JP2008115640A - 作業機械における旋回制御装置 - Google Patents
作業機械における旋回制御装置 Download PDFInfo
- Publication number
- JP2008115640A JP2008115640A JP2006301264A JP2006301264A JP2008115640A JP 2008115640 A JP2008115640 A JP 2008115640A JP 2006301264 A JP2006301264 A JP 2006301264A JP 2006301264 A JP2006301264 A JP 2006301264A JP 2008115640 A JP2008115640 A JP 2008115640A
- Authority
- JP
- Japan
- Prior art keywords
- turning
- torque
- motor generator
- control device
- limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Operation Control Of Excavators (AREA)
- Component Parts Of Construction Machinery (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
【課題】下部走行体に上部旋回体を旋回自在に支持してなる作業機械において、前記上部旋回体を、電動機および発電機として機能する電動発電機で旋回駆動、停止せしめるように構成するにあたり、前記電動発電機のトルク制御を適切に行えるようにする。
【解決手段】電動発電機8のトルク制御を行う制御装置13に、旋回用操作レバーの操作量Lと電動発電機8の回転速度ωとに基づいて上部旋回体の運転モードを判定し、各運転モードに対応した比例ゲイン及び積分ゲインを設定する運転モード設定回路21と、該設定された比例ゲイン及び積分ゲインを用いて電動発電機の所要トルクの計算を行う所要トルク計算部22とを設けた。
【選択図】図3
【解決手段】電動発電機8のトルク制御を行う制御装置13に、旋回用操作レバーの操作量Lと電動発電機8の回転速度ωとに基づいて上部旋回体の運転モードを判定し、各運転モードに対応した比例ゲイン及び積分ゲインを設定する運転モード設定回路21と、該設定された比例ゲイン及び積分ゲインを用いて電動発電機の所要トルクの計算を行う所要トルク計算部22とを設けた。
【選択図】図3
Description
本発明は、下部走行体に上部旋回体を旋回自在に支持してなる油圧ショベル等の作業機械における旋回制御装置の技術分野に属するものである。
近年、油圧ショベル等の作業機械においても、省エネルギー化や排ガス低減等を達成するべく、動力源としてバッテリ等の電気式動力装置を用いる電気式システムや、エンジンと電気式動力装置とを併用するハイブリッドシステムの採用が図られているが、この様な電気式システムやハイブリッドシステムを採用した作業機械の一つとして、下部走行体に旋回自在に支持される上部旋回体を、電動機および発電機として機能する電動発電機で旋回駆動、停止せしめるように構成したものが知られている(例えば、特許文献1、特許文献2参照。)。
特開2001−11897号公報
特開2006−149162号公報
ところで、上部旋回体を旋回させるにあたり、例えば、バケットの側面を傾斜壁面に押し付けて該壁面を垂直にする押付け作業を行う場合等、旋回に抗する抵抗力がある状態で旋回させる場合は、この様な抵抗力のない状態で旋回させる場合に比して、大きな駆動トルクが必要となる。さらに、旋回用操作具の操作量により要求される旋回速度と実測の旋回速度との速度偏差に基づいて、電動発電機の所要トルクを計算しようとした場合、前記押付け作業のような場合は速度偏差がいつまでも残るため、トルク計算値が上限値に張りついてしまうという問題があり、これへの対処策を考える必要がある。また、急斜面で上部旋回体を停止させる場合は、自重により上部旋回体が旋回して停止位置がずれてしまうことを防止するため、平坦地で上部旋回体を停止させる場合と比して、大きな制動トルクが必要となる。さらに、バケットの積込量が多い場合は、積込量が少ない場合と比して、旋回停止に大きな制動トルクが必要となる。この様に、上部旋回体の運転状態に応じて、必要とされる駆動トルク、制動トルクは異なることになるが、前記特許文献1、特許文献2におけるトルク制御では、前述したような上部旋回体の運転状態は考慮されておらず、ここに本発明が解決しようとする課題がある。
本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、下部走行体に上部旋回体を旋回自在に支持してなる作業機械において、前記上部旋回体を、電動機および発電機として機能する電動発電機で旋回駆動、停止せしめる構成にすると共に、旋回用操作具の操作量と電動発電機の回転速度とに基づいて上部旋回体の運転状態を判定し、該運転状態に対応した駆動トルク、制動トルクを供給するべく前記電動発電機のトルク制御を行う制御装置を設けたことを特徴とする作業機械における旋回制御装置である。
そして、この様にすることにより、上部旋回体の運転状態に適合した電動発電機のトルク制御が行われることになって、作業性、操作性の向上に大きく貢献できる。
請求項2の発明は、制御装置は、旋回用操作具の操作量と電動発電機の回転速度とに基づいて上部旋回体の運転状態を判定する運転状態判定手段と、電動発電機の所要トルクを計算する所要トルク計算手段と、該所要トルクの計算に用いる比例ゲイン及び積分ゲインを前記運転状態判定手段で判定された運転状態に対応させて設定するゲイン設定手段とを有することを特徴とする請求項1に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、運転状態の判定を適切に行うことができると共に、運転状態に適合した比例ゲイン及び積分ゲインを用いて所要トルクの計算が行われることになり、而して、運転状態に対応したトルク制御を、容易且つ正確に行うことができる。
請求項3の発明は、運転状態を判定するために設定される運転モードとして、通常モードと、旋回に抗する抵抗力のある状態で上部旋回体を旋回させる場合の押付け作業モードと、上部旋回体を停止させる場合の旋回停止モードとを設けたことを特徴とする請求項1または2に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、上部旋回体の運転状態を適切に判定できる。
請求項4の発明は、運転状態を判定するために設定される運転モードとして、上部旋回体を停止せしめる場合の旋回停止モードを設けると共に、ゲイン設定手段は、旋回停止モードの比例ゲイン及び積分ゲインを、上部旋回体の停止に最適なゲインにするべく電動発電機の停止直前まで補正することを特徴とする請求項2に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、旋回停止時に上部旋回体に働く外力が、積込量等の負荷の大きさや斜面の傾斜角度等により種々異なっても、旋回停止モードの比例ゲイン及び積分ゲインは、上部旋回体の停止直前まで最適なゲインになるように補正されることになり、而して、例えば、急斜面で上部旋回体を停止させるような場合であっても、自重により上部旋回体が旋回して停止位置がずれてしまうような不具合を、確実に回避することができる。
請求項5の発明は、制御装置は、複数設定されたトルク制限特性のなかから電動発電機に適合するトルク制限特性を選択すると共に、外部信号に基づいて電動発電機の駆動トルク及び制動トルクのリミット値を切換え、該リミット値に基づいて駆動トルク及び制動トルクを制限するトルクリミット制御手段を有することを特徴とする請求項1乃至4の何れか一項に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、電動発電機の機器特性に適合したトルク制限制御を行うことができると共に、駆動トルク及び制動トルクのリミット値を切換えることによって、例えば大きなトルクを必要とする作業を行う場合には、馬力アップされた効率的な作業を行うことができる一方、小さなトルクしか必要としない作業を行う場合には、小馬力の省エネ運転とすることができる。
請求項6の発明は、制御装置は、旋回用操作具の操作量と上部旋回体の旋回速度との関係を、外部信号に基づいて切換えることができる速度制御手段を有することを特徴とする請求項1乃至5の何れか一項に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、微小速度で旋回させる場合や、旋回速度を早くしたい場合の操作性、作業性の向上に寄与できる。
そして、この様にすることにより、上部旋回体の運転状態に適合した電動発電機のトルク制御が行われることになって、作業性、操作性の向上に大きく貢献できる。
請求項2の発明は、制御装置は、旋回用操作具の操作量と電動発電機の回転速度とに基づいて上部旋回体の運転状態を判定する運転状態判定手段と、電動発電機の所要トルクを計算する所要トルク計算手段と、該所要トルクの計算に用いる比例ゲイン及び積分ゲインを前記運転状態判定手段で判定された運転状態に対応させて設定するゲイン設定手段とを有することを特徴とする請求項1に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、運転状態の判定を適切に行うことができると共に、運転状態に適合した比例ゲイン及び積分ゲインを用いて所要トルクの計算が行われることになり、而して、運転状態に対応したトルク制御を、容易且つ正確に行うことができる。
請求項3の発明は、運転状態を判定するために設定される運転モードとして、通常モードと、旋回に抗する抵抗力のある状態で上部旋回体を旋回させる場合の押付け作業モードと、上部旋回体を停止させる場合の旋回停止モードとを設けたことを特徴とする請求項1または2に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、上部旋回体の運転状態を適切に判定できる。
請求項4の発明は、運転状態を判定するために設定される運転モードとして、上部旋回体を停止せしめる場合の旋回停止モードを設けると共に、ゲイン設定手段は、旋回停止モードの比例ゲイン及び積分ゲインを、上部旋回体の停止に最適なゲインにするべく電動発電機の停止直前まで補正することを特徴とする請求項2に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、旋回停止時に上部旋回体に働く外力が、積込量等の負荷の大きさや斜面の傾斜角度等により種々異なっても、旋回停止モードの比例ゲイン及び積分ゲインは、上部旋回体の停止直前まで最適なゲインになるように補正されることになり、而して、例えば、急斜面で上部旋回体を停止させるような場合であっても、自重により上部旋回体が旋回して停止位置がずれてしまうような不具合を、確実に回避することができる。
請求項5の発明は、制御装置は、複数設定されたトルク制限特性のなかから電動発電機に適合するトルク制限特性を選択すると共に、外部信号に基づいて電動発電機の駆動トルク及び制動トルクのリミット値を切換え、該リミット値に基づいて駆動トルク及び制動トルクを制限するトルクリミット制御手段を有することを特徴とする請求項1乃至4の何れか一項に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、電動発電機の機器特性に適合したトルク制限制御を行うことができると共に、駆動トルク及び制動トルクのリミット値を切換えることによって、例えば大きなトルクを必要とする作業を行う場合には、馬力アップされた効率的な作業を行うことができる一方、小さなトルクしか必要としない作業を行う場合には、小馬力の省エネ運転とすることができる。
請求項6の発明は、制御装置は、旋回用操作具の操作量と上部旋回体の旋回速度との関係を、外部信号に基づいて切換えることができる速度制御手段を有することを特徴とする請求項1乃至5の何れか一項に記載の作業機械における旋回制御装置である。
そして、この様にすることにより、微小速度で旋回させる場合や、旋回速度を早くしたい場合の操作性、作業性の向上に寄与できる。
次に、本発明の実施の形態について、図面に基づいて説明する。図1は、作業機械の一例である油圧ショベルであって、該油圧ショベル1は、クローラ式の下部走行体2、該下部走行体2に旋回装置3aを介して旋回自在に支持される上部旋回体3、該上部旋回体3に装着される作業部4等から構成され、さらに、該作業部4は、ブーム5、アーム6、バケット7等を用いて構成されている。
図2は、前記油圧ショベル1に適用される電気式旋回システムの概略構成図であって、旋回駆動系Aは、上記旋回装置3aに直接接続される電動発電機8、該電動発電機8の電力制御を行うインバータ9等から構成され、また、該旋回駆動系Aの動力源となる電気式動力装置Bは、バッテリ10、該バッテリ10の充放電制御を行うコンバータ11、必要に応じてバッテリ10に充電することができる充電装置12等により構成されている。そして、前記電動発電機8は、バッテリ10から供給される電力により上部旋回体3を旋回駆動せしめる電動機として機能(力行運転)する一方、上部旋回体3の制動時には、制動エネルギーにより発電する発電機として機能(回生運転)してバッテリ10の充電を行うように構成されている。さらに、電気式旋回システムは、各種入力信号に基づいて、前記インバータ9およびコンバータ11に制御指令を出力する制御装置13を備えている。尚、図2中、14は前記インバータ9とコンバータ11とを接続する母線である。また、電動発電機8とインバータ9とは三相交流ラインにより接続され、バッテリ10とコンバータとは直流ラインにより接続されている。さらに、図示しないが、前記旋回装置3aは、上部旋回体3の停止時に機械的に制動力を付与する機械ブレーキ装置を備えている。
