JP2007107428A - Runner for hydraulic machine and hydraulic machine using the same - Google Patents

Runner for hydraulic machine and hydraulic machine using the same Download PDF

Info

Publication number
JP2007107428A
JP2007107428A JP2005297820A JP2005297820A JP2007107428A JP 2007107428 A JP2007107428 A JP 2007107428A JP 2005297820 A JP2005297820 A JP 2005297820A JP 2005297820 A JP2005297820 A JP 2005297820A JP 2007107428 A JP2007107428 A JP 2007107428A
Authority
JP
Japan
Prior art keywords
runner
blade
short
blades
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297820A
Other languages
Japanese (ja)
Inventor
Kotaro Tezuka
光太郎 手塚
Toshihiro Watanabe
俊寛 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005297820A priority Critical patent/JP2007107428A/en
Publication of JP2007107428A publication Critical patent/JP2007107428A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a runner for a hydraulic machine, having high runner efficiency while suppressing vibration to be generated by a combined number of guide vanes and runner vanes. <P>SOLUTION: The runner for the hydraulic machine comprises the runner vanes parted into long and short vanes, the parted long and short vanes being arranged in the peripheral direction of the runner. Two short vanes S<SB>1</SB>, S<SB>2</SB>are arranged between one long vane L<SB>1</SB>and the long vane L<SB>2</SB>adjacent thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水力機械のランナに係り、特に、長翼と短翼とをランナの周方向に沿って配置した水力機械のランナおよびそれを用いた水力機械に関する。   The present invention relates to a hydraulic machine runner, and more particularly, to a hydraulic machine runner in which long blades and short blades are arranged along a circumferential direction of the runner and a hydraulic machine using the runner.

一般に、水力機械のランナは、流体のエネルギを動力に変換させる最も重要な機械要素の一つであり、その性能の良否が水力機械全体の水力効率を大きく左右する。   In general, a hydraulic machine runner is one of the most important mechanical elements that convert fluid energy into power, and the quality of the hydraulic machine greatly affects the hydraulic efficiency of the entire hydraulic machine.

したがって、高効率なランナを開発することが水力設計における重要な課題であり、従来から数多くの様々な水力効率の向上策が提案されている。   Therefore, developing a highly efficient runner is an important issue in hydropower design, and a number of various measures for improving hydraulic efficiency have been proposed.

同一の翼形状の羽根がランナ周方向に沿って設けられている通常の水力機械のランナでは、図8に示すように、子午断面において、一つの流線SLをランナ1の回転軸2を回転中心とし、回転によって得られる曲面で翼3を切断すると、図9に示すように、ランナ1の入口側4から出口側5に向って徐々に狭開路の流路を形成する渦巻状の翼3が配置されている。   In a normal hydraulic machine runner in which blades of the same wing shape are provided along the runner circumferential direction, as shown in FIG. 8, one streamline SL is rotated on the rotating shaft 2 of the runner 1 in the meridional section. When the blade 3 is cut along a curved surface obtained by rotation with a center, as shown in FIG. 9, the spiral blade 3 gradually forms a narrow open passage from the inlet side 4 to the outlet side 5 of the runner 1. Is arranged.

これに対し、最近では、図10に示すように、長翼Lと短翼Sをランナ1の周方向に沿って交互に配置する、いわゆるスプリッタランナが開発され、実用化されている。   In contrast, recently, as shown in FIG. 10, a so-called splitter runner in which long blades L and short blades S are alternately arranged along the circumferential direction of the runner 1 has been developed and put into practical use.

このスプリッタランナは、羽根の枚数が通常のランナに較べて多くなるものの、ランナ1の出口側(内径側)で長翼Lのみの構成になるので、一方の翼と隣の翼との隙間が著しく小さくならず、多翼タイプのランナとしての利点を最大限に活用することができ、優れた水力効率を備えていることが確認されている。   Although this splitter runner has a larger number of blades than a normal runner, it has only a long blade L on the outlet side (inner diameter side) of the runner 1, so there is a gap between one blade and the adjacent blade. It has been confirmed that the advantages of the multi-blade type runner can be utilized to the maximum without being significantly reduced, and that it has excellent hydraulic efficiency.

しかし、その反面、長翼Lと短翼Sとを交互に配置した図10に示すスプリッタランナでは、羽根枚数の合計が偶数になっているため、通常、やはり偶数枚で設計されているガイドベーンとの干渉に伴う振動が発生し易い。   However, on the other hand, in the splitter runner shown in FIG. 10 in which the long blades L and the short blades S are alternately arranged, the total number of blades is an even number. Vibration easily occurs due to interference with the.

このような問題点に対する対処策には、例えば、特許文献1および特許文献2に見られるように、長翼の枚数に制限を与えず、長翼間に複数枚の短翼を配置したものが提案されている。
特開平7−279808号公報 特開2000−54944号公報
As a countermeasure against such a problem, for example, as seen in Patent Document 1 and Patent Document 2, there is a technique in which a plurality of short blades are arranged between the long blades without limiting the number of long blades. Proposed.
Japanese Patent Laid-Open No. 7-279808 JP 2000-54944 A

特許文献1に開示された水力機械のランナでは、一方の長翼と隣の長翼との間に短翼を配置したこと自体、スプリッタランナとしてパイオニア的なものではあるが、ガイドベーンとランナとの翼枚数の組合せによって生じる振動を抑制する観点からなされたものであり、短翼の配置位置に対する考え方が水力効率向上策に寄与する適正位置と必ずしも一致しない。   In the hydraulic machine runner disclosed in Patent Document 1, the short blade is arranged between one long blade and the adjacent long blade itself, which is a pioneer as a splitter runner. This is made from the viewpoint of suppressing vibration caused by the combination of the number of blades of the blades, and the concept of the arrangement position of the short blades does not necessarily coincide with the appropriate position contributing to the hydraulic efficiency improvement measure.

