JP2005048608A - Splitter runner and hydraulic machinery - Google Patents

Splitter runner and hydraulic machinery Download PDF

Info

Publication number
JP2005048608A
JP2005048608A JP2003203613A JP2003203613A JP2005048608A JP 2005048608 A JP2005048608 A JP 2005048608A JP 2003203613 A JP2003203613 A JP 2003203613A JP 2003203613 A JP2003203613 A JP 2003203613A JP 2005048608 A JP2005048608 A JP 2005048608A
Authority
JP
Japan
Prior art keywords
blade
short
long
blades
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003203613A
Other languages
Japanese (ja)
Other versions
JP4163062B2 (en
Inventor
Hideyuki Kawajiri
秀之 川尻
Kiyoshi Matsumoto
貴與志 松本
Takanori Nakamura
高紀 中村
Kotaro Tezuka
光太郎 手塚
Takeo Tokumiya
健男 徳宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003203613A priority Critical patent/JP4163062B2/en
Publication of JP2005048608A publication Critical patent/JP2005048608A/en
Application granted granted Critical
Publication of JP4163062B2 publication Critical patent/JP4163062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a splitter runner and a hydraulic machinery improving cavitation performance at the time of a head difference operation. <P>SOLUTION: At least a part of the water wheel inlet side end of a short blade is positioned on the inner diameter side of a periphery of the water wheel inlet side end of a long blade. The blade loads of the long and short blades are uniformalized by applying load to the short blade by a flow led to flow into the runner and letting a flow with pressure reduced to flow into the long blade. As a result, difference in deflecting force in both the blades is reduced, difference in an angle of incidence is reduced, and a friction loss is reduced in comparison with the same size runner by shortening the long blade, therefore, cavitation performance is improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、長翼の間に短翼を配したスプリッタランナおよび水力機械に関する。
【0002】
【従来の技術】
水力発電(例えば、揚水発電)に、水の速度エネルギーおよび圧力エネルギーの双方を機械的エネルギーに変換する反動水車が用いられる。反動水車のうちフランシス形水車は、回転軸を中心とする円周方向に複数枚の羽根を配列したランナを有し、水が外周方向からランナへと流入することで、ランナが回転して水車出力が生成される。
フランシス形水車では、ランナの羽根を同一形状とするのが一般的であるが、水車効率、キャビテーション性能、低振動、変落差特性等の水車性能の向上を図るため、羽根を交互に長翼、短翼とするスプリッタランナを用いる場合がある。スプリッタランナでは、多翼化による整流効果により、翼間での2次流れが低減され、水力効率を向上できる。また、羽根一枚当たりの翼負荷が低減されることで、キャビテーション性能を向上できる。なお、スプリッタランナに関する技術が公開されている(特許文献1,2参照)。
【0003】
【特許文献1】
特開2000−54944
【特許文献2】
特開2000−205101
【0004】
【発明が解決しようとする課題】
しかしながら、従来のスプリッタランナでは、羽根の特性(例えば、キャビテーション特性)が、長翼と短翼とで異なっている。
例えば、設計点に比べて水の落差が大きい高落差運転時には長翼でキャビテーションが生じ易くなり、設計点に比べて水の落差が小さい低落差運転時には短翼でキャビテーションが生じ易くなる。このような場合には、落差が変動する変落差運転時において、キャビテーションを生じずに運転可能な範囲が制限される。
また、長翼と短翼の特性の相違が、低落差領域や高落差領域での効率低下の原因となる可能性もある。
上記に鑑み、本発明は変落差運転時におけるキャビテーション性能の向上を図ったスプリッタランナおよび水力機械を提供することを目的とする。
【0005】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明に係るスプリッタランナは、クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、前記翼長の長い羽根の前記クラウン、バンド間の水車入口側端部の少なくとも一部が、前記翼長の短い羽根の前記クラウン、バンド間の水車入口側端部よりも、前記円周の内径側に位置することを特徴とする。
【0006】
ランナに流入してくる流れが外径側に位置する翼長の短い羽根(短翼)に負荷を与え、圧力が減少した流れが翼長の長い羽根(長翼)に流入する。このため、短翼と長翼双方の水車入口側端部が同一円周上に位置する場合に比べて、短翼が受け持つ負荷が増加し、長翼が受け持つ負荷が減少する。その結果、長翼と短翼の翼負荷が均一化されて、両翼の水車入口側端部に作用する偏向力の差異が低減し、迎え角度の相違が小さくなる。その結果、キャビテーション特性を向上できる。
また、長翼を短くすることにより、同サイズのランナと比べて摩擦損失が低減され、水車効率の向上が図られる。
【0007】
(2)本発明に係るスプリッタランナは、クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、前記翼長の長い羽根の厚みの流路上での最大値Taが、前記翼長の短い羽根の厚みの流路上での最大値Tbよりも小さいことを特徴とする。
【0008】
翼長の短い羽根(短翼)の厚みの最大値Taが、翼長の長い羽根(長翼)の厚みの最大値Tbより大きいことから、短翼まわりの循環が長翼まわりの循環に近くなり、短翼と長翼の翼負荷の差異を小さくすることができる。このため、両翼の水車入口端で作用する偏向力の差異が低減し、迎え角度の相違が小さくなり、キャビテーション特性を向上できる。
【0009】
(3)本発明に係るスプリッタランナは、クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、前記円周の外径方向からみて、前記翼長の長い羽根の水車入口側端部に沿う水車入口端曲線と前記バンドの面とがなす圧力面側の角度θaが、前記翼長の短い羽根の水車入口端曲線と前記バンドの面とがなす圧力面側の角度θbよりも小さいことを特徴とする。
【0010】
一般に、高落差運転時において、翼長の長い羽根(長翼)の負圧側水車入口端近傍は翼長の短い羽根(短翼)の負圧側水車入口端近傍よりもキャビテーションが発生し易い。
長翼の水車入口端曲線の角度θaを、短翼の水車入口端曲線の角度θbよりも小さくすることで、長翼の負圧側水車入口端近傍での圧力低下を短翼に比べて緩和できる。このため、長翼の高落差側キャビテーション限界を、より限界値の大きい短翼の高落差側キャビテーション限界に近づけ、高落差運転時でのキャビテーション限界を広げることができる。
【0011】
(4)本発明に係るスプリッタランナは、クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、前記翼長の長い羽根の中心線と前記円周とが水車入口側においてなす角度βaの前記円周の半径rに対する変化率(∂βa/∂r)が、前記翼長の短い羽根の中心線と前記円周とが前記水車入口側においてなす角度βbの前記円周の半径rに対する変化率(∂βb/∂r)より大きいことを特徴とする。
【0012】
翼長の長い羽根(長翼)周りの循環と翼長の短い羽根(短翼)周りの循環の違いにより、それぞれの羽根への局所的な流入角度の差が生じる。水車入口側付近の羽根の中心線を調整することで、流入流れに対する両翼の迎え角度の相違が小さくなり、キャビテーション特性を向上できる。
【0013】
(5)本発明に係るスプリッタランナは、クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、水車入口側において前記翼長の長い羽根の中心線と前記円周とがなす負圧面側の角度βaと、前記水車入口側において前記翼長の短い羽根の中心線と前記円周とがなす負圧面側の角度βbの差(βa−βb)が、2°以上、6°以下であることを特徴とする。
【0014】
翼長の長い羽根(長翼)と翼長の短い羽根(短翼)の局所的な流入角度の相違に対応して羽根の水車入口端角度を調整することで、両翼の迎え角度の相違が小さくなり、キャビテーション特性を向上できる。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を詳細に説明する。
(第1の実施の形態)
図1は本発明の第1実施形態に係る水力機械10を側面から見た状態を表す一部断面図である。また、図2は、水力機械10のランナ40を下方(吸出管50側)から見た状態を表す一部断面図である。
水力機械10は、ケーシング20,ガイドベーン(案内羽根)30,ランナ40,吸出管50,回転軸60,発電電動機70を備え、発電(揚水発電を含む)に用いることができる。即ち、ケーシング20から水が流入し、ガイドベーン30およびランナ40を通って、吸出管50に排出されることで、ランナ40が回転されて発電が行われる。
水の落差(揚水発電では上池と下池の水位の相違)によりランナ40が回転されるのであり、水力機械10はいわゆるフランシス形水車として機能する。
【0016】
ケーシング20は、断面積がしだいに減少するドーナツ形状であり、発電時に上池から水が流入する。
ガイドベーン30は、ケーシング20からランナ40に流入する水の流量を調節するものであり、ランナ40の外側に円周方向に所定の間隔をおいて配置されている。ガイドベーン30はそれぞれ、その中心のまわりに回転でき,それにより水の流量を調節できる。ガイドベーン30によって、水流が円周方向の速度成分をもつ旋回流となり,外周方向からランナ40に流入する。
【0017】
ランナ40は、クラウン41、バンド42,長翼43,短翼44を備え、ケーシング20から流入する水によって回転される。長翼43(短翼44より長い翼長の羽根),短翼44(長翼43より短い翼長の羽根)は、クラウン41、バンド42間の円周方向に交互に配置される。即ち、ランナ40はスプリッタランナである。なお、ランナ40(特に、長翼43,短翼44)の詳細な形状は後述する。
【0018】
吸出管50は、ランナ40の回転に用いられた水を放水路(揚水発電の場合は下池)へと流出させる。
回転軸60は、ランナ40の回転運動を発電電動機70に伝達する。
発電電動機70は、回転軸60が回転されることで発電を行う。
【0019】
(ランナ40の形状の詳細)
図3(A),(B)はそれぞれ、ランナ40の子午面形状、および断面形状を表す図である。図3(A)は、図1に対応し、ランナ40を子午面(回転軸60を含む面)から見た形状を表す。図3(B)は、長翼43、短翼44を図3(A)の面F(回転軸60に垂直な面)で切断した状態を表す。
図1〜3に示すように、短翼44の水車入口端曲線Lbに対し、長翼43の水車入口端曲線Laの少なくとも一部がランナ40の内径側に位置している。
【0020】
ここで、水車入口端曲線La、Lbはそれぞれ、長翼43、短翼44について、クラウン41、バンド42間の水車入口側(ケーシング20側)の翼端に沿った曲線である。また、水車出口端曲線Ea,Ebはそれぞれ、長翼43、短翼44について、クラウン41、バンド42間の水車出口側(吸出管50側)の翼端に沿った曲線である。円周Da1,Db1はそれぞれ、長翼43、短翼44の水車入口側の複数の翼端を結ぶ円弧であり、回転軸60をその中心とする。
【0021】
(本実施形態における基本的な考え方)
本実施形態における基本的な考え方を説明する。
図4(A),(B)はそれぞれ、本実施形態の比較例たるランナ40xの子午面形状、および断面形状を表す図であり、図3(A),(B)に対応する。
ランナ40xでは、長翼43xと短翼44xは、翼長が互いに異なるものの、その翼形状が近似しており、回転軸60中心から水車入口側の翼端までの距離が等しい。短翼44xは、長翼43xと別個に作成されるのではなく、長翼43xを水車入口側から65〜80%程度の長さの部分で切り取ることで、作成されるのが通例だからである。
【0022】
図5は、ランナ40xに流入する水の流れを表す図である。
ランナ40xに、上流(ケーシング20側)から流入角度βwで水が流入する。羽根(長翼43xおよび短翼44x)の近傍では流入角度がΔβw変化して(βw+Δβw)となる。これは、それぞれの羽根(長翼43xおよび短翼44x)の周りの循環に基づく偏向力によるものである。
【0023】
長翼43と短翼44では、断面形状が異なることから、翼負荷が異なる。一般に、長翼43の翼負荷ΓAが短翼44の翼負荷ΓBに比べて大きいことから、長翼43近傍での流入角度の変化ΔβwAは短翼44近傍での流入角度の変化ΔβwBより大きい(ΔβwA>ΔβwB)。即ち、長翼43への流入角度(βw+ΔβwA)は、短翼44への流入角度(βw+ΔβwB)より大きくなる(βw+ΔβwA > βw+ΔβwB)。
【0024】
長翼43と短翼44とで水の流入角度が異なることに起因して、ランナ40xのキャビテーション特性の劣化が生じることが判った。以下に、長翼43と短翼44での流入角度の相違とランナ40xのキャビテーション特性の関係につき説明する。
【0025】
長翼43と短翼44での流入角度の相違は、迎え角(流入角度と羽根角度の差、正確には翼弦(水車入口側端部と水車出口側端部とを結ぶ羽根の中心線)が水の流れ方向(流線)となす角度)の相違をもたらす。
迎え角が大きいと羽根の水車入口側端部付近の翼面で静圧が低下し易くなる。従い、キャビテーション(静圧が局部的に蒸気圧以下になり,その部分の水が蒸発して水蒸気の気泡が生ずる現象)が生じやすくなる。
この結果、長翼43と短翼44とで迎え角が異なると、キャビテーションが発生する条件が長翼43と短翼44とで異なり、ランナ40x全体としてキャビテーションが発生し易くなる。長翼43と短翼44いずれでキャビテーションが発生しても、ランナ40xにキャビテーションが生じることに変わりはないからである。
【0026】