前記制御装置13は、図3の制御ブロック図に示す如く、入力側に、旋回用操作レバー(図示しないが、本発明の旋回用操作具に相当する)の操作方向および操作量を検出する旋回操作検出手段15、後述する第一、第二切換器16、17(該第一、第二切換器16、17から入力される信号は、本発明の外部信号に相当する)、電動発電機8の回転速度を検出する電動発電機速度センサ18、電動発電機8のトルクを検出する電動発電機トルクセンサ19、母線14の電圧(母線電圧)Vを検出する電圧センサ30等が接続され、また、出力側には、前記インバータ9およびコンバータ11が接続されていると共に、後述する速度指令演算回路20(該速度指令演算回路20は、本発明の速度制御手段に相当する)、運転モード設定回路21(該運転モード設定回路21は、本発明の運転状態判定手段およびゲイン設定手段に相当する)、所要トルク計算部22(該所要トルク計算部22は、本発明の所要トルク計算手段に相当する)とトルクリミット計算部23およびトルク制限部24(該トルクリミット計算部23およびトルク制限部24は、本発明のトルクリミット制御手段に相当する)とを有したトルク指令演算回路25、母線電圧偏差補正値演算回路26、充放電指令演算回路27等の各回路を備えている。
ここで、前記第一切換器16は、旋回用操作レバーの操作量と上部旋回体3の旋回速度との関係を変更する場合に操作される操作具であって、本実施の形態では、該第一切換器16によって、旋回用操作レバーの操作量に対する電動発電機8の回転速度を、後述する標準回転速度ωr1に対し、定数C1の比率で遅く、または早くするための複数の速度切換用定数C1を設定することができるように構成されている。尚、速度切換用定数C1を「1」に設定(C1=1)した場合、旋回用操作レバーの操作量に対する電動発電機8の回転速度は、上記標準回転速度ωr1となるように制御される。
また、第二切換器17は、電動発電機8に供給される駆動トルク(力行運転)および制動トルク(回生運転)のリミット値(トルクリミット)を変更する場合に操作される操作具であって、該第二切換器17によって、電動発電機8のトルクリミットを、後述する標準トルクリミットTu_lim1(プラス側)、Tl_lim1(マイナス側)に対し、定数C2の比率で小さく、または大きくするための複数のリミット切換用定数C2を設定することができるように構成されている。尚、リミット切換用定数C2を「1」に設定(C2=1)した場合、電動発電機8のトルクリミットは、上記標準トルクリミットTu_lim1、Tl_lim1となるように制御される。
さらに、本実施の形態では、上部旋回体3の運転状態を判定するための運転モードとして、『通常モード』、『押付け作業モード』、『旋回停止モード』の三つのモードが設定されている。前記『通常モード』は、通常運転時におけるモードであり、また、『押付け作業モード』は、例えばバケット7の側面を傾斜壁面に押し付けて該壁面を垂直にする作業を行う場合等、旋回に抗する抵抗力がある状態で旋回を行う場合に必要なモードである。また、『旋回停止モード』は、上部旋回体3を停止させる場合のモードであって、例えば急斜面で上部旋回体3を停止させるときに、旋回装置3aに備えられた機械ブレーキ装置が作動する前に、自重により上部旋回体3が旋回して停止位置がずれてしまうことを防止するために必要なモードである。
次に、前記制御装置13が行う電動発電機8のトルク制御の手順について、前記図3の制御ブロック図、および図4、図5、図6のフローチャート図に基づいて説明する。
制御装置13は、まず、旋回操作検出手段15により検出される旋回用操作レバーのレバー操作量L(該レバー操作量Lは、旋回方向を含む。つまり、本実施の形態では、左旋回操作時はプラス(+)、右旋回操作時はマイナス(−)とする)、前記第一切換器16により設定される速度切換用定数C1、第二切換器17により設定されるリミット切換用定数C2、電動発電機速度センサ18により検出される電動発電機8の実測回転速度ω(該実測回転速度ωは、旋回方向を含む。つまり、本実施の形態では、左旋回時はプラス(+)、右旋回時はマイナス(−)とする)を入力する(図4のステップS1)。
次いで、速度指令演算回路20において、前記入力されたレバー操作量Lと速度切換用定数C1とに基づいて、電動発電機8の回転速度指令値ωrを演算する。該電動発電機8の回転速度指令値ωrは、速度指令値用関数f(L)の値に速度切換用定数C1を乗じる(ωr=f(L)×C1)ことで演算され(図4のステップS2)、そして該演算された回転速度指令値ωrは、所要トルク計算部22およびトルクリミット計算部23に出力される。
ここで、前記速度指令値用関数f(L)は、レバー操作量Lを、該リバー操作量Lに対応する標準の回転速度として設定される標準回転速度ωr1に換算するための関数(ωr1=f(L))であって、該速度指令値用関数f(L)は、設計情報として速度指令演算回路20に予め入力されている。
ここで、前記速度指令値用関数f(L)は、レバー操作量Lを、該リバー操作量Lに対応する標準の回転速度として設定される標準回転速度ωr1に換算するための関数(ωr1=f(L))であって、該速度指令値用関数f(L)は、設計情報として速度指令演算回路20に予め入力されている。
さらに、前記運転モード設定回路21において、運転モードの判定を行うと共に、各運転モードに応じて、トルク指令値を演算するために用いるトルク計算係数Aを演算する(図4のステップS3)。
ここで、前記運転モード設定回路21における運転モードの判定およびトルク計算係数Aの演算について、図5、図6のフローチャート図に基づいて説明する。
運転モード設定回路21は、まず、トルク計算係数Aの演算に用いる比例ゲインKp、積分ゲインKiの初期設定値Kp0_i、Ki0_i(_i=1、2、3)を設定する(図5のステップS4)。ここで、ゲインKp0_1、Ki0_1は『通常モード』に対応して設定され、また、ゲインKp0_2、Ki0_2は『押付け作業モード』に対応して設定され、さらにゲインKp0_3、Ki0_3は『旋回停止モード』に対応して設定される初期設定値である。
次いで、レバー操作量Lおよび実測回転速度ωに基づいて、運転モードの判定を行う。該運転モードの判定は、まず、レバー操作量Lの絶対値abs(L)が予め設定される第一レバー操作量L1よりも小さく(abs(L)<L1)、且つ、実測回転速度ωが予め設定される第一回転速度ω1よりも小さく(ω<ω1)、且つ機械ブレーキ装置が非作動であるか否かを判断する(図5のステップS5)。
そして、前記ステップS5の判断で「YES」と判断された場合は、『旋回停止モード』であると判定して、_i=3にセットする(図5のステップS6)。
ここで、前記ステップS5の判断に用いられる第一レバー操作量L1は、該第一レバー操作量L1よりも小さな操作量であれば、オペレータが上部旋回体3を停止させるべく旋回用操作レバーを停止操作したと見做すことができるレバー操作量であって、小さな値に設定される。また、第一回転速度ω1は、上部旋回体3がある程度まで減速されたか否かを判断するための回転速度であり、而して、停止操作と見做されるレバー操作量で、且つ、第一回転速度ω1より低速で、且つ、機械ブレーキ装置が非作動である場合に、『旋回停止モード』と判定される。
ここで、前記ステップS5の判断に用いられる第一レバー操作量L1は、該第一レバー操作量L1よりも小さな操作量であれば、オペレータが上部旋回体3を停止させるべく旋回用操作レバーを停止操作したと見做すことができるレバー操作量であって、小さな値に設定される。また、第一回転速度ω1は、上部旋回体3がある程度まで減速されたか否かを判断するための回転速度であり、而して、停止操作と見做されるレバー操作量で、且つ、第一回転速度ω1より低速で、且つ、機械ブレーキ装置が非作動である場合に、『旋回停止モード』と判定される。
一方、前記ステップS5の判断で「NO」と判断された場合は、続けて、レバー操作量Lの絶対値abs(L)が予め設定される第二レバー操作量L2よりも大きく(abs(L)>L2)、且つ、実測回転速度ωが予め設定される第二回転速度ω2よりも所定時間継続して小さい(ω<ω2)か否かを判断する(図5のステップS7)。
そして、前記ステップS7の判断で「YES」と判断された場合は、『押付け作業モード』であると判定して、_i=2にセットする(図5のステップS8)。
ここで、前記ステップS7の判断に用いられる第二レバー操作量L2は、押付け作業をしていると見做すことができる旋回用操作レバーの最低の操作量であり、また、第二回転速度ω2は、第二レバー操作量L2に対応する速度としては著しく低速の回転速度であって、而して、押付け作業を行っていると見做すことができるレバー操作量で、且つ、該レバー操作量に対応する速度としては著しく低速の第二回転速度ω2よりも更に所定時間継続して低速(停止を含む)の場合に、『押付け作業モード』と判定される。
ここで、前記ステップS7の判断に用いられる第二レバー操作量L2は、押付け作業をしていると見做すことができる旋回用操作レバーの最低の操作量であり、また、第二回転速度ω2は、第二レバー操作量L2に対応する速度としては著しく低速の回転速度であって、而して、押付け作業を行っていると見做すことができるレバー操作量で、且つ、該レバー操作量に対応する速度としては著しく低速の第二回転速度ω2よりも更に所定時間継続して低速(停止を含む)の場合に、『押付け作業モード』と判定される。
さらに、前記ステップS7の判断で「NO」と判断された場合は、『通常モード』であると判定して、_i=1にセットする(図5のステップS9)。
続けて、運転モード設定回路21は、前記各運転モードに対応したトルク計算係数Aを求めるための演算を行う。まず、トルク計算係数Aを求める基準式として、前記比例ゲインKp、積分ゲインKiの初期設定値Kp0_i、Ki0_iを用いて、A_i'=Kp0_i+Ki0_i/sを設定する(図6のステップS10)。
次いで、_i=3か否か、つまり『旋回停止モード』であるか否かを判断し(図6のステップS11)、「YES」、つまり_i=3ならば、『旋回停止モード』の最適ゲイン、つまり上部旋回体3の停止に最適なゲインを計算する。
前記『旋回停止モード』の最適ゲインを計算する場合、まず、『旋回停止モード』の比例ゲインKp_3、積分ゲインKi_3、および判定基準回転速度ω'の初期設定がなされているか否かの判断を、初期設定フラグFが「1」か否かにより判断する(図6のステップS12)。
前記ステップS12の判断で、「NO」、つまり初期設定フラグF=0の場合は、初期設定がなされていないとして、『旋回停止モード』の比例ゲインKp_3、積分ゲインKi_3の値を、前記初期設定値Kp0_3、Ki0_3にセットする(Kp_3=Kp0_3、Ki_3=Ki0_3)。また、判定基準回転速度ω'の値を、判定基準回転速度ω'の初期値にセットし(ω'=ω'初期値)(図6のステップS13)、その後、初期設定フラグFを「1」にセットする(図6のステップS14)。
ここで、前記判定基準回転速度ω'の初期値は、前記第一回転速度ω1よりも小さいが、後述する第三回転速度ω3に比して充分に大きな値に設定される。
ここで、前記判定基準回転速度ω'の初期値は、前記第一回転速度ω1よりも小さいが、後述する第三回転速度ω3に比して充分に大きな値に設定される。
前記ステップS13およびステップS14の処理後、或いは、前記ステップS12の判断で、「YES」、つまり初期設定フラグF=1の場合は、続けて、上記比例ゲインKp_3、積分ゲインKi_3が『旋回停止モード』の最適ゲインであるか否かを判断するが、該判断は、実測回転速度ωが、停止直前の回転速度として予め設定される第三回転速度ω3(ω3≒0)未満(ω<ω3)であるか否かの判断により行う(図6のステップS15)。
前記ステップS15の判断で、「NO」、つまり実測回転速度ωが第三回転速度ω3未満でないと判断された場合は、続けて、実測回転速度ωが前記判定基準回転速度ω'以下(ω≦ω')であるか否かが判断される(図6のステップS16)。
前記ステップS16の判断で、「YES」、つまり実測回転速度ωが判定基準回転速度ω'以下であると判断された場合は、前記比例ゲインKp_3、積分ゲインKi_3に補正値ΔKp、ΔKiを加算して、新たな比例ゲインKp_3、積分ゲインKi_3を求める(Kp_3=Kp_3+ΔKp、Ki_3=Ki_3+ΔKi、図6のステップS18)。さらに、実測回転速度ωを、新たな判定基準回転速度ω'としてセットする(図6のステップS19)。
一方、前記ステップS16の判断で、「NO」、つまり実測回転速度ωが判定基準回転速度ω'以下でないと判断された場合は、補正値ΔKp、ΔKiに補正定数−K(但し、Kは正の定数)を乗じて、新たな補正値ΔKp、ΔKiを求め(ΔKp=−K×ΔKp、ΔKi=−K×ΔKi、図6のステップS17)、その後、前記ステップS18およびステップ19の処理を行う。
さらに、前記ステップ18およびステップ19の処理後、或いは、前記ステップS15の判断で、「YES」、つまり実測回転速度ωが第三回転速度ω3未満であると判断された場合は、続けて、比例ゲインKp_3および積分ゲインKi_3を用いて、『旋回停止モード』のトルク計算係数Aを求める(A=Kp_3+Ki_3/s、図6のステップS20)。
また、前記ステップS11の判断で、_i=3でない、つまり、『通常モード』あるいは『押付け作業モード』の何れかのモードであると判断された場合は、初期設定フラグFを「0」にセット(図6のステップS21)した後、前記ステップS10で設定した基準式により求められるトルク計算係数A_i'をトルク計算係数Aとする(A=A_i')。つまり、『通常モード』のトルク計算係数Aは、A=Kp0_1+Ki0_1/sで求められ、また、『押付け作業モード』のトルク計算係数Aは、A=Kp0_2+Ki0_2/sで求められる(図6のステップ22)。
そして、運転モード設定回路21は、前記ステップS20およびステップS22で求めたトルク計算係数Aを、所要トルク計算部22に出力する(図6のステップS23)。
ここで、前記トルク計算係数Aは、後述するように、所要トルクTr1を計算するために、回転速度指令値ωrと実測回転速度ωとの速度偏差(ωr−ω)に乗じられる係数であるが、『通常モード』では、トルク計算係数Aを大きくした方が応答が速くなる一方、大きくしすぎると不安定になり、そこで、ステップ応答を与えたときに振動的にならない程度となるように設定される。また、『旋回停止モード』は、制御する速度範囲が小さいので、『通常モード』よりも感度良く制御するために、比例ゲインKpおよび積分ゲインKiは『通常モード』よりも大きく設定されると共に、積分ゲインKiは、上記速度偏差(ωr−ω)をなくすことができるように、「0」以外の値が設定される。一方、『押付け作業モード』では、上記速度偏差(ωr−ω)がいつまでも残るので、誤差が累積されて所要トルクTr1の値が上限値に張りついてしまうことを回避するため、積分ゲインKiを「0」に設定する。これにより、押付け作業を行う場合に、旋回用操作レバーの操作量に応じた押付けトルクを得ることができるようになっている。
ここで、前記トルク計算係数Aは、後述するように、所要トルクTr1を計算するために、回転速度指令値ωrと実測回転速度ωとの速度偏差(ωr−ω)に乗じられる係数であるが、『通常モード』では、トルク計算係数Aを大きくした方が応答が速くなる一方、大きくしすぎると不安定になり、そこで、ステップ応答を与えたときに振動的にならない程度となるように設定される。また、『旋回停止モード』は、制御する速度範囲が小さいので、『通常モード』よりも感度良く制御するために、比例ゲインKpおよび積分ゲインKiは『通常モード』よりも大きく設定されると共に、積分ゲインKiは、上記速度偏差(ωr−ω)をなくすことができるように、「0」以外の値が設定される。一方、『押付け作業モード』では、上記速度偏差(ωr−ω)がいつまでも残るので、誤差が累積されて所要トルクTr1の値が上限値に張りついてしまうことを回避するため、積分ゲインKiを「0」に設定する。これにより、押付け作業を行う場合に、旋回用操作レバーの操作量に応じた押付けトルクを得ることができるようになっている。
一方、所要トルク計算部22は、前記速度指令演算回路20から出力される回転速度指令値ωrと実測回転速度ωとの速度偏差(ωr−ω)に、前記運転モード設定回路21から入力されるトルク計算係数Aを乗じることで、電動発電機8が必要とする所要トルクTr1を計算し(Tr1=A×(ωr−ω))、該所要トルクTr1をトルク制限部24に出力する。上記トルク計算係数Aは、前述したように上部旋回体3の『通常モード』、『押付け作業モード』、『旋回停止モード』の各運転モードに対応した値であり、該トルク計算係数Aを用いて計算される所要トルクTr1も、各運転モードに対応した値となる(図4のステップS24)。
さらに、トルクリミット計算部23において、前記速度指令演算回路20から出力される回転速度指令値ωrと、第二切換器17により設定されるリミット切換用定数C2とに基づいてトルクリミットが計算されるが、該トルクリミットの計算を行うにあたり、まず、リミット関数L(ω、ωr)が選択される(図4のステップS25)。該リミット関数L(ω、ωr)は、電動発電機8のトルク制限特性を示す関数であって、例えば、図7のグラフ図に示す如く、電動発電機8の実測回転速度ωおよび回転速度指令値ωrと、電動発電機8のトルクリミットTu_lim(プラス側)、Tl_lim(マイナス側)との関係で表されるが、トルクリミット計算部23には、複数のリミット関数L(ω、ωr)が設定されており、そして、これら複数のリミット関数L(ω、ωr)のなかから、電動発電機8の機器特性に適合した最適のリミット関数L(ω、ωr)が選択される。尚、本実施の形態では、電動発電機8の機器特性だけでなく、応答性要求、電動発電機8から上部旋回体3への動力伝達機構部のトルク許容値、バッテリ10の許容供給動力(或いは許容回収動力)等も考慮してリミット関数L(ω、ωr)が選択されるようになっている。
また、前記図7のグラフ図において、A−BはトルクリミットTu_limの最大値部分、B−Cは出力一定曲線部分、C−Dは回転速度指令値ωrによって変化する速度上限部分である。さらに、図7は、左旋回の場合の駆動側のトルクリミットTu_lim、或いは右旋回の場合の制動側のトルクリミットTu_limについてのグラフ図であって、左側旋回の場合の制動側のトルクリミットTl_lim、或いは右旋回の場合の駆動側のトルクリミットTl_limは、符号はマイナス(−)となるが、同様の形状のグラフで示される。勿論、リミット関数L(ω、ωr)は、図7のグラフ図に示されるようなものに限定されることなく、例えば、左旋回と右旋回、或いは駆動側と制動側とで、トルクリミットの絶対値がそれぞれ異なるように設定することもできる。
尚、本実施の形態では、左旋回の場合の駆動側のトルクリミットをプラスのトルクリミットTu_lim、制動側のトルクリミットをマイナスのトルクリミットTl_limとし、また、右旋回の場合は、上記左旋回の場合とは逆に、駆動側のトルクリミットをマイナスのトルクリミットTl_lim、制動側のトルクリミットをプラスのトルクリミットTu_limとしている。
また、前記図7のグラフ図において、A−BはトルクリミットTu_limの最大値部分、B−Cは出力一定曲線部分、C−Dは回転速度指令値ωrによって変化する速度上限部分である。さらに、図7は、左旋回の場合の駆動側のトルクリミットTu_lim、或いは右旋回の場合の制動側のトルクリミットTu_limについてのグラフ図であって、左側旋回の場合の制動側のトルクリミットTl_lim、或いは右旋回の場合の駆動側のトルクリミットTl_limは、符号はマイナス(−)となるが、同様の形状のグラフで示される。勿論、リミット関数L(ω、ωr)は、図7のグラフ図に示されるようなものに限定されることなく、例えば、左旋回と右旋回、或いは駆動側と制動側とで、トルクリミットの絶対値がそれぞれ異なるように設定することもできる。
尚、本実施の形態では、左旋回の場合の駆動側のトルクリミットをプラスのトルクリミットTu_lim、制動側のトルクリミットをマイナスのトルクリミットTl_limとし、また、右旋回の場合は、上記左旋回の場合とは逆に、駆動側のトルクリミットをマイナスのトルクリミットTl_lim、制動側のトルクリミットをプラスのトルクリミットTu_limとしている。
次いで、トルクリミット計算部23は、前記選択したリミット関数L(ω、ωr)の値を標準トルクリミットTu_lim1(プラス側、つまり、左旋回時の駆動側或いは右旋回時の制動側)、Tl_lim1(マイナス側、つまり左旋回時の制動側或いは右旋回時の駆動側)として設定(図4のステップS26)し、該標準トルクリミットTu_lim1(プラス側)、Tl_lim1(マイナス側)に前記第二切換器17により設定されたリミット切換用定数C2を乗じることで、トルクリミットTu_lim(プラス側)、Tl_lim(マイナス側)を計算する(Tu_lim=Tu_lim1×C2、Tl_lim=Tl_lim1×C2)(図4のステップS27)。そして、該トルクリミットTu_lim(プラス側)、Tl_lim(マイナス側)を、トルク制限部24に出力する。
トルク制限部24は、前記所要トルク計算部22から入力される所要トルクTr1と、前記トルクリミット計算部23から入力されるトルクリミットTu_lim(プラス側)、Tl_lim(マイナス側)とを比較して、インバータ9に出力されるトルク指令値Trを制限する。該トルク指令値Trの制限は、まず、所要トルクTr1がトルクリミットTu_lim(プラス側)以上か否か(Tr1≧Tu_lim?)を判断し(図4のステップS28)、「YES」の場合は、トルクリミットTu_limをトルク指令値Trとする(Tr=Tu_lim)(図4のステップS29)。
前記ステップS28の判断で「NO」ならば、続けて、所要トルクTr1がトルクリミットTl_lim(マイナス側)以下か否か(Tr1≦Tl_lim?)を判断し(図4のステップS30)、「YES」の場合は、トルクリミットTl_limをトルク指令値Trとする(Tr=Tl_lim)(図4のステップS31)。
一方、前記ステップS30の判断で「NO」、つまり所要トルクTr1がトルクリミットTl_lim(マイナス側)より大きく、且つトルクリミットTu_lim(プラス側)より小さい(Tl_lim<Tr1<Tu_lim)場合は、所要トルクTr1をトルク指令値Trとする(Tr=Tr1)(図4のステップS32)。
而して、トルク指令値Trは、トルクリミットTl_lim(マイナス側)とトルクリミットTu_lim(プラス側)との間に納まるように制限される。そして、該トルク指令値Trが、インバータ9に対する制御信号として制御装置13から出力される(図4のステップS33)。
次に、制御装置13が行うバッテリ10の充放電制御の手順について、前記図3の制御ブロック図に基づいて説明する。
制御装置13は、まず、電圧センサ30により検出される母線電圧Vを母線電圧偏差補正値演算回路26に入力し、該母線電圧偏差補正値演算回路26において、母線電圧Vと母線電圧基準値(定常時の母線電圧の制御目標値)との偏差に応じて、母線電圧Vの変動を抑えるための補正値(動力値に換算)ΔPを演算し、該補正値ΔPを充放電指令演算回路27に出力する。
制御装置13は、まず、電圧センサ30により検出される母線電圧Vを母線電圧偏差補正値演算回路26に入力し、該母線電圧偏差補正値演算回路26において、母線電圧Vと母線電圧基準値(定常時の母線電圧の制御目標値)との偏差に応じて、母線電圧Vの変動を抑えるための補正値(動力値に換算)ΔPを演算し、該補正値ΔPを充放電指令演算回路27に出力する。
一方、充放電指令演算回路27は、電動発電機速度センサ18により検出される電動発電機8の実測回転速度ωと、電動発電機トルクセンサ19により検出される電動発電機8の実測トルクT(該実測トルクTは、左旋回トルクTをプラス(+)、右旋回トルクTをマイナス(−)とする)とを入力し、該実測回転速度ωと実測トルクTとを乗じることで、電動発電機8への供給(或いは回収)動力P1を演算する(P1=ω×T)。さらに、該供給(或いは回収)動力P1に、前記母線電圧偏差補正値演算回路26から入力される補正値ΔPを加算することで充放電指令値Prを求め(Pr=P1+ΔP、Prの値がプラスの場合は動力供給、マイナスの場合は動力回収)、該充放電指令値Prを、コンバータ11に出力する。これによりバッテリ10は、電動発電機8への供給(或いは回収)動力とバランスのとれた放充電を行うように制御される。
叙述の如く構成された本形態において、上部旋回体3は、電動機および発電機として機能する電動発電機8で直接的に旋回駆動、停止せしめられる構成になっており、これによって、上部旋回体3の制動エネルギーを有効に回収、再利用できることになるが、さらに、前記電動発電機8のトルク制御を行う制御装置13は、上部旋回体3の運転状態(本実施の形態では、『通常モード』、『押付け作業モード』、『旋回停止モード』の各運転モード)を判定し、該運転状態に対応した駆動トルク、制動トルクを供給するべく電動発電機8のトルク制御を行うことになる。
この結果、上部旋回体3の各種運転状態に適合したトルク制御が行われることになって、作業性、操作性の向上に大きく貢献できる。
この結果、上部旋回体3の各種運転状態に適合したトルク制御が行われることになって、作業性、操作性の向上に大きく貢献できる。
しかも、前記制御装置13は、電動発電機8の所要トルクTr1を計算する所要トルク計算部22と、旋回用操作レバーの操作量Lと電動発電機8の実測回転速度ωとに基づいて上部旋回体8の運転モードを判定すると共に、上記所要トルクTr1の計算に用いる比例ゲインKp及び積分ゲインKiを各運転モードに対応して設定する運転モード設定回路21とを有しており、而して、運転モードの判定を適切に行うことができると共に、各運転モードに適合した比例ゲインKp及び積分ゲインKiを用いて所要トルクTr1の計算が行われることになり、よって、各運転モードに対応したトルク制御を、容易且つ正確に行うことができる。
また、運転状態を判定するための運転モードとして、通常運転時の『通常モード』と、押付け作業を行う場合等、旋回に抗する抵抗力のある状態で上部旋回体3を旋回させる場合の『押付け作業モード』と、上部旋回体を停止させる場合の『旋回停止モード』とが設定されており、これら三つのモードによって、上部旋回体3の運転状態を適切に判定できる。
さらに、運転モードが『旋回停止モード』であると判定された場合、運転モード設定回路21は、所要トルクTr1の計算に用いる比例ゲインKp_3及び積分ゲインKi_3を、電動発電機8の実測回転速度ωが、停止直前の回転速度として予め設定される第三回転速度ω未満になるまで補正する構成になっているため、旋回停止時に上部旋回体3に働く外力が、積込量等の負荷の大きさや斜面の傾斜角度等により種々異なっても、上部旋回体3を所望位置に停止せしめることができ、而して、例えば、急斜面で上部旋回体3を停止させるような場合であっても、旋回装置3aに備えられた機械ブレーキ装置が作動する前に、自重により上部旋回体3が旋回して停止位置がずれてしまうような不具合を、確実に回避することができる。
さらにまた、制御装置13は、複数のリミット関数L(ω、ωr)のなかから電動発電機8の機器特性に適合した最適のリミット関数L(ω、ωr)を選択すると共に、第二切換器17により設定されるリミット切換用定数C2に基づいて、電動発電機8の駆動トルク及び制動トルクのリミット値(トルクリミット)Tu_lim、Tl_limを計算するリミット計算部23と、該リミット計算部23で計算されたトルクリミットTu_lim(プラス側)、Tl_lim(マイナス側)に基づいて、電動発電機8の駆動トルク及び制動トルクを制限するトルク制限部24とを有している。
この結果、電動発電機8の機器特性に適合したトルク制限制御を行うことができると共に、例えば、大きなトルクを必要とする作業を行う場合には、リミット切換用定数C2を「1」よりも大きく設定することで馬力アップされて効率的な作業を行うことができる一方、小さなトルクしか必要としない作業を行う場合には、運転リミット切換用定数C2を「1」よりも小さく設定することで馬力が小さくなって、省エネ運転とすることができる。