また、特許文献2は、キャビテーション抑制の観点から、長翼間のピッチに対する短翼のピッチとの比率を定めたものであるが、短翼自体のプロファイルを考察、言及していないので、水力効率向上の保証が不明である。   In addition, Patent Document 2 defines the ratio of the pitch of the short blades to the pitch between the long blades from the viewpoint of suppressing cavitation. The guarantee of improvement is unknown.

本発明は、このような事情に照らしてなされたものであり、ガイドベーンとランナの翼との枚数の組合せから発生する振動を抑制しながら、より高い水力効率を実現する水力機械のランナを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a hydraulic machine runner that achieves higher hydraulic efficiency while suppressing vibrations generated from a combination of the number of guide vanes and runner blades. The purpose is to do.

本発明に係る水力機械のランナは、上述の目的を達成するために、ランナの翼を長翼と短翼とに区分けし、区分けした長翼と短翼とを前記ランナの周方向に沿って配置した水力機械のランナにおいて、前記一方の長翼と隣の長翼との間に2枚の短翼を配置する構成にしたものである。   In order to achieve the above-mentioned object, the runner of the hydraulic machine according to the present invention divides the wings of the runner into long wings and short wings, and divides the long wings and short wings along the circumferential direction of the runner. In the runner of the disposed hydraulic machine, two short blades are disposed between the one long blade and the adjacent long blade.

また、本発明に係る水力機械のランナは、上述の目的を達成するために、ランナの翼を長翼と短翼とに区分けし、区分けした長翼と短翼とを前記ランナの周方向に沿って配置した水力機械のランナにおいて、前記一方の長翼と隣の長翼との間に2枚の短翼を配置するとともに、前記ランナの周方向に沿って配置した長翼および短翼の合計全翼枚数を9枚に設定したものである。   In order to achieve the above-mentioned object, the runner of the hydraulic machine according to the present invention divides the wings of the runner into long wings and short wings, and the divided long wings and short wings are arranged in the circumferential direction of the runner. In a hydraulic machine runner arranged along the two long blades arranged between the one long blade and the adjacent long blade, and along the circumferential direction of the runner, The total number of all blades is set to nine.

本発明に係る水力機械のランナは、一方の長翼と隣接する他方の長翼との間に2枚の短翼を配置し、短翼の翼負荷を増加させ、かつ動力水の流れを良好にさせる構成にしたので、運転中に発生する振動を抑制しながら、より高い水力効率を得ることができる。   In the hydraulic machine runner according to the present invention, two short blades are arranged between one long blade and another adjacent long blade, the blade load of the short blade is increased, and the flow of power water is good. Since it was set as the structure made to become, higher hydraulic efficiency can be acquired, suppressing the vibration which generate | occur | produces during driving | operation.

また、本発明のランナを採用した水力機械によれば、ランナ内を流れる水流による振動が減少するとともにキャビテーションの発生がなくなるため、効率の高い運転が可能となり、ひいては発電効率の高い水力発電所の建設が可能となる。   Further, according to the hydraulic machine employing the runner of the present invention, vibration due to the water flow flowing in the runner is reduced and cavitation is eliminated, so that highly efficient operation is possible, and as a result, a hydroelectric power plant with high power generation efficiency is achieved. Construction becomes possible.

以下、本発明に係る水力機械のランナの実施形態を図面および図面に付した符号を引用して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of a hydraulic machine runner according to the invention will be described with reference to the drawings and the reference numerals attached to the drawings.

[第1実施形態]
図1は、本発明に係る水力機械のランナの第1実施形態を示す概念図である。
[First Embodiment]
FIG. 1 is a conceptual diagram showing a first embodiment of a runner of a hydraulic machine according to the present invention.

本実施形態に係る水力機械のランナ10は、一方の長翼Lと隣り合う他方の長翼Lとの間に2枚の短翼S,Sを配置し、これら例えば、奇数枚の長翼L,Lとの間に2枚の短翼S,Sとを組み合せた翼群をランナの周方向に沿って配置したものである。 The runner 10 of the hydraulic machine according to the present embodiment has two short blades S 1 and S 2 arranged between one long blade L 1 and the other adjacent long blade L 2. A blade group in which two short blades S 1 and S 2 are combined between the long blades L and L is arranged along the circumferential direction of the runner.

なお、図1では、各翼の重複説明を避けるために、便宜上、長翼L,Lとの1ピッチの翼群だけにとどめている。 In FIG. 1, for the sake of convenience, in order to avoid overlapping description of each blade, the blade group is limited to one pitch with the long blades L 1 and L 2 .

そして、ランナの周方向に沿って配置した翼群としての長翼L,Lおよび短翼S,Sの合計全翼枚数Zrは、Zr=9に設定されている。 The total number of blades Zr of the long blades L 1 and L 2 and the short blades S 1 and S 2 as the blade group arranged along the circumferential direction of the runner is set to Zr = 9.

また、長翼L,Lに挟まれた短翼S,Sは、それぞれのキャンバーラインCLS,CLSを、短翼出口端半径方向位置において、隣接する長翼L,LのキャンバーラインCLL間を3等分する2本の曲線MLに対して水車運転回転方向と逆方向にそれぞれ不等ピッチ角θ,θだけ回転した位置に設置されている。 Further, the short blades S 1 and S 2 sandwiched between the long blades L 1 and L 2 are arranged so that the camber lines CLS 1 and CLS 2 are adjacent to each other in the radial direction position of the short blade outlet end L 1 and L 2. The two camber lines CLL are divided into three equal parts, and are installed at positions rotated by unequal pitch angles θ 1 and θ 2 in the direction opposite to the water turbine driving rotation direction, respectively.

ここで、不等ピッチ角θ,θは、θ>θ、具体的にはθ=2×θの関係を満たしている。 Here, the unequal pitch angles θ 1 and θ 2 satisfy the relationship of θ 1 > θ 2 , specifically, θ 1 = 2 × θ 2 .

また、短翼S,Sのそれぞれの翼厚tS,tSは、長翼L,Lの翼厚tL,tLよりも薄くしており、例えば長翼に較べて約60%にしている。 Further, the blade thicknesses tS 1 , tS 2 of the short blades S 1 , S 2 are thinner than the blade thicknesses tL 1 , tL 2 of the long blades L 1 , L 2. 60%.

なお、本実施形態に係る短翼S,Sは、便宜上、同一のプロファイル(翼形状)を扱っているが、異なったプロファイルを扱ってもよい。 Although the short blades S 1 and S 2 according to the present embodiment handle the same profile (blade shape) for convenience, different profiles may be used.

ところで、一般に、スプリッタランナは、水車運転時、短翼S,Sの翼負荷(翼の仕事)が長翼L,Lの翼負荷に較べて低く、翼負荷の増加に寄与しない傾向にあり、短翼S,Sを、水車運転時、ランナ回転方向と逆方向に配置すると翼負荷(翼の仕事)が若干増加することが、これまでの研究によって明らかにされている。 Incidentally, in general, the splitter runner, when water turbine operation, short blade S 1, the blade loading of the S 2 (work wings) of the long blade L 1, lower than the blade loading of L 2, does not contribute to the increase in blade loading Previous studies have shown that blade load (blade work) increases slightly when the short blades S 1 and S 2 are placed in the direction opposite to the runner rotation direction during turbine operation. .

このような事象を、今少し詳しく考察する。   Let us consider this phenomenon in more detail now.

図2は、長翼Lと、隣接する長翼Lとの間を3等分する位置に配置した同一プロファイルの2枚の短翼S,Sの一例であって、翼面に沿った水車入口端側からの距離に対する翼面圧力を示す圧力分布線図である。 FIG. 2 is an example of two short blades S 1 and S 2 having the same profile arranged at a position equally dividing the long blade L 1 and the adjacent long blade L 2 into three parts. It is a pressure distribution diagram which shows the blade surface pressure with respect to the distance from the waterwheel inlet-end side along.

この線図において、実線が長翼L,L、破線が水車運転時、回転方向側に位置する短翼S、一点鎖線が水車運転時、回転方向と逆側に位置する短翼Sのそれぞれの特性である。上側の3本が圧力面側の圧力を示し、下側の3本が翼負圧面側の圧力を示している。 In this diagram, the solid lines are the long wings L 1 and L 2 , the broken lines are the short wings S 1 located on the rotation direction side during the water turbine operation, and the dash-dot lines are the short wings S located on the opposite side to the rotation direction during the water wheel operation. Each of the two characteristics. The upper three lines indicate the pressure on the pressure surface side, and the lower three lines indicate the pressure on the blade suction surface side.

そして、翼圧力面側の圧力と翼負圧面側の圧力との差が翼負荷(翼の仕事)になる。   The difference between the pressure on the blade pressure surface side and the pressure on the blade suction surface side is the blade load (blade work).

図2に示す圧力分布線図から、同一プロファイルの2枚の短翼S,Sを備えるスプリッタランナでは、短翼Sの翼負荷BLSが最も小さく、最適設計を行った場合でも、長翼L,Lの翼負荷BLLに較べて40%程度にしかならないことがわかった。 A pressure distribution diagram shown in FIG. 2, the splitter runner with a short blade S 1, S 2 of two identical profiles, most small blade loading BLS 1 short blades S 1, even when subjected to optimum design, It turned out that it is only about 40% compared with the blade load BLL of the long blades L 1 and L 2 .

そして、図2に示す圧力分布線図では、短翼S,Sに作用する曲げ応力が低いことを意味し、翼厚を翼負荷の大きさに応じて薄くすることが可能であることを示している。 In the pressure distribution diagram shown in FIG. 2, this means that the bending stress acting on the short blades S 1 and S 2 is low, and the blade thickness can be reduced according to the size of the blade load. Is shown.

翼厚が薄くなれば、動力水の流路面積が増加し、流速が低下し、これに基づいて摩擦損失が低減されるほか、軽量化にもつながり、ランナ全体の固有振動数を大きくさせて、定格点における振動に対する余裕をより高く確保することができる。   If the blade thickness is reduced, the flow area of the power water increases, the flow velocity decreases, and friction loss is reduced based on this, leading to weight reduction and increasing the natural frequency of the entire runner. A higher margin for vibration at the rated point can be ensured.

また、翼負荷が小さくなるのは、図2から、変曲領域ARである。この変曲領域ARは、水車入口端近傍であり、翼圧力面側の局所的な圧力降下が生じることと関連しており、短翼S,Sの翼負荷増加と相俟ってキャビテーション生成の抑制にも有効である。 Moreover, it is the inflection area | region AR from FIG. 2 that a blade | wing load becomes small. This inflection region AR is in the vicinity of the turbine turbine inlet end and is associated with the local pressure drop on the blade pressure surface side. Cavitation is coupled with the increase in blade load on the short blades S 1 and S 2. It is also effective in suppressing generation.

図3は、短翼S,Sの不等ピッチ角θ,θに対する入口端近傍における局所的降下圧力の変化を示す降下圧力線図である。 FIG. 3 is a pressure drop diagram showing a change in local pressure drop near the inlet end with respect to the unequal pitch angles θ 1 and θ 2 of the short blades S 1 and S 2 .

図3から、不等ピッチ角θ,θが大きくなるにつれて短翼S,Sの降下圧力が回復しており、短翼Sでは、不等ピッチ角θが、θ=720×{(1/Zr)−(1/Zr+3)}まで、また、短翼Sでは、不等ピッチ角θが、θ=360×{(1/Zr)−(1/Zr+3)}まで、圧力の回復がなされていることがわかった。 From FIG. 3, as the unequal pitch angles θ 1 , θ 2 become larger, the pressure drop of the short blades S 1 , S 2 is recovered, and in the short blade S 1 , the unequal pitch angles θ 1 are θ 1 = Up to 720 × {(1 / Zr) − (1 / Zr + 3)}, and with the short blade S 2 , the unequal pitch angle θ 2 is θ 2 = 360 × {(1 / Zr) − (1 / Zr + 3) }, It was found that pressure was recovered.