以上のように、長翼43と短翼44で水の流入角度(究極的には迎え角)が相違することで、ランナ40xにキャビテーションが発生し易くなる。逆にいえば、長翼43と短翼44での迎え角の差異を小さくすることで、水車のキャビテーション性能等を向上できる。
本実施形態では、長翼43の水車入口端曲線Laの少なくとも一部を短翼44の水車入口端曲線Lbよりもランナ40の内径側に位置させることで、長翼43と短翼44での迎え角の差異の解消を図っている。
【0027】
(ランナ40の特性)
以下、本実施形態に係るランナ40の特性を比較例のランナ40xと対比して説明する。
図6(A)、(B)はそれぞれ、図4に示した比較例のランナ40x、図1〜3に示した本実施形態のランナ40でのキャビテーション特性を表すグラフである。グラフの横軸が水の落差(上池と下池の水位の差)であり、縦軸がランナに流入する水の流量を表す。
破線が水車効率の等しい点を結んだ等効率曲線を表す。また、実線が長翼43の水車入口(ケーシング20側の翼端)でのキャビテーションの初生点を、一点鎖線が短翼44の水車入口でのキャビテーションの初生点を表す。なお、「×」は、水車効率が最高になる最高効率点を表す。
【0028】
図7(A)、(B)はそれぞれ、図4に示した比較例のランナ40x、図1〜3に示した本実施形態のランナ40の最高効率点付近での静圧分布を表すグラフである。また、図8(A)、(B)はそれぞれ、高落差側、低落差側での比較例のランナ40xの静圧分布を表すグラフである。図9(A)、(B)はそれぞれ、高落差側、低落差側での本実施形態のランナ40の静圧分布を表すグラフである。
図7〜9のグラフの横軸は翼面上の流線に沿った長さであり、縦軸は翼面の静圧を表す。
【0029】
図6(A)に示すように、比較例においては、高落差側でのキャビテーション初生点は長翼43xの方が短翼44xより低落差側である。逆に、低落差側でのキャビテーション初生点は短翼44xの方が長翼43xより高落差側である。このため、水車入口のキャビテーション無発生区間(最高効率点の流量でキャビテーションが発生しない落差の幅)S0が狭くなっている。
これに対して、図6(B)に示すように、本実施形態では長翼43と短翼44のキャビテーション初生点が高落差側、低落差側の双方で一致している。このため、水車入口のキャビテーション無発生区間(最高効率点の流量でキャビテーションが発生しない落差の幅)S1が広くなり、水車入口でのキャビテーション特性が向上する。
【0030】
これは、図8,9に示すように、水車入口側の翼面の静圧の最低点が、比較例では長翼43x,短翼44xで一致せず、本実施形態では長翼43,短翼44で一致することによる。図8から、高落差側では長翼43xの水車入口側翼端で、低落差側では短翼44xの水車入口側翼端で、それぞれの静圧が水の飽和蒸気圧より低下し、キャビテーションが発生することが判る。なお、図8、9では高落差、低落差の場合を示したがその中間においても長翼43,短翼44の静圧の一致、不一致の傾向には特に変わりがない。
なお、図6から、長翼43と短翼44の無衝突流入点が比較例では一致せず、本実施形態では一致していることも判る。
【0031】
本実施形態に係るランナ40では、上流(ケーシング20側)から自由渦的に流入してくるほぼ圧力一定な流れが、ランナ40の外径側に位置する短翼44に作用することにより、短翼44がまず負荷を持つ。従い、長翼43には圧力が減少した流れが作用する。
このために、本実施形態に係るランナ40では、短翼44と長翼43の入口端が同一円周上に位置する比較例に比べて、短翼44が受け持つ負荷が増加し、逆に長翼43が受け持つ負荷が減少する。従い、比較例では図7(A)に示すように長翼43xが大きな負荷を持ち、短翼44xはあまり大きな負荷を持たないのに対して、本実施形態では図7(B)に示すように長翼43と短翼44の翼負荷が均一化される(長翼43の静圧の積分値が、短翼44の静圧の積分値に近づく)。
【0032】
以上から、本実施形態では長翼43、短翼44の入口側翼端で作用する偏向力の差異が低減し、流れの流入角度(βw+Δβw)の相違が小さくなる。従い、変落差運転時の入口側翼端における圧力低下レベルの差も小さくなる。
その結果、図6(B)に示すように、水車入口キャビテーションの初生点を長翼43と短翼44でほぼ同じ落差とすることができ、水車入口のキャビテーション性能の向上が可能となる。
これに加えて、長翼43が短くなることにより、同サイズのランナ40xと比べて、摩擦損失が減少することから、水力効率が向上する。
さらに、長翼43と短翼44の特性のずれが改善されて無衝突流入点が一致するため最高効率が向上する。
【0033】
続いて、長翼43と短翼44の外径を変化させた場合を定量的に説明する。
図10は、長翼43と短翼44の外径の比とキャビテーション無発生区間Sの関係を表すグラフである。グラフの横軸が、回転軸に垂直な断面における長翼43の外径Da1と短翼44の外径Db1の比Da1/Db1を表す。横軸が、長翼43と短翼44の外径が等しいときのキャビテーション無発生区間S0に対するSとキャビテーション無発生区間S1の比S1/S0を表す。
【0034】
長翼43と短翼44の外径の比(Da1/Db1)が小さくなると、短翼44周りの循環ΓBが増し、長翼43周りの循環ΓAが減少する。このため、それぞれの羽根への局所的な流入角度の差が小さくなり、S1/S0が大きくなる。
一方、Da1/Db1が小さくなりすぎると、逆に短翼44が過大な負荷を持ち、短翼44周りの循環ΓBが長翼43周りの循環ΓAを上回ることとなる。このため、短翼44と長翼43の立場が逆転してS1/S0が減少に転じる。
そこで図10に示すように、長翼43の外径と短翼44の外径の比Da1/Db1を0.85以上、0.98以下の範囲とすることで(0.85≦Da1/Db1≦0.98)、キャビテーション無発生区間Sを大きくすることが可能となる。
【0035】
(第2の実施の形態)
本発明の第2の実施形態を説明する。
図11は、本発明の第2の実施形態に係るランナ40aの断面形状を表す断面図である。本図は、図3(B)と異なり、水車入口(ケーシング20側)から水車出口(吸出管50側)への水の流路に沿う面で長翼43と短翼44とを切断し、これを展開した状態を表す。
【0036】
本実施形態では、長翼43の羽根最大厚みTaが、短翼44の羽根最大厚みTbより小さくなっている(Ta<Tb)。羽根最大厚みTa、Tbは、羽根(長翼43、短翼44)を流路に沿う面で切断したときの羽根の厚みの最大値をいう。
羽根の厚みおよび翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
【0037】
本実施形態において、長翼43と短翼44での迎え角の相違を低減することで、キャビテーション特性の向上を図っていることは、第1の実施形態と同様である。但し、本実施形態では、長翼43と短翼44の厚みに着目して長翼43と短翼44の迎え角の相違を低減している。
短翼44の厚みを増すことで、短翼44周りの循環が増加し、短翼44がより大きな負荷を持つ。このため、短翼44と長翼43の翼負荷の差異が小さくなる(翼負荷の差異の均一化)。
この結果、長翼43と短翼44の水車入口側翼端に作用する偏向力の差異が低減し、迎え角度の相違が小さくなり、キャビテーション性能の向上が可能となる。
【0038】
次に、長翼43、短翼44の羽根最大厚みTa、Tbと水力損失の関係につき説明する。
図12は、長翼43に対する短翼44の羽根最大厚みの比Tb/Taと水力損失の関係の1例を表すグラフである。横軸が長翼43の羽根最大厚みTaに対する短翼44の羽根最大厚みTbの比(Tb/Ta)を、縦軸が水力損失を表す。なお、本図では流入流れと長翼43とのマッチングがとれている運転点を例にとっている。
【0039】
短翼44周りの循環が増加することで、流入流れの角度変化Δβwが大きくなり、短翼44の無衝突流入角度付近で短翼44の衝突損失が最小になる。短翼44をさらに厚くして短翼44回りの循環が増すと、短翼44の衝突損失は増加に転じる。
一方、短翼44が厚くなると、流路の断面積が減少し、平均流速が増加するために摩擦損失は増加する。
この結果、衝突損失と摩擦損失を合計した水力損失は、羽根最大厚みの比Tb/Taが変化することで、減少し、その後に増加することとなる。
【0040】
図12に示すように、長翼43と短翼44の羽根最大厚みの比Tb/Taを、1.05以上、1.3以下(1.05≦Tb/Ta≦1.3)とすることで、合計の水力損失を最小限の範囲とすることができた。即ち、短翼44をある程度厚くすることで、短翼44の水力損失の低減を図ることができる。
この場合、短翼44が厚くなることで、水力損失の低減と併せて、短翼44の強度の向上をも図ることができる。
【0041】
(第3の実施の形態)
本発明の第3の実施形態を説明する。
図13は本発明の第3の実施形態に係るランナ40bを側面(外径方向)から見た状態を表す側面図である。
クラウン41とバンド42の間に、長翼43と、短翼44が周方向に交互に配置されている。本実施形態では、長翼43の水車入口端曲線Laとバンド42の面とがなす角θaより、短翼44の水車入口端曲線Lbとバンド42の面とがなす角θbが大きい。
【0042】
正確には、角度θaは接線6bと接線6cとのなす角として、角度θbは接線7bと接線7cとのなす角として定義できる。
接線6bは、外径方向から見た長翼43の水車入口端曲線Laとバンド42との交点6aにおける、水車入口端曲線Laの接線である。接線6cは、交点6aにおける、交点6aを通り回転軸60を中心とする円の回転方向と反対向きの接線である。
接線7bは、外径方向から見た短翼44の水車入口端曲線Lbとバンド42との交点7aにおける、水車入口端曲線Lbの接線である。接線7cは、交点7aにおける、交点7aを通り回転軸60を中心とする円の回転方向と反対向きの接線である。
【0043】
水車入口端曲線の角度および翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
本実施形態においては、長翼43と短翼44の水車入口端曲線の角度に着目して長翼43と短翼44の迎え角の相違を低減している。
【0044】
図14は、長翼43の水車入口端曲線の角度θaとキャビテーションの関係の1例を表すグラフである。グラフの横軸は長翼43の水車入口端曲線の角度θaを表す。グラフの縦軸は長翼43の負圧面での最低静圧Psa−min(破線のグラフ)および水力効率(実線のグラフ)を表す。ここでは、水車入口端近傍の負圧面でキャビテーションが発生し易い運転点を例に挙げている。
【0045】
図14から、長翼43の水車入口端曲線の角度θaより短翼44の水車入口端曲線の角度θbを大きくすることで、水力効率をさほど低下させずに、キャビテーションを防止できることが判る(静水圧を飽和蒸気圧より大きくする)。
これは、長翼43での角度θaを短翼44での角度θbより小さくすることで、長翼43の水車入口端付近バンド42側(交点6a付近)の負圧面での流れの偏りが緩和されることによる。流れの偏りの緩和によって、交点6a付近での局所的な圧力低下が抑制される。
【0046】
短翼44と長翼43が水車入口側で同一の羽根形状を持つ場合には、図6(A)および図8(A)で示したように、高落差運転時において、短翼44よりも低い落差で、長翼43の水車入口側負圧面にキャビテーションが発生する。
これに対して、長翼43の角度θaを短翼44の角度θbより小さくすることで、長翼43での圧力低下を短翼44に比較して緩和し、長翼43のキャビテーション初生点をより高落差側に移すことができる。即ち、水車入口側負圧面でキャビテーションが発生する落差を短翼44と長翼43で一致させることができ、高落差側での運転範囲を拡大できる。
【0047】
短翼44、長翼43の角度θb、θaは、水車入口での高落差側キャビテーション特性が仕様を満足するように設定される。短翼44の角度θbは、短翼44の入口負圧面でキャビテーションが発生しないように定められる。そして、短翼44、長翼43の角度差(θb−θa)をある程度大きくすることで、長翼43の入口負圧面でのキャビテーションの発生を防止できる。
この一方、図14に示すように、角度差(θb−θa)を大きくし過ぎると水力効率が低下する。
図14に示すように、角度差(θb−θa)を5°以上30°以下とすることで、飽和蒸気圧(キャビテーションが発生する圧力)に対して、静水圧のマージンを確保し、かつ水力効率を損なわないことが可能となる。
【0048】
(第4の実施の形態)
本発明の第4の実施形態を説明する。
図15は、本発明の第4の実施の形態に係るランナ40cの断面形状を表す断面図である。本図は、水車入口(ケーシング20側)から水車出口(吸出管50側)への水の流路に沿う面で長翼43と短翼44とを切断し、これを展開した状態を表す。
【0049】
本実施形態では、水車入口側において、長翼43の反り量Caが短翼44の反り量Cbより大きい。
ここで、長翼43の反り量Caは、長翼43のキャンバーライン45(流路に沿って、水車入口側端部と水車出口側端部とを結ぶ長翼43の中心線)と回転軸60を中心とする半径rの円とのなす角度βaの半径rに対する変化率(∂βa/∂r)として定義できる。
また、短翼44の反り量Cbは、短翼44のキャンバーライン46(流路に沿って、水車入口側端部と水車出口側端部とを結ぶ短翼44の中心線)と半径rの円とのなす角度βbの半径rに対する変化率(∂βb/∂r)として定義できる。
【0050】
羽根の反り量および翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
【0051】
本実施形態において、長翼43と短翼44での迎え角の相違を低減することで、キャビテーション特性の向上を図っていることは、第1の実施形態と同様である。但し、本実施形態では、長翼43と短翼44の反り量に着目して長翼43と短翼44の迎え角の相違を低減している。
図5で示したように、長翼43と短翼44では翼周りの循環が異なり、長翼43に比べて短翼44は循環の偏向力による流れの角度変化が小さくなり易い。
本実施形態では、短翼44、長翼43それぞれへの水の流入角度(βw+Δβ)の相違を考慮して水車入口付近のキャンバーライン45,46を設定している。この結果、短翼44、長翼43での迎え角度の相違が小さくなり、キャビテーション性能が向上する。
【0052】
(第5の実施の形態)
本発明の第5の実施形態を説明する。
本実施形態では、長翼43の水車入口端角度βa1を短翼44の水車入口端角度βb1より大きくする。
羽根の水車入口端角度および翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
本実施形態において、長翼43と短翼44での迎え角の相違を低減することで、キャビテーション特性の向上を図っていることは、第1の実施形態と同様である。但し、本実施形態では、長翼43と短翼44の水車入口端角度に着目して長翼43と短翼44の迎え角の相違を低減している。
【0053】
まず、ランナ40の水車入口端における、羽根(長翼43、短翼44)に対する水の流れの平均的な相対流入角度φを表す式を導出する。この相対流入角度φは、迎え角に対応する量であり、長翼43、短翼44とで相対流入角度φが一致するように、長翼43と短翼44の水車入口端角度を設定する。
【0054】
羽根の外径をD1[m]、ランナ40入口におけるのみ口高さをB[m]、ランナ40の回転速度をn[1/sec]、ランナ40に流入する水の流量をQ[m/sec]、水の落差をH[m]、ランナ40に流入する水の平均径方向速度をVm[m/sec]、ランナ40に流入する水の平均周方向速度をVth[m/sec]、ランナ40に流入する水の流れの絶対角度をα[°]とする。
このとき、単位落差(√H)あたりの回転速度n1は(n1=n/√H)、単位落差(√H)あたりの流量Q1は(Q1=Q/√H)とそれぞれ表される。
【0055】
図16は、羽根の水車入口端での速度三角形を表す図である。この速度三角形により次の式(1)の関係がなりたつ。
Vm=(Q1・√H)/(π・D1・B)
u=π・D1・n1・√H
Vth=Vm/tanα …式(1)
【0056】
相対流入角度φ(°)は、次の式(2)で表される。