また、さらに、制御装置13には、第二切換器16により設定される速度切換用定数C1に基づいて、旋回用操作レバーの操作量Lと電動発電機8の回転速度との関係、つまり旋回用操作レバーの操作量Lと上部旋回体3の旋回速度との関係を切換えることができる速度指令演算回路20が設けられている。而して、例えば微小速度で上部旋回体3を旋回させる場合には、速度切換用定数C1を「1」よりも小さく設定することで旋回用操作レバーに対する旋回速度が遅くなって、操作しやすくなる一方、作業効率をアップしたいように場合には、速度切換用定数C1を「1」よりも大きく設定することで旋回速度を早くすることができることになり、作業性、操作性の向上に寄与できる。
尚、上記実施の形態では油圧ショベルを例にとって説明したが、本発明は、下部走行体に上部旋回体を旋回自在に支持してなる各種作業機械に実施することができる。さらに、図8に示すように、上部旋回体を駆動、停止せしめる電動発電機8の他に、エンジンEにより発電される電動発電機28を設け、該電動発電機28により上部旋回体以外の負荷を駆動せしめるように構成したハイブリッドシステム等にも適用できることは、勿論である。尚、図8において、図1と同様の装置、構成のものは同一の符号を附すと共に、説明は省略する。
2 下部走行体
3 上部旋回体
8 電動発電機
13 制御装置
16 第一切換器
17 第二切換器
20 速度指令演算回路
21 運転モード設定回路
22 所要トルク計算部
23 トルクリミット計算部
24 トルク制限部
3 上部旋回体
8 電動発電機
13 制御装置
16 第一切換器
17 第二切換器
20 速度指令演算回路
21 運転モード設定回路
22 所要トルク計算部
23 トルクリミット計算部
24 トルク制限部
Claims (6)
- 下部走行体に上部旋回体を旋回自在に支持してなる作業機械において、前記上部旋回体を、電動機および発電機として機能する電動発電機で旋回駆動、停止せしめる構成にすると共に、旋回用操作具の操作量と電動発電機の回転速度とに基づいて上部旋回体の運転状態を判定し、該運転状態に対応した駆動トルク、制動トルクを供給するべく前記電動発電機のトルク制御を行う制御装置を設けたことを特徴とする作業機械における旋回制御装置。
- 制御装置は、旋回用操作具の操作量と電動発電機の回転速度とに基づいて上部旋回体の運転状態を判定する運転状態判定手段と、電動発電機の所要トルクを計算する所要トルク計算手段と、該所要トルクの計算に用いる比例ゲイン及び積分ゲインを前記運転状態判定手段で判定された運転状態に対応させて設定するゲイン設定手段とを有することを特徴とする請求項1に記載の作業機械における旋回制御装置。
- 運転状態を判定するために設定される運転モードとして、通常モードと、旋回に抗する抵抗力のある状態で上部旋回体を旋回させる場合の押付け作業モードと、上部旋回体を停止させる場合の旋回停止モードとを設けたことを特徴とする請求項1または2に記載の作業機械における旋回制御装置。
- 運転状態を判定するために設定される運転モードとして、上部旋回体を停止せしめる場合の旋回停止モードを設けると共に、ゲイン設定手段は、旋回停止モードの比例ゲイン及び積分ゲインを、上部旋回体の停止に最適なゲインにするべく電動発電機の停止直前まで補正することを特徴とする請求項2に記載の作業機械における旋回制御装置。
- 制御装置は、複数設定されたトルク制限特性のなかから電動発電機に適合するトルク制限特性を選択すると共に、外部信号に基づいて電動発電機の駆動トルク及び制動トルクのリミット値を切換え、該リミット値に基づいて駆動トルク及び制動トルクを制限するトルクリミット制御手段を有することを特徴とする請求項1乃至4の何れか一項に記載の作業機械における旋回制御装置。
- 制御装置は、旋回用操作具の操作量と上部旋回体の旋回速度との関係を、外部信号に基づいて切換えることができる速度制御手段を有することを特徴とする請求項1乃至5の何れか一項に記載の作業機械における旋回制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006301264A JP2008115640A (ja) | 2006-11-07 | 2006-11-07 | 作業機械における旋回制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006301264A JP2008115640A (ja) | 2006-11-07 | 2006-11-07 | 作業機械における旋回制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008115640A true JP2008115640A (ja) | 2008-05-22 |
Family
ID=39501807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006301264A Withdrawn JP2008115640A (ja) | 2006-11-07 | 2006-11-07 | 作業機械における旋回制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008115640A (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009293322A (ja) * | 2008-06-06 | 2009-12-17 | Sumitomo Heavy Ind Ltd | 昇降圧コンバータの駆動制御装置及びこれを含むハイブリッド型建設機械 |
JP2010001713A (ja) * | 2008-06-23 | 2010-01-07 | Sumitomo (Shi) Construction Machinery Co Ltd | 駆動制御装置及びこれを含む建設機械 |
JP2010001714A (ja) * | 2008-06-23 | 2010-01-07 | Sumitomo (Shi) Construction Machinery Co Ltd | 駆動制御装置及びこれを含む建設機械 |
JP2010007265A (ja) * | 2008-06-24 | 2010-01-14 | Sumitomo (Shi) Construction Machinery Co Ltd | 学習機能を備える駆動制御装置及びこれを含む建設機械 |
JP2011196065A (ja) * | 2010-03-18 | 2011-10-06 | Komatsu Ltd | 作業機械 |
JP2012007334A (ja) * | 2010-06-23 | 2012-01-12 | Caterpillar Sarl | 作業機械の電動機トルク制御装置 |
JP2012007335A (ja) * | 2010-06-23 | 2012-01-12 | Caterpillar Sarl | 作業機械の電動機トルク制御装置 |
JP2012112168A (ja) * | 2010-11-24 | 2012-06-14 | Komatsu Ltd | 電動機の制御装置、電動機の制御方法、及び電動機の制御装置を備えた建設機械 |
WO2012157382A1 (ja) * | 2011-05-18 | 2012-11-22 | 株式会社小松製作所 | 電動モータの制御装置およびその制御方法 |
