JP4768361B2 - Francis type runner and hydraulic machine - Google Patents

Francis type runner and hydraulic machine Download PDF

Info

Publication number
JP4768361B2
JP4768361B2 JP2005247909A JP2005247909A JP4768361B2 JP 4768361 B2 JP4768361 B2 JP 4768361B2 JP 2005247909 A JP2005247909 A JP 2005247909A JP 2005247909 A JP2005247909 A JP 2005247909A JP 4768361 B2 JP4768361 B2 JP 4768361B2
Authority
JP
Japan
Prior art keywords
runner
line
band
trailing edge
francis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005247909A
Other languages
Japanese (ja)
Other versions
JP2007064018A (en
Inventor
沢 貞 男 黒
下 懷 夫 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005247909A priority Critical patent/JP4768361B2/en
Publication of JP2007064018A publication Critical patent/JP2007064018A/en
Application granted granted Critical
Publication of JP4768361B2 publication Critical patent/JP4768361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

本発明は、フランシス形水車またはポンプ水車等の水力機械に用いられるフランシス形ランナ及び水力機械に関する。   The present invention relates to a Francis type runner and a hydraulic machine that are used in a hydraulic machine such as a Francis type turbine or a pump turbine.

一般に、フランシス形水車またはポンプ水車等の水力機械に用いられるフランシス形ランナは、主軸の軸線を中心に回転可能なクラウンを有し、そのクラウンと離間して設けられたリング状のバンドと上記クラウンの間に、そのクラウン及びバンドを接続するように周方向に複数の板状のランナ羽根が設けられて構成されている。そして、水車運転時にはクラウンとバンドとの間に外方から水を導入し、導入された水の作用により主軸の軸線を中心にフランシス形ランナを回転させ、主軸に連結された発電機を駆動する。   Generally, a Francis-type runner used in a hydraulic machine such as a Francis-type water turbine or a pump-type water wheel has a crown that can rotate around the axis of a main shaft, and a ring-shaped band provided apart from the crown and the above-mentioned crown. In between, a plurality of plate-like runner blades are provided in the circumferential direction so as to connect the crown and the band. When the turbine is in operation, water is introduced from the outside between the crown and the band, and the action of the introduced water rotates the Francis-type runner around the axis of the main shaft to drive the generator connected to the main shaft. .

図30はフランシス形水車が据え付けられた水力発電所のフランシス形水車近傍の縦断面図であり、発電運転時には、水は図示省略の上池から水圧鉄管を通り、ケーシング1からステーベーン2およびガイドベーン3を通ってランナ4に流れ込み、その水流によってランナ4が回転駆動され、主軸5を介して発電機6が駆動される。一方、ランナ4を駆動した水は吸出し管7を経て図示省略の放水路へと流出する。本運転時にはガイドベーン3の開度を変化させることにより、ランナ4に流入する水量を調整し、発電量を変化させている。なお、フランシス型ランナは、主軸5に固着されたクラウン8と、リング状のバンド9と、上記クラウン8とバンド9とを接続するように配設された複数枚のランナ羽根10から形成されている。   FIG. 30 is a longitudinal sectional view of the vicinity of the Francis turbine of the hydroelectric power plant where the Francis turbine is installed. During power generation operation, water passes from the upper pond (not shown) through the hydraulic iron pipe, from the casing 1 to the stay vane 2 and the guide vane. 3 flows into the runner 4, and the runner 4 is rotationally driven by the water flow, and the generator 6 is driven via the main shaft 5. On the other hand, the water that has driven the runner 4 flows out through a suction pipe 7 into a water discharge channel (not shown). During actual operation, the amount of power generation is changed by adjusting the amount of water flowing into the runner 4 by changing the opening of the guide vane 3. The Francis-type runner is formed of a crown 8 fixed to the main shaft 5, a ring-shaped band 9, and a plurality of runner blades 10 disposed so as to connect the crown 8 and the band 9. Yes.

ところで、前述したように運転時には発電量を調整するために、ガイドベーン3の開度を調整し水量を変化させるため、ランナ4内の流れは運転状態により大きく変化する。図31は水量の違いによるランナ4内の子午面流れの模式を示したものである。即ち、ランナ4の子午面流れは、流れを内周側に押し込もうとする水流の動圧力11と、流れを外周側に押し出そうとするランナ4の回転による遠心力12のバランスにより決まるため、設計点(発電効率を最高にしたい点)より水量の小さな運転点では、図31(b)に示すように、遠心力12が相対的に大きくなり流れが外周側に偏り、中心部に図31(a)に示す設計点に比較して広い死水領域13が形成され、設計点(発電効率を最高にしたい点)より水量の大きな運転点では、図31(c)に示すように、遠心力12が相対的に小さくなり流れが内周側に偏り、外周側に死水領域13が形成される。   By the way, as described above, in order to adjust the power generation amount during operation, the opening amount of the guide vane 3 is adjusted and the water amount is changed. Therefore, the flow in the runner 4 varies greatly depending on the operation state. FIG. 31 shows a model of the meridional flow in the runner 4 due to the difference in the amount of water. That is, the meridional flow of the runner 4 is determined by the balance between the dynamic pressure 11 of the water flow that tries to push the flow toward the inner peripheral side and the centrifugal force 12 caused by the rotation of the runner 4 that pushes the flow toward the outer peripheral side. Therefore, at the operating point where the amount of water is smaller than the design point (the point where the power generation efficiency is to be maximized), as shown in FIG. 31 (b), the centrifugal force 12 becomes relatively large and the flow is biased toward the outer peripheral side. Compared to the design point shown in FIG. 31 (a), a wide dead water region 13 is formed, and at an operating point where the amount of water is larger than the design point (a point where power generation efficiency is to be maximized), as shown in FIG. 31 (c), The centrifugal force 12 becomes relatively small, the flow is biased toward the inner periphery, and a dead water region 13 is formed on the outer periphery.