Figure 2005048608
【0057】
長翼43での単位落差あたりの回転速度n1A、流量Q1A、短翼44での単位落差あたりの回転速度n1B、流量Q1Bを式(2)に代入する。
各運転点における長翼43の相対流入角度φAと、短翼44の相対流入角度φBの差(φA−φB)は、次の式(3)で表される。
【0058】
Figure 2005048608
【0059】
回転速度nと流量Qを変化させてランナを動作させ、長翼43と短翼44それぞれにおける水車入口でのキャビテーションの初生点を測定した。
但し、ここでは羽根の長さ、形状が全て同一のランナ(スプリッタランナでない通常のフランシス形水車用のランナ)を用いた。これは、スプリッタランナの羽根(長翼、短翼)それぞれの近傍での流れの傾向と、通常のランナの羽根それぞれの近傍での流れの傾向とが大まかには一致する傾向があることによる。
即ち、ここでは、スプリッタランナで長翼、短翼の双方が存在することによる流れの複雑化要因を無視し、一種の近似化(あるいは、平均化)を行っている。
【0060】
測定結果から相対的流入角度の差(φA−φB)を算出した結果、相対的流入角度の差(φA−φB)、即ち、長翼43と短翼44に対する水の流入角度の差は2°から6°の範囲であることが判った。
従って、この相対的流入角度差(φA−φB)に対応するように長翼43と短翼44の水車入口端角度β1をずらすことで、長翼43と短翼44に対する相対的な水の流入角度、即ち、互いの迎え角を近づけることができる。
【0061】
具体的には、長翼43の水車入口端角度βa1と短翼44の水車入口端角度βb1の差(βa1−βb1)が算出された相対的流入角度差(φA−φB)に等しくなるように、長翼43、短翼44の水車入口端角度βa1、βb1のいずれかまたは双方を修正する。例えば、短翼44の水車入口端角度βb1を長翼43の水車入口端角度βa1に対してΔφB(=φA−φB)だけずらす(2°≦ΔφB≦6°)。
このようにすることにより、流入する流れに対して長翼43と短翼44それぞれでの迎え角度の相違を小さくして、キャビテーション性能を向上することが可能となる。
【0062】
(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。
上記実施形態では、クラウン、バンド間の円周方向に長翼43と短翼44とを交互に配置したスプリッタランナにおいて、長翼43と短翼44での流入角度に対する羽根角度(迎え角度)の差異を小さくすることで、キャビテーション性能等の向上を図っている。このように、羽根同士での迎え角度の相違を小さくすることが可能で有れば、本発明の実施形態に含まれる。
【0063】
上記実施形態では、それぞれ単一のパラメータ(例えば、羽根の外径、厚み、バンド面との角度、反り、水車入口端角度)を長翼43と短翼44それぞれで調節することで、迎え角の均一化を図っていた。これに対して、複数のパラメータを任意に組み合わせることで迎え角の均一化を図ることも可能である。即ち、羽根の外径等のパラメータを2つ以上組み合わせても差し支えない。
【0064】
【発明の効果】
以上説明したように、本発明によれば変落差運転時におけるキャビテーション性能の向上を図ったスプリッタランナおよび水力機械を提供できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る水力機械を側面から見た状態を表す一部断面図である。
【図2】本発明の第1実施形態に係る水力機械のランナを下方から見た状態を表す一部断面図である。
【図3】本発明の第1実施形態に係る水力機械のランナの子午面形状、および断面形状を表す図である。
【図4】本発明の実施形態の比較例たるランナの子午面形状、および断面形状を表す図である。
【図5】本発明の実施形態の比較例たるランナに流入する水の流れを表す図である。
【図6】本発明の第1実施形態に係る水力機械のランナのキャビテーション特性の1例を比較例と対比して表すグラフである。
【図7】本発明の第1実施形態に係る水力機械のランナの最高効率点付近での静圧分布の1例を比較例と対比して表すグラフである。
【図8】本発明の実施形態の比較例たるランナの高落差側、低落差側での静圧分布を表すグラフである。
【図9】本発明の第1の実施形態に係るランナの高落差側、低落差側での静圧分布の1例を表すグラフである。
【図10】長翼と短翼の外径の比とキャビテーション無発生区間の関係の1例を表すグラフである。
【図11】本発明の第2の実施形態に係るランナの断面形状を表す断面図である。
【図12】長翼に対する短翼の羽根最大厚みの比と水力損失の関係の1例を表すグラフである。
【図13】本発明の第3の実施形態に係るランナを側面から見た状態を表す側面図である。
【図14】長翼の水車入口端曲線の角度とキャビテーションの関係の1例を表すグラフである。
【図15】本発明の第4の実施の形態に係るランナの断面形状を表す断面図である。
【図16】羽根の水車入口端での速度三角形を表す図である。
【符号の説明】
10…水力機械、20…ケーシング、30…ガイドベーン、40…ランナ、41…クラウン、42…バンド、43…長翼、44…短翼、50…吸出管、60…回転軸、70…発電電動機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a splitter runner and a hydraulic machine in which short blades are arranged between long blades.
[0002]
[Prior art]
In hydroelectric power generation (eg, pumped-storage power generation), a reaction water turbine that converts both water velocity energy and pressure energy into mechanical energy is used. Among the reaction water turbines, the Francis type water turbine has a runner in which a plurality of blades are arranged in the circumferential direction around the rotation axis, and the runner rotates by rotating water into the runner from the outer circumferential direction. Output is generated.
In Francis type turbines, runner blades are generally the same shape, but in order to improve turbine performance such as turbine efficiency, cavitation performance, low vibration, drop characteristics, etc., the blades are alternately long blades, A splitter runner with short blades may be used. In the splitter runner, the secondary flow between the blades is reduced due to the rectification effect due to the increase in the number of blades, and the hydraulic efficiency can be improved. Moreover, the cavitation performance can be improved by reducing the blade load per blade. In addition, the technique regarding a splitter runner is open | released (refer patent document 1, 2).
[0003]
[Patent Document 1]
JP 2000-54944 A
[Patent Document 2]
JP2000-205101A
[0004]
[Problems to be solved by the invention]
However, in the conventional splitter runner, the blade characteristics (for example, cavitation characteristics) are different between the long blades and the short blades.
For example, cavitation is likely to occur with long blades during high-head operation with a large water drop compared to the design point, and cavitation is likely to occur with short blades during low-head operation with a small water drop compared to the design point. In such a case, the range in which driving can be performed without cavitation is limited during the head change operation in which the head fluctuates.
In addition, the difference in characteristics between the long blade and the short blade may cause a reduction in efficiency in the low head region and the high head region.
In view of the above, it is an object of the present invention to provide a splitter runner and a hydraulic machine that improve the cavitation performance during a drop head operation.
[0005]
[Means for Solving the Problems]
(1) In order to achieve the above-mentioned object, the splitter runner according to the present invention includes a blade having a long blade length and a blade having a short blade length alternately in a circumferential direction around the rotation axis between the crown and the band. The at least a part of the end of the blade of the blade having a long blade length on the side of the inlet of the turbine between the bands, the inlet of the turbine of the blade having a short blade length, the inlet of the turbine between the bands. It is located on the inner diameter side of the circumference from the side end portion.
[0006]
The flow flowing into the runner applies a load to the short blade (short blade) located on the outer diameter side, and the flow with reduced pressure flows into the long blade (long blade). For this reason, compared with the case where the turbine blade entrance side ends of both the short blade and the long blade are located on the same circumference, the load that the short blade takes on increases and the load that the long blade takes on decreases. As a result, the blade loads of the long blades and the short blades are made uniform, the difference in deflection force acting on the turbine turbine inlet side ends of both blades is reduced, and the difference in angle of attack is reduced. As a result, cavitation characteristics can be improved.
Further, by shortening the long blades, friction loss is reduced as compared with a runner of the same size, and the turbine efficiency is improved.
[0007]
(2) A splitter runner according to the present invention is a splitter runner in which a blade having a long blade length and a blade having a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band. The maximum value Ta on the flow path with the blade length with the long blade length is smaller than the maximum value Tb on the flow path with the blade thickness with the short blade length.
[0008]
Since the maximum value Ta of the blades with short blades (short blades) is larger than the maximum value Tb of the blades with long blades (long blades), the circulation around the short blades is close to the circulation around the long blades. Therefore, the difference in blade load between the short blade and the long blade can be reduced. For this reason, a difference in deflection force acting at the turbine wheel inlet ends of both blades is reduced, a difference in angle of attack is reduced, and cavitation characteristics can be improved.
[0009]
(3) A splitter runner according to the present invention is a splitter runner in which a blade having a long blade length and a blade having a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band. The angle θa on the pressure surface side formed by the turbine inlet end curve along the turbine inlet side end of the blade having a long blade length and the surface of the band when viewed from the outer diameter direction of the circumference is the blade length. It is characterized by being smaller than the angle θb on the pressure surface side formed by the turbine blade inlet end curve of the short blade and the surface of the band.
[0010]
In general, during high-head operation, cavitation is more likely to occur near the suction-side turbine inlet end of a blade having a longer blade length (long blade) than at the suction-side turbine inlet end of a blade having a shorter blade length (short blade).
By making the angle θa of the turbine inlet end curve of the long blade smaller than the angle θb of the turbine inlet end curve of the short blade, the pressure drop near the suction side turbine inlet end of the long blade can be reduced compared to the short blade. . For this reason, the high head side cavitation limit of a long blade can be brought close to the high head side cavitation limit of a short blade having a larger limit value, and the cavitation limit during high head operation can be widened.
[0011]
(4) A splitter runner according to the present invention is a splitter runner in which a blade having a long blade length and a blade having a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band. The rate of change (∂βa / ∂r) of the angle βa with respect to the radius r of the circumference formed by the centerline of the blade with a long blade length and the circumference on the turbine inlet side is a blade with a short blade length. The angle βb formed between the center line and the circumference on the water turbine inlet side is greater than the rate of change (∂βb / ∂r) with respect to the radius r of the circumference.
[0012]
A difference in circulation angle around a long blade (long blade) and a circulation around a short blade (short blade) cause a difference in local inflow angle to each blade. By adjusting the center line of the blades near the water turbine inlet side, the difference in the angle of attack of both blades with respect to the inflow is reduced, and the cavitation characteristics can be improved.
[0013]
(5) A splitter runner according to the present invention is a splitter runner in which a blade having a long blade length and a blade having a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band. An angle βa on the suction surface side formed by the center line of the blade having a long blade length and the circumference on the inlet side of the turbine wheel, and a center line and the circumference of the blade having a short blade length on the turbine wheel inlet side. The difference (βa−βb) in the angle βb on the suction surface side formed by is 2 ° or more and 6 ° or less.
[0014]
By adjusting the turbine wheel inlet end angle corresponding to the difference in the local inflow angle between the long blade (long blade) and the short blade (short blade), the difference in the angle of attack of both blades The cavitation characteristics can be improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a partial cross-sectional view showing a state in which a hydraulic machine 10 according to a first embodiment of the present invention is viewed from the side. FIG. 2 is a partial cross-sectional view showing a state in which the runner 40 of the hydraulic machine 10 is viewed from below (the suction pipe 50 side).
The hydraulic machine 10 includes a casing 20, a guide vane (guide vane) 30, a runner 40, a suction pipe 50, a rotating shaft 60, and a generator motor 70, and can be used for power generation (including pumped-storage power generation). That is, water flows in from the casing 20, passes through the guide vane 30 and the runner 40, and is discharged to the suction pipe 50, whereby the runner 40 is rotated to generate power.
The runner 40 is rotated by a water drop (the difference in water level between the upper pond and the lower pond in pumped storage power generation), and the hydraulic machine 10 functions as a so-called Francis type turbine.
[0016]
The casing 20 has a donut shape in which the cross-sectional area gradually decreases, and water flows from the upper pond during power generation.
The guide vane 30 adjusts the flow rate of water flowing into the runner 40 from the casing 20, and is arranged outside the runner 40 at a predetermined interval in the circumferential direction. Each guide vane 30 can rotate about its center, thereby adjusting the water flow rate. By the guide vanes 30, the water flow becomes a swirl flow having a circumferential velocity component and flows into the runner 40 from the outer peripheral direction.
[0017]
The runner 40 includes a crown 41, a band 42, long blades 43, and short blades 44, and is rotated by water flowing from the casing 20. The long blades 43 (blades having a blade length longer than the short blades 44) and the short blades 44 (blades having a blade length shorter than the long blades 43) are alternately arranged in the circumferential direction between the crown 41 and the band 42. That is, the runner 40 is a splitter runner. The detailed shape of the runner 40 (in particular, the long blades 43 and the short blades 44) will be described later.
[0018]
The suction pipe 50 allows the water used for the rotation of the runner 40 to flow out into a water discharge channel (a lower pond in the case of pumped-storage power generation).
The rotary shaft 60 transmits the rotary motion of the runner 40 to the generator motor 70.
The generator motor 70 generates power by rotating the rotary shaft 60.
[0019]
(Details of the shape of the runner 40)
3A and 3B are views showing the meridional shape and the cross-sectional shape of the runner 40, respectively. FIG. 3A corresponds to FIG. 1 and shows a shape of the runner 40 viewed from the meridian plane (a plane including the rotation axis 60). FIG. 3B shows a state in which the long blades 43 and the short blades 44 are cut along a plane F (a surface perpendicular to the rotation shaft 60) in FIG.
As shown in FIGS. 1 to 3, at least a part of the turbine inlet end curve La of the long blade 43 is located on the inner diameter side of the runner 40 with respect to the turbine inlet end curve Lb of the short blade 44.
[0020]
Here, the turbine inlet end curves La and Lb are curves along the turbine tip inlet side (casing 20 side) blade tip between the crown 41 and the band 42 for the long blade 43 and the short blade 44, respectively. Further, the turbine exit end curves Ea and Eb are curves along the blade tip on the turbine exit side (suction pipe 50 side) between the crown 41 and the band 42 for the long blade 43 and the short blade 44, respectively. Each of the circumferences Da1 and Db1 is an arc connecting a plurality of blade tips on the turbine inlet side of the long blade 43 and the short blade 44, and the rotation shaft 60 is the center thereof.
[0021]
(Basic idea in this embodiment)
The basic concept in this embodiment will be described.
FIGS. 4A and 4B are views showing a meridional shape and a cross-sectional shape of a runner 40x as a comparative example of the present embodiment, and correspond to FIGS. 3A and 3B.
In the runner 40x, although the long blades 43x and the short blades 44x have different blade lengths, their blade shapes are approximate, and the distance from the center of the rotating shaft 60 to the blade tip on the water turbine inlet side is equal. This is because the short wings 44x are not created separately from the long wings 43x, but are usually created by cutting the long wings 43x at a length of about 65 to 80% from the turbine inlet side. .
[0022]
FIG. 5 is a diagram illustrating the flow of water flowing into the runner 40x.
Water flows into the runner 40x from the upstream side (casing 20 side) at an inflow angle βw. In the vicinity of the blades (long blade 43x and short blade 44x), the inflow angle changes by Δβw to (βw + Δβw). This is due to the deflection force based on the circulation around each blade (long blade 43x and short blade 44x).
[0023]
Since the long blades 43 and the short blades 44 have different cross-sectional shapes, the blade loads are different. In general, since the blade load ΓA of the long blade 43 is larger than the blade load ΓB of the short blade 44, the change ΔβwA in the inflow angle near the long blade 43 is larger than the change ΔβwB in the inflow angle near the short blade 44 ( ΔβwA> ΔβwB). That is, the inflow angle (βw + ΔβwA) to the long blade 43 is larger than the inflow angle (βw + ΔβwB) to the short blade 44 (βw + ΔβwA> βw + ΔβwB).
[0024]
It has been found that the deterioration of the cavitation characteristics of the runner 40x occurs due to the difference in water inflow angle between the long blades 43 and the short blades 44. Hereinafter, the relationship between the difference in inflow angle between the long blades 43 and the short blades 44 and the cavitation characteristics of the runner 40x will be described.
[0025]
The difference in the inflow angle between the long blades 43 and the short blades 44 is the angle of attack (difference between the inflow angle and the blade angle, more precisely, the chord (the center line of the blade connecting the end of the turbine inlet and the end of the turbine outlet). ) Causes a difference in the direction of water flow (streamline).
When the angle of attack is large, the static pressure tends to decrease on the blade surface near the end of the blade on the turbine wheel entrance side. Accordingly, cavitation (a phenomenon in which the static pressure is locally lower than the vapor pressure and the water in the portion evaporates to generate water vapor bubbles) is likely to occur.
As a result, if the angle of attack differs between the long blades 43 and the short blades 44, the conditions for generating cavitation differ between the long blades 43 and the short blades 44, and cavitation tends to occur as a whole runner 40x. This is because even if cavitation occurs in either the long blades 43 or the short blades 44, cavitation occurs in the runner 40x.
[0026]
As described above, cavitation is likely to occur in the runner 40x due to the difference in water inflow angle (ultimate angle of attack) between the long blade 43 and the short blade 44. Conversely, by reducing the difference in the angle of attack between the long wings 43 and the short wings 44, the cavitation performance of the water turbine can be improved.
In the present embodiment, at least a part of the turbine inlet end curve La of the long blade 43 is positioned closer to the inner diameter side of the runner 40 than the turbine inlet end curve Lb of the short blade 44, thereby The aim is to eliminate the difference in angle of attack.
[0027]
(Characteristics of runner 40)
Hereinafter, the characteristics of the runner 40 according to the present embodiment will be described in comparison with the runner 40x of the comparative example.
FIGS. 6A and 6B are graphs showing cavitation characteristics in the runner 40x of the comparative example shown in FIG. 4 and the runner 40 of the present embodiment shown in FIGS. The horizontal axis of the graph is the water drop (the difference in water level between the upper pond and the lower pond), and the vertical axis represents the flow rate of water flowing into the runner.
A broken line represents an iso-efficiency curve connecting points with equal turbine efficiency. The solid line represents the initial point of cavitation at the turbine inlet of the long blade 43 (blade tip on the casing 20 side), and the alternate long and short dash line represents the initial point of cavitation at the turbine inlet of the short blade 44. Note that “x” represents the highest efficiency point at which the turbine efficiency is highest.
[0028]
7A and 7B are graphs showing the static pressure distribution in the vicinity of the maximum efficiency point of the runner 40x of the comparative example shown in FIG. 4 and the runner 40 of the present embodiment shown in FIGS. is there. 8A and 8B are graphs showing the static pressure distribution of the runner 40x of the comparative example on the high head side and the low head side, respectively. 9A and 9B are graphs showing the static pressure distribution of the runner 40 of the present embodiment on the high head side and the low head side, respectively.
7 to 9, the horizontal axis represents the length along the streamline on the blade surface, and the vertical axis represents the static pressure on the blade surface.
[0029]
As shown in FIG. 6A, in the comparative example, the initial cavitation point on the high head side is that the long blade 43x is on the lower head side than the short blade 44x. Conversely, the initial cavitation point on the low head side is higher on the short blade 44x than on the long blade 43x. For this reason, the cavitation non-occurrence section (the width of the head where cavitation does not occur at the flow rate at the highest efficiency point) S0 is narrow.
On the other hand, as shown in FIG. 6B, in this embodiment, the cavitation initial points of the long blades 43 and the short blades 44 coincide on both the high head side and the low head side. For this reason, the cavitation non-occurrence section (the width of the head where cavitation does not occur at the flow rate at the highest efficiency point) S1 becomes wide, and the cavitation characteristics at the turbine entrance are improved.
[0030]
As shown in FIGS. 8 and 9, the lowest point of the static pressure on the blade surface on the turbine wheel inlet side does not coincide between the long blade 43x and the short blade 44x in the comparative example, and the long blade 43 and the short blade in this embodiment. By matching at the wing 44. From FIG. 8, the static pressure at the tip of the turbine inlet of the long blade 43x on the high head side and the tip of the turbine blade of the short blade 44x on the low head side decreases below the saturated vapor pressure of water, and cavitation occurs. I understand that. 8 and 9 show the case of a high head and a low head, but there is no particular change in the tendency of the static pressure of the long blades 43 and the short blades 44 to coincide or disagree in the middle.
6 that the collision-free inflow points of the long blades 43 and the short blades 44 do not match in the comparative example, but also match in the present embodiment.
[0031]
In the runner 40 according to the present embodiment, a flow with a substantially constant pressure flowing in freely vortex from the upstream (casing 20 side) acts on the short blades 44 located on the outer diameter side of the runner 40, thereby shortening the flow. The wing 44 first has a load. Accordingly, a flow with reduced pressure acts on the long blades 43.
For this reason, in the runner 40 according to the present embodiment, compared to the comparative example in which the inlet ends of the short blades 44 and the long blades 43 are located on the same circumference, the load that the short blades 44 bear on increases, The load that the blades 43 are responsible for decreases. Accordingly, in the comparative example, the long blades 43x have a large load as shown in FIG. 7A and the short blades 44x do not have a large load, whereas in the present embodiment, as shown in FIG. 7B. Further, the blade loads of the long blades 43 and the short blades 44 are made uniform (the integrated value of the static pressure of the long blades 43 approaches the integrated value of the static pressure of the short blades 44).
[0032]
From the above, in this embodiment, the difference in the deflection force acting at the inlet side blade tips of the long blade 43 and the short blade 44 is reduced, and the difference in the flow inflow angle (βw + Δβw) is reduced. Accordingly, the difference in the pressure drop level at the inlet side blade tip during the drop head operation is also reduced.
As a result, as shown in FIG. 6B, the initial point of cavitation at the turbine entrance can be made substantially the same by the long blade 43 and the short blade 44, and the cavitation performance at the turbine entrance can be improved.
In addition, since the long blades 43 are shortened, the friction loss is reduced as compared with the runner 40x of the same size, so that the hydraulic efficiency is improved.
Furthermore, since the deviation in characteristics between the long blades 43 and the short blades 44 is improved and the collision-free inflow points coincide with each other, the maximum efficiency is improved.
[0033]
Next, the case where the outer diameters of the long blades 43 and the short blades 44 are changed will be quantitatively described.
FIG. 10 is a graph showing the relationship between the ratio of the outer diameters of the long blades 43 and the short blades 44 and the cavitation-free section S. The horizontal axis of the graph represents the ratio Da1 / Db1 between the outer diameter Da1 of the long blade 43 and the outer diameter Db1 of the short blade 44 in a cross section perpendicular to the rotation axis. The horizontal axis represents the ratio S1 / S0 of S to the cavitation-free section S1 with respect to the cavitation-free section S0 when the outer diameters of the long blade 43 and the short blade 44 are equal.
[0034]
When the ratio of the outer diameters of the long blades 43 and the short blades 44 (Da1 / Db1) decreases, the circulation ΓB around the short blades 44 increases and the circulation ΓA around the long blades 43 decreases. For this reason, the difference of the local inflow angle to each blade | wing becomes small, and S1 / S0 becomes large.
On the other hand, if Da1 / Db1 becomes too small, the short blades 44 have an excessive load, and the circulation ΓB around the short blades 44 exceeds the circulation ΓA around the long blades 43. For this reason, the positions of the short blades 44 and the long blades 43 are reversed, and S1 / S0 starts to decrease.
Therefore, as shown in FIG. 10, by setting the ratio Da1 / Db1 between the outer diameter of the long blade 43 and the outer diameter of the short blade 44 to a range of 0.85 or more and 0.98 or less (0.85 ≦ Da1 / Db1). ≦ 0.98), it is possible to increase the cavitation-free section S.
[0035]
(Second Embodiment)
A second embodiment of the present invention will be described.
FIG. 11 is a cross-sectional view showing a cross-sectional shape of a runner 40a according to the second embodiment of the present invention. This figure is different from FIG. 3B in that the long blades 43 and the short blades 44 are cut along a surface along the flow path of water from the turbine inlet (casing 20 side) to the turbine outlet (suction pipe 50 side), This represents the expanded state.
[0036]
In the present embodiment, the blade maximum thickness Ta of the long blades 43 is smaller than the blade maximum thickness Tb of the short blades 44 (Ta <Tb). The blade maximum thicknesses Ta and Tb are maximum values of the blade thickness when the blades (long blades 43 and short blades 44) are cut along a plane along the flow path.
Conditions other than the blade thickness and blade length do not change significantly between the long blade 43 and the short blade 44. That is, in the present embodiment, the outer diameters Da1 and Db1 of the long blades 43 and the short blades 44 are equal.
Since other conditions are not essentially different from those of the first embodiment, illustration and description of the entire configuration are omitted.
[0037]
In the present embodiment, the cavitation characteristics are improved by reducing the difference in angle of attack between the long blades 43 and the short blades 44, as in the first embodiment. However, in the present embodiment, the difference in angle of attack between the long blades 43 and the short blades 44 is reduced by paying attention to the thicknesses of the long blades 43 and the short blades 44.
By increasing the thickness of the short blade 44, the circulation around the short blade 44 is increased and the short blade 44 has a greater load. For this reason, the difference in blade load between the short blades 44 and the long blades 43 is reduced (uniformization of the blade load difference).
As a result, the difference in deflection force acting on the turbine blade inlet side blade tip of the long blade 43 and the short blade 44 is reduced, the difference in the attack angle is reduced, and the cavitation performance can be improved.
[0038]
Next, the relationship between the blade maximum thicknesses Ta and Tb of the long blades 43 and the short blades 44 and hydraulic loss will be described.
FIG. 12 is a graph showing an example of the relationship between the ratio Tb / Ta of the blade maximum thickness of the short blade 44 to the long blade 43 and hydraulic loss. The horizontal axis represents the ratio (Tb / Ta) of the blade maximum thickness Tb of the short blade 44 to the blade maximum thickness Ta of the long blade 43, and the vertical axis represents hydraulic loss. In this figure, the operating point where the inflow and the long blades 43 are matched is taken as an example.
[0039]
By increasing the circulation around the short blade 44, the angle change Δβw of the inflow is increased, and the collision loss of the short blade 44 is minimized in the vicinity of the collisionless inflow angle of the short blade 44. When the short blade 44 is made thicker and the circulation around the short blade 44 is increased, the collision loss of the short blade 44 starts to increase.
On the other hand, when the short blade 44 becomes thick, the cross-sectional area of the flow path decreases and the average flow velocity increases, so that the friction loss increases.
As a result, the hydraulic loss, which is the sum of collision loss and friction loss, decreases as the blade maximum thickness ratio Tb / Ta changes, and then increases.
[0040]
As shown in FIG. 12, the ratio Tb / Ta of the blade maximum thickness of the long blade 43 and the short blade 44 is 1.05 or more and 1.3 or less (1.05 ≦ Tb / Ta ≦ 1.3). Thus, the total hydraulic power loss could be minimized. In other words, the hydraulic loss of the short blade 44 can be reduced by making the short blade 44 thick to some extent.
In this case, by increasing the thickness of the short blade 44, it is possible to improve the strength of the short blade 44 together with the reduction of hydraulic loss.
[0041]
(Third embodiment)
A third embodiment of the present invention will be described.
FIG. 13: is a side view showing the state which looked at the runner 40b which concerns on the 3rd Embodiment of this invention from the side surface (outer diameter direction).
Long wings 43 and short wings 44 are alternately arranged in the circumferential direction between the crown 41 and the band 42. In the present embodiment, the angle θb formed between the turbine inlet end curve Lb of the short blade 44 and the surface of the band 42 is larger than the angle θa formed between the turbine inlet end curve La of the long blade 43 and the surface of the band 42.
[0042]
Precisely, the angle θa can be defined as the angle formed between the tangent line 6b and the tangent line 6c, and the angle θb can be defined as the angle formed between the tangent line 7b and the tangent line 7c.
The tangent line 6b is a tangent line of the turbine inlet end curve La at the intersection 6a between the turbine inlet end curve La of the long blades 43 and the band 42 as viewed from the outer diameter direction. The tangent 6c is a tangent at the intersection 6a opposite to the rotation direction of the circle passing through the intersection 6a and centering on the rotation axis 60.
The tangent line 7b is a tangent line of the turbine inlet end curve Lb at the intersection 7a between the turbine inlet end curve Lb of the short blade 44 and the band 42 as viewed from the outer diameter direction. The tangent line 7c is a tangent line at the intersection point 7a opposite to the rotation direction of the circle passing through the intersection point 7a and centering on the rotation axis 60.
[0043]
Conditions other than the angle of the turbine wheel end curve and the blade length do not change significantly between the long blade 43 and the short blade 44. That is, in the present embodiment, the outer diameters Da1 and Db1 of the long blades 43 and the short blades 44 are equal.
Since other conditions are not essentially different from those of the first embodiment, illustration and description of the entire configuration are omitted.
In the present embodiment, the difference in the angle of attack between the long blade 43 and the short blade 44 is reduced by paying attention to the angle of the turbine inlet end curve of the long blade 43 and the short blade 44.
[0044]
FIG. 14 is a graph showing an example of the relationship between the angle θa of the turbine inlet end curve of the long blades 43 and cavitation. The horizontal axis of the graph represents the angle θa of the turbine inlet end curve of the long blade 43. The vertical axis of the graph represents the minimum static pressure Psa-min (broken line graph) and hydraulic efficiency (solid line graph) on the suction surface of the long blades 43. Here, an operating point where cavitation is likely to occur on the suction surface near the water turbine inlet end is taken as an example.
[0045]
FIG. 14 shows that cavitation can be prevented without significantly reducing hydraulic efficiency by making the angle θb of the turbine inlet end curve of the short blade 44 larger than the angle θa of the turbine inlet end curve of the long blade 43 (static). Make water pressure higher than saturated vapor pressure).
This is because the angle θa at the long blades 43 is made smaller than the angle θb at the short blades 44, thereby mitigating the uneven flow at the suction surface near the water turbine inlet end band 42 (near the intersection 6a) of the long blades 43. By being done. The local pressure drop near the intersection 6a is suppressed by the relaxation of the flow bias.
[0046]
When the short blades 44 and the long blades 43 have the same blade shape on the water turbine inlet side, as shown in FIGS. 6 (A) and 8 (A), during the high head operation, the short blades 44 and the long blades 43 are more than the short blades 44. Cavitation occurs on the suction surface of the long blade 43 on the water turbine inlet side with a low head.
On the other hand, by making the angle θa of the long blades 43 smaller than the angle θb of the short blades 44, the pressure drop in the long blades 43 is reduced compared to the short blades 44, and the cavitation initial point of the long blades 43 is reduced. It can be moved to a higher head side. That is, the head where the cavitation occurs at the suction surface on the water turbine inlet side can be matched between the short blade 44 and the long blade 43, and the operating range on the high head side can be expanded.
[0047]
The angles θb and θa of the short blades 44 and the long blades 43 are set so that the high head cavitation characteristics at the turbine inlet satisfy the specifications. The angle θb of the short blade 44 is determined so that cavitation does not occur on the inlet suction surface of the short blade 44. Then, by increasing the angle difference (θb−θa) between the short blades 44 and the long blades 43 to some extent, the occurrence of cavitation on the inlet suction surface of the long blades 43 can be prevented.
On the other hand, as shown in FIG. 14, when the angle difference (θb−θa) is excessively increased, the hydraulic efficiency is lowered.
As shown in FIG. 14, by setting the angle difference (θb−θa) to 5 ° or more and 30 ° or less, a margin of hydrostatic pressure is secured with respect to saturated vapor pressure (pressure at which cavitation occurs), and hydraulic power is increased. It becomes possible not to impair the efficiency.
[0048]
(Fourth embodiment)
A fourth embodiment of the present invention will be described.
FIG. 15 is a cross-sectional view showing a cross-sectional shape of a runner 40c according to the fourth embodiment of the present invention. This figure represents the state which cut | disconnected the long blade 43 and the short blade 44 in the surface along the flow path of the water from a turbine inlet (casing 20 side) to a turbine exit (suction pipe 50 side), and expand | deployed this.