上述の式から、長翼の枚数Zrを、Zr=9とし、短翼S,Sのそれぞれの不等ピッチ角θ,θを求めると、θ=20°,θ=10°になる。 From the above equation, when the number Zr of the long blades is Zr = 9 and the unequal pitch angles θ 1 and θ 2 of the short blades S 1 and S 2 are obtained, θ 1 = 20 °, θ 2 = 10 It becomes °.

また、図3から、短翼S,Sの圧力を互いが同等レベルにし、水力機械全体としてより適正な特性とするためには、短翼Sの不等ピッチ角θを短翼Sの不等ピッチ角θよりも大きくすることが必要であるとわかった。 Further, from FIG. 3, in order to make the pressures of the short blades S 1 and S 2 to be equal to each other and to have more appropriate characteristics as the whole hydraulic machine, the unequal pitch angle θ 1 of the short blade S 1 is set to the short blade. it has been found that it is necessary to be larger than the unequal pitch angle theta 2 of S 2.

このように、本実施形態は、一方の長翼Lと隣りの長翼Lとの間に2枚の短翼S,Sを配置する構成にしたので、偶数枚のガイドベーンと組み合せても、枚数の組み合せから生ずる動翼、静翼の干渉に基づいて発生する振動を低減することができ、ランナ自身の固有振動数を高くすることができ、水力性能に優れた水力機械のランナを実現することができる。 Thus, in the present embodiment, since the two short blades S 1 and S 2 are arranged between one long blade L 1 and the adjacent long blade L 2 , an even number of guide vanes and Even when combined, the vibration generated by the interference of the moving blades and stationary blades resulting from the combination of the number of sheets can be reduced, the natural frequency of the runner itself can be increased, and the hydraulic machine with excellent hydraulic performance A runner can be realized.

[第2実施形態]
図4は、本発明に係る水力機械のランナの第2実施形態を示す概念図である。
[Second Embodiment]
FIG. 4 is a conceptual diagram showing a second embodiment of the runner of the hydraulic machine according to the present invention.

なお、第1実施形態の構成要素と同一の構成要素には、同一符号を付し、重複説明を省略する。   In addition, the same code | symbol is attached | subjected to the component same as the component of 1st Embodiment, and duplication description is abbreviate | omitted.

本実施形態に係る水力機械のランナは、一方の長翼Lと隣り合う他方の長翼Lとの間に2枚の短翼S,Sを配置し、長翼L,Lと2枚の短翼S,Sとのプロファイルを異ならしめるとともに、長翼L,LにおけるキャンバーラインCLLの入口端角をβL、水車運転時の回転方向側に位置する短翼SにおけるキャンバーラインCLSの入口端角度をβS、水車運転時の回転方向と逆方向側に位置する短翼SにおけるキャンバーラインCLSの入口端角をβS2とするとき、各入口端角βL,βS,βSは、
[数1]
βL>βS>βS
の関係式を満たしたものである。
In the runner of the hydraulic machine according to the present embodiment, two short blades S 1 and S 2 are disposed between one long blade L 1 and the other adjacent long blade L 2, and the long blades L 1 and L 2 are arranged. The two blades S 1 and S 2 have different profiles, and the long blades L 1 and L 2 have a camber line CLL inlet end angle βL, and the short blades are located on the rotation direction side during water turbine operation. when .beta.S 2 the inlet end angle of camber lines CLS 1 in S 1, the inlet end angle of camber lines CLS 2 in short blade S 2 located in the direction opposite to the rotation direction side when the water wheel operation and Betaesu2, each inlet end The angles βL, βS 1 , βS 2 are
[Equation 1]
βL> βS 2 > βS 1
This satisfies the relational expression.

また、本実施形態は、長翼L,Lおよび短翼S,Sのそれぞれの入口端を、等ピッチPで配置するものの、各長翼L,Lおよび短翼S,Sでの入口端角が異なるため、短翼S,Sのそれぞれの出口端半径位置は、第1実施形態と同様に、隣接する長翼L,LのキャンバーラインCLL間を3等分する2本の曲線MLに対して水車運転時の回転方向と逆方向にそれぞれ不等ピッチ角θ,θだけ回転した位置に設定したものである。 In the present embodiment, the long blades L 1 and L 2 and the short blades S 1 and S 2 have their inlet ends arranged at an equal pitch P. However, the long blades L 1 and L 2 and the short blades S 1 , S 2 have different inlet end angles, so that the outlet end radial positions of the short blades S 1 , S 2 are between the camber lines CLL of the adjacent long blades L 1 , L 2 , as in the first embodiment. Are set to positions rotated by unequal pitch angles θ 1 and θ 2 in the direction opposite to the rotation direction during the water turbine operation, respectively, with respect to the two curves ML.

ここで不等ピッチ角θ,θは、第1実施形態と同様に、θ=2×θの関係を満たすだけ回転させた位置に設定したものである。 Here, as in the first embodiment, the unequal pitch angles θ 1 and θ 2 are set at positions rotated so as to satisfy the relationship θ 1 = 2 × θ 2 .

このように、本実施形態は、長翼L,Lおよび短翼S,Sのそれぞれの入口端を等ピッチPに設定したので、ピッチの不均衡が原因となるガイドベーンとの動翼、静翼の干渉に基づいて発生する振動を抑制することができる。 Thus, in this embodiment, since the inlet ends of the long blades L 1 and L 2 and the short blades S 1 and S 2 are set to the equal pitch P, the guide vanes caused by the pitch imbalance can be obtained. The vibration generated based on the interference between the moving blade and the stationary blade can be suppressed.

一方、水車運転時の入口キャビテーションは、翼への動力水の流入角と、翼入口角とのずれが大きくなると発生する。特に、スプリッタランナは、短翼S,Sの翼負荷が長翼L,Lの翼負荷に較べて少なくなっているので、翼周りの循環が小さくなり、翼への相対流入流れに作用する偏向力が小さくなる。このため、動力水は、より小さな流れ角で翼に流入する。 On the other hand, inlet cavitation during water turbine operation occurs when the difference between the inflow angle of the power water to the blade and the blade inlet angle increases. In particular, since the blade load of the short blades S 1 and S 2 is smaller than the blade load of the long blades L and L, the splitter runner reduces the circulation around the blades and acts on the relative inflow flow to the blades. The deflection force to be reduced. For this reason, the power water flows into the wing at a smaller flow angle.

したがって、翼負荷が小さいと、翼圧力面側は局所的な圧力降下が生じ易くなり、翼入口端側でよりのキャビテーションが生成される。   Therefore, when the blade load is small, a local pressure drop tends to occur on the blade pressure surface side, and more cavitation is generated on the blade inlet end side.

キャビテーションの生成を抑制するためには、翼負荷を増加させるとともに、翼の入口角を動力水の流れ角と合せることが必要とされる。長翼Lと、隣接する長翼L間に配置した2枚の短翼S,Sがともに同一の翼入口角度をもつと、キャビテーションは、長翼L,L、短翼S、短翼Sの順に特性が良くなる。 In order to suppress the generation of cavitation, it is necessary to increase the blade load and match the inlet angle of the blade with the flow angle of the power water. When the long blade L 1 and the two short blades S 1 and S 2 arranged between the adjacent long blades L have the same blade inlet angle, the cavitation is caused by the long blades L 1 and L 2 and the short blade S. 2, the characteristics is improved in the order of short blade S 1.

その一方、水力機械全体としてのキャビテーションの特性は、最も特性の悪い翼を基準に置いて運転範囲が制限されるので、本来、全ての翼がキャビテーションの特性を一致させることが望ましく、キャビテーションの特性を翼一つだけ良くしても実用的ではない。   On the other hand, the cavitation characteristics of the hydraulic machine as a whole are limited based on the wings with the worst characteristics. Therefore, it is desirable that all wings have the same cavitation characteristics. It is not practical to improve just one wing.

したがって、長翼L(L)の入口角βL、短翼Sの入口角βS、短翼Sの入口角βSとの関係では、βL>βS>βSを満たせば、各翼L,S,Sでのキャビテーションの差がなくなり、また、水力機械全体としての特性をより良好に改善することができる。 Thus, the inlet angle .beta.L the Tsubasa Cho L 1 (L 2), the inlet angle .beta.S 2 short blades S 2, in relation to the inlet angle .beta.S 1 short blades S 1, if satisfied βL> βS 2> βS 2, There is no difference in cavitation between the blades L, S 2 and S 1 , and the characteristics of the hydraulic machine as a whole can be improved more favorably.

[第3実施形態]
図5は、本発明に係る水力機械のランナの第3実施形態を示す概念図である。
[Third Embodiment]
FIG. 5 is a conceptual diagram showing a third embodiment of the runner of the hydraulic machine according to the present invention.

なお、第1実施形態の構成要素と同一の構成要素には、同一符号を付し、重複説明を省略する。   In addition, the same code | symbol is attached | subjected to the component same as the component of 1st Embodiment, and duplication description is abbreviate | omitted.

本実施形態に係る水力機械のランナは、一方の長翼Lと隣り合う他方の長翼Lとの間に2枚の短翼S,Sを配置し、長翼L,Lと2枚の短翼S,Sとのプロファイルを異ならしめるとともに、短翼Sの長さLSを短翼Sの長さLSに較べて短くし、また、短翼Sの出口端の厚さを長翼L(L)や短翼Sの出口端の厚さに較べて薄くしたものである。 In the runner of the hydraulic machine according to the present embodiment, two short blades S 1 and S 2 are disposed between one long blade L 1 and the other adjacent long blade L 2, and the long blades L 1 and L 2 are arranged. 2 and short blade S 1 of two, with made different profiles and S 2, the length LS 2 short blades S 2 and shorter than the length LS 1 of the short wing S 1, also short blade S It compared the thickness of the second outlet end to long blade L 1 (L 2) and short wings S thickness of 1 the outlet end is obtained by thinning.

なお、短翼S,Sともに、キャンバーラインCLS,CLSが隣接する長翼L,LのキャンバーラインCLL間を3等分する2本の曲線ML上に重なっているが、これは第1誌実施例や第2実施形態で述べた不等ビッチ角として用いてもよい。 Both the short wings S 1 and S 2 overlap the camber lines CLS 1 and CLS 2 on the two curves ML that divide the camber lines CLL between the adjacent long wings L 1 and L 2 into three equal parts. This may be used as the unequal bitch angle described in the first magazine example or the second embodiment.

これまでの研究によれば、短翼S,Sの翼負荷は、短翼S,Sのそれぞれの長さCLS,CLSにも大きく依存し、短翼S,Sがより短くなると、翼負荷が減少するとされている。 According to previous studies, the blade loading of the short blade S 1, S 2 is dependent short blade S 1, respective lengths CLS 1 of S 2, CLS 2 to greater, short blade S 1, S 2 It is said that the blade load will be reduced if becomes shorter.

今、同じ長さの2枚の短翼S,Sについて考察してみると、水車運転時の回転方向側に位置する短翼Sの翼負荷BLSは、図6の圧力分布線図で示したように、水車運転時の回転方向と逆方向側に位置する短翼Sの翼負荷BLSや長翼L(L)の翼負荷BLLに較べて小さい。 Considering now two short blades S 1 and S 2 of the same length, the blade load BLS 1 of the short blade S 1 located on the rotational direction side during the water turbine operation is the pressure distribution line of FIG. as shown, small compared to the blade loading BLL of blade loading BLS 2 and long blades L 1 of the short wing S 2 located in the direction opposite to the rotation direction side when water turbine operation (L 2).