上述した流れの偏りは2次流れと称され、非設計点において、ランナ4内で発生する水力損失の主因となっている。このような、非設計点の2次流れを低減する方法としては、図32のように、クラウン8とバンド9との間の入口側流路に、クラウン8とバンド9の半径方向長さより短い整流羽根14をほぼ平行に複数枚ランナ羽根10から突設する方法が提案されている(例えば特許文献1)。また図33のようにランナ羽根10の相互間にランナ羽根よりも翼長が短い中間羽根15を設ける方法も提案されている(例えば特許文献2)。この様な整流羽根14や中間羽根15の整流効果により、設計点より水量の小さな運転点や設計点より水量の大きな運転点では、ランナ4の子午面内流れの偏りが緩和され、2次流れを低減することが出来る。
特開平8−296544号公報 特開昭57−126566号公報
The above-described flow deviation is called a secondary flow, and is a main cause of hydraulic loss occurring in the runner 4 at a non-design point. As a method of reducing the secondary flow at such a non-design point, as shown in FIG. 32, the inlet-side flow path between the crown 8 and the band 9 is shorter than the radial length of the crown 8 and the band 9. There has been proposed a method in which the rectifying blades 14 are protruded from the plurality of runner blades 10 substantially in parallel (for example, Patent Document 1). Further, as shown in FIG. 33, a method of providing an intermediate blade 15 having a blade length shorter than that of the runner blade between the runner blades 10 has been proposed (for example, Patent Document 2). Due to the rectifying effect of the rectifying blades 14 and the intermediate blades 15, the uneven flow in the meridian plane of the runner 4 is mitigated at the operation point where the water amount is smaller than the design point and the operation point where the water amount is larger than the design point. Can be reduced.
JP-A-8-296544 JP-A-57-126666

しかしながら、上述したフランシス形ランナにおいては、2次流れが弱い設計点流れでは、整流羽根14や中間羽根15による整流効果が小さく、整流羽根14や中間羽根15が摩擦抵抗として強く作用する。このため、非設計点の2次流れ損失は低減されるが、設計点の摩擦損失が増加することが課題であった。   However, in the above-described Francis type runner, in the design point flow where the secondary flow is weak, the rectifying effect by the rectifying blades 14 and the intermediate blades 15 is small, and the rectifying blades 14 and the intermediate blades 15 act strongly as frictional resistance. For this reason, the secondary flow loss at the non-design point is reduced, but the problem is that the friction loss at the design point increases.

本発明は上述した課題を解決するためになされたものであり、設計点の摩擦損失を増加させることなく、2次流れに起因した非設計点の水力損失発生を抑制するフランシス形ランナ及び水力機械を提供することを目的とする。   The present invention has been made to solve the above-described problem, and a Francis-type runner and hydraulic machine that suppress the occurrence of hydraulic loss at non-design points caused by the secondary flow without increasing the friction loss at the design points. The purpose is to provide.

本願の第1の発明は、
回転軸に固着されたクラウンとリング状のバンドとの間に周方向に複数のランナ羽根が設けられたフランシス形ランナであって、
子午断面におけるランナ羽根の後縁のバンド側線がこの縁線とバンドとの交点にてバンドの内面に対して鉛直に立てた線よりも上流側にあり、且つ下流側に向かって凹曲状に形成されているフランシス形ランナにおいて、
上記ランナ羽根後縁の縁線とバンドとの交点をP1b、P1bにてバンドの内面に対して鉛直に立てた線とランナ羽根後縁の縁線との交点をP2b、P1bとP2bとの間に形成される直線をLLb、直線LLbとランナ羽根後縁の縁線との距離の最大値をsbとすると、
0<sb/LLb<0.15
を満たすことを特徴とする。
The first invention of the present application is:
A Francis-type runner in which a plurality of runner blades are provided in a circumferential direction between a crown fixed to a rotating shaft and a ring-shaped band ,
Band side edge line of the trailing edge of the runner blade in a meridional section is located upstream of the line standing vertically against the inner surface of the bands Te to intersection with the edge line and the band, and the downstream in full Ranshisu shaped runners that have been formed in the concave shape toward,
The intersection point between the edge line of the runner blade trailing edge and the band at P1b and P1b is perpendicular to the inner surface of the band, and the intersection point of the edge line of the runner blade trailing edge is between P2b and P1b and P2b. LLb a straight line is formed, the maximum value of the distance between the edge line of a straight line LLb and La runner blade trailing edge When sb to,
0 <sb / LLb <0.15
It is characterized by satisfying.

また第2の発明は、
回転軸に固着されたクラウンとリング状のバンドとの間に周方向に複数のランナ羽根が設けられたフランシス形ランナであって、
子午断面におけるランナ羽根の後縁のクラウン側線が、上記縁線とクラウンとの交点にてクラウンの内面に対して鉛直に立てた線よりも上流側にあり、且つ下流側に向かって凹曲状に形成されているフランシス形ランナにおいて、
上記ランナ羽根後縁の縁線とクラウンとの交点をP1c、P1cにてクラウンの内面に対して鉛直に立てた線とランナ羽根後縁の縁線との交点をP2c、P1cとP2cとの間に形成される直線をLLc、直線LLcとランナ羽根後縁の縁線との距離の最大値をscとすると、
0<sc/LLc<0.15
を満たすことを特徴とする。
Also, the second invention is
A Francis-type runner in which a plurality of runner blades are provided in a circumferential direction between a crown fixed to a rotating shaft and a ring-shaped band ,
Crown side edge line of the trailing edge of the runner blade in a meridional section is located upstream of the line standing vertically against the inner surface of the click round Te at the intersection between the edge line and click round, and on the downstream side in full Ranshisu shaped runners that have been formed in the concave shape toward,
Said runner blade trailing edge of the edge line and the intersection of P 1c and click round, the intersection of P 2c of the edge line of the lines and the runner blade trailing edge standing vertically against the inner surface of the click round Te in P 1c, P 1c and P2c a line formed between the LLc, when the sc maximum value of the distance between the edge line of the straight line L Lc and runner blade trailing edge,
0 <sc / LLc <0.15
It is characterized by satisfying.

上記構成により、設計点の摩擦損失を増加させることなく、設計点より水量の大きな運転点或いは設計点より水量の少ない運転点の子午面内の2次流れが効果的に低減され、2次流れに起因した非設計点の水力損失発生を抑制することができる。   With the above configuration, the secondary flow in the meridian plane at the operation point having a larger water amount than the design point or the operation point having a smaller water amount than the design point is effectively reduced without increasing the friction loss at the design point, and the secondary flow. It is possible to suppress the occurrence of hydraulic loss at non-design points due to the above.

以下、本発明に係るフランシス形ランナの各実施形態および各参考例について、図面を参照して説明する。 Embodiments and reference examples of Francis runners according to the present invention will be described below with reference to the drawings.

(第1の実施形態)
まず、図1は第1の実施の形態のフランシス形水車ランナの子午断面を示しており、水車ランナは、クラウン8、バンド9、及びランナ羽根10から形成されている。本第1実施形態においては、図1に示されるように、子午断面においてランナ羽根10の後縁の縁線10aのバンド側形状が、縁線10aとバンド9との交点P1bにてバンド9に対し鉛直に立てた線16よりも上流側にあり、且つ下流側に向かって凹曲状に形成されている点を特徴としている。
(First embodiment)
First, FIG. 1 shows a meridional section of the Francis-type turbine runner according to the first embodiment. The turbine runner is formed of a crown 8, a band 9, and a runner blade 10. In the first embodiment , as shown in FIG. 1, the band-side shape of the edge line 10 a at the trailing edge of the runner blade 10 in the meridional section is changed to the band 9 at the intersection P <b> 1 b between the edge line 10 a and the band 9. On the other hand, it is characterized in that it is on the upstream side of the vertically standing line 16 and is formed in a concave shape toward the downstream side.

このように構成された本第1実施形態においては、ランナ羽根後縁近傍に形成されるよどみ点17で静圧が急激に回復して静圧値が大きくなるため、図2に示されるようにランナ羽根出口のバンド側近傍領域では内周側から外周側へかけて圧力が低下する圧力勾配18が形成される。この圧力勾配は羽根出口部位のバンド側流れを外周側すなわちバンド側に押し付けるように作用するので、設計点より水量の大きな運転点で発生する外周側の死水領域13の大きさが低減される。したがって、本第1実施形態によれば、図3に示すように、設計点より水量の大きな運転点における子午面内の2次流れが低減され、水力損失発生を抑制することができる。 In the first embodiment configured as described above, the static pressure suddenly recovers at the stagnation point 17 formed in the vicinity of the trailing edge of the runner blade, and the static pressure value increases. As shown in FIG. In the region near the band side of the runner blade outlet, a pressure gradient 18 is formed in which the pressure decreases from the inner peripheral side to the outer peripheral side. Since this pressure gradient acts to press the band side flow at the blade outlet portion toward the outer peripheral side, that is, the band side, the size of the outer dead water region 13 generated at the operating point where the amount of water is larger than the design point is reduced. Therefore, according to the first embodiment , as shown in FIG. 3, the secondary flow in the meridian plane at the operation point where the water amount is larger than the design point is reduced, and the generation of hydraulic loss can be suppressed.

なお、本第1実施形態による発明を効果的に機能させるためは、図4に示すように、回転軸の軸線を含む子午面におけるランナ羽根の後縁の縁線10aとバンド9との交点をP1b、P1bにてバンド9に対し鉛直に立てた線16とランナ羽根の後縁の縁線10aとの交点をP2b、P1bとP2bとの間に形成される直線Lbの長さをLLb、直線Lbとランナ羽根の後縁の縁線10aとの距離の最大値をsbとする時、sb/LLbの値を適正にする必要がある。即ち、sb/LLbの値は0より大きい程、バンド側の子午面内流れを外周側へ押し付ける力18が強くなるが、図5に示す様に、これに伴い羽根出口中央部付近ではこれとは逆に子午面流れを内周側に押し付ける力19も強くなる。このため、sb/LLbの値を極度に大きくすると、羽根中央部付近で流れが剥離20し、2次流れ損失がかえって増大することになる。図6に流れ解析で算定した、sb/LLbと2次流れ損失の関係を示す。本図より、0<sb/LLb<0.15の領域では、ランナ内の2次流れ損失を低減できていることが分かる。従って、本第1実施形態において、
0<sb/LLb<0.15
と数値限定することで、設計点より水量の大きな運転点の子午面内の2次流れが効果的に低減され、水力損失発生を抑制することができる。
In order to effectively function the invention according to the first embodiment , as shown in FIG. 4, the intersection of the edge line 10 a of the trailing edge of the runner blade and the band 9 on the meridian plane including the axis of the rotation axis is set. The intersection of the line 16 standing perpendicular to the band 9 at P1b and P1b and the edge line 10a of the trailing edge of the runner blade is P2b, and the length of the straight line Lb formed between P1b and P2b is LLb. When the maximum value of the distance between Lb and the edge line 10a at the trailing edge of the runner blade is sb, the value of sb / LLb needs to be made appropriate. That is, as the value of sb / LLb is larger than 0, the force 18 that presses the band-side meridional flow toward the outer peripheral side becomes stronger, but as shown in FIG. On the contrary, the force 19 for pressing the meridional surface flow toward the inner peripheral side also becomes stronger. For this reason, if the value of sb / LLb is extremely increased, the flow is separated 20 near the center of the blade, and the secondary flow loss is increased. FIG. 6 shows the relationship between sb / LLb and secondary flow loss calculated by flow analysis. From this figure, it can be seen that the secondary flow loss in the runner can be reduced in the region of 0 <sb / LLb <0.15. Therefore, in the first embodiment ,
0 <sb / LLb <0.15
By limiting the numerical values, the secondary flow in the meridian plane at the operating point where the amount of water is larger than the design point is effectively reduced, and the generation of hydraulic loss can be suppressed.

(第2の実施形態)
次に、本発明に係るフランシス形ランナの第2の実施の形態を図7乃至9を用いて説明する。なお、第1の実施の形態と同一の構成には同一の符号を付し、重複する説明は省略する。
(Second Embodiment)
Next, a second embodiment of the Francis-type runner according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

図7は本発明における第2の実施の形態のフランシス形水車ランナの子午断面を示している。本第2実施形態が従来の水車ランナと異なるのは、図7に示されるように、子午断面においてランナ羽根の後縁の縁線10aのクラウン側形状が、縁線10aとクラウン8の内面との交点P1cにてクラウン8に対し鉛直に立てた線21よりも上流側にあり、且つその縁線10aが下流側に向かって凹曲状に形成されていることである。 FIG. 7 shows a meridional section of the Francis turbine runner according to the second embodiment of the present invention. As shown in FIG. 7, the second embodiment is different from the conventional turbine runner in that the crown side shape of the edge line 10 a of the trailing edge of the runner blade in the meridional section is the same as the edge line 10 a and the inner surface of the crown 8. That is, the edge line 10a is formed in a concavely curved shape toward the downstream side with respect to the line 21 standing perpendicular to the crown 8 at the intersection P1c.

このように構成された本第2実施形態においては、ランナ羽根後縁近傍に形成されるよどみ点17で静圧が急激に回復して静圧値が大きくなるため、図8に示されるようにランナ羽根出口クラウン側近傍領域では外周側から内周側へかけて圧力が低下する圧力勾配19が形成される。本圧力勾配は羽根出口部位のクラウン側流れを内周側に押し付ける様に作用するので、設計点より水量の小さな運転点で発生する内周側の死水領域13の大きさが低減される。したがって、本第2実施形態によれば、設計点より水量の小さな運転点の子午面内の2次流れが低減され、水力損失発生を抑制することができ、図9に示すように、設計点より水量の小さな運転点での水力効率を向上させることができる。 In the second embodiment configured as described above, the static pressure suddenly recovers at the stagnation point 17 formed in the vicinity of the trailing edge of the runner blade, and the static pressure value increases. As shown in FIG. In the region near the runner blade outlet crown side, a pressure gradient 19 is formed in which the pressure decreases from the outer peripheral side to the inner peripheral side. Since this pressure gradient acts so as to press the crown side flow at the blade outlet portion toward the inner peripheral side, the size of the dead water region 13 on the inner peripheral side generated at the operating point where the amount of water is smaller than the design point is reduced. Therefore, according to the second embodiment , the secondary flow in the meridional plane of the operation point having a smaller amount of water than the design point can be reduced and the generation of hydraulic loss can be suppressed. As shown in FIG. It is possible to improve hydraulic efficiency at an operation point with a smaller amount of water.