[0049]
In the present embodiment, the warp amount Ca of the long blades 43 is larger than the warp amount Cb of the short blades 44 on the water turbine inlet side.
Here, the warp amount Ca of the long blades 43 is determined by the camber line 45 of the long blades 43 (the center line of the long blades 43 connecting the water turbine inlet side end and the water turbine outlet side end along the flow path) and the rotation axis. It can be defined as a rate of change (∂βa / ∂r) with respect to the radius r of the angle βa formed by a circle of radius r centered at 60.
Further, the amount of warpage Cb of the short blade 44 is equal to the camber line 46 of the short blade 44 (the center line of the short blade 44 connecting the water turbine inlet side end and the water turbine outlet side end along the flow path) and the radius r. It can be defined as the rate of change (∂βb / ∂r) with respect to the radius r of the angle βb with the circle.
[0050]
Conditions other than the amount of blade warpage and the blade length do not change significantly between the long blade 43 and the short blade 44. That is, in the present embodiment, the outer diameters Da1 and Db1 of the long blades 43 and the short blades 44 are equal.
Since other conditions are not essentially different from those of the first embodiment, illustration and description of the entire configuration are omitted.
[0051]
In the present embodiment, the cavitation characteristics are improved by reducing the difference in angle of attack between the long blades 43 and the short blades 44, as in the first embodiment. However, in the present embodiment, the difference in angle of attack between the long blades 43 and the short blades 44 is reduced by paying attention to the amount of warpage between the long blades 43 and the short blades 44.
As shown in FIG. 5, the circulation around the blades is different between the long blades 43 and the short blades 44, and the short blades 44 tend to have a smaller change in the flow angle due to the deflection force of the circulation than the long blades 43.
In the present embodiment, the camber lines 45 and 46 in the vicinity of the turbine inlet are set in consideration of the difference in the inflow angle (βw + Δβ) of water into the short blade 44 and the long blade 43, respectively. As a result, the difference in angle of attack between the short blade 44 and the long blade 43 is reduced, and the cavitation performance is improved.
[0052]
(Fifth embodiment)
A fifth embodiment of the present invention will be described.
In the present embodiment, the turbine inlet end angle βa1 of the long blades 43 is made larger than the turbine inlet end angle βb1 of the short blades 44.
Conditions other than the turbine wheel inlet end angle and the blade length of the blade do not change significantly between the long blade 43 and the short blade 44. That is, in the present embodiment, the outer diameters Da1 and Db1 of the long blades 43 and the short blades 44 are equal.
Since other conditions are not essentially different from those of the first embodiment, illustration and description of the entire configuration are omitted.
In the present embodiment, the cavitation characteristics are improved by reducing the difference in angle of attack between the long blades 43 and the short blades 44, as in the first embodiment. However, in the present embodiment, the difference in the angle of attack between the long blades 43 and the short blades 44 is reduced by paying attention to the water turbine inlet end angle of the long blades 43 and the short blades 44.
[0053]
First, an equation representing the average relative inflow angle φ of the water flow with respect to the blades (long blade 43, short blade 44) at the turbine wheel inlet end of the runner 40 is derived. The relative inflow angle φ is an amount corresponding to the angle of attack, and the turbine inlet end angle of the long blade 43 and the short blade 44 is set so that the relative inflow angle φ matches between the long blade 43 and the short blade 44. .
[0054]
The outer diameter of the blade is D1 [m], the opening height at the inlet of the runner 40 is B [m], the rotational speed of the runner 40 is n [1 / sec], and the flow rate of water flowing into the runner 40 is Q [m. 3 / Sec], the head of water is H [m], the average radial velocity of water flowing into the runner 40 is Vm [m / sec], and the average circumferential velocity of water flowing into the runner 40 is Vth [m / sec]. The absolute angle of the flow of water flowing into the runner 40 is α [°].
At this time, the rotational speed n1 per unit head (√H) is expressed as (n1 = n / √H), and the flow rate Q1 per unit head (√H) is expressed as (Q1 = Q / √H).
[0055]
FIG. 16 is a diagram illustrating a speed triangle at the turbine wheel inlet end of the blade. The relationship of the following formula (1) is established by this speed triangle.
Vm = (Q1 · √H) / (π · D1 · B)
u = π · D1 · n1 · √H
Vth = Vm / tan α (1)
[0056]
The relative inflow angle φ (°) is expressed by the following equation (2).
Figure 2005048608
[0057]
The rotational speed n1A per unit head at the long blade 43, the flow rate Q1A, the rotational speed n1B per unit head at the short blade 44, and the flow rate Q1B are substituted into the equation (2).
The difference (φA−φB) between the relative inflow angle φA of the long blades 43 and the relative inflow angle φB of the short blades 44 at each operating point is expressed by the following equation (3).
[0058]
Figure 2005048608
[0059]
The runner was operated by changing the rotational speed n and the flow rate Q, and the initial point of cavitation at the turbine entrance at each of the long blade 43 and the short blade 44 was measured.
However, here, a runner having the same blade length and shape (a normal runner for Francis type turbines that is not a splitter runner) was used. This is because the tendency of the flow in the vicinity of each of the blades of the splitter runner (long blade and short blade) and the tendency of the flow in the vicinity of each of the blades of the normal runner tend to roughly match.
That is, in this case, a kind of approximation (or averaging) is performed by ignoring the complicating factor of the flow due to the presence of both long blades and short blades in the splitter runner.
[0060]
As a result of calculating the relative inflow angle difference (φA−φB) from the measurement result, the relative inflow angle difference (φA−φB), that is, the difference in water inflow angle between the long blade 43 and the short blade 44 is 2 °. It was found to be in the range of 6 °.
Accordingly, the water inflow relative to the long blade 43 and the short blade 44 is shifted by shifting the turbine inlet end angle β1 of the long blade 43 and the short blade 44 so as to correspond to this relative inflow angle difference (φA−φB). The angles, that is, the angles of attack of each other can be made closer.
[0061]
Specifically, the difference (βa1−βb1) between the turbine inlet end angle βa1 of the long blade 43 and the turbine inlet end angle βb1 of the short blade 44 is equal to the calculated relative inflow angle difference (φA−φB). One or both of the turbine inlet end angles βa1 and βb1 of the long blades 43 and the short blades 44 are corrected. For example, the turbine inlet end angle βb1 of the short blade 44 is shifted by ΔφB (= φA−φB) with respect to the turbine inlet end angle βa1 of the long blade 43 (2 ° ≦ ΔφB ≦ 6 °).
By doing so, it is possible to improve the cavitation performance by reducing the difference in angle of attack between the long blades 43 and the short blades 44 with respect to the inflowing flow.
[0062]
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.
In the above embodiment, in the splitter runner in which the long blades 43 and the short blades 44 are alternately arranged in the circumferential direction between the crown and the band, the blade angle (attack angle) with respect to the inflow angle between the long blades 43 and the short blades 44 is set. By reducing the difference, the cavitation performance is improved. Thus, if it is possible to reduce the difference in the angle of attack between the blades, it is included in the embodiment of the present invention.
[0063]
In the above-described embodiment, the angle of attack is adjusted by adjusting the single parameters (for example, the outer diameter of the blade, the thickness, the angle with the band surface, the warp, and the turbine inlet end angle) with the long blade 43 and the short blade 44, respectively. Was made uniform. On the other hand, it is possible to make the angle of attack uniform by arbitrarily combining a plurality of parameters. That is, two or more parameters such as the outer diameter of the blade may be combined.
[0064]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a splitter runner and a hydraulic machine that improve the cavitation performance during a drop head operation.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a state of a hydraulic machine according to a first embodiment of the present invention as viewed from the side.
FIG. 2 is a partial cross-sectional view showing a state in which the runner of the hydraulic machine according to the first embodiment of the present invention is viewed from below.
FIG. 3 is a diagram showing a meridional shape and a cross-sectional shape of a runner of the hydraulic machine according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating a meridian shape and a cross-sectional shape of a runner as a comparative example of the embodiment of the present invention.
FIG. 5 is a diagram showing a flow of water flowing into a runner as a comparative example of the embodiment of the present invention.
FIG. 6 is a graph showing an example of the cavitation characteristics of the runner of the hydraulic machine according to the first embodiment of the present invention in comparison with a comparative example.
FIG. 7 is a graph showing an example of a static pressure distribution in the vicinity of the highest efficiency point of the runner of the hydraulic machine according to the first embodiment of the present invention in comparison with a comparative example.
FIG. 8 is a graph showing a static pressure distribution on a high head side and a low head side of a runner as a comparative example of the embodiment of the present invention.
FIG. 9 is a graph showing an example of a static pressure distribution on a high head side and a low head side of the runner according to the first embodiment of the present invention.
FIG. 10 is a graph showing an example of the relationship between the ratio of the outer diameter of the long blade and the short blade and the cavitation-free section.
FIG. 11 is a cross-sectional view illustrating a cross-sectional shape of a runner according to a second embodiment of the present invention.
FIG. 12 is a graph showing an example of the relationship between the ratio of the maximum blade thickness of the short blade to the long blade and hydraulic loss.
FIG. 13 is a side view showing a state in which a runner according to a third embodiment of the present invention is viewed from the side.
FIG. 14 is a graph showing an example of the relationship between the angle of the turbine blade inlet end curve of long blades and cavitation.
FIG. 15 is a cross-sectional view showing a cross-sectional shape of a runner according to a fourth embodiment of the present invention.
FIG. 16 is a diagram showing a speed triangle at a turbine wheel inlet end of a blade.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Hydraulic machine, 20 ... Casing, 30 ... Guide vane, 40 ... Runner, 41 ... Crown, 42 ... Band, 43 ... Long wing, 44 ... Short wing, 50 ... Suction pipe, 60 ... Rotating shaft, 70 ... Generator motor

Claims (9)

クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、
前記翼長の長い羽根の前記クラウン、バンド間の水車入口側端部の少なくとも一部が、前記翼長の短い羽根の前記クラウン、バンド間の水車入口側端部よりも、前記円周の内径側に位置する
ことを特徴とするスプリッタランナ。
A splitter runner in which a blade with a long blade length and a blade with a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band,
The crown of the blade with a long blade length, at least a part of the end portion on the water turbine inlet side between the bands, and the inner diameter of the circumference with respect to the crown of the blade with a short blade length, the end portion on the water wheel inlet side between the bands. Splitter runner characterized by being located on the side.
前記翼長の長い羽根の水車入口側端部の外径Da1と、前記翼長の短い羽根の水車入口側端部の外径Db1の比Da1/Db1が、0.85以上、0.98以下である
ことを特徴とする請求項1記載のスプリッタランナ。
The ratio Da1 / Db1 between the outer diameter Da1 of the turbine blade inlet side end of the long blade and the outer diameter Db1 of the turbine blade inlet end of the short blade is 0.85 or more and 0.98 or less. The splitter runner according to claim 1, wherein:
クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、
前記翼長の長い羽根の厚みの流路上での最大値Taが、前記翼長の短い羽根の厚みの流路上での最大値Tbよりも小さい
ことを特徴とするスプリッタランナ。
A splitter runner in which a blade with a long blade length and a blade with a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band,
A splitter runner characterized in that a maximum value Ta on a flow path with a long blade length is smaller than a maximum value Tb on a flow path with a short blade length.
前記翼長の短い羽根の厚みの最大値Tbと、前記翼長の長い羽根の厚みの最大値Taの比Tb/Taが、1.05以上、1.3以下である
ことを特徴とする請求項3記載のスプリッタランナ。
The ratio Tb / Ta between the maximum thickness Tb of the blade having a short blade length and the maximum value Ta of the blade having a long blade length is 1.05 or more and 1.3 or less. Item 4. A splitter runner according to item 3.
クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、
前記円周の外径方向からみて、前記翼長の長い羽根の水車入口側端部に沿う水車入口端曲線と前記バンドの面とがなす圧力面側の角度θaが、前記翼長の短い羽根の水車入口端曲線と前記バンドの面とがなす圧力面側の角度θbよりも小さい
ことを特徴とするスプリッタランナ。
A splitter runner in which a blade with a long blade length and a blade with a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band,
The angle θa on the pressure surface side formed by the turbine inlet end curve along the turbine inlet side end of the blade having a long blade length and the surface of the band as viewed from the outer diameter direction of the circumference is a blade having a short blade length. The splitter runner is characterized in that it is smaller than the angle θb on the pressure surface side formed by the water turbine inlet end curve and the surface of the band.
前記翼長の短い羽根の角度θbと、前記翼長の長い羽根の角度θaの差(θb−θa)が5°以上、30°以下である
ことを特徴とする請求項5記載のスプリッタランナ。
6. The splitter runner according to claim 5, wherein a difference (θb−θa) between the angle θb of the blade having the short blade length and the angle θa of the blade having the long blade length is 5 ° or more and 30 ° or less.
クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、
前記翼長の長い羽根の中心線と前記円周とが水車入口側においてなす角度βaの前記円周の半径rに対する変化率(∂βa/∂r)が、前記翼長の短い羽根の中心線と前記円周とが前記水車入口側においてなす角度βbの前記円周の半径rに対する変化率(∂βb/∂r)より大きい
ことを特徴とするスプリッタランナ。
A splitter runner in which a blade with a long blade length and a blade with a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band,
The rate of change (∂βa / ∂r) of the angle βa between the centerline of the blade with a long blade length and the circumference on the turbine inlet side with respect to the radius r of the circumference is the centerline of the blade with a short blade length. And the circumference is greater than the rate of change (∂βb / ∂r) of the angle βb with respect to the radius r of the circumference at the turbine inlet side.
クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、
水車入口側において前記翼長の長い羽根の中心線と前記円周とがなす負圧面側の角度βaと、前記水車入口側において前記翼長の短い羽根の中心線と前記円周とがなす負圧面側の角度βbの差(βa−βb)が、2°以上、6°以下である
ことを特徴とするスプリッタランナ。
A splitter runner in which a blade with a long blade length and a blade with a short blade length are alternately arranged in a circumferential direction around a rotation axis between a crown and a band,
An angle βa on the suction surface side formed by the center line of the long blade and the circumference on the turbine inlet side, and a negative angle formed by the center line of the short blade and the circumference on the turbine entrance side. A splitter runner characterized in that a pressure-side angle βb difference (βa−βb) is 2 ° or more and 6 ° or less.
請求項1乃至8記載のスプリッタランナ
を具備することを特徴とする水力機械。
A hydraulic machine comprising the splitter runner according to claim 1.
JP2003203613A 2003-07-30 2003-07-30 Splitter runner and hydraulic machine Expired - Lifetime JP4163062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203613A JP4163062B2 (en) 2003-07-30 2003-07-30 Splitter runner and hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203613A JP4163062B2 (en) 2003-07-30 2003-07-30 Splitter runner and hydraulic machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008029867A Division JP2008121691A (en) 2008-02-12 2008-02-12 deltadeltaSPLITTER RUNNER AND HYDRAULIC MACHINE

Publications (2)

Publication Number Publication Date
JP2005048608A true JP2005048608A (en) 2005-02-24
JP4163062B2 JP4163062B2 (en) 2008-10-08

Family

ID=34262904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203613A Expired - Lifetime JP4163062B2 (en) 2003-07-30 2003-07-30 Splitter runner and hydraulic machine

Country Status (1)

Country Link
JP (1) JP4163062B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121574A (en) * 2006-11-13 2008-05-29 Toshiba Corp Runner for hydraulic machine and method for manufacturing runner for hydraulic machine
WO2009101371A2 (en) * 2008-02-15 2009-08-20 Alstom Hydro France Wheel for hydraulic machine, hydraulic machine including such wheel, and energy conversion plant including such hydraulic machine
JP2009236055A (en) * 2008-03-27 2009-10-15 Mitsubishi Heavy Ind Ltd Fluid machine
CN102434221A (en) * 2011-10-19 2012-05-02 南京蓝深制泵集团股份有限公司 Impeller of hydraulic turbine
CN102536593A (en) * 2011-12-27 2012-07-04 河海大学 Ultra-low specific speed long and short blade runner for cooling tower
KR20160134526A (en) 2015-05-13 2016-11-23 김철수 The blade angle control apparatus
CN107762713A (en) * 2017-12-07 2018-03-06 株洲南方阀门股份有限公司 A kind of Multifunction pressure-reducing valve suitable for big flow
CN108005834A (en) * 2017-12-07 2018-05-08 株洲南方阀门股份有限公司 A kind of flow type centripetal turbine
CN108019542A (en) * 2017-12-07 2018-05-11 株洲南方阀门股份有限公司 A kind of turbine type decompression, the Intelligent pressure reducing valve and control method of power generation
CN108036096A (en) * 2017-12-07 2018-05-15 株洲南方阀门股份有限公司 Integrate power generation, data acquisition, the big flow Intelligent pressure reducing valve of automatic control function and control method
CN108131234A (en) * 2017-12-07 2018-06-08 株洲南方阀门股份有限公司 A kind of pipe type power generation machine
EP2923075B1 (en) 2012-01-03 2019-02-20 Rainpower Technology AS A francis turbine runner
CN112879341A (en) * 2021-01-22 2021-06-01 兰州理工大学 High-cavitation-resistance backswept and split-flow offset type spiral centrifugal impeller
CN113062826A (en) * 2020-06-03 2021-07-02 浙江富春江水电设备有限公司 Shaft through-flow type fluid machinery passive anti-cavitation structure
CN113266504A (en) * 2021-05-17 2021-08-17 西安理工大学 Mixed-flow water turbine with bionic tadpole-shaped blades

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121574A (en) * 2006-11-13 2008-05-29 Toshiba Corp Runner for hydraulic machine and method for manufacturing runner for hydraulic machine
KR101560179B1 (en) 2008-02-15 2015-10-14 알스톰 르네와블 테크놀로지즈 Wheel for hydraulic machine, a hydraulic machine including such a wheel, and an energy conversion installation equipped with such a hydraulic machine
WO2009101371A2 (en) * 2008-02-15 2009-08-20 Alstom Hydro France Wheel for hydraulic machine, hydraulic machine including such wheel, and energy conversion plant including such hydraulic machine
WO2009101371A3 (en) * 2008-02-15 2010-01-21 Alstom Hydro France Wheel for hydraulic machine and hydraulic machine including such a wheel
JP2011512478A (en) * 2008-02-15 2011-04-21 アルストム イドロ フランス Wheel for hydraulic device, hydraulic device including the wheel, and energy conversion equipment equipped with the hydraulic device
FR2927670A1 (en) * 2008-02-15 2009-08-21 Alstom Hydro France Sa WHEEL FOR HYDRAULIC MACHINE, HYDRAULIC MACHINE COMPRISING SUCH A WHEEL AND ENERGY CONVERSION INSTALLATION EQUIPPED WITH SUCH A HYDRAULIC MACHINE.
US8684694B2 (en) 2008-02-15 2014-04-01 Alstom Renewable Technologies Wheel for a hydraulic machine, a hydraulic machine including such a wheel, and an energy conversion installation equipped with such a hydraulic machine
CN101960091B (en) * 2008-02-15 2015-02-25 阿尔斯通再生能源技术公司 Wheel for hydraulic machine, hydraulic machine including such wheel, and energy conversion plant including such hydraulic machine
JP2009236055A (en) * 2008-03-27 2009-10-15 Mitsubishi Heavy Ind Ltd Fluid machine
CN102434221A (en) * 2011-10-19 2012-05-02 南京蓝深制泵集团股份有限公司 Impeller of hydraulic turbine
CN102536593A (en) * 2011-12-27 2012-07-04 河海大学 Ultra-low specific speed long and short blade runner for cooling tower
EP2923075B1 (en) 2012-01-03 2019-02-20 Rainpower Technology AS A francis turbine runner
KR20160134526A (en) 2015-05-13 2016-11-23 김철수 The blade angle control apparatus
CN107762713A (en) * 2017-12-07 2018-03-06 株洲南方阀门股份有限公司 A kind of Multifunction pressure-reducing valve suitable for big flow
CN108005834A (en) * 2017-12-07 2018-05-08 株洲南方阀门股份有限公司 A kind of flow type centripetal turbine
CN108019542A (en) * 2017-12-07 2018-05-11 株洲南方阀门股份有限公司 A kind of turbine type decompression, the Intelligent pressure reducing valve and control method of power generation
CN108036096A (en) * 2017-12-07 2018-05-15 株洲南方阀门股份有限公司 Integrate power generation, data acquisition, the big flow Intelligent pressure reducing valve of automatic control function and control method
CN108131234A (en) * 2017-12-07 2018-06-08 株洲南方阀门股份有限公司 A kind of pipe type power generation machine
CN113062826A (en) * 2020-06-03 2021-07-02 浙江富春江水电设备有限公司 Shaft through-flow type fluid machinery passive anti-cavitation structure
CN113062826B (en) * 2020-06-03 2022-07-15 浙江富春江水电设备有限公司 Passive blade anti-cavitation structure of axial-flow Kaplan turbine
CN112879341A (en) * 2021-01-22 2021-06-01 兰州理工大学 High-cavitation-resistance backswept and split-flow offset type spiral centrifugal impeller
CN113266504A (en) * 2021-05-17 2021-08-17 西安理工大学 Mixed-flow water turbine with bionic tadpole-shaped blades

Also Published As

Publication number Publication date
JP4163062B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4163062B2 (en) Splitter runner and hydraulic machine
JP3174736U (en) Steam turbine guide blade
JP5117349B2 (en) Hydraulic machine
JP2009531593A5 (en)
JP2012154332A (en) Axial flow turbine
JP2009007981A (en) Intermediate fixing and supporting structure for steam-turbine long moving blade train, and steam turbine
US8118558B2 (en) Runner vane for axial-flow hydraulic machinery
JP4693687B2 (en) Axial water turbine runner
JP6983530B2 (en) A water turbine equipped with a guide vane device and its guide vane device
JP4882939B2 (en) Movable blade axial flow pump
JP2010168903A (en) Centrifugal hydraulic machine
JP2008121691A (en) deltadeltaSPLITTER RUNNER AND HYDRAULIC MACHINE
JP3604533B2 (en) Wing for axial compressor
JP4280127B2 (en) Francis-type runner
JP5230568B2 (en) Runner and fluid machinery
JP5641971B2 (en) Fluid machine guide vanes and fluid machines
JP6556486B2 (en) Runner and hydraulic machine
JP2008175169A (en) Francis turbine
JP2007107418A (en) Francis pump turbine
JP3688342B2 (en) Pump turbine runner
JP6407763B2 (en) Axial flow hydraulic machine runner vane, axial flow hydraulic machine runner and axial flow hydraulic machine
JP3927887B2 (en) Stator blade of axial compressor
JP7085406B2 (en) Hydraulic machine runner and hydraulic machine
JPH11173104A (en) Turbine rotor blade
JP2010101265A (en) Runner of francis type hydraulic machine and francis type hydraulic machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4163062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

EXPY Cancellation because of completion of term