼8の羽根長さが短くなると、羽根長さの減少以上に短翼8の翼負荷が減少し、短翼8の羽根長さが長翼7の50%(短翼8の長さ比0.50)以下では、短翼8は、ほとんど翼負荷を分担せず、翼としての作用を持たなくなる。   That is, in FIG. 3 described above, in detail, when the blade length of the short blade 8 is extended to a length 0 to the same length as the entire blade length of the long blade 7 (length ratio 1.00). The change in the blade load of the long blade 7 and the blade load of the short blade 8 is shown by the result of flow analysis such as CFD (Computational Fluid Dynamics). The relative blade load on the vertical axis is expressed as a relative value where the blade load per long blade is 1 when there is no short blade 8 (when the length ratio of the short blade 8 is 0.00). In FIG. 3, when the length of the short blade 7 is 1.00, that is, when the number of blades of the long blade 7 is doubled, the blade load per blade is halved. Further, when the blade length of the short blade 8 is shortened, the blade load of the short blade 8 is reduced more than the blade length is reduced, and the blade length of the short blade 8 is 50% of the long blade 7 (the length of the short blade 8). Below the height ratio 0.50), the short blade 8 hardly shares the blade load and does not function as a blade.

ここで、図3中に表れているように、短翼8の長さ比が50%を超えさらに60%に達する手前で短翼8の翼負荷が急増し(翼負荷の傾きが比較的大きくなり)、さらに、長さ比が60%以上になると、短翼8の翼負荷の増加する割合が比較的安定する(翼負荷の傾きが比較的小さくなる)ことがわかる。そこで、本実施形態のランナ3では、図1に示すように、ランナ出口側の翼間の間隙をある程度確保して水の流れの安定化を図りつつ、しかも、長翼7の翼負荷を短翼8側に効率的に分担させることができるように、長翼7の全翼長の60%以上、80%以下の長さで短翼8を構成している。また、本実施形態のランナ3では、生産性の向上を図るために、短翼8の翼形状を流用している長翼7の入口側羽根部7aも、長翼7の全翼長の60%以上、80%以下の長さで構成している。   Here, as shown in FIG. 3, the blade load of the short blade 8 suddenly increases before the length ratio of the short blade 8 exceeds 50% and further reaches 60% (the inclination of the blade load is relatively large). Furthermore, it can be seen that when the length ratio is 60% or more, the increasing rate of the blade load of the short blade 8 is relatively stable (the inclination of the blade load is relatively small). Therefore, in the runner 3 of the present embodiment, as shown in FIG. 1, the gap between the blades on the runner outlet side is secured to some extent to stabilize the water flow, and the blade load of the long blades 7 is reduced. The short blade 8 is configured with a length of 60% or more and 80% or less of the total blade length of the long blade 7 so that the blade 8 can be efficiently shared. Further, in the runner 3 of the present embodiment, in order to improve productivity, the inlet-side blade portion 7a of the long blade 7 that uses the blade shape of the short blade 8 is also 60 of the total blade length of the long blade 7. % To a length of 80% or less.

また、上述した図4は、隣り合う長翼7間のランナ回転方向に沿ったピッチの中心位置に例えば長翼7の全翼長の70%の長さの短翼8を配置した場合において、長翼7及び短翼8の羽根表面に沿ったランナ入口端側からの距離に応じた翼面圧力分布を3次元の流れ解析(CFD)により求めたものである。ここで、実線が長翼7、破線が短翼8を示すものであって、実線及び破線の上側が長翼7及び短翼8の圧力面側(正圧面側)の圧力を示し、一方、実線及び破線の下側が長翼7及び短翼8の負圧面側の圧力を示している。この図4では、同一の翼の圧力面側の圧力と負圧面側の圧力との差が翼の仕事、すなわち、羽根1枚当りの翼負荷となる。図4の結果より、長翼7の全翼長の70%の長さで短翼8を構成したことで、特にランナ入口側において、長翼7の翼負荷を効果的に短翼8が分担していることがわかる。   FIG. 4 described above shows a case where, for example, the short blade 8 having a length of 70% of the total blade length of the long blade 7 is arranged at the center position of the pitch along the runner rotation direction between the adjacent long blades 7. The blade surface pressure distribution according to the distance from the runner inlet end side along the blade surfaces of the long blade 7 and the short blade 8 is obtained by three-dimensional flow analysis (CFD). Here, the solid line indicates the long blade 7 and the broken line indicates the short blade 8, and the upper side of the solid line and the broken line indicates the pressure on the pressure surface side (pressure surface side) of the long blade 7 and the short blade 8, The lower side of the solid line and the broken line indicates the pressure on the suction surface side of the long blade 7 and the short blade 8. In FIG. 4, the difference between the pressure on the pressure surface side and the pressure on the suction surface side of the same blade is the work of the blade, that is, the blade load per blade. From the result of FIG. 4, the short blade 8 is configured with 70% of the total blade length of the long blade 7, and the short blade 8 effectively shares the blade load of the long blade 7 particularly on the runner inlet side. You can see that

また、上記図5は、短翼8を例えば長翼7の全翼長の70%の長さとし、ランナ回転方向における長翼7に対する短翼8の配置関係を変化させたときの長翼7と短翼8の翼負荷の変化を流れ解析(CFD)の結果で示すものである。ここで、図5では、図1に示したように、この短翼8のランナ出口側の端部8bと該短翼8の圧力面8c側に隣り合う(長翼7の)入口側羽根部7aのランナ出口側の端部24との間のランナ回転方向(後述する回転軌跡D2の延びている方向)に沿ったピッチをλ1とし、該短翼8のランナ出口側の端部8bと該短翼8の負圧面8d側に隣り合う(長翼7の)入口側羽根部7aのランナ出口側の端部24との間のランナ回転方向(上記D2方向)に沿ったピッチをλ2として定めている。   FIG. 5 shows that the short blade 8 is 70% of the total blade length of the long blade 7, for example, and the long blade 7 when the arrangement relationship of the short blade 8 with respect to the long blade 7 in the runner rotation direction is changed. The change of the blade load of the short blade 8 is shown by the result of flow analysis (CFD). Here, in FIG. 5, as shown in FIG. 1, the end portion 8 b on the runner outlet side of the short blade 8 and the inlet blade portion (of the long blade 7) adjacent to the pressure surface 8 c side of the short blade 8. 7a, the pitch along the runner rotation direction between the runner outlet side end 24 and the runner exit side end direction 24 (the direction in which a rotation locus D2 extends later) is λ1, and the end 8b of the short blade 8 on the runner exit side A pitch along the runner rotation direction (D2 direction) between the short blade 8 adjacent to the suction surface 8d side of the short blade 8 (of the long blade 7) and the end portion 24 on the runner outlet side is defined as λ2. ing.

すなわち、図5は、上記の各ピッチをλ1、λ2と定めた場合において、λ1とλ2との比に相当する(λ2−λ1)/(λ1+λ2)、つまり、長翼7の(入口側羽根部7aの端部24の)負圧面22側と、短翼8の(端部8b)の圧力面8c側との離間距離(短翼8の傾斜方向の取付姿勢)を変化させたときの長翼7と短翼8の翼負荷の変化を示している。なお、図1において、符号D1、D2、D3は、ランナ回転方向mに沿ってそれぞれ回転する長翼7(入口側羽根部7a、出口側羽根部7b)及び短翼8における端部23及び端部8aの回転軌跡、端部24及び端部8bの回転軌跡、並びに端部26の回転軌跡をそれぞれ示している。また、図1において、符号8eは、短翼8の端部8bが長翼7の負圧面22側に近接するように配置されていること(つまり長翼7よりも短翼8を寝かせた姿勢で配置していること)を明確に表わすために、短翼8のランナ出口側の端部8bに長翼7の出口側羽根部7bを仮想的に接合した状態を図示したものである。   That is, FIG. 5 shows (λ2−λ1) / (λ1 + λ2) corresponding to the ratio of λ1 and λ2 when the above pitches are defined as λ1 and λ2, that is, (the inlet blade portion of the long blade 7). The long blade when the separation distance (mounting posture in the inclined direction of the short blade 8) between the suction surface 22 side of the end portion 24a of the 7a and the pressure surface 8c side of the (end portion 8b) of the short blade 8 is changed. 7 shows changes in blade loads of the blades 7 and 8. In FIG. 1, reference numerals D1, D2, and D3 denote long blades 7 (inlet side blade portion 7a and outlet side blade portion 7b) and end portions 23 and end portions of short blades 8 that rotate along runner rotation direction m, respectively. The rotation locus of the part 8a, the rotation locus of the end portion 24 and the end portion 8b, and the rotation locus of the end portion 26 are shown. Further, in FIG. 1, reference numeral 8 e indicates that the end 8 b of the short blade 8 is disposed so as to be close to the suction surface 22 side of the long blade 7 (that is, the posture in which the short blade 8 is laid down rather than the long blade 7). In order to clearly show that, the outlet blade portion 7b of the long blade 7 is virtually joined to the end portion 8b of the short blade 8 on the runner outlet side.

この図5からわかるように、短翼8のランナ出口側の端部8bの位置を長翼7(入口側羽根部7a)の負圧面22側にシフトさせることによって短翼8の翼負荷が変化し、相対的なピッチの関係が5%〜10%で短翼8の翼負荷が最大値を示し、ピッチの関係が15%を超えると、隣り合う長翼7(の端部24)間のピッチの中心位置に短翼8(の端部8b)を配置した場合(0%の位置)よりも、短翼8の翼負荷が小さくなることがわかる。これは、長翼7の羽根表面において、圧力面21側よりも負圧面22側のほうが一般に流速が速く、水の流れを極端に阻害しない程度に、長翼7の負圧面22側に短翼8を僅かに近付けることで、長翼7の翼負荷を効果的に短翼8に分担できるものと考えられる。   As can be seen from FIG. 5, the blade load of the short blade 8 is changed by shifting the position of the end 8 b on the runner outlet side of the short blade 8 toward the suction surface 22 side of the long blade 7 (inlet blade portion 7 a). When the relative pitch relationship is 5% to 10% and the blade load of the short blade 8 shows the maximum value, and the pitch relationship exceeds 15%, the adjacent long blades 7 (end portions 24) are adjacent to each other. It can be seen that the blade load of the short blade 8 is smaller than when the short blade 8 (the end portion 8b) is arranged at the center position of the pitch (0% position). This is because, on the blade surface of the long blade 7, the flow velocity is generally faster on the suction surface 22 side than on the pressure surface 21 side, and the short blade is placed on the suction surface 22 side of the long blade 7 to the extent that it does not extremely impede the flow of water. It is considered that the blade load of the long blade 7 can be effectively shared by the short blade 8 by bringing 8 slightly closer.

そこで、本実施形態のランナ3では、下記の式1を満足するように短翼7及び短翼8がそれぞれ配置されている。   Therefore, in the runner 3 of the present embodiment, the short blades 7 and the short blades 8 are respectively arranged so as to satisfy the following formula 1.

5[%]≦(λ2−λ1)×100/(λ1+λ2)≦15[%]…式1   5 [%] ≦ (λ2−λ1) × 100 / (λ1 + λ2) ≦ 15 [%] Formula 1

また、上述した図6は、隣り合う長翼7間のランナ回転方向に沿ったピッチの中心位置に例えば長翼7の全翼長の70%の長さの短翼8を配置したランナ3において、横軸に水車の有効落差H、縦軸に流量Qをとった水車性能曲線上に、長翼7、短翼8のランナ入口側のキャビテーションの発生限界線を示すものである。具体的には、長翼7の圧力面21側の発生限界線をCn1、長翼7の負圧面側の発生限界線をCn2として示し、また、短翼8の圧力面8c側の発生限界線をCs1、短翼8の負圧面8d側の発生限界線をCs2として示している。   Further, FIG. 6 described above is a runner 3 in which short blades 8 having a length of 70% of the total blade length of the long blades 7 are arranged at the center position of the pitch along the runner rotation direction between the adjacent long blades 7. The cavitation generation limit line on the runner inlet side of the long blade 7 and the short blade 8 is shown on the turbine performance curve with the effective head H of the turbine on the horizontal axis and the flow rate Q on the vertical axis. Specifically, the generation limit line on the pressure surface 21 side of the long blade 7 is shown as Cn1, the generation limit line on the suction surface side of the long blade 7 is shown as Cn2, and the generation limit line on the pressure surface 8c side of the short blade 8 is shown. Is shown as Cs1, and the generation limit line on the suction surface 8d side of the short blade 8 is shown as Cs2.

ここで、短翼8は、その翼負荷が長翼7の翼負荷に比べて小さく翼周りの循環も小さくなるため、短翼8の入口キャビテーションの発生限界線Cs1、Cs2は、長翼7の発生限界線Cn1、Cn2に比べて高落差側にシフトしている。このとき、図1に示すように、短翼8の入口角度(キャンバーライン8fを円弧D1の外周側に延ばした線分と円弧D1の接線とがなす角度)βsを長翼7の入口角度(キャンバーライン7dを円弧D1の外周側に延ばした線分と円弧D1の接線とがなす角度)βnよりも小さくすると、短翼8の端部8aの翼周りの循環に基づく偏向力が生じ、ランナ入口側において短翼8の端部8aの翼負荷が増加する。これにより、図6の白抜き矢印で示すように、短翼8の入口キャビテーションの発生限界線Cs1、Cs2を低落差側に移動させることができる。   Here, since the blade load of the short blade 8 is smaller than the blade load of the long blade 7 and the circulation around the blade is small, the inlet cavitation generation limit lines Cs1 and Cs2 of the short blade 8 are It is shifted to the high head side compared to the generation limit lines Cn1 and Cn2. At this time, as shown in FIG. 1, the inlet angle of the short blade 8 (the angle formed by the line segment extending the camber line 8f to the outer periphery of the arc D1 and the tangent line of the arc D1) βs is the inlet angle of the long blade 7 ( If the camber line 7d is smaller than the angle β) formed by the line extending from the outer circumference of the arc D1 and the tangent to the arc D1, a deflection force based on the circulation around the blade 8 at the end 8a of the short blade 8 is generated. The blade load at the end 8a of the short blade 8 increases on the inlet side. As a result, as shown by the white arrow in FIG. 6, the inlet cavitation generation limit lines Cs1 and Cs2 of the short blade 8 can be moved to the low head side.

ここで、水車特性の実機運転範囲は、図6に示すように、入口キャビテーションの発生限界線Cs1の低落差側の端部Hmin、入口キャビテーションの発生限界線Cs2の低落差側の端部Hmax、及び最高流量Qmaxで囲われている図6中の破線内側の領域が使用可能な運転範囲であり、一般には、最高効率点の落差近傍から低落差側の範囲が主に使用される。このため、短翼8の入口キャビテーションの発生限界線Cs1、Cs2の低落差側への移動は、水車運転範囲の拡大につながる。   Here, as shown in FIG. 6, the actual operation range of the turbine characteristics is as follows. The end Hmin of the inlet cavitation generation limit line Cs1 on the low head side, the end Hmax of the inlet cavitation generation limit line Cs2 on the low head side, 6 is a usable operating range, and generally, the range from the vicinity of the head of the highest efficiency point to the side of the lower head is mainly used. For this reason, the movement of the short wing 8 at the inlet cavitation generation limit lines Cs1 and Cs2 to the low head side leads to the expansion of the water turbine operation range.

そこで、図1に示すように、本実施形態のランナ3では、上記図5に示したλ1、λ2のピッチの関係が5%以上、15%以下になることを確保しつつ、0°を超えかつ5°以下の範囲の角度分だけ、短翼8の入口角度βSを、長翼7の入口角度βnよりも小さい角度で構成(0°<βn−βs≦5°を満足するように構成)している。換言すれば、隣り合う長翼7間のランナ回転方向に沿ったピッチの中心位置を基準として、短翼8の端部8aを長翼7の圧力面21側に僅かに近付けると共に短翼8の端部8bを長翼7の負圧面22側に僅かに近付けた姿勢で、当該短翼8をそれぞれ配置している。   Therefore, as shown in FIG. 1, in the runner 3 of the present embodiment, the relationship between the pitches of λ1 and λ2 shown in FIG. 5 exceeds 5 ° while ensuring that the relationship between the pitches is 5% or more and 15% or less. In addition, the inlet angle βS of the short blade 8 is configured to be smaller than the inlet angle βn of the long blade 7 by an angle in the range of 5 ° or less (configured to satisfy 0 ° <βn−βs ≦ 5 °). is doing. In other words, with reference to the center position of the pitch along the runner rotation direction between adjacent long blades 7, the end portion 8 a of the short blade 8 is brought slightly closer to the pressure surface 21 side of the long blade 7 and the short blade 8 The short blades 8 are respectively arranged in a posture in which the end portion 8b is slightly close to the suction surface 22 side of the long blades 7.

これにより、本実施形態のランナ3では、短翼8の入口キャビテーションの発生限界線を低落差側に移動させることができるので、キャビテーションの発生を抑制しつつ行われる水車運転範囲を実質的に拡張することができる。   Thereby, in the runner 3 of this embodiment, since the limit line of cavitation at the inlet of the short blade 8 can be moved to the low head side, the operation range of the water turbine that is performed while suppressing the occurrence of cavitation is substantially expanded. can do.

既述したように、本実施形態に係る水力機械のランナ3によれば、フランシス型水車ランナのスプリッタランナとしての水力性能を効果的に引き出すことに有用であり、しかもランナ本体の生産性を向上させることができる。   As described above, according to the runner 3 of the hydraulic machine according to the present embodiment, it is useful to effectively bring out the hydraulic performance as the splitter runner of the Francis type turbine runner, and the productivity of the runner body is improved. Can be made.

[第2の実施の形態]
次に、本発明の第2の実施形態を図7及び図8に基づき説明する。ここで、図7は、本実施の形態のランナ33の長翼37及び短翼38を翼の子午面における1つの流線を主軸回りに回転させた曲面でみた断面図である。また、図8は、図7のランナ33が備える長翼37の出口側羽根部37bの取付位置の変化に応じた各羽根部分の翼負荷の変化を表す図である。なお、図7において、図1に示す第1の実施形態のランナ3が備えていたものと同一の構成要素については、同一の符号を付与しその説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. Here, FIG. 7 is a cross-sectional view of the long wing 37 and the short wing 38 of the runner 33 according to the present embodiment as seen from a curved surface obtained by rotating one streamline on the meridian surface of the wing around the main axis. FIG. 8 is a diagram illustrating a change in blade load of each blade portion according to a change in the attachment position of the outlet blade portion 37b of the long blade 37 provided in the runner 33 of FIG. In FIG. 7, the same components as those provided in the runner 3 of the first embodiment shown in FIG.

図7に示すように、この実施形態のランナ33は、第1の実施形態のランナ3が備えていた長翼7及び短翼8に代えて、長翼37及び短翼38を備えて構成される。長翼37は、図1に示した長翼7が備える出口側羽根部7bに代えて出口側羽根部37bを備える。また、短翼38は、入口側羽根部7aと同一の翼形状(及び同一サイズ)で形成されている一方で、長翼との間での相対的な配置関係が図1に示した短翼8と異なる。すなわち、ランナ33は、図7に示すように、ランナ回転方向mに沿って交互に配置される長翼37の入口側羽根部7aと短翼38とにおける少なくともランナ出口側の端部24、38b間が、ランナ回転方向m(回転軌跡D1の延びている方向)に沿ってそれぞれ等しいピッチλ3となるように構成されている。   As shown in FIG. 7, the runner 33 of this embodiment includes long blades 37 and short blades 38 instead of the long blades 7 and short blades 8 included in the runner 3 of the first embodiment. The The long blade 37 includes an outlet-side blade portion 37b instead of the outlet-side blade portion 7b included in the long blade 7 shown in FIG. Further, the short blade 38 is formed in the same blade shape (and the same size) as the inlet blade portion 7a, but the relative arrangement relationship with the long blade is the short blade shown in FIG. Different from 8. That is, as shown in FIG. 7, the runner 33 includes at least end portions 24, 38 b on the runner outlet side of the inlet blade portions 7 a and the short blades 38 of the long blades 37 that are alternately arranged along the runner rotation direction m. The gaps are configured to have the same pitch λ3 along the runner rotation direction m (the direction in which the rotation locus D1 extends).

また、長翼37の出口側羽根部37bは、図1に示した出口側羽根部7bと同一形状で形成されているものの、入口側羽根部7aから離間した位置に配置されている。つまり、長翼37では、入口側羽根部7aのランナ出口側の端部24における負圧面22側に、出口側羽根部37bのランナ入口側の端部35における圧力面(正圧面)39側を近接させた状態で、入口側羽根部7aと出口側羽根部37bとがそれぞれ配置されている。詳述すると、ランナ33は、各入口側羽根部7aのランナ出口側の端部24とこれら入口側羽根部7aにそれぞれ対の出口側羽根部37bにおけるランナ入口側の端部35との間のランナ回転方向mに沿ったピッチλ4が各々λ3/2(λ3÷2)となるように構成されている。   Moreover, although the exit side blade | wing part 37b of the long blade 37 is formed in the same shape as the exit side blade | wing part 7b shown in FIG. 1, it is arrange | positioned in the position spaced apart from the inlet side blade | wing part 7a. That is, in the long blade 37, the pressure surface (positive pressure surface) 39 side of the end portion 35 on the runner inlet side of the outlet blade portion 37b is placed on the negative pressure surface 22 side of the end portion 24 on the runner outlet side of the inlet blade portion 7a. In the state where they are close to each other, the inlet side blade portion 7a and the outlet side blade portion 37b are respectively arranged. More specifically, the runner 33 is located between the end 24 on the runner outlet side of each inlet blade portion 7a and the end portion 35 on the runner inlet side of the pair of outlet blade portions 37b. The pitches λ4 along the runner rotation direction m are each λ3 / 2 (λ3 / 2).

また、短翼38及び入口側羽根部7aは、入口側羽根部7a及び出口側羽根部37bそれぞれのキャンバーラインの長さを合計した翼長(長翼37の全翼長)の60%以上、80%以下の長さで構成されている。   Further, the short blade 38 and the inlet blade portion 7a are 60% or more of the total blade length of the inlet blade portion 7a and the outlet blade portion 37b (total blade length of the long blade 37), The length is 80% or less.

ここで、上記した図8は、長翼37の全翼長の70%の長さの入口側羽根部7a及び短翼8を配置(出口側羽根部37bは長翼37の全翼長の30%の長さのものを配置)した場合において、上記λ3を1ピッチとしてλ4を0〜1ピッチまで変化させたときの、入口側羽根部7a、短翼38及び出口側羽根部37bの各翼負荷並びにこれらの翼負荷の合計となる全翼負荷の変化を流れ解析(CFD)の結果で示すものである。なお、入口側羽根部7a、短翼38及び出口側羽根部37bの各翼負荷は、これらの羽根部分の合計した全翼負荷に対する相対値として示されている。   Here, in FIG. 8 described above, the inlet side blade portion 7a and the short blade 8 having a length of 70% of the total blade length of the long blade 37 are arranged (the outlet blade portion 37b is 30% of the total blade length of the long blade 37). % Of each of the blades of the inlet blade portion 7a, the short blade 38 and the outlet blade portion 37b when λ3 is one pitch and λ4 is varied from 0 to 1 pitch. The change of the total blade load, which is the load and the total of these blade loads, is shown as a result of flow analysis (CFD). The blade loads of the inlet blade portion 7a, the short blade 38, and the outlet blade portion 37b are shown as relative values with respect to the total blade load of these blade portions.

すなわち、図8に示すように、入口側羽根部7aと出口側羽根部37bとの互いのキャンバーラインがつながるように連結した状態(λ4がλ3/2未満の状態)から、出口側羽根部37bの短部35の圧力面39側を、入口側羽根部7aの端部24の負圧面22側に移動させて行くことで(λ4がλ3/2に近付くにつれて)、入口側羽根部7aの翼負荷が減少すると共に、短翼38の翼負荷が増加して行くことがわかる。さらに、入口側羽根部7aの端部24の負圧面22側から、出口側羽根部37bの短部35の圧力面39側が遠ざかって行くことで(λ4がλ3/2を超えると、つまり図8中のピッチ0.5を超えると)、短翼38の翼負荷が入口側羽根部7aより大きくなって行く。この結果は、入口側羽根部7aと短翼38とのランナベーンとしての機能の関係が、実質的に置き換わったものと考えることができる。   That is, as shown in FIG. 8, from the state where the camber lines of the inlet side blade portion 7a and the outlet side blade portion 37b are connected to each other (the state where λ4 is less than λ3 / 2), the outlet side blade portion 37b. Is moved to the negative pressure surface 22 side of the end 24 of the inlet blade portion 7a (as λ4 approaches λ3 / 2), the blade of the inlet blade portion 7a is moved. It can be seen that the blade load of the short blade 38 increases as the load decreases. Furthermore, the pressure surface 39 side of the short portion 35 of the outlet side blade portion 37b moves away from the suction surface 22 side of the end portion 24 of the inlet side blade portion 7a (when λ4 exceeds λ3 / 2, that is, FIG. 8). When the inner pitch exceeds 0.5), the blade load of the short blade 38 becomes larger than that of the inlet blade portion 7a. From this result, it can be considered that the relation of the function as the runner vane between the inlet side blade portion 7a and the short blade 38 is substantially replaced.

また、入口側羽根部7aの負圧面22側の水流の速度が圧力面21側より速いため、出口側羽根部37bの短部35が、入口側羽根部7aの圧力面21側に近接する場合よりも負圧面22側に近接する場合のほうが、出口側羽根部37bの翼負荷は、多少大きくなる傾向にある。   Moreover, since the speed of the water flow on the negative pressure surface 22 side of the inlet side blade portion 7a is faster than the pressure surface 21 side, the short portion 35 of the outlet side blade portion 37b is close to the pressure surface 21 side of the inlet side blade portion 7a. The blade load on the outlet side blade portion 37b tends to be slightly larger when closer to the suction surface 22 side.

そこで、本実施形態のランナ33では、上記したピッチλ4がλ3/2になるように、長翼37の入口側羽根部7a及び出口側羽根部37b並びに短翼38をそれぞれ配置したことで、入口側羽根部7aと短翼38との翼負荷をほぼ等しくすることができ、これにより、長翼37と短翼38との翼負荷のアンバランスにより生じ得る入口キャビテーションの発生を抑制することができる。   Therefore, in the runner 33 of the present embodiment, the inlet blade portion 7a and the outlet blade portion 37b of the long blade 37 and the short blade 38 are arranged so that the pitch λ4 is λ3 / 2, respectively. The blade loads of the side blade portions 7a and the short blades 38 can be made substantially equal, thereby suppressing the occurrence of inlet cavitation that can occur due to the imbalance between the blade loads of the long blades 37 and the short blades 38. .

このように、本実施形態に係るランナ33によれば、同一形状の羽根、つまり長翼37の入口側羽根部7aと短翼38とを等ピッチで配置できることによりランナ33本体の製作性を高めることができると共に、スプリッタランナとしての水力性能の向上を図ることができる。   As described above, according to the runner 33 according to the present embodiment, it is possible to arrange the blades of the same shape, that is, the inlet blade portion 7a of the long blade 37 and the short blade 38 at an equal pitch, thereby improving the productivity of the runner 33 main body. In addition, the hydraulic performance of the splitter runner can be improved.

以上、本発明を各実施の形態により具体的に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、上述した実施形態では、長翼7の入口側羽根部7aと短翼8とは、両端部を除いて等肉厚で形成されていたが、互いに異なる肉厚(羽根厚)で形成されていてもよい。また、上述した実施形態では、出口側羽根部7b、37bを含めた長翼7、37全体の翼形状については、特に説明しなかったが、長翼7、37全体の形状を、キャンバーラインの長さだけを(短翼と)変えるようにして、長翼と短翼とを同一の翼形状で構成してもよい。さらに、第1の実施形態では、同一形状の羽根部材を流用して入口側羽根部7aと短翼8とを構成していたため、上記式1と「0°<βn−βs≦5°」とを共に満足するランナについて例示したが、本発明では、入口側羽根部7aと短翼8とを互いに異なる翼形状とすることで、式1と「0°<βn−βs≦5」とを個別に満足するランナを構成することもできる。   The present invention has been specifically described above with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the scope of the invention. For example, in the above-described embodiment, the inlet-side blade portion 7a and the short blade 8 of the long blade 7 are formed with the same thickness except for both ends, but are formed with different thicknesses (blade thickness). It may be. In the embodiment described above, the wing shape of the entire long blades 7 and 37 including the outlet side blade portions 7b and 37b has not been particularly described. The long wing and the short wing may be configured to have the same wing shape by changing only the length (from the short wing). Furthermore, in the first embodiment, since the blade member 7a and the short blade 8 are configured by diverting the blade member having the same shape, the above equation 1 and “0 ° <βn−βs ≦ 5 °” are satisfied. However, in the present invention, Equation 1 and “0 ° <βn−βs ≦ 5” are individually obtained by making the inlet blade portion 7a and the short blade 8 into different blade shapes. It is also possible to construct a runner that satisfies the requirements.

水力機械が備えるランナの長翼及び短翼の翼の1つの流線を主軸回りに回転させた曲面でみた断面図。Sectional drawing which looked at the curved surface which rotated one streamline of the long blade of the runner with which a hydraulic machine is equipped, and the blade | wing of a short blade around the main axis. 図1のランナのランナクラウン及びランナバンドに対し長翼の入口側羽根部及び短翼が接合される直前の状態を示す図。The figure which shows the state just before the inlet side blade | wing part and short blade of a long blade are joined with the runner crown and runner band of the runner of FIG. 図2Aのランナクラウン及びランナバンドに対し入口側羽根部と短翼とが接合された後、さらに長翼の出口側羽根部が接合される直前の状態を示す図。The figure which shows the state just before joining the exit side blade | wing part of a long blade after joining an inlet side blade | wing part and a short blade with respect to the runner crown and runner band of FIG. 2A. 図2Bの入口側羽根部と短翼とが接合されたランナクラウン及びランナバンドに対し、長翼の出口側羽根部が接合されてランナが形成された状態を示す図。The figure which shows the state by which the exit side blade | wing part of the long blade was joined with respect to the runner crown and runner band with which the inlet side blade | wing part and short blade of FIG. 2B were joined, and the runner was formed. 図1のランナの長翼に対する短翼の長さ比の変化に対応する長翼及び短翼の翼負荷の変化を表す図。The figure showing the change of the blade load of the long blade and the short blade corresponding to the change of the length ratio of the short blade with respect to the long blade of the runner of FIG. 図1のランナの長翼及び短翼の翼回りの翼面圧力分布を表す図。The figure showing the blade surface pressure distribution around the long blade of the runner of FIG. 1, and the short blade. 図1のランナの長翼に対する短翼の相対位置の変化に応じた長翼及び短翼の翼負荷の変化を表す図。The figure showing the change of the blade | wing load of a long wing | blade and a short wing | blade according to the change of the relative position of the short wing | blade with respect to the long wing | blade of the runner of FIG. 図1のランナの長翼及び短翼のランナ入口側のキャビテーション特性を表す図。The figure showing the cavitation characteristic of the runner entrance side of the long wing and short wing of the runner of FIG. 本発明の第2の実施形態に係るランナの長翼及び短翼の翼の1つの流線を主軸回りに回転させた曲面でみた断面図。Sectional drawing which looked at the curved surface which rotated one streamline of the long blade of the runner which concerns on the 2nd Embodiment of this invention, and the blade | wing of a short blade around the main axis. 図7のランナが備える長翼の出口側羽根部の取付位置の変化に応じた各羽根部分の翼負荷の変化を表す図。The figure showing the change of the blade | wing load of each blade | wing part according to the change of the attachment position of the exit side blade | wing part of the long blade with which the runner of FIG. 7 is provided. 従来のフランシス型ポンプ水車を示す縦断面図。The longitudinal cross-sectional view which shows the conventional Francis type pump turbine. 従来のスプリッタランナ及び通常のランナを重ね合わせてそれぞれの子午面に沿った断面で見た図。The figure which overlap | superposed the conventional splitter runner and the normal runner, and looked at the cross section along each meridian surface. 図10の通常のランナの翼の配置を図10のX−X線(翼の子午面における1つの流線)を主軸回りに回転させた曲面でみた断面図。Sectional drawing which looked at the arrangement | positioning of the wing | blade of the normal runner of FIG. 10 on the curved surface which rotated the XX line | wire (one streamline in the meridian surface of a wing | blade) of FIG. 図10のスプリッタランナの長翼及び短翼の配置を図10のX−X線(翼の子午面における1つの流線)を主軸回りに回転させた曲面でみた断面図。Sectional drawing which looked at the arrangement | positioning of the long blade and short blade of the splitter runner of FIG. 10 on the curved surface which rotated the XX line | wire (one streamline in the meridian surface of a wing | blade) of FIG.

符号の説明Explanation of symbols

1…水力機械、2…渦巻きケーシング、3,33…ランナ、5…ランナクラウン、6…ランナバンド、7,37…長翼、7a…入口側羽根部、7b,37b…出口側羽根部、7c…溶接部、8,38…短翼、21,8c,39…圧力面(正圧面)、22,8d…負圧面。   DESCRIPTION OF SYMBOLS 1 ... Hydraulic machine, 2 ... Spiral casing, 3,33 ... Runner, 5 ... Runner crown, 6 ... Runner band, 7, 37 ... Long blade, 7a ... Inlet side blade part, 7b, 37b ... Outlet side blade part, 7c ... welded part, 8, 38 ... short blade, 21, 8c, 39 ... pressure surface (positive pressure surface), 22, 8d ... negative pressure surface.

Claims (9)

ランナ出口側の羽根部分を構成する出口側羽根部と全翼長の60%以上、80%以下の長さでランナ入口側の羽根部分を構成する入口側羽根部とからなり、ランナ回転方向に沿って所定の間隔を空けてそれぞれ配置された複数の長翼と、
前記ランナ回転方向に沿って前記長翼と交互に配置され、前記長翼の前記入口側羽根部と同じ翼長で形成された複数の短翼と、
を具備することを特徴とする水力機械のランナ。
It consists of an outlet side blade part constituting the blade part on the runner outlet side and an inlet side blade part constituting the blade part on the runner inlet side with a length of 60% or more and 80% or less of the total blade length. A plurality of long wings arranged at predetermined intervals along the
A plurality of short blades alternately arranged with the long blades along the runner rotation direction, and formed with the same blade length as the inlet blade portion of the long blades;
A hydraulic machine runner characterized by comprising:
前記入口側羽根部と前記短翼とは、互いに同じ形状で形成されていることを特徴とする請求項1記載の水力機械のランナ。   The runner of a hydraulic machine according to claim 1, wherein the inlet blade portion and the short blade are formed in the same shape. 前記入口側羽根部と前記短翼とは、前記ランナ入口側及び前記ランナ出口側の各端部を除き、一定の厚さで形成されていることを特徴とする請求項1又は2記載の水力機械のランナ。   3. The hydraulic power according to claim 1, wherein the inlet side blade portion and the short blade are formed with a constant thickness except for the end portions on the runner inlet side and the runner outlet side. 4. Machine runner. 前記短翼のランナ出口側の端部と該短翼の正圧面側に隣り合う入口側羽根部のランナ出口側の端部との間の前記ランナ回転方向に沿ったピッチをλ1、該短翼のランナ出口側の端部と該短翼の負圧面側に隣り合う入口側羽根部のランナ出口側の端部との間の前記ランナ回転方向に沿ったピッチをλ2、とした場合、
5[%]≦(λ2−λ1)×100/(λ1+λ2)≦15[%]
を満たすことを特徴とする請求項1ないし3のいずれか1項に記載の水力機械のランナ。
The pitch along the runner rotation direction between the end on the runner outlet side of the short blade and the end on the runner outlet side of the inlet blade adjacent to the pressure surface side of the short blade is λ1, and the short blade When the pitch along the runner rotation direction between the end on the runner exit side of the runner and the end on the runner exit side of the inlet blade adjacent to the suction surface side of the short blade is λ2,
5 [%] ≦ (λ2−λ1) × 100 / (λ1 + λ2) ≦ 15 [%]
The hydraulic machine runner according to any one of claims 1 to 3, wherein:
0°を超えかつ5°以下の範囲の角度分だけ、前記短翼の入口角度は、前記長翼の入口角度よりも小さい角度で構成されていることを特徴とする請求項1ないし4のいずれか1項に記載の水力機械のランナ。   The inlet angle of the short blade is configured to be smaller than the inlet angle of the long blade by an angle in the range of more than 0 ° and not more than 5 °. A hydraulic machine runner according to claim 1. 前記入口側羽根部と前記出口側羽根部とは、溶接により互いに接合されていることを特徴とする請求項1ないし5のいずれか1項に記載の水力機械のランナ。   The hydraulic machine runner according to any one of claims 1 to 5, wherein the inlet-side blade portion and the outlet-side blade portion are joined to each other by welding. 前記入口側羽根部と前記出口側羽根部とを互いに離間した状態でそれぞれ配置すると共に、前記入口側羽根部のランナ出口側の端部における負圧面側に、前記出口側羽根部のランナ入口側の端部における正圧面側を近接させたことを特徴とする請求項1ないし3のいずれか1項に記載の水力機械のランナ。   The inlet-side blade portion and the outlet-side blade portion are arranged in a state of being separated from each other, and on the suction surface side of the inlet-side blade portion on the runner outlet-side end side, the runner inlet side of the outlet-side blade portion The hydraulic machine runner according to any one of claims 1 to 3, wherein the pressure surface side of the end portion of the hydraulic machine is close. 前記ランナ回転方向に沿って交互に配置される前記長翼の前記入口側羽根部と前記短翼とにおけるランナ出口側の各端部間が、前記ランナ回転方向に沿ってそれぞれ等しいピッチλ3となるように構成され、かつ前記各入口側羽根部のランナ出口側の端部とこれら入口側羽根部にそれぞれ対の出口側羽根部におけるランナ入口側の端部との間の前記ランナ回転方向に沿ったピッチが各々λ3/2となるように構成されていることを特徴とする請求項7記載の水力機械のランナ。   Between the inlet-side blade portions and the short blades of the long blades arranged alternately along the runner rotation direction, between the end portions on the runner outlet side are equal pitches λ3 along the runner rotation direction, respectively. And the runner outlet side ends of the respective inlet side blade portions and the runner inlet side ends of the pair of outlet side blade portions respectively along the runner rotation direction. The runner of a hydraulic machine according to claim 7, wherein the pitches are each set to λ3 / 2. 請求項1ないし8のいずれか1項に記載の水力機械のランナを製造するための水力機械用ランナの製造方法であって、
前記入口側羽根部と前記短翼とをランナクラウン及びランナバンドにそれぞれ接合する工程と、
前記入口側羽根部と前記短翼とがそれぞれ接合された前記ランナクラウン及び前記ランナバンドに対し、前記出口側羽根部を接合する工程と、
を有することを特徴とする水力機械用ランナの製造方法。
A method for producing a hydraulic machine runner for producing the hydraulic machine runner according to any one of claims 1 to 8,
Bonding the inlet blade portion and the short blade to a runner crown and a runner band,
Joining the outlet side blade portion to the runner crown and the runner band to which the inlet side blade portion and the short blade are respectively joined;
The manufacturing method of the runner for hydraulic machines characterized by having.
JP2006306759A 2006-11-13 2006-11-13 Hydraulic machine runner and method for producing hydraulic machine runner Active JP4861132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306759A JP4861132B2 (en) 2006-11-13 2006-11-13 Hydraulic machine runner and method for producing hydraulic machine runner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306759A JP4861132B2 (en) 2006-11-13 2006-11-13 Hydraulic machine runner and method for producing hydraulic machine runner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011190774A Division JP5367786B2 (en) 2011-09-01 2011-09-01 Hydraulic machine runner and method for producing hydraulic machine runner

Publications (2)

Publication Number Publication Date
JP2008121574A true JP2008121574A (en) 2008-05-29
JP4861132B2 JP4861132B2 (en) 2012-01-25

Family

ID=39506588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306759A Active JP4861132B2 (en) 2006-11-13 2006-11-13 Hydraulic machine runner and method for producing hydraulic machine runner

Country Status (1)

Country Link
JP (1) JP4861132B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086394A1 (en) * 2008-10-03 2010-04-08 Kabushiki Kaisha Toshiba Hydraulic machine
EP2923075B1 (en) 2012-01-03 2019-02-20 Rainpower Technology AS A francis turbine runner
JP7085406B2 (en) 2018-05-15 2022-06-16 株式会社東芝 Hydraulic machine runner and hydraulic machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324671A (en) * 1994-12-28 1995-12-12 Hitachi Ltd Hydraulic turbine runner
JP2001329937A (en) * 2000-05-18 2001-11-30 Tokyo Electric Power Co Inc:The Francis type pump-turbine
JP2004150371A (en) * 2002-10-31 2004-05-27 Hitachi Ltd Manufacturing method for runner of hydraulic machine
JP2005048608A (en) * 2003-07-30 2005-02-24 Toshiba Corp Splitter runner and hydraulic machinery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324671A (en) * 1994-12-28 1995-12-12 Hitachi Ltd Hydraulic turbine runner
JP2001329937A (en) * 2000-05-18 2001-11-30 Tokyo Electric Power Co Inc:The Francis type pump-turbine
JP2004150371A (en) * 2002-10-31 2004-05-27 Hitachi Ltd Manufacturing method for runner of hydraulic machine
JP2005048608A (en) * 2003-07-30 2005-02-24 Toshiba Corp Splitter runner and hydraulic machinery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086394A1 (en) * 2008-10-03 2010-04-08 Kabushiki Kaisha Toshiba Hydraulic machine
US9181957B2 (en) * 2008-10-03 2015-11-10 Yasuyuki Enomoto Hydraulic machine
EP2923075B1 (en) 2012-01-03 2019-02-20 Rainpower Technology AS A francis turbine runner
JP7085406B2 (en) 2018-05-15 2022-06-16 株式会社東芝 Hydraulic machine runner and hydraulic machine

Also Published As

Publication number Publication date
JP4861132B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5117349B2 (en) Hydraulic machine
JP6050648B2 (en) Hydraulic machine
JP4693687B2 (en) Axial water turbine runner
JP4163062B2 (en) Splitter runner and hydraulic machine
JP5135033B2 (en) Runner vane of axial hydraulic machine
JP4861132B2 (en) Hydraulic machine runner and method for producing hydraulic machine runner
KR20170056517A (en) Francis turbine with short blade and short band
JP4768361B2 (en) Francis type runner and hydraulic machine
JP5230568B2 (en) Runner and fluid machinery
JP2010168903A (en) Centrifugal hydraulic machine
JP4163091B2 (en) Hydraulic machine
JP5367786B2 (en) Hydraulic machine runner and method for producing hydraulic machine runner
JP4703578B2 (en) Francis turbine
JP4280127B2 (en) Francis-type runner
JP5641971B2 (en) Fluid machine guide vanes and fluid machines
JP4751165B2 (en) Francis pump turbine
JP6556486B2 (en) Runner and hydraulic machine
CN109763928B (en) Guide vane and fluid machine
JP2006022694A (en) Runner for hydraulic machine and hydraulic machine with the runner
JP4846139B2 (en) Hydraulic machine
JP2010024941A (en) Axial flow hydraulic machine
JP2004156587A (en) Hydraulic turbine
JP2007107428A (en) Runner for hydraulic machine and hydraulic machine using the same
JP7360357B2 (en) Runner cones and hydraulic machines
JP2010101265A (en) Runner of francis type hydraulic machine and francis type hydraulic machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R151 Written notification of patent or utility model registration

Ref document number: 4861132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3