JP2008115425A - Sputtering target for use in forming transparent electroconductive film - Google Patents

Sputtering target for use in forming transparent electroconductive film Download PDF

Info

Publication number
JP2008115425A
JP2008115425A JP2006299763A JP2006299763A JP2008115425A JP 2008115425 A JP2008115425 A JP 2008115425A JP 2006299763 A JP2006299763 A JP 2006299763A JP 2006299763 A JP2006299763 A JP 2006299763A JP 2008115425 A JP2008115425 A JP 2008115425A
Authority
JP
Japan
Prior art keywords
target
alloy
sputtering
conductive film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006299763A
Other languages
Japanese (ja)
Other versions
JP5170816B2 (en
Inventor
Munetaka Mashima
宗位 真嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006299763A priority Critical patent/JP5170816B2/en
Publication of JP2008115425A publication Critical patent/JP2008115425A/en
Application granted granted Critical
Publication of JP5170816B2 publication Critical patent/JP5170816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering target for use in forming a transparent electroconductive film which is used for a liquid crystal display, an electroluminescence display, an electroconductive film coated for static elimination, a gas sensor and the like. <P>SOLUTION: The sputtering target for use in forming the transparent electroconductive film comprises: a structure including In-Sn alloy crystal grains which have a composition containing 0.1 to 30 mass% Sn and the balance In and are surrounded by In-Sn complex oxides, a structure including Zn-Al alloy crystal grains which have a composition containing 0.1 to 30 mass% Al and the balance Zn and are surrounded by Zn-Al complex oxides, or a structure including Zn-Ga alloy crystal grains which have a composition containing 0.1 to 30 mass% Ga and the balance Zn and are surrounded by Zn-Ga complex oxides. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、液晶表示装置、エレクトロルミネッセンス表示装置、帯電防止導電膜コーティング、ガスセンサーなどに用いられる透明導電膜を形成するためのスパッタリングターゲット(以下、ターゲットと云う)に関するものである。   The present invention relates to a sputtering target (hereinafter referred to as a target) for forming a transparent conductive film used for a liquid crystal display device, an electroluminescence display device, an antistatic conductive film coating, a gas sensor, and the like.

一般に、液晶表示装置、エレクトロルミネッセンス表示装置、帯電防止導電膜コーティング、ガスセンサーなどに用いられる透明導電膜として、In−Sn複合酸化物(以下、ITOという)、Zn−Al複合酸化物(以下、AZOという)、(Zn−Ga複合酸化物(以下、GZOという)などの複合酸化物からなる透明導電膜が知られており、この透明導電膜を作製する方法の一つとしてスパッタリング法がある。このスパッタリング法により透明導電膜を形成するには、In−Sn合金ターゲット、Zn−Al合金ターゲット、Zn−Ga合金ターゲットなど合金ターゲットを用い、酸素を含むアルゴン雰囲気中でスパッタリングすることにより形成する。前記In−Sn合金ターゲットはSn:0.1〜30質量%を含有し、残部がInからなる組成を有し、Zn−Al合金ターゲットはAl0.1〜30質量%を含有し、残部がZnからなる組成を有し、さらにZn−Ga合金ターゲットはGa:0.1〜30質量%を含有し、残部がZnからなる組成を有することが知られている。
これら合金ターゲットを用いてスパッタリングを行なうと、合金ターゲットを構成する各成分のスパッタ率の違いによりスパッタ初期とそれ以降とでは得られる透明導電膜の組成比が変化することから目的とする膜組成に達するまでのプレスパッタ時間を長く取る必要がある。さらに、これら合金ターゲットを用いて安定して所定の酸素含有量を有する透明導電膜を得るには、いずれもスパッタリング雰囲気中の酸素量を厳しく制御する必要があることから安定的に成膜することが難しかった。
Generally, as a transparent conductive film used for a liquid crystal display device, an electroluminescence display device, an antistatic conductive film coating, a gas sensor, etc., an In—Sn composite oxide (hereinafter referred to as ITO), a Zn—Al composite oxide (hereinafter referred to as “ITO”). A transparent conductive film made of a composite oxide such as AZO) or (Zn—Ga composite oxide (hereinafter referred to as GZO) is known, