JP4693687B2 - Axial water turbine runner - Google Patents

Axial water turbine runner Download PDF

Info

Publication number
JP4693687B2
JP4693687B2 JP2006117660A JP2006117660A JP4693687B2 JP 4693687 B2 JP4693687 B2 JP 4693687B2 JP 2006117660 A JP2006117660 A JP 2006117660A JP 2006117660 A JP2006117660 A JP 2006117660A JP 4693687 B2 JP4693687 B2 JP 4693687B2
Authority
JP
Japan
Prior art keywords
runner
blade
tip
runner blade
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006117660A
Other languages
Japanese (ja)
Other versions
JP2007291874A (en
Inventor
保之 榎本
敏暁 鈴木
典男 大竹
朗 篠原
光一郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006117660A priority Critical patent/JP4693687B2/en
Publication of JP2007291874A publication Critical patent/JP2007291874A/en
Application granted granted Critical
Publication of JP4693687B2 publication Critical patent/JP4693687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

本発明は、一方端がスピンドルを中心に回転するボスに取り付けられ、他方端がディスチャージリングに対向して配置されるランナ羽根を有した軸流水車ランナに関する。   The present invention relates to an axial-flow turbine runner having runner blades attached at one end to a boss rotating around a spindle and having the other end opposed to a discharge ring.

カプラン水車やバルブ水車等の軸流水車では上池からの水流は、流量を調整するガイドベーンを通って回転部である軸流水車ランナへと流れ込む。この回転部の軸流水車ランナで水流のエネルギーを回転エネルギーに変換し、軸流水車ランナで回収された回転エネルギーで主軸に回転力を与え、主軸に取り付けられた発電機を回転し電力へと変換される。   In an axial water turbine such as a Kaplan turbine or a valve turbine, the water flow from the upper pond flows into an axial turbine turbine runner that is a rotating part through a guide vane that adjusts the flow rate. The axial flow turbine runner of this rotating part converts the energy of the water flow into rotational energy, the rotational energy recovered by the axial flow turbine runner gives rotational force to the main shaft, and the generator attached to the main shaft rotates to turn it into electric power. Converted.

軸流水車ランナを通り抜けた水流は、吸出し管を経て下池へ流出する。回転部の軸流水車ランナの外周端と静止部であるディスチャージリングとの間には狭い隙間が設けられており、水車運転時には、この隙間からランナ羽根間を通らない流れが発生してしまう。   The water flow that passes through the axial water turbine runner flows out to the lower pond through the suction pipe. A narrow gap is provided between the outer peripheral end of the axial-flow water turbine runner of the rotating part and the discharge ring which is a stationary part, and a flow that does not pass between the runner blades is generated from this gap during the water turbine operation.

このランナ羽根間を通らない流れは、軸流水車ランナに回転エネルギーをもたらすことなく流れてしまうため、水車の効率の低下に繋がってしまう。また、この隙間部での流れは流速が大きいため圧力低下をもたらし、キャビテーションが発生する要因ともなる。このキャビテーションは羽根の壊食や、キャビテーション崩壊時に発生する振動、騒音などにより、水車の運転範囲を制限する要因ともなる。   Since the flow that does not pass between the runner blades flows without causing rotational energy to the axial flow turbine runner, the efficiency of the turbine is reduced. Moreover, since the flow in this gap part has a high flow velocity, it causes a pressure drop, which also causes cavitation. This cavitation also becomes a factor that limits the operation range of the turbine due to blade erosion, vibration, noise, and the like generated when cavitation collapses.

そこで、このような漏れ流れを低減するために、ランナ羽根の外周端部にフィレットを設置したもの(例えば、特許文献1参照)や、ランナ羽根の翼端部を丸めたものがある(例えば、特許文献2参照)。
実公昭61−76170号公報 特開平4−246278号公報
Therefore, in order to reduce such a leakage flow, there are those in which a fillet is installed at the outer peripheral end of the runner blade (for example, refer to Patent Document 1) and those in which the blade end of the runner blade is rounded (for example, Patent Document 2).
Japanese Utility Model Publication No. 61-76170 JP-A-4-246278

しかし、水車は流量や落差の異なる様々な運転状態で使用されるため、ランナ羽根に流れ込む水流は運転状態により大きく異なってくる。ランナ羽根の水の入口ではランナ羽根角度と流れ角度との不一致による衝突損失の増大やランナ羽根面近傍の圧力低下によりキャビテーションが発生することがある。また、設計落差よりも低落差側で運転される場合には、ランナ羽根の圧力面側では相対的に流速が遅いため、遠心力の影響により流れが外周側に偏り設計流線に沿わない流れ(2次流れ)が大きくなる。従って、損失が発生し水車効率の低下に繋がる。   However, since the water wheel is used in various operating states with different flow rates and heads, the water flow flowing into the runner blades varies greatly depending on the operating state. Cavitation may occur at the water inlet of the runner blade due to an increase in collision loss due to a mismatch between the runner blade angle and the flow angle or a pressure drop near the runner blade surface. Also, when operating on the lower head side than the design head, the flow velocity is relatively slow on the pressure surface side of the runner blades, so the flow is biased toward the outer periphery due to the centrifugal force and does not follow the design streamline. (Secondary flow) increases. Therefore, a loss occurs and the turbine efficiency is reduced.

図15は従来の軸流水車ランナの子午面図、図16は図15のA−A線での断面図、図17は図15のB−B線、C−C線での断面図である。軸流水車ランナ11は、スピンドルを中心に回転するボス12にランナ羽根13の一方端が取り付けられて形成される。ランナ羽根13の他方端はチップ14としてディスチャージリング15に対向して配置される。図15では左側が水の入口であり、右側が水の出口である場合を示している。   15 is a meridional view of a conventional axial water turbine runner, FIG. 16 is a cross-sectional view taken along line AA in FIG. 15, and FIG. 17 is a cross-sectional view taken along line BB and CC in FIG. . The axial water turbine runner 11 is formed by attaching one end of a runner blade 13 to a boss 12 that rotates about a spindle. The other end of the runner blade 13 is disposed as a tip 14 so as to face the discharge ring 15. FIG. 15 shows a case where the left side is the water inlet and the right side is the water outlet.

図16に示すように、ランナ羽根13の裏面側のチップ14にフィレット16が設けられており、ボス12側でランナ羽根の肉厚が最大になり、チップ14側にいくに従い徐々にランナ羽根13の肉厚が減少する形状となっている。これは軸流水車ランナ11のランナ羽根13は、ボス12に取り付けられるスピンドルを中心に回転する機構となっているので、ボス12側で強度を確保する必要があるためである。   As shown in FIG. 16, the fillet 16 is provided on the tip 14 on the back side of the runner blade 13, the runner blade thickness is maximized on the boss 12 side, and gradually toward the tip 14 side. It has a shape that reduces the wall thickness. This is because the runner blades 13 of the axial water turbine runner 11 have a mechanism that rotates around a spindle attached to the boss 12, so that it is necessary to ensure strength on the boss 12 side.

このように、ボス12側のランナ羽根13の厚みが相対的に厚くなり、チップ14側にいくほど徐々に薄くなっているので、図17に示すように、ランナ羽根13の水の入口先端は、チップ14側にいくほど徐々に鋭頭形状となる。従って、図18に示すように、ランナ羽根13の水の入口先端の水流に流れの剥離W1が生じやすいものとなっている。また、図19に示すように、ランナ羽根13に流れる水流は外周側に偏る流れW’となる。これは、ランナ羽根13がボス12側からチップ14側にいくに従い徐々にランナ羽根13の肉厚が減少する形状となっているからである。   As described above, the runner blade 13 on the boss 12 side is relatively thicker and gradually becomes thinner toward the tip 14 side. Therefore, as shown in FIG. The tip gradually becomes sharper toward the tip 14 side. Therefore, as shown in FIG. 18, the flow separation W <b> 1 is likely to occur in the water flow at the tip of the water inlet of the runner blade 13. Further, as shown in FIG. 19, the water flow flowing through the runner blades 13 becomes a flow W ′ that is biased toward the outer peripheral side. This is because the thickness of the runner blade 13 gradually decreases as the runner blade 13 moves from the boss 12 side to the tip 14 side.

本発明の目的は、ランナ羽根の外周部での漏れ流れを低減するとともに、ランナ羽根の入口での衝突損失やランナ羽根の圧力面での2次流れ損失を低減できる軸流水車ランナを提供することである。   An object of the present invention is to provide an axial-flow turbine runner that can reduce the leakage flow at the outer periphery of the runner blade and reduce the collision loss at the inlet of the runner blade and the secondary flow loss at the pressure surface of the runner blade. That is.

本発明に係わる軸流水車ランナは、一方端がスピンドルを中心に回転するボスに取り付けられ、他方端のチップがディスチャージリングに対向して配置されるランナ羽根を有した軸流水車ランナにおいて、前記ランナ羽根の最小肉厚点をチップとボスとの間に形成し、チップとボスとの両端に向かってランナ羽根の表面側の肉厚が徐々に厚くなるように形成したことを特徴とする。   An axial-flow turbine runner according to the present invention is an axial-flow turbine runner having runner blades, one end of which is attached to a boss that rotates about a spindle and the other end of the tip is disposed to face a discharge ring. The minimum thickness point of the runner blade is formed between the tip and the boss, and the thickness on the surface side of the runner blade is gradually increased toward both ends of the tip and the boss.

本発明によれば、ランナ羽根の最小肉厚点をチップとボスとの間に形成し、チップとボスとの両端に向かってランナ羽根の表面側の肉厚が徐々に厚くなるように形成したので、ランナ羽根の外周部での漏れ流れを低減するとともに、ランナ羽根の入口での衝突損失やランナ羽根の圧力面での2次流れ損失を低減できる。   According to the present invention, the minimum thickness point of the runner blade is formed between the tip and the boss, and the thickness on the surface side of the runner blade is gradually increased toward both ends of the tip and the boss. Therefore, the leakage flow at the outer peripheral portion of the runner blade can be reduced, and the collision loss at the inlet of the runner blade and the secondary flow loss at the pressure surface of the runner blade can be reduced.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる軸流水車ランナの子午面図、図2は図1のA−A線での断面図、図3は図1のB−B線、C−C線での断面図である。図1では左側が水の入口であり、右側が水の出口である場合を示しており、軸流水車ランナ11は、スピンドルを中心に回転するボス12にランナ羽根13の一方端が取り付けられて形成される。ランナ羽根13の他方端はチップ14としてディスチャージリング15に対向して配置される。   Embodiments of the present invention will be described below. 1 is a meridional view of an axial water turbine runner according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a line taken along lines BB and CC in FIG. FIG. FIG. 1 shows a case where the left side is an inlet for water and the right side is an outlet for water. In the axial water turbine runner 11, one end of a runner blade 13 is attached to a boss 12 that rotates about a spindle. It is formed. The other end of the runner blade 13 is disposed as a tip 14 so as to face the discharge ring 15.

図2に示すように、本発明の実施の形態のランナ羽根13はランナ羽根13の肉厚最小位置がチップ14とボス12との中央部付近にあり、中央部からチップ14およびボス12にかけて、ランナ羽根13の表面側の肉厚が徐々に増大している。また、ランナ羽根13の裏面側のチップ14にフィレット16が設けられている。さらに、図3に示すように、B−B断面とC−C断面での形状を比較すると、B−B断面つまりチップ14側でランナ羽根13の先端が鈍頭形状となり、チップ14端の羽根厚みが厚くなっている。   As shown in FIG. 2, in the runner blade 13 according to the embodiment of the present invention, the minimum thickness of the runner blade 13 is near the center of the tip 14 and the boss 12, and from the center to the tip 14 and the boss 12, The wall thickness on the surface side of the runner blade 13 gradually increases. A fillet 16 is provided on the tip 14 on the back side of the runner blade 13. Further, as shown in FIG. 3, when the shapes of the BB cross section and the CC cross section are compared, the tip of the runner blade 13 becomes blunt in the BB cross section, that is, on the tip 14 side, and the blade at the end of the tip 14 The thickness is increased.

図4は本発明の実施の形態における軸流水車ランナのランナ羽根13のチップ側での先端形状の説明図である。ランナ羽根13に流れる水流は外周側に偏る流れW”は、図19に示した従来のランナ羽根13の流跡線図と比較すると、ランナ羽根13の外周側に偏る流れが抑制されていることが分かる。これはランナ羽根13の表面が中央付近からチップ14にかけて厚くなったことにより、ランナ羽根13が凹状になり中央付近からチップ側へ流れにくくなったものである。これにより2次流れ損失が低減し水車効率の向上が可能となる。   FIG. 4 is an explanatory diagram of the tip shape on the tip side of the runner blade 13 of the axial flow turbine runner in the embodiment of the present invention. Compared with the flow diagram of the conventional runner blade 13 shown in FIG. 19, the flow W ″ of the water flow flowing through the runner blade 13 is suppressed toward the outer peripheral side. This is because the surface of the runner blade 13 becomes thicker from the vicinity of the center to the tip 14, so that the runner blade 13 becomes concave and difficult to flow from the vicinity of the center to the tip side. As a result, the turbine efficiency can be improved.

また、本発明の実施の形態による軸流ランナは、チップ端でのランナ羽根13の厚さが従来に比べ厚くなっているので、ランナ羽根13のチップ端とディスチャージリング15との隙間の間隔は従来と変わらないが、対向する面積が増えることによりシール効果が増大し、漏れ流れが低減され水車効率の向上が可能となる。さらに、ランナ羽根13のチップ側での先端形状が鈍頭形状になっているので、図5に示すように、ランナ羽根13に流れる水流Wは流れ角度の変化に対する感度が小さくなる。   Further, in the axial flow runner according to the embodiment of the present invention, the thickness of the runner blade 13 at the tip end is thicker than the conventional one, so that the clearance between the tip end of the runner blade 13 and the discharge ring 15 is as follows. Although not different from the conventional one, the sealing effect is increased by increasing the facing area, the leakage flow is reduced, and the turbine efficiency can be improved. Furthermore, since the tip shape of the runner blade 13 on the tip side is a blunt shape, the water flow W flowing through the runner blade 13 is less sensitive to changes in the flow angle, as shown in FIG.