このような事象から、短翼Sは、キャビテーション特性の余裕分を少なくさせ、短翼Sと同一の翼負荷となるまで翼の長さを短くすることができる。翼を短くすれば、翼面の濡れふち面積が小さくなり、摩擦損失が少なくなり、さらに、短翼出口端付近の翼間隙間が大きくなり、ランナの製作や保守等に対する工数をより一層少なくすることができる。但し、ある限度を超えて短翼Sを短くすると、翼負荷BLSの大きさが短翼Sの翼負荷に較べて小さくなり、短翼Sのキャビテーション特性が悪くなり、水力機械全体としても悪くなる。 From such an event, the short blade S 2 can reduce the margin of the cavitation characteristics and shorten the blade length until the blade load becomes the same as that of the short blade S 1 . Shorter blades reduce the wetted area of the blade surface, reduce friction loss, and increase the gap between the blades near the outlet of the short blade, further reducing man-hours for runner manufacturing and maintenance. be able to. However, if the short blade S 2 is shortened beyond a certain limit, the blade load BLS 2 is smaller than the blade load of the short blade S 1 , the cavitation characteristics of the short blade S 2 are deteriorated, and the entire hydraulic machine Even worse.

図7は、短翼Sに対する短翼Sの翼長さ比と両短翼S,Sの翼負荷の差とを示す翼負荷線図である。 Figure 7 is a blade loading diagram illustrating a blade length ratio of the short blade S 2 for short blade S 1 and the difference in blade loading of both short blades S 1, S 2.

短翼Sが短翼Sの60%以上であれば、翼負荷が逆転することがなく、短翼Sの翼長さLSを短翼Sの翼長さLSの60%〜100%の範囲で選定でき、キャビテーションを抑制して高効率のランナを実現することができる。 If short blade S 2 is 60% or more of the short blade S 1, without the blade loading is reversed, 60% of the blade length LS 1 of the short blades S 2 blade length LS 2 short wing S 1 It can be selected within a range of ˜100%, and a highly efficient runner can be realized while suppressing cavitation.

次に、短翼S,Sの出口端の厚について考察する。 Next, the thickness of the outlet ends of the short blades S 1 and S 2 will be considered.

短翼S,SのそれぞれのキャンバーラインCLS,CLSに沿って動力水が流れると、短翼S,Sの入口端と出口端は、薄いほど淀み点や後流による影響が小さくなり、損失が低下する。 When short blade S 1, S each camber line CLS 1 of 2, CLS 2 power water along the flow, the inlet and outlet ends of the short blade S 1, S 2 is affected by thinner stagnation point and Wake Becomes smaller and loss is reduced.

このため、本実施形態では、短翼S,Sの出口端を薄くし、損失の低減化を図っている。 For this reason, in this embodiment, the exit ends of the short blades S 1 and S 2 are thinned to reduce loss.

他方、ポンプ運転時、運転点によっては翼に流入する動力水の相対流入角が変化し、ポンプ入口側の動力水の流入角と翼角度との相違が大きくなると、キャビテーションが生成される。このため、ランナの翼は、通常、動力水の流入角の変化による影響を受けないように、ポンプ入口側の翼の厚さを厚くする設計を行っている。   On the other hand, when the pump is operating, the relative inflow angle of the power water flowing into the blades varies depending on the operating point, and cavitation is generated when the difference between the inflow angle of the power water on the pump inlet side and the blade angle becomes large. For this reason, the runner blades are usually designed to increase the thickness of the blades on the pump inlet side so as not to be affected by changes in the inflow angle of the power water.

しかし、スプリッタランナは、短翼S,Sを長翼L,Lよりも回転下流側に位置させているので、比較的整流された動力水の流れが流入することになり、運転点の変化による動力水の流入角の変化は小さく、キャビテーションの生成を心配する必要が少ない。 However, in the splitter runner, the short blades S 1 and S 2 are positioned on the downstream side of the rotation of the long blades L 1 and L 2. The change of the inflow angle of the power water due to the change of the point is small, and there is little need to worry about the generation of cavitation.

以上説明した第1ないし第3実施形態を採用した水力機械によれば、ランナ内を流れる水流による振動が減少するとともにキャビテーションの発生がなくなるため、効率の高い運転が可能となり、ひいては発電効率の向上を行うことが可能となる。   According to the hydraulic machine adopting the first to third embodiments described above, vibration due to the water flow flowing in the runner is reduced and cavitation is not generated, so that highly efficient operation is possible, and thus power generation efficiency is improved. Can be performed.

本発明に係る水力機械のランナの第1実施形態を示す概念図。The conceptual diagram which shows 1st Embodiment of the runner of the hydraulic machine which concerns on this invention. 本発明に係る水力機械のランナの第1実施形態における長翼と短翼との翼面圧力分布を比較する翼面圧力分布線図。The blade surface pressure distribution diagram which compares the blade surface pressure distribution of the long blade and the short blade in 1st Embodiment of the runner of the hydraulic machine which concerns on this invention. 本発明に係る水力機械のランナの第1実施形態における短翼の入口端での降下圧力の変化を示す降下圧力線図。The pressure drop diagram which shows the change of the pressure drop in the inlet end of the short blade in 1st Embodiment of the runner of the hydraulic machine which concerns on this invention. 本発明に係る水力機械のランナの第2実施形態を示す概念図。The conceptual diagram which shows 2nd Embodiment of the runner of the hydraulic machine which concerns on this invention. 本発明に係る水力機械のランナの第3実施形態を示す概念図。The conceptual diagram which shows 3rd Embodiment of the runner of the hydraulic machine which concerns on this invention. 本発明に係る水力機械のランナの第3実施形態における長翼と短翼との翼面圧力分布を比較する翼面圧力分布線図。The blade surface pressure distribution diagram which compares the blade surface pressure distribution of the long blade and the short blade in 3rd Embodiment of the runner of the hydraulic machine which concerns on this invention. 本発明に係る水力機械のランナの第3実施形態における2つの短翼の翼負荷との差を示す翼負荷線図。The blade load diagram which shows the difference with the blade load of two short blades in 3rd Embodiment of the runner of the hydraulic machine which concerns on this invention. 従来の水力機械のランナを示す一部切欠断面図。The partially cutaway sectional view showing the runner of the conventional hydraulic machine. ランナの周方向に沿って同一形状の翼を配置する従来の水力機械のランナを示す概念図。The conceptual diagram which shows the runner of the conventional hydraulic machine which arrange | positions the blade | wing of the same shape along the circumferential direction of a runner. ランナの周方向に沿って長翼、短翼を交互に配置する従来のスプリッタランナを示す概念図。The conceptual diagram which shows the conventional splitter runner which arrange | positions a long blade and a short blade alternately along the circumferential direction of a runner.

符号の説明Explanation of symbols

1 ランナ
2 回転軸
3 翼
4 入口側
5 出口側
10 ランナ
1 Runner 2 Rotating Shaft 3 Blade 4 Inlet Side 5 Outlet Side 10 Runner

Claims (11)

ランナの翼を長翼と短翼とに区分けし、区分けした長翼と短翼とを前記ランナの周方向に沿って配置した水力機械のランナにおいて、前記一方の長翼と隣の長翼との間に2枚の短翼を配置する構成にしたことを特徴とする水力機械のランナ。 In the runner of a hydraulic machine in which the wings of the runner are divided into long wings and short wings, and the divided long wings and short wings are arranged along the circumferential direction of the runner, the one long wing and the adjacent long wing A hydraulic machine runner characterized in that two short blades are arranged between the two. ランナの翼を長翼と短翼とに区分けし、区分けした長翼と短翼とを前記ランナの周方向に沿って配置した水力機械のランナにおいて、前記一方の長翼と隣の長翼との間に2枚の短翼を配置するとともに、前記ランナの周方向に沿って配置した長翼および短翼の合計全翼枚数を9枚に設定したことを特徴とする水力機械のランナ。 In the runner of a hydraulic machine in which the wings of the runner are divided into long wings and short wings, and the divided long wings and short wings are arranged along the circumferential direction of the runner, the one long wing and the adjacent long wing A hydraulic machine runner characterized in that two short blades are arranged between the two blades, and the total number of long blades and short blades arranged along the circumferential direction of the runner is set to nine. 前記2枚の短翼は、キャンバーラインを、短翼出口端半径方向位置において、隣接する長翼のキャンバーラインを3等分する2本の曲線に対し、水車運転時の回転方向と逆方向に不等ピッチ角θ,θだけ回転させた位置に配置したことを特徴とする請求項1または2記載の水力機械のランナ。 The two short blades have a camber line in the radial direction position of the short blade outlet end in a direction opposite to the rotation direction during turbine operation with respect to two curves that divide the camber line of the adjacent long blade into three equal parts. 3. The hydraulic machine runner according to claim 1, wherein the runner is disposed at a position rotated by unequal pitch angles [theta] 1 , [theta] 2 . 前記2枚の短翼の不等ピッチ角θ,θは、水車出口端の半径方向位置において、長翼と短翼の合計枚数をZrとし、水車運転時のランナの回転方向に位置する側の短翼の出口端と、隣接する長翼のキャンバーライン間を3等分する曲線とのなす角を不等ピッチ角θとし、水車運転時のランナの回転方向と逆方向に位置する側の短翼の出口端と隣接する長翼のキャンバーライン間を3等分する曲線とのなす角を不等ピッチ角θとするとき、
Figure 2007107428
の範囲内に設定したことを特徴とする請求項3記載の水力機械のランナ。
The unequal pitch angles θ 1 and θ 2 of the two short blades are located in the rotation direction of the runner during the water turbine operation, with the total number of long blades and short blades being Zr at the radial position of the turbine exit end. The angle formed by the exit end of the short blade on the side and the curve dividing the camber line between adjacent long blades into three equal parts is the unequal pitch angle θ 1 and is located in the direction opposite to the runner rotation direction during water turbine operation When the angle formed between the exit end of the short blade on the side and the curve dividing the camber line of the adjacent long blade into three equal parts is an unequal pitch angle θ 2
Figure 2007107428
The runner for a hydraulic machine according to claim 3, wherein the runner is set within the range.
前記2枚の短翼の不等ピッチ角θ,θは、θ>θの関係式を満たすことを特徴とする請求項4記載の水力機械のランナ。 The hydraulic machine runner according to claim 4, wherein the unequal pitch angles θ 1 and θ 2 of the two short blades satisfy a relational expression of θ 1 > θ 2 . 前記2枚の短翼の不等ピッチ角θ,θは、θ=2×θの関係式を満たすことを特徴とする請求項4記載の水力機械のランナ。 The hydraulic machine runner according to claim 4, wherein the unequal pitch angles θ 1 and θ 2 of the two short blades satisfy a relational expression of θ 1 = 2 × θ 2 . 前記2枚の短翼は、キャンバーラインを、短翼出口端半径方向位置において、隣接する長翼のキャンバーラインを3等分する2本の曲線に対し、水車運転時の回転方向と逆方向に不等ピッチ角θ,θだけ回転させた位置に配置させる一方、前記長翼のキャンバーラインにおける入口端角をβLとし、前記2枚の短翼のうち、水車運転時の回転方向側に位置する短翼におけるキャンバーラインの入口端角をβSとし、水車運転時の回転方向と逆方向に位置する短翼におけるキャンバーラインの入口端角をβSとするとき、各入口端角は、
[数2]
βL>βS>βS
の関係式を満たすとともに、前記各翼の入口端間を等ピッチに配置する構成にしたことを特徴とする請求項1または2記載の水力機械のランナ。
The two short blades have a camber line in the radial direction of the short blade outlet end in a direction opposite to the rotation direction during turbine operation with respect to two curves that divide the camber line of the adjacent long blade into three equal parts. While being arranged at a position rotated by unequal pitch angles θ 1 and θ 2 , the inlet end angle in the camber line of the long blades is βL, and of the two short blades, on the rotation direction side during water turbine operation When the inlet end angle of the camber line in the short blade located is βS 1 and the inlet end angle of the camber line in the short blade located in the direction opposite to the rotation direction during the water turbine operation is βS 2 , each inlet end angle is
[Equation 2]
βL> βS 2 > βS 1
3. The hydraulic machine runner according to claim 1, wherein the relational expression is satisfied, and the inlet ends of the blades are arranged at an equal pitch. 4.
水車運転時のランナの回転方向と逆方向に位置する側の短翼のキャンバーラインの長さをLSとし、水車運転時と逆方向に位置する側の短翼のキャンバーラインの長さをLSとするとき、2枚の短翼のキャンバーラインの長さ比LS/LSは、
[数3]
0.6≦LS2/LS1≦1.0
の範囲内に設定したことを特徴とする請求項1または2記載の水力機械のランナ。
The length of the camber line of the short blade located on the side opposite to the rotation direction of the runner during the water turbine operation is LS 2, and the length of the camber line of the short blade located on the side opposite to the water turbine operation is LS. 1 , the length ratio LS 2 / LS 1 between the two short wing camber lines is
[Equation 3]
0.6 ≦ LS2 / LS1 ≦ 1.0
The runner for a hydraulic machine according to claim 1 or 2, wherein the runner is set within a range of.
前記2枚の短翼のキャンバーライン上の入口端と出口端との中間位置における翼厚さのうち、小さい方の翼厚さをtsとし、長翼のキャンバーライン上の入口端と出口端との中間位置における翼厚さをtLとするとき、短翼の翼厚さtsと長翼の翼厚さtLとの比ts/tLは、
[数4]
0.4≦ts/tL≦1.0
の範囲内に設定したことを特徴とする請求項1または2記載の水力機械のランナ。
Of the blade thicknesses at the intermediate position between the inlet end and the outlet end on the two short blade camber lines, the smaller blade thickness is ts, and the inlet end and outlet end on the long blade camber line are When the blade thickness at the intermediate position is tL, the ratio ts / tL between the blade thickness ts of the short blade and the blade thickness tL of the long blade is
[Equation 4]
0.4 ≦ ts / tL ≦ 1.0
The runner for a hydraulic machine according to claim 1 or 2, wherein the runner is set within a range of.
2枚の短翼の水車出口端の厚さは、長翼の水車出口端の厚さよりも小さく設定したことを特徴とする請求項1または2記載の水力機械のランナ。 The runner of a hydraulic machine according to claim 1 or 2, wherein the thickness of the two turbine blade outlet ends of the short blades is set smaller than the thickness of the turbine blade outlet ends of the long blades. 請求項1ないし請求項10記載の水力機械のランナを備えた水力機械。 The hydraulic machine provided with the runner of the hydraulic machine of Claim 1 thru | or 10.
JP2005297820A 2005-10-12 2005-10-12 Runner for hydraulic machine and hydraulic machine using the same Pending JP2007107428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297820A JP2007107428A (en) 2005-10-12 2005-10-12 Runner for hydraulic machine and hydraulic machine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297820A JP2007107428A (en) 2005-10-12 2005-10-12 Runner for hydraulic machine and hydraulic machine using the same

Publications (1)

Publication Number Publication Date
JP2007107428A true JP2007107428A (en) 2007-04-26

Family

ID=38033489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297820A Pending JP2007107428A (en) 2005-10-12 2005-10-12 Runner for hydraulic machine and hydraulic machine using the same

Country Status (1)

Country Link
JP (1) JP2007107428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960091B (en) * 2008-02-15 2015-02-25 阿尔斯通再生能源技术公司 Wheel for hydraulic machine, hydraulic machine including such wheel, and energy conversion plant including such hydraulic machine
CN104603451A (en) * 2012-09-07 2015-05-06 戴纳维科公司 Runner device for hydraulic fluid flow machine
JP7085406B2 (en) 2018-05-15 2022-06-16 株式会社東芝 Hydraulic machine runner and hydraulic machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960091B (en) * 2008-02-15 2015-02-25 阿尔斯通再生能源技术公司 Wheel for hydraulic machine, hydraulic machine including such wheel, and energy conversion plant including such hydraulic machine
CN104603451A (en) * 2012-09-07 2015-05-06 戴纳维科公司 Runner device for hydraulic fluid flow machine
JP7085406B2 (en) 2018-05-15 2022-06-16 株式会社東芝 Hydraulic machine runner and hydraulic machine

Similar Documents

Publication Publication Date Title
JP5946707B2 (en) Axial turbine blade
JP4923073B2 (en) Transonic wing
US7210908B2 (en) Hydraulic machine rotor
JP2009007981A (en) Intermediate fixing and supporting structure for steam-turbine long moving blade train, and steam turbine
CN101713364B (en) Hydraulic machine
AU2013333059B2 (en) Hydraulic machine
EP3172431B1 (en) Francis turbine with short blade and short band
KR102056695B1 (en) High Efficiency Large Francis Turbine
JP4693687B2 (en) Axial water turbine runner
JP5314441B2 (en) Centrifugal hydraulic machine
JP2007107428A (en) Runner for hydraulic machine and hydraulic machine using the same
CN100398811C (en) Axial radial-flow type turbine
JP5135296B2 (en) Turbine cascade, turbine stage using the same, axial turbine
JP4703578B2 (en) Francis turbine
JP4846139B2 (en) Hydraulic machine
JP5641971B2 (en) Fluid machine guide vanes and fluid machines
JP3822416B2 (en) Francis type pump turbine
US20070140852A1 (en) Francis pump-turbine
JP4861132B2 (en) Hydraulic machine runner and method for producing hydraulic machine runner
JP7278985B2 (en) Runner for Francis turbine and Francis turbine
JP5843445B2 (en) Diffuser structure for fluid machinery
JP2004156587A (en) Hydraulic turbine
JP5197805B2 (en) Hydraulic machine
JP7085406B2 (en) Hydraulic machine runner and hydraulic machine
JP6239258B2 (en) Axial water turbine