なお、本第2実施形態による発明を効果的に機能させるためは、図10に示すように、子午面にてランナ羽根の後縁の縁線10aとクラウン8との交点をP1c、P1cにてクラウン8の内面に対し鉛直に立てた線21とランナ羽根の後縁の縁線10aとの交点をP2c、P1cとP2cとの間に形成される直線Lcの長さをLLc、直線Lcとランナ羽根の後縁の縁線10aとの距離の最大値をscとする時、sc/LLcの値を適正にする必要がある。即ち、sc/LLcの値は0より大きい程、クラウン側の子午面内流れを内周側へ押し付ける力19が強くなるが、図11に示す様に、これに伴い羽根出口中央部付近ではこれとは逆に子午面流れを外周側に押し付ける力18も強くなる。このため、sc/LLcの値を極度に大きくすると、羽根中央部付近で流れが剥離20し、2次流れ損失がかえって増大することになる。図12に流れ解析で算定した、sc/LLcと2次流れ損失の関係を示す。本図より、0<sc/LLc<0.15の領域では、ランナ内の2次流れ損失を低減できていることが分かる。従って、本第2実施形態において
0<sc/LLc<0.15
と数値限定することで、設計点より水量の小さな運転点の子午面内の2次流れが効果的に低減され、水力損失発生を抑制することができる。
In order to make the invention according to the second embodiment function effectively, as shown in FIG. 10, the intersection of the trailing edge line 10a of the runner blade and the crown 8 on the meridian plane is represented by P1c and P1c. The intersection of the line 21 standing perpendicular to the inner surface of the crown 8 and the edge line 10a of the trailing edge of the runner blade is P2c, the length of the straight line Lc formed between P1c and P2c is LLc, the straight line Lc and the runner When sc is the maximum value of the distance from the trailing edge 10a of the blade, the value of sc / LLc needs to be made appropriate. That is, as the value of sc / LLc is larger than 0, the force 19 that pushes the meridional flow on the crown side toward the inner peripheral side becomes stronger. However, as shown in FIG. On the contrary, the force 18 that presses the meridional surface flow toward the outer peripheral side also increases. For this reason, when the value of sc / LLc is extremely increased, the flow is separated 20 near the center of the blade, and the secondary flow loss is increased. FIG. 12 shows the relationship between sc / LLc and secondary flow loss calculated by flow analysis. From this figure, it can be seen that the secondary flow loss in the runner can be reduced in the region of 0 <sc / LLc <0.15. Therefore, in the second embodiment ,
0 <sc / LLc <0.15
By limiting the numerical values, the secondary flow in the meridian plane at the operating point having a smaller amount of water than the design point is effectively reduced, and the generation of hydraulic loss can be suppressed.

第1参考例
図13は本発明の第1参考例のフランシス形水車ランナの子午断面を示している。本第1参考例が従来の水車ランナと異なるのは、図13に示される様に、子午断面においてランナ羽根10の後縁の縁線10aのクラウン側形状が、縁線10aとクラウン8の内面との交点Pcにてクラウンの内面に対し鉛直に立てた線21よりも上流側にあり、且つ、子午断面においてランナ羽根10の後縁の縁線10aのバンド側形状が、縁線10aとバンド9との交点Pbにてバンドに対し鉛直に立てた線16よりも上流側にあり、しかも上記縁線10aが下流方向に向かって凹曲状に形成されていることである。
( First Reference Example )
FIG. 13 shows a meridional section of the Francis turbine runner of the first reference example of the present invention. As shown in FIG. 13, the first reference example is different from the conventional turbine runner in that the crown side shape of the edge line 10 a of the trailing edge of the runner blade 10 in the meridional section is the inner surface of the edge line 10 a and the crown 8. The band-side shape of the edge line 10a of the trailing edge of the runner blade 10 in the meridional section is the band-side shape of the edge line 10a and the band. 9 is located on the upstream side of the line 16 standing perpendicular to the band at the intersection Pb, and the edge line 10a is formed in a concave shape in the downstream direction.

第1参考例は、第1および第2の実施の形態を組み合わせたものである。したがって、両者の相乗効果により、非設計点のランナ内の2次流れが低減され、水力損失発生を抑制することができ、図14に示すように、設計点より水量が大きい運転点及び小さな運転点での水力効率を向上させることができる。 The first reference example is a combination of the first and second embodiments. Therefore, due to the synergistic effect of the two, the secondary flow in the runner at the non-design point can be reduced and the generation of hydraulic power loss can be suppressed. As shown in FIG. The hydraulic efficiency at a point can be improved.

なお、本第1参考例による発明を効果的に機能させるためは、図15に示すように、子午面にてランナ羽根の後縁の縁線10aとバンド10との交点をPb、ランナ羽根の後縁の縁線10aとクラウン8との交点Pc、PbとPcとの間に形成される直線Lの長さをLL、直線Lとランナ羽根の後縁の縁線10aとの距離の最大値をsとする時、s/LLの値を適正にする必要がある。即ち、s/LLの値は0より大きい程、クラウン側の子午面内流れを内周側へ押し付ける力19とバンド側の子午面流れを外周側へ押し付ける力18が強くなる。しかしながら、図16に示す様に、s/LLの値を極度に大きくすると、羽根中央部付近で流れが剥離20し、2次流れ損失がかえって増大することになる。図17に流れ解析で算定した、s/LLと2次流れ損失の関係を示す。本図より、0<s/LL<0.15の領域では、ランナ内の2次流れ損失を低減できていることが分かる。 In order to make the invention according to the first reference example function effectively, as shown in FIG. 15, the intersection of the trailing edge line 10a of the runner blade and the band 10 on the meridian plane is Pb, The length of the straight line L formed between the intersections Pc, Pb and Pc of the trailing edge 10a and the crown 8 is LL, and the maximum value of the distance between the straight line L and the trailing edge 10a of the runner blades. When s is s, it is necessary to make the value of s / LL appropriate. That is, as the value of s / LL is larger than 0, the force 19 for pressing the crown-side meridian flow toward the inner peripheral side and the force 18 for pressing the band-side meridian flow toward the outer peripheral side become stronger. However, as shown in FIG. 16, when the value of s / LL is extremely increased, the flow is separated 20 near the center of the blade, and the secondary flow loss is increased. FIG. 17 shows the relationship between s / LL and secondary flow loss calculated by flow analysis. From this figure, it is understood that the secondary flow loss in the runner can be reduced in the region of 0 <s / LL <0.15.