図6は、本発明の実施の形態におけるランナ羽根面の圧力分布図である。縦軸は羽根面圧力係数Cp、横軸は羽根長さL/L0である。Lはランナ羽根13の入口から出口方向のある点までの長さ、L0はランナ羽根13の全長である。また、曲線Sは本発明の実施の形態のランナ羽根13による圧力分布曲線、S’は従来のランナ羽根13による圧力分布曲線である。図6に示すように、ランナ羽根13の入口での流れ角度の不一致による圧力低下が緩和される。従って、キャビテーション性能が向上する。   FIG. 6 is a pressure distribution diagram of the runner blade surface according to the embodiment of the present invention. The vertical axis represents the blade surface pressure coefficient Cp, and the horizontal axis represents the blade length L / L0. L is the length from the inlet of the runner blade 13 to a certain point in the outlet direction, and L0 is the total length of the runner blade 13. Further, the curve S is a pressure distribution curve by the runner blade 13 according to the embodiment of the present invention, and S ′ is a pressure distribution curve by the conventional runner blade 13. As shown in FIG. 6, the pressure drop due to the mismatch of the flow angle at the inlet of the runner blade 13 is alleviated. Therefore, the cavitation performance is improved.

次に、本発明の実施の形態におけるランナ羽根13の肉厚形状について説明する。図7は本発明の実施の形態におけるランナ羽根13の肉厚最小の位置の決め方の説明図である。ランナ羽根13のチップ14からボス12までの長さをH0、チップ14からランナ羽根13の肉厚が最小となる点までの長さをH1としたとき、0.3≦H1/H0≦0.6を満たすような肉厚形状とする。   Next, the thickness shape of the runner blades 13 in the embodiment of the present invention will be described. FIG. 7 is an explanatory diagram of how to determine the minimum wall thickness position of the runner blade 13 in the embodiment of the present invention. When the length from the tip 14 of the runner blade 13 to the boss 12 is H0, and the length from the tip 14 to the point where the thickness of the runner blade 13 is minimum is H1, 0.3 ≦ H1 / H0 ≦ 0. A thick shape satisfying 6 is adopted.

図8は同一運転状態における水車効率η/η0とランナ羽根13の肉厚最小の位置H/H0との関係を示す特性図である。なお、ηは実際の水車効率、η0は定格運転時の水車効率である。肉厚最小位置H1/H0が0.3〜0.6の範囲では水車効率η/η0の損失の低減効果が大きいことが分かる。   FIG. 8 is a characteristic diagram showing the relationship between the turbine efficiency η / η0 and the minimum wall thickness H / H0 of the runner blade 13 in the same operation state. Note that η is the actual turbine efficiency, and η0 is the turbine efficiency during rated operation. It can be seen that the effect of reducing the loss of the turbine efficiency η / η0 is large when the minimum wall thickness position H1 / H0 is in the range of 0.3 to 0.6.

H1/H0<0.3では2次流れを抑制する領域が小さくなってしまい損失低減量が小さい。また、H1/H0>0.6においては、チップ14側のランナ羽根13の厚さを同一とした場合、ランナ羽根13の厚み最小位置からチップ端側へのランナ羽根13の表面の曲率が相対的に大きくなり、2次流れの抑制効果が相対的に小さくなってしまう。これらのことから、0.3≦H1/H0≦0.6を満たす位置に羽根肉厚の最小点を設ける。これにより、水車効率η/η0の損失の低減を図ることが可能となる。   When H1 / H0 <0.3, the region for suppressing the secondary flow becomes small and the loss reduction amount is small. In addition, in H1 / H0> 0.6, when the thickness of the runner blade 13 on the tip 14 side is the same, the curvature of the surface of the runner blade 13 from the minimum thickness position of the runner blade 13 to the tip end side is relative. And the secondary flow suppression effect becomes relatively small. Therefore, the minimum point of the blade thickness is provided at a position satisfying 0.3 ≦ H1 / H0 ≦ 0.6. Thereby, it becomes possible to reduce the loss of the turbine efficiency η / η0.

図9は本発明の実施の形態におけるランナ羽根13の最小肉厚の決め方の説明図である。羽根最小肉厚をt0、チップ端近傍のフィレット16を除いたランナ羽根13の厚みの距離をt1としたとき、1.5≦t1/t0≦2.0を満たすような肉厚形状とする。また、チップ14のフィレット16を含めたチップ端厚みをt2としたとき、1.5≦t2/t1≦3.0を満たすような肉厚形状とする。   FIG. 9 is an explanatory diagram of how to determine the minimum wall thickness of the runner blade 13 according to the embodiment of the present invention. The thickness is such that 1.5 ≦ t1 / t0 ≦ 2.0, where t0 is the minimum blade thickness and t1 is the thickness distance of the runner blade 13 excluding the fillet 16 near the tip end. Further, when the tip end thickness including the fillet 16 of the tip 14 is t2, the thickness is set to satisfy 1.5 ≦ t2 / t1 ≦ 3.0.

チップ端のランナ羽根13の肉厚が厚くなると中央付近からチップ14側への2次流れが抑制されるとともに漏れ損失が小さくなるが、過度にチップ14端の厚みが厚くなるとランナ羽根13の先端での厚みが大きくなる。従って、ランナ羽根13の入口のキャビテーション性能は向上するが衝突損失が大きくなってしまう。また、チップ端のフィレット16の厚みt2はチップ端近傍の羽根厚みが厚くなったことに伴い、1.5≦t2/t1≦3.0の範囲でも十分に漏れ損失の低減ができることになる。   If the thickness of the runner blade 13 at the tip end is increased, the secondary flow from the center to the tip 14 side is suppressed and the leakage loss is reduced. However, if the tip end is excessively thick, the tip of the runner blade 13 is increased. The thickness at becomes large. Therefore, the cavitation performance at the inlet of the runner blade 13 is improved, but the collision loss is increased. In addition, the thickness t2 of the fillet 16 at the tip end can sufficiently reduce the leakage loss even in the range of 1.5 ≦ t2 / t1 ≦ 3.0 as the blade thickness in the vicinity of the tip end increases.

図10は同一運転状態における水車効率η/η0とランナ羽根13の肉厚最小幅比t1/t0との関係を示す特性図である。肉厚最小幅比t1/t0が1.5〜2.0の範囲では水車効率η/η0の損失の低減効果が大きいことが分かる。このことから、1.5≦t1/t0≦2.0を満たすようにランナ羽根12の最小肉厚を選定することにより、水車効率η/η0の損失の低減を図ることが可能となる。   FIG. 10 is a characteristic diagram showing the relationship between the turbine efficiency η / η0 and the wall thickness minimum width ratio t1 / t0 of the runner blade 13 in the same operation state. It can be seen that the effect of reducing the loss of the turbine efficiency η / η0 is great when the minimum thickness ratio t1 / t0 is in the range of 1.5 to 2.0. From this, it is possible to reduce the loss of the turbine efficiency η / η0 by selecting the minimum thickness of the runner blade 12 so as to satisfy 1.5 ≦ t1 / t0 ≦ 2.0.

図11は本発明の実施の形態におけるランナ羽根13の肉厚形状の曲率の決め方の説明図である。ランナ羽根13の表面形状はランナ羽根13の最小肉厚部からチップ端にかけて徐々に厚肉化しているが、その形状は直線や曲線、またはその組み合わせによって形成されている。また、曲線で形成されている時の平均曲率半径をR、ランナ羽根13のボス12からチップ端への長さをH0としたとき、R≦2H0を満たすような肉厚形状とする。   FIG. 11 is an explanatory diagram of how to determine the curvature of the thick shape of the runner blade 13 according to the embodiment of the present invention. The surface shape of the runner blade 13 gradually increases from the minimum thickness portion of the runner blade 13 to the tip end, and the shape is formed by a straight line, a curve, or a combination thereof. Further, when the average radius of curvature is R, and the length of the runner blade 13 from the boss 12 to the tip end is H0, the thickness is set to satisfy R ≦ 2H0.

図12は水車効率η/η0と曲率半径比R/H0との関係を示す特性図である。平均曲率半径Rが2H0よりも小さいときは、水車効率η/η0の損失の低減効果が大きいことが分かる。曲率半径Rが大きいと、つまり曲率半径比R/H0が2より大きくなると、ランナ羽根の圧力面の2次流れ損失の低減効果は小さくなってしまう。このことから、R≦2H0を満たすような曲率半径Rとすることにより、水車効率η/η0の損失の低減を図ることが可能となる。   FIG. 12 is a characteristic diagram showing the relationship between the turbine efficiency η / η0 and the curvature radius ratio R / H0. It can be seen that when the average radius of curvature R is smaller than 2H0, the effect of reducing the loss of the turbine efficiency η / η0 is great. When the curvature radius R is large, that is, when the curvature radius ratio R / H0 is larger than 2, the effect of reducing the secondary flow loss on the pressure surface of the runner blade is reduced. Therefore, by setting the curvature radius R so as to satisfy R ≦ 2H0, it is possible to reduce the loss of the turbine efficiency η / η0.

図13は、本発明の実施の形態におけるランナ羽根の肉厚形状を適用する範囲の決め方の説明図である。ランナ羽根13の長さをL0、本発明を適用するランナ羽根13の入口からの長さをL1としたとき、0.5≦L1/L0≦0.8を満たす範囲とする。つまり、ランナ羽根13の入口側だけに適用する。   FIG. 13 is an explanatory diagram of how to determine the range to which the thick shape of the runner blades is applied in the embodiment of the present invention. When the length of the runner blade 13 is L0 and the length from the inlet of the runner blade 13 to which the present invention is applied is L1, the range satisfies 0.5 ≦ L1 / L0 ≦ 0.8. That is, it applies only to the inlet side of the runner blade 13.

図14は水車効率η/η0と適用範囲L1/L0との関係を示す特性図である。図14に示すように、適用範囲L1/L0が0.5〜0.8で水車効率η/η0の損失の低減効果が大きいことが分かる。   FIG. 14 is a characteristic diagram showing the relationship between the turbine efficiency η / η0 and the application range L1 / L0. As shown in FIG. 14, it can be seen that the effect of reducing the loss of the turbine efficiency η / η0 is large when the application range L1 / L0 is 0.5 to 0.8.

本発明の実施の形態におけるランナ羽根の肉厚形状の適用範囲を短くした場合、ランナ羽根3の入口でのキャビテーション性能の向上効果は得られるものの、2次流れの抑制効果と漏れ流れの低減効果とは減少してしまう。一方、ランナ羽根13の出口端まで適用した場合にはランナ羽根13の出口端が相対的に厚くなってしまうため、後流による損失が大きくなってしまう。そこで、0.5≦L1/L0≦0.8の範囲で本発明の実施の形態におけるランナ羽根の肉厚形状を適用する。これにより水車効率η/η0の損失の低減を図ることが可能となる。   When the application range of the thick shape of the runner blade in the embodiment of the present invention is shortened, the effect of improving the cavitation performance at the inlet of the runner blade 3 is obtained, but the effect of suppressing the secondary flow and the effect of reducing the leakage flow are obtained. Will decrease. On the other hand, when it is applied up to the outlet end of the runner blade 13, the outlet end of the runner blade 13 becomes relatively thick, resulting in a large loss due to the wake. Therefore, the thickness shape of the runner blade in the embodiment of the present invention is applied in the range of 0.5 ≦ L1 / L0 ≦ 0.8. Thereby, it becomes possible to reduce the loss of the turbine efficiency η / η0.

本発明の実施の形態によれば、ランナ羽根の最小肉厚点をチップとボスとの間に形成し、チップとボスとの両端に向かって所定の範囲内でランナ羽根の表面側の肉厚が徐々に厚くなるように形成するので、ランナ羽根の外周部での漏れ流れを低減するとともに、ランナ羽根の入口での衝突損失やランナ羽根の圧力面での2次流れ損失を低減でき、水車効率損失の低減を図ることができる。   According to the embodiment of the present invention, the minimum thickness point of the runner blade is formed between the tip and the boss, and the thickness on the surface side of the runner blade is within a predetermined range toward both ends of the tip and the boss. Is formed so that the thickness of the runner blades gradually increases, so that the leakage flow at the outer periphery of the runner blades can be reduced, and the collision loss at the inlet of the runner blades and the secondary flow loss at the pressure surface of the runner blades can be reduced. Efficiency loss can be reduced.

本発明の実施の形態に係わる軸流水車ランナの子午面図。The meridional view of the axial-flow water turbine runner concerning embodiment of this invention. 図1のA−A線での断面図。Sectional drawing in the AA of FIG. 図1のB−B線、C−C線での断面図。Sectional drawing in the BB line of FIG. 1, and CC line. 本発明の実施の形態における軸流水車ランナのランナ羽根のチップ側での先端形状の説明図。Explanatory drawing of the front-end | tip shape at the chip | tip side of the runner blade | wing of the axial flow turbine runner in embodiment of this invention. 本発明の実施の形態に係わる軸流水車ランナのランナ羽根のチップ側での先端形状の説明図。Explanatory drawing of the front-end | tip shape in the chip | tip side of the runner blade | wing of the axial flow turbine runner concerning embodiment of this invention. 本発明の実施の形態におけるランナ羽根面の圧力分布図。The pressure distribution figure of the runner blade surface in embodiment of this invention. 本発明の実施の形態におけるランナ羽根の肉厚最小の位置の決め方の説明図。Explanatory drawing of how to determine the position with the minimum thickness of the runner blade | wing in embodiment of this invention. 同一運転状態における水車効率η/η0とランナ羽根の肉厚最小の位置H/H0との関係を示す特性図。The characteristic view which shows the relationship between the turbine efficiency (eta) / (eta) 0 in the same driving | running | working state, and the position H / H0 with the minimum thickness of a runner blade. 本発明の実施の形態におけるランナ羽根13の最小肉厚の決め方の説明図。Explanatory drawing of how to determine the minimum thickness of the runner blade | wing 13 in embodiment of this invention. 同一運転状態における水車効率η/η0とランナ羽根13の肉厚最小幅比t1/t0との関係を示す特性図。The characteristic view which shows the relationship between the turbine efficiency (eta) / (eta) 0 in the same driving | running | working state, and the wall thickness minimum width ratio t1 / t0 of the runner blade | wing 13. FIG. 本発明の実施の形態におけるランナ羽根13の肉厚形状の曲率の決め方の説明図。Explanatory drawing of how to determine the curvature of the thick shape of the runner blade | wing 13 in embodiment of this invention. 水車効率η/η0と曲率半径比R/H0との関係を示す特性図。The characteristic view which shows the relationship between turbine efficiency (eta) / (eta) 0 and curvature-radius ratio R / H0. 従来の軸流水車ランナを説明する模式図Schematic diagram explaining a conventional axial water turbine runner 従来の軸流水車ランナにおける羽根表面の流跡線図Trajectory diagram of blade surface in conventional axial water turbine runner 従来の軸流水車ランナの子午面図A meridional view of a conventional axial water turbine runner 図15のA−A線での断面図。Sectional drawing in the AA of FIG. 図15のB−B線、C−C線での断面図。Sectional drawing in the BB line of FIG. 15, and CC line. 従来の軸流水車ランナのランナ羽根のチップ側での先端形状の説明図。Explanatory drawing of the front-end | tip shape in the chip | tip side of the runner blade | wing of the conventional axial flow water turbine runner. 従来の軸流水車ランナの水車運転時の羽根圧力面での流跡線図。The trace line figure in the blade | wing pressure surface at the time of the water turbine driving | operation of the conventional axial water turbine runner.