JP2014218855A (ja) * | 2013-05-10 | 2014-11-20 | コベルコ建機株式会社 | ハイブリッド式建設機械 |
KR20180111967A (ko) * | 2016-09-30 | 2018-10-11 | 히다찌 겐끼 가부시키가이샤 | 건설 기계 |
-
2006
- 2006-11-07 JP JP2006301264A patent/JP2008115640A/ja not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009293322A (ja) * | 2008-06-06 | 2009-12-17 | Sumitomo Heavy Ind Ltd | 昇降圧コンバータの駆動制御装置及びこれを含むハイブリッド型建設機械 |
JP2010001713A (ja) * | 2008-06-23 | 2010-01-07 | Sumitomo (Shi) Construction Machinery Co Ltd | 駆動制御装置及びこれを含む建設機械 |
JP2010001714A (ja) * | 2008-06-23 | 2010-01-07 | Sumitomo (Shi) Construction Machinery Co Ltd | 駆動制御装置及びこれを含む建設機械 |
JP2010007265A (ja) * | 2008-06-24 | 2010-01-14 | Sumitomo (Shi) Construction Machinery Co Ltd | 学習機能を備える駆動制御装置及びこれを含む建設機械 |
JP2011196065A (ja) * | 2010-03-18 | 2011-10-06 | Komatsu Ltd | 作業機械 |
JP2012007334A (ja) * | 2010-06-23 | 2012-01-12 | Caterpillar Sarl | 作業機械の電動機トルク制御装置 |
JP2012007335A (ja) * | 2010-06-23 | 2012-01-12 | Caterpillar Sarl | 作業機械の電動機トルク制御装置 |
JP2012112168A (ja) * | 2010-11-24 | 2012-06-14 | Komatsu Ltd | 電動機の制御装置、電動機の制御方法、及び電動機の制御装置を備えた建設機械 |
WO2012157382A1 (ja) * | 2011-05-18 | 2012-11-22 | 株式会社小松製作所 | 電動モータの制御装置およびその制御方法 |
JP2012244730A (ja) * | 2011-05-18 | 2012-12-10 | Komatsu Ltd | 電動モータの制御装置およびその制御方法 |
CN103081350A (zh) * | 2011-05-18 | 2013-05-01 | 株式会社小松制作所 | 电动机的控制装置及其控制方法 |
KR101521361B1 (ko) * | 2011-05-18 | 2015-05-18 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 전동 모터의 제어 장치 및 그 제어 방법 |
US9654038B2 (en) | 2011-05-18 | 2017-05-16 | Komatsu Ltd. | Control device and method for controlling electric motor |
JP2014218855A (ja) * | 2013-05-10 | 2014-11-20 | コベルコ建機株式会社 | ハイブリッド式建設機械 |
KR20180111967A (ko) * | 2016-09-30 | 2018-10-11 | 히다찌 겐끼 가부시키가이샤 | 건설 기계 |
KR102097349B1 (ko) * | 2016-09-30 | 2020-04-06 | 히다찌 겐끼 가부시키가이샤 | 건설 기계 |
US10837159B2 (en) | 2016-09-30 | 2020-11-17 | Hitachi Construction Machinery Co., Ltd. | Construction machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008115640A (ja) | 作業機械における旋回制御装置 | |
KR100674516B1 (ko) | 작업 기계의 선회 제어 장치 | |
US7772792B2 (en) | Rotation control device | |
EP2287406B1 (en) | Swivel drive controller and construction machine including the same | |
JP5055948B2 (ja) | ハイブリッド作業機械 | |
JP5356427B2 (ja) | ハイブリッド式建設機械 | |
WO2012050028A1 (ja) | 旋回体を有する建設機械 | |
JP3942948B2 (ja) | 作業機械の旋回制御装置 | |
JP5193333B2 (ja) | 電動モータの制御装置およびその制御方法 | |
JP5974014B2 (ja) | ハイブリッド駆動式の油圧作業機械 | |
KR20120112192A (ko) | 쇼벨 | |
JP2010173599A (ja) | ハイブリッド式作業機械の制御方法、及びサーボ制御システムの制御方法 | |
JP5699155B2 (ja) | 旋回駆動制御装置 | |
JP5095361B2 (ja) | 旋回駆動制御装置及びこれを含む建設機械 | |
JP5992886B2 (ja) | 作業機械 | |
EP2757202B1 (en) | Electric turning control apparatus and control method for electric motor for turning | |
JP2004036303A (ja) | 作業機械の旋回制御装置 | |
JP2010116708A (ja) | ハイブリッド型建設機械 | |
JP2005081973A (ja) | ハイブリッド作業機械の駆動制御装置 | |
JP2005086892A (ja) | ハイブリッド作業機械の駆動制御装置 | |
JP2011078277A (ja) | 電動式建設機械 | |
JP2010185257A (ja) | ハイブリッド型作業機械 | |
JP5139257B2 (ja) | 旋回駆動制御装置及びこれを含む建設機械 | |
JP2011001736A (ja) | 建設機械の旋回制御装置 | |
JP2012012933A (ja) | 旋回用電動発電機を備えたショベル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100202 |