したがって、本第1参考例において
0<s/LL<0.15
と数値限定することで、非設計点の子午面内の2次流れがより効果的に低減され、水力損失発生を抑制することができる。
Therefore, in this first reference example
0 <s / LL <0.15
By limiting the numerical values, the secondary flow in the meridian plane at the non-design point can be more effectively reduced, and the generation of hydraulic loss can be suppressed.

第2参考例
次に、本発明に係るフランシス形ランナの第2参考例を図18,19を用いて説明する。なお、第1および第2の実施形態、第1参考例と同一の構成には同一の符号を付し、重複する説明は省略してある。
( Second reference example )
Next, a second reference example of the Francis-type runner according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure same as 1st and 2nd embodiment and a 1st reference example, and the overlapping description is abbreviate | omitted.

図18は第2参考例のフランシス形水車ランナの子午断面を示している。本第2参考例が従来の水車ランナと異なるのは、図18に示される様に、子午断面においてランナ羽根10の後縁の縁線10aのバンド付根部位に、下流側にのびるフィレット22が取付けられていることである。 FIG. 18 shows a meridional section of the Francis turbine runner of the second reference example . As shown in FIG. 18, the second reference example is different from the conventional turbine runner in that a fillet 22 extending downstream is attached to the band root portion of the edge line 10a of the trailing edge of the runner blade 10 in the meridional section. It is being done.

このように構成された本第2参考例においては、ランナ羽根後縁近傍に形成されるよどみ点17で静圧が急激に回復して静圧値が大きくなるため、第1の実施の形態と同様に、図19に示される如くランナ羽根出口バンド側近傍領域では内周側から外周側へかけて圧力が低下する圧力勾配18が形成される。そして、この圧力勾配は羽根出口部位のバンド側流れを外周側に押し付ける様に作用するので、設計点より水量の大きな運転点で発生する外周側の死水領域13の大きさが低減される。従って、本第2参考例によれば、設計点より水量の大きな運転点の子午面内の2次流れが低減されるので、水力損失発生を抑制することができ、図20に示すように、設計点より水量の大きな運転点での水力効率を向上させることができる。 In the second reference example configured as described above, the static pressure suddenly recovers at the stagnation point 17 formed in the vicinity of the trailing edge of the runner blade and the static pressure value increases. Similarly, as shown in FIG. 19, a pressure gradient 18 in which the pressure decreases from the inner peripheral side to the outer peripheral side is formed in the region near the runner blade outlet band side. And since this pressure gradient acts so as to press the band side flow at the blade outlet part to the outer peripheral side, the size of the dead water region 13 on the outer peripheral side generated at the operating point where the amount of water is larger than the design point is reduced. Therefore, according to the second reference example , since the secondary flow in the meridional plane at the operating point where the amount of water is larger than the design point is reduced, it is possible to suppress the occurrence of hydraulic loss, as shown in FIG. It is possible to improve the hydraulic efficiency at the operation point where the amount of water is larger than the design point.

なお、本第2参考例を効果的に機能させるためは、図21に示すように、子午面におけるランナ羽根の後縁の縁線10aとバンド9との交点をPb、ランナ羽根の後縁の縁線10aとクラウン8の内面との交点をPc、PbとPcとの間に形成される直線の長さをLL、バンド付根部位のフィレット22の曲率半径をRbとする時、Rb/LLの値を適正にする必要がある。即ち、Rb/LLの値は0より大きい程、バンド側の子午面内流れを外周側へ押し付ける力18が強くなる。しかしながら、Rb/LLの値が極度に小さいと、バンド側の子午面内流れを外周側へ押し付ける力18が弱く、二次流れ損失低減の明確な効果が現れない。また、Rb/LLの値を極度に大きくすると、本作用が子午面流路全域に影響を与える様になり、クラウン側の子午面内流れをも外周側に押しやる様に作用し、設計点より水量の大きな運転点の2次流れ損失は減少するが、設計点より水量の小さな運転点の2次流れ損失は増加してしまう。図22に流れ解析で算定した、Rb/LLと各運転点での2次流れ損失の関係を示す。本図より、0.05<Rb/LL<0.3の領域では、設計点より水量の小さな運転点の2次流れ損失が増加することなく、設計点より水量の大きな運転点の2次流れ損失を低減できていることが分かる。従って、本第2参考例において、
0.05<Rb/LL<0.3
と数値限定することで、設計点より水量の大きな運転点の子午面内の2次流れが効果的に低減され、水力損失発生を抑制することができる。
In order to effectively function the second reference example , as shown in FIG. 21, the intersection of the runner blade trailing edge 10a and the band 9 on the meridian plane is Pb, and the runner blade trailing edge is When the intersection of the edge line 10a and the inner surface of the crown 8 is Pc, the length of the straight line formed between Pb and Pc is LL, and the radius of curvature of the fillet 22 at the band root portion is Rb, Rb / LL The value needs to be appropriate. That is, as the value of Rb / LL is larger than 0, the force 18 that presses the flow in the meridional surface on the band side toward the outer peripheral side becomes stronger. However, if the value of Rb / LL is extremely small, the force 18 that presses the band-side meridian plane flow toward the outer peripheral side is weak, and a clear effect of reducing the secondary flow loss does not appear. Also, if the value of Rb / LL is extremely increased, this action will affect the entire meridional flow path, and it will act to push the meridional flow on the crown side to the outer peripheral side. Although the secondary flow loss at the operating point with a large amount of water decreases, the secondary flow loss at the operating point with a smaller amount of water than the design point increases. FIG. 22 shows the relationship between Rb / LL and secondary flow loss at each operating point calculated by flow analysis. From this figure, in the region of 0.05 <Rb / LL <0.3, there is no increase in the secondary flow loss at the operation point having a smaller water amount than the design point, and the secondary flow at the operation point having a larger water amount than the design point. It can be seen that the loss can be reduced. Therefore, in this second reference example ,
0.05 <Rb / LL <0.3
By limiting the numerical values, the secondary flow in the meridian plane at the operating point where the amount of water is larger than the design point is effectively reduced, and the generation of hydraulic loss can be suppressed.

第3参考例
次に、本発明に係るフランシス形ランナの第3参考例
を図23、24を用いて説明する。なお、第1および第2の実施形態、第1および第2参考例と同一の構成には同一の符号を付し、重複する説明は省略する。
( Third reference example )
Next, a third reference example of the Francis runner according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure same as 1st and 2nd embodiment and 1st and 2nd reference example, and the overlapping description is abbreviate | omitted.

図23は本第3参考例のフランシス形水車ランナの子午断面を示している。本第3参考例が従来の水車ランナと異なるのは、図23に示されるように、子午断面においてランナ羽根10の後縁の縁線10aのクラウン付根部位に、下流側にのびるフィレット23を取付けたことである。 FIG. 23 shows a meridional section of the Francis turbine runner of the third reference example . As shown in FIG. 23, the third reference example is different from the conventional turbine runner in that a fillet 23 extending downstream is attached to the crown root portion of the edge line 10a of the trailing edge of the runner blade 10 in the meridional section. That is.

このように構成された本第3参考例においては、ランナ羽根後縁近傍に形成されるよどみ点17で静圧が急激に回復して静圧値が大きくなるため、第2の実施の形態と同様に、図24に示される如くランナ羽根出口クラウン側近傍領域では外周側から内周側へかけて圧力が低下する圧力勾配19が形成される。そして、この圧力勾配は羽根出口部位のクラウン側流れを内周側に押し付ける様に作用するので、設計点より水量の小さな運転点で発生する内周側の死水領域13の大きさが低減される。従って、本第3参考例によれば、設計点より水量の小さな運転点の子午面内の2次流れが低減されるので、水力損失発生を抑制することができ、図25に示すように、設計点より水量の小さな運転点での水力効率を向上させることができる。 In the third reference example configured as described above, the static pressure suddenly recovers at the stagnation point 17 formed in the vicinity of the trailing edge of the runner blade, and the static pressure value increases. Similarly, as shown in FIG. 24, a pressure gradient 19 in which the pressure decreases from the outer peripheral side to the inner peripheral side is formed in the region near the runner blade outlet crown side. And since this pressure gradient acts so as to press the crown side flow at the blade outlet part toward the inner peripheral side, the size of the dead water region 13 on the inner peripheral side generated at the operating point where the amount of water is smaller than the design point is reduced. . Therefore, according to the third reference example , since the secondary flow in the meridian plane at the operation point having a smaller water amount than the design point is reduced, the occurrence of hydraulic loss can be suppressed, and as shown in FIG. It is possible to improve the hydraulic efficiency at the operation point where the amount of water is smaller than the design point.

なお、本第3参考例を効果的に機能させるためは、図26に示すように、子午面におけるランナ羽根10の後縁の縁線10aとバンド9との交点をPb、ランナ羽根の後縁の縁線10aとクラウン8との交点をPc、PbとPcとの間に形成される直線の長さをLL、クラウン付根部位のフィレット23の曲率半径をRcとする時、Rc/LLの値を適正にする必要がある。即ち、Rc/LLの値は0より大きい程、クラウン側の子午面内流れを内周側へ押し付ける力19が強くなる。しかしながら、Rc/LLの値が極度に小さいと、クラウン側の子午面内流れを内周側へ押し付ける力19が弱く、二次流れ損失低減の明確な効果が現れない。また、Rc/LLの値を極度に大きくすると、本作用が子午面流路全域に影響を与える様になり、バンド側の子午面内流れをも内周側に押しやる様に作用し、設計点より水量の小さな運転点の2次流れ損失は減少するが、設計点より水量の大きな運転点の2次流れ損失は増加してしまう。図27に流れ解析で算定した、Rc/LLと各運転点での2次流れ損失の関係を示す。本図より、0.05<Rc/LL<0.3の領域では、設計点より水量の大きな運転点の2次流れ損失が増加することなく、設計点より水量の小さな運転点の2次流れ損失を低減できていることが分かる。従って、本第3参考例において
0.05<Rc/LL<0.3
と数値限定することで、設計点より水量の小さな運転点の子午面内の2次流れが効果的に低減され、水力損失発生を抑制することができる。
In order to make this third reference example function effectively, as shown in FIG. 26, the intersection of the edge line 10a of the trailing edge of the runner blade 10 and the band 9 on the meridian plane is Pb, and the trailing edge of the runner blade Value of Rc / LL, where Pc is the intersection of the edge line 10a and the crown 8, and LL is the length of the straight line formed between Pb and Pc, and Rc is the radius of curvature of the fillet 23 at the root of the crown. It is necessary to make it appropriate. That is, as the value of Rc / LL is larger than 0, the force 19 for pressing the crown side meridional flow toward the inner peripheral side becomes stronger. However, if the value of Rc / LL is extremely small, the force 19 for pressing the crown side meridional flow toward the inner peripheral side is weak, and a clear effect of reducing the secondary flow loss does not appear. Also, if the value of Rc / LL is extremely increased, this action will affect the entire meridional flow path, and the band side meridian flow will also be pushed to the inner circumference side. Although the secondary flow loss at the operation point with a smaller water amount decreases, the secondary flow loss at the operation point with a larger water amount than the design point increases. FIG. 27 shows the relationship between Rc / LL and secondary flow loss at each operating point calculated by flow analysis. From this figure, in the region of 0.05 <Rc / LL <0.3, there is no increase in the secondary flow loss at the operation point having a larger water volume than the design point, and the secondary flow at the operation point having a smaller water volume than the design point. It can be seen that the loss can be reduced. Therefore, in this third reference example
0.05 <Rc / LL <0.3
By limiting the numerical values, the secondary flow in the meridian plane at the operating point having a smaller amount of water than the design point is effectively reduced, and the generation of hydraulic loss can be suppressed.

第4参考例
次に、本発明に係るフランシス形ランナの第4参考例を図28を用いて説明する。なお、第1および第2の実施形態、第1乃至第3参考例と同一の構成には同一の符号を付し、重複する説明は省略する。
( 4th reference example )
Next, a fourth reference example of the Francis runner according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as 1st and 2nd embodiment and the 1st thru | or 3rd reference example, and the overlapping description is abbreviate | omitted.

図28は本第4参考例のフランシス形水車ランナの子午断面を示している。本第4参考例が従来の水車ランナと異なるのは、図28に示されるように、子午断面においてランナ羽根10の後縁の縁線10aのクラウン付根部位とバンド付根部位に、下流側に延びるとともに下流側に向かって凹曲状に形成されたフィレット23、22を取付けたことことである。 FIG. 28 shows a meridional section of the Francis turbine runner of the fourth reference example . The fourth reference example is different from the conventional turbine runner as shown in FIG. 28. The meridian cross section extends downstream from the crown root portion and the band root portion of the edge line 10a of the trailing edge of the runner blade 10 in the meridian section. At the same time, the fillets 23 and 22 formed in a concave shape toward the downstream side are attached.

第4参考例は、第2および第3の参考例を組み合わせたものである。したがって、両者の相乗効果により、非設計点のランナ内の2次流れがより効果的に低減され、水力損失発生を抑制することができ、図29に示すように、設計点より水量の小さな運転点及び大きな設計点での水力効率を向上させることができる。 The fourth reference example is a combination of the second and third reference examples . Therefore, due to the synergistic effect of the two, the secondary flow in the runner at the non-design point can be more effectively reduced and the generation of hydraulic power loss can be suppressed. As shown in FIG. The hydraulic efficiency at the point and the large design point can be improved.

本発明における第1の実施の形態のフランシス形水車ランナの子午断面図。The meridional sectional view of the Francis type turbine runner according to the first embodiment of the present invention. 第1の実施の形態のフランシス形水車ランナの内部流れ模式図。The internal flow schematic diagram of the Francis type turbine runner of a 1st embodiment. 第1の実施の形態における水力効率の変化を示す図。The figure which shows the change of the hydraulic efficiency in 1st Embodiment. 第1の実施の形態における各部寸法の説明図。Explanatory drawing of each part dimension in 1st Embodiment. 第1の実施の形態のフランシス形水車ランナの内部流れ模式図。The internal flow schematic diagram of the Francis type turbine runner of a 1st embodiment. 第1の実施の形態のフランシス形水車ランナのsb/LLbと2次流れ損失相関図。The sb / LLb and secondary flow loss correlation diagram of the Francis type turbine runner of a 1st embodiment. 第2の実施の形態のフランシス形水車ランナの子午断面図。The meridional sectional view of the Francis type turbine runner of the second embodiment. 第2の実施の形態のフランシス形水車ランナの内部流れ模式図。The internal flow schematic diagram of the Francis type turbine runner of a 2nd embodiment. 第2の実施の形態における水力効率の変化を示す図。The figure which shows the change of the hydraulic efficiency in 2nd Embodiment. 第2の実施の形態における各部寸法の説明図。Explanatory drawing of each part dimension in 2nd Embodiment. 第2の実施の形態のフランシス形水車ランナの内部流れ模式図。The internal flow schematic diagram of the Francis type turbine runner of a 2nd embodiment. 第2の実施の形態のフランシス形水車ランナのsc/LLcと2次流れ損失相関図。The sc / LLc of a Francis type turbine runner of a 2nd embodiment, and a secondary flow loss correlation diagram. 第1参考例のフランシス形水車ランナの子午断面図。 The meridional sectional view of the Francis type turbine runner of the first reference example . 第1参考例における水力効率の変化を示す図。 The figure which shows the change of the hydraulic efficiency in a 1st reference example . 第1参考例における各部寸法の説明図。Explanatory drawing of the dimension of each part in a 1st reference example . 第1参考例のフランシス形水車ランナの内部流れ模式図。 The internal flow schematic diagram of the Francis type turbine runner of the 1st reference example . 第1参考例のフランシス形水車ランナのs/LLと2次流れ損失相関図。 The s / LL and secondary flow loss correlation diagram of the Francis type turbine runner of the first reference example . 第2参考例のフランシス形水車ランナの子午断面図。 The meridional sectional view of the Francis type turbine runner of the second reference example . 第2参考例のフランシス形水車ランナの内部流れ模式図。 The internal flow schematic diagram of the Francis type turbine runner of the 2nd reference example . 第2参考例における水力効率の変化を示す図。 The figure which shows the change of the hydraulic efficiency in a 2nd reference example . 第2参考例における各部寸法の説明図。Explanatory drawing of each part dimension in a 2nd reference example . 第2参考例のフランシス形水車ランナのRb/LLと2次流れ損失相関図。 The Rb / LL and secondary flow loss correlation diagram of the Francis type turbine runner of the second reference example . 第3参考例のフランシス形水車ランナの子午断面図。 The meridional sectional view of the Francis type turbine runner of the third reference example . 第3参考例のフランシス形水車ランナの内部流れ模式図。 The internal flow schematic diagram of the Francis type turbine runner of the 3rd reference example . 第3参考例における水力効率の変化を示す図。 The figure which shows the change of the hydraulic efficiency in a 3rd reference example . 第3参考例における各部寸法の説明図。Explanatory drawing of each part dimension in a 3rd reference example . 第3参考例のフランシス形水車ランナのRc/LLと2次流れ損失相関図。 The Rc / LL and secondary flow loss correlation diagram of the Francis type turbine runner of the third reference example . 第4参考例のフランシス形水車ランナの子午断面図。 The meridional sectional view of the Francis type turbine runner of the fourth reference example . 第4参考例における水力効率の変化を示す図。 The figure which shows the change of the hydraulic efficiency in a 4th reference example . 従来のフランシス形水車ランナが据え付けられた水力発電所の縦断面図。The longitudinal cross-sectional view of the hydroelectric power plant in which the conventional Francis type turbine runner was installed. (a)、(b)、(c)は、それぞれ水量の違いによるランナ内の子午面内流れ模式図。(A), (b), (c) is a schematic view of the flow in the meridional plane in the runner due to the difference in water amount. 従来の2次流れ低減技術を示す図。The figure which shows the conventional secondary flow reduction technique. 従来の2次流れ低減技術を示す図。The figure which shows the conventional secondary flow reduction technique.

1 ケーシング
3 ガイドベーン
4 ランナ
5 吸出し管
8 クラウン
9 バンド
10 羽根
10a 羽根後縁の縁線
13 死水領域
16 バンド面に対し鉛直に立てた線
17 静圧が急激に回復するよどみ点領域
18 圧力勾配により外周側に作用する流体力
19 圧力勾配により内周側に作用する流体力
21 クラウン面に対し鉛直に立てた線
22 フィレット
DESCRIPTION OF SYMBOLS 1 Casing 3 Guide vane 4 Runner 5 Suction pipe 8 Crown 9 Band 10 Blade 10a Blade trailing edge edge line 13 Dead water area 16 Line standing perpendicular to the band surface 17 Stagnation point area 18 where static pressure recovers rapidly 18 Pressure gradient The fluid force 19 acting on the outer peripheral side by the fluid force 21 acting on the inner peripheral side due to the pressure gradient The line 22 standing perpendicular to the crown surface 22 Fillet

Claims (3)