符号の説明Explanation of symbols

11…軸流水車ランナ、12…ボス、13…ランナ羽根、14…チップ、15…ディスチャージリング、16…フィレット
DESCRIPTION OF SYMBOLS 11 ... Axle turbine runner, 12 ... Boss, 13 ... Runner blade, 14 ... Tip, 15 ... Discharge ring, 16 ... Fillet

Claims (8)

一方端がスピンドルを中心に回転するボスに取り付けられ、他方端のチップがディスチャージリングに対向して配置されるランナ羽根を有した軸流水車ランナにおいて、前記ランナ羽根の最小肉厚点をチップとボスとの間に形成し、チップとボスとの両端に向かってランナ羽根の表面側の肉厚が徐々に厚くなるように形成したことを特徴とする軸流水車ランナ。   In an axial water turbine runner having a runner blade having one end attached to a boss rotating around the spindle and the other end tip disposed opposite the discharge ring, the minimum thickness point of the runner blade is defined as a tip. An axial-flow turbine runner formed between the boss and formed so that the wall thickness on the surface side of the runner blade gradually increases toward both ends of the tip and the boss. 前記ランナ羽根のチップからボスまでの長さをH0、チップから羽根肉厚が最小となる点までの長さをH1としたとき、0.3≦H1/H0≦0.6であることを特徴とする請求項1記載の軸流水車ランナ。   When the length from the tip of the runner blade to the boss is H0 and the length from the tip to the point where the blade thickness is minimum is H1, 0.3 ≦ H1 / H0 ≦ 0.6. The axial-flow water turbine runner according to claim 1. 前記ランナ羽根の羽根最小肉厚をt0、チップ端近傍の羽根表面と裏面との長さをt1としたとき、1.5≦t1/t0≦2.0であることを特徴とする請求項1記載の軸流水車ランナ。   2. The condition of 1.5 ≦ t1 / t0 ≦ 2.0, where t0 is the minimum thickness of the runner blade and t1 is the length between the front and back surfaces of the blade near the tip end. The described axial-flow turbine runner. 前記ランナ羽根のチップ端近傍の羽根表面と裏面の長さをt1、チップ端フィレットの長さをt2としたとき、1.5≦t2/t1≦3.0であることを特徴とする請求項1記載の軸流水車ランナ。   The length of the front and back surfaces of the runner blade near the tip end of the runner blade is t1, and the length of the tip end fillet is t2, and 1.5 ≦ t2 / t1 ≦ 3.0. The axial-flow turbine runner according to 1. 前記ランナ羽根の肉厚が最小となる所とチップにかけての羽根表面の形状は、直線または曲線またはそれらの組み合わせにより形成される特徴とする請求項1記載の軸流水車ランナ。   The axial flow turbine runner according to claim 1, wherein the shape of the blade surface between the portion where the thickness of the runner blade is minimum and the tip is formed by a straight line, a curved line, or a combination thereof. 前記ランナ羽根の表面の曲線の平均曲率半径をR、ランナ羽根のボスからチップ端までの長さをH0としたとき、R≦2H0であることを特徴とする請求項5記載の軸流水車ランナ。   6. The axial flow turbine runner according to claim 5, wherein R ≦ 2H0, where R is an average radius of curvature of the surface curve of the runner blade and H0 is a length from the boss of the runner blade to the tip end. . 前記ランナ羽根の入口側の所定範囲に対し、請求項1乃至6のいずれか1項の形状を適用したことを特徴とする軸流水車ランナ。   An axial-flow turbine runner characterized in that the shape of any one of claims 1 to 6 is applied to a predetermined range on the inlet side of the runner blade. 前記ランナ羽根の入口側の所定範囲は、前記ランナ羽根の長さをL0とし、ランナ羽根の入口からの長さをL1としたとき、0.5≦L1/L0≦0.8であることを特徴とする請求項7記載の軸流水車ランナ。
The predetermined range on the inlet side of the runner blade is 0.5 ≦ L1 / L0 ≦ 0.8 when the length of the runner blade is L0 and the length from the inlet of the runner blade is L1. The axial-flow water turbine runner according to claim 7,
JP2006117660A 2006-04-21 2006-04-21 Axial water turbine runner Active JP4693687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117660A JP4693687B2 (en) 2006-04-21 2006-04-21 Axial water turbine runner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117660A JP4693687B2 (en) 2006-04-21 2006-04-21 Axial water turbine runner

Publications (2)

Publication Number Publication Date
JP2007291874A JP2007291874A (en) 2007-11-08
JP4693687B2 true JP4693687B2 (en) 2011-06-01

Family

ID=38762746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117660A Active JP4693687B2 (en) 2006-04-21 2006-04-21 Axial water turbine runner

Country Status (1)

Country Link
JP (1) JP4693687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206008A1 (en) * 2018-04-24 2019-10-31 东方电气集团东方电机有限公司 Trimming method for blade outlet edge of mixed-flow water turbine runner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135033B2 (en) * 2008-04-11 2013-01-30 株式会社東芝 Runner vane of axial hydraulic machine
EP2278689A4 (en) 2008-05-16 2015-05-13 Mitsubishi Electric Corp Electric motor
JP5558183B2 (en) * 2010-04-20 2014-07-23 三菱重工業株式会社 Turbo machine
JP6026786B2 (en) * 2012-06-08 2016-11-16 株式会社ベルシオン Hydroelectric generator
AT518291B1 (en) * 2016-02-26 2020-04-15 Andritz Hydro Gmbh IMPELLER BLADE OF A HYDRAULIC FLOWING MACHINE WITH ANTI-AVITATION BAR AND ANTI-AVITATION BAR FOR AN IMPELLER BLADE
EP3591216A1 (en) * 2018-07-03 2020-01-08 GE Renewable Technologies Runner blade

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089427A (en) * 2000-09-13 2002-03-27 Mitsubishi Heavy Ind Ltd Runner vane of mixed flow hydraulic machinery
JP2005140078A (en) * 2003-11-10 2005-06-02 Toshiba Corp Hydraulic machine
JP2005315216A (en) * 2004-04-30 2005-11-10 Toshiba Corp Axial flow water turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265738U (en) * 1975-11-11 1977-05-16
JPS5381741U (en) * 1976-12-10 1978-07-06
JPS6176170U (en) * 1984-10-25 1986-05-22
JPS6254280U (en) * 1985-09-25 1987-04-03
JPH04246278A (en) * 1991-01-31 1992-09-02 Toshiba Corp Movable blade water turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089427A (en) * 2000-09-13 2002-03-27 Mitsubishi Heavy Ind Ltd Runner vane of mixed flow hydraulic machinery
JP2005140078A (en) * 2003-11-10 2005-06-02 Toshiba Corp Hydraulic machine
JP2005315216A (en) * 2004-04-30 2005-11-10 Toshiba Corp Axial flow water turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206008A1 (en) * 2018-04-24 2019-10-31 东方电气集团东方电机有限公司 Trimming method for blade outlet edge of mixed-flow water turbine runner

Also Published As

Publication number Publication date
JP2007291874A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4693687B2 (en) Axial water turbine runner
JP5495700B2 (en) Centrifugal compressor impeller
JP5946707B2 (en) Axial turbine blade
JP5117349B2 (en) Hydraulic machine
JP5135033B2 (en) Runner vane of axial hydraulic machine
JP4163062B2 (en) Splitter runner and hydraulic machine
JP5314441B2 (en) Centrifugal hydraulic machine
EP3172431B1 (en) Francis turbine with short blade and short band
JP4882939B2 (en) Movable blade axial flow pump
JP4280127B2 (en) Francis-type runner
JP4751165B2 (en) Francis pump turbine
JP4703578B2 (en) Francis turbine
JP3600449B2 (en) Impeller
JP4710613B2 (en) Axial flow pump
CN109763928B (en) Guide vane and fluid machine
JP3688342B2 (en) Pump turbine runner
JP2012172605A (en) Guide vane of fluid machinery and fluid machine
JP2008121574A (en) Runner for hydraulic machine and method for manufacturing runner for hydraulic machine
JP2007107428A (en) Runner for hydraulic machine and hydraulic machine using the same
JP3782752B2 (en) Pump turbine with splitter runner
JP2013092156A (en) Francis pump turbine
JP2011140956A (en) Francis pump turbine
JP2004156587A (en) Hydraulic turbine
JP5367786B2 (en) Hydraulic machine runner and method for producing hydraulic machine runner
JP2008121691A (en) deltadeltaSPLITTER RUNNER AND HYDRAULIC MACHINE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4693687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151