回転軸に固着されたクラウンとリング状のバンドとの間に周方向に複数のランナ羽根が設けられたフランシス形ランナであって、
子午断面におけるランナ羽根の後縁のバンド側線がこの縁線とバンドとの交点にてバンドの内面に対して鉛直に立てた線よりも上流側にあり、且つ下流側に向かって凹曲状に形成されているフランシス形ランナにおいて、
上記ランナ羽根後縁の縁線とバンドとの交点をP1b、P1bにてバンドの内面に対して鉛直に立てた線とランナ羽根後縁の縁線との交点をP2b、P1bとP2bとの間に形成される直線をLLb、直線LLbとランナ羽根後縁の縁線との距離の最大値をsbとすると、
0<sb/LLb<0.15
を満たすことを特徴とするフランシス形ランナ。
A Francis-type runner in which a plurality of runner blades are provided in a circumferential direction between a crown fixed to a rotating shaft and a ring-shaped band ,
Band side edge line of the trailing edge of the runner blade in a meridional section is located upstream of the line standing vertically against the inner surface of the bands Te to intersection with the edge line and the band, and the downstream in full Ranshisu shaped runners that have been formed in the concave shape toward,
The intersection point between the edge line of the runner blade trailing edge and the band at P1b and P1b is perpendicular to the inner surface of the band, and the intersection point of the edge line of the runner blade trailing edge is between P2b and P1b and P2b. LLb a straight line is formed, the maximum value of the distance between the edge line of a straight line LLb and La runner blade trailing edge When sb to,
0 <sb / LLb <0.15
Off Ranshisu shaped runner you and satisfies the.
回転軸に固着されたクラウンとリング状のバンドとの間に周方向に複数のランナ羽根が設けられたフランシス形ランナであって、
子午断面におけるランナ羽根の後縁のクラウン側線が、上記縁線とクラウンとの交点にてクラウンの内面に対して鉛直に立てた線よりも上流側にあり、且つ下流側に向かって凹曲状に形成されているフランシス形ランナにおいて、
上記ランナ羽根後縁の縁線とクラウンとの交点をP1c、P1cにてクラウンの内面に対して鉛直に立てた線とランナ羽根後縁の縁線との交点をP2c、P1cとP2cとの間に形成される直線をLLc、直線LLcとランナ羽根後縁の縁線との距離の最大値をscとすると、
0<sc/LLc<0.15
を満たすことを特徴とするフランシス形ランナ。
A Francis-type runner in which a plurality of runner blades are provided in a circumferential direction between a crown fixed to a rotating shaft and a ring-shaped band ,
Crown side edge line of the trailing edge of the runner blade in a meridional section is located upstream of the line standing vertically against the inner surface of the click round Te at the intersection between the edge line and click round, and on the downstream side in full Ranshisu shaped runners that have been formed in the concave shape toward,
Said runner blade trailing edge of the edge line and the intersection of P 1c and click round, the intersection of P 2c of the edge line of the lines and the runner blade trailing edge standing vertically against the inner surface of the click round Te in P 1c, P 1c and P2c a line formed between the LLc, when the sc maximum value of the distance between the edge line of the straight line L Lc and runner blade trailing edge,
0 <sc / LLc <0.15
Off Ranshisu shaped runner you and satisfies the.
請求項1または2のいずれかに記載のフランシス形ランナを備えた水力機械。 Hydraulic machine with a Francis runner according to claim 1 or 2.
JP2005247909A 2005-08-29 2005-08-29 Francis type runner and hydraulic machine Expired - Fee Related JP4768361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247909A JP4768361B2 (en) 2005-08-29 2005-08-29 Francis type runner and hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247909A JP4768361B2 (en) 2005-08-29 2005-08-29 Francis type runner and hydraulic machine

Publications (2)

Publication Number Publication Date
JP2007064018A JP2007064018A (en) 2007-03-15
JP4768361B2 true JP4768361B2 (en) 2011-09-07

Family

ID=37926513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247909A Expired - Fee Related JP4768361B2 (en) 2005-08-29 2005-08-29 Francis type runner and hydraulic machine

Country Status (1)

Country Link
JP (1) JP4768361B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117349B2 (en) * 2008-10-03 2013-01-16 株式会社東芝 Hydraulic machine
FR2974394A1 (en) * 2011-04-20 2012-10-26 Alstom Hydro France WHEEL FOR HYDRAULIC MACHINE, HYDRAULIC MACHINE EQUIPPED WITH SUCH WHEEL AND ENERGY CONVERSION INSTALLATION COMPRISING SUCH A HYDRAULIC MACHINE
JP6382603B2 (en) 2013-08-20 2018-08-29 株式会社東芝 Water wheel
MX371296B (en) 2014-07-23 2020-01-24 Andritz Hydro Ltd Francis turbine with short blade and short band.
EP3683437A1 (en) * 2019-01-18 2020-07-22 GE Renewable Technologies Hydroturbine runner blade local extension to avoid cavitation erosion
IT201900010632A1 (en) * 2019-07-02 2021-01-02 Dab Pumps Spa IMPELLER PERFECTED FOR CENTRIFUGAL PUMP, ESPECIALLY FOR PUMP WITH RETRACTABLE IMPELLER TYPE, AND PUMP WITH A SIMILAR IMPELLER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229365A (en) * 1993-02-03 1994-08-16 Toshiba Corp Inspection device for water turbine runner
JPH1030544A (en) * 1996-07-18 1998-02-03 Toshiba Corp Fluid machine
JP4094495B2 (en) * 2003-06-16 2008-06-04 株式会社東芝 Francis-type runner

Also Published As

Publication number Publication date
JP2007064018A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4768361B2 (en) Francis type runner and hydraulic machine
AU2013333059B2 (en) Hydraulic machine
US7736128B2 (en) Stress relief grooves for Francis turbine runner blades
JP5135033B2 (en) Runner vane of axial hydraulic machine
EP3172431B1 (en) Francis turbine with short blade and short band
JP2011111958A (en) Water turbine stay vane and water turbine
JP5314441B2 (en) Centrifugal hydraulic machine
US7210904B2 (en) Runner blade for low specific speed Francis turbine
US7195459B2 (en) Francis turbine
JP4163091B2 (en) Hydraulic machine
JP4703578B2 (en) Francis turbine
EP3574208B1 (en) Radial flow runner for a hydraulic machine
JP4751165B2 (en) Francis pump turbine
CN109763928B (en) Guide vane and fluid machine
JP6556486B2 (en) Runner and hydraulic machine
JP4846139B2 (en) Hydraulic machine
JP2010112336A (en) Francis hydraulic machine, and runner for the same
JP2007032458A (en) Francis water turbine
JP2007107428A (en) Runner for hydraulic machine and hydraulic machine using the same
JP2008121574A (en) Runner for hydraulic machine and method for manufacturing runner for hydraulic machine
JP2004156587A (en) Hydraulic turbine
JP7278985B2 (en) Runner for Francis turbine and Francis turbine
JP6370591B2 (en) Hydraulic machine
JP6132708B2 (en) Water wheel runner and water wheel
JP5107166B2 (en) Hydraulic machine runner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R151 Written notification of patent or utility model registration

Ref document number: 4768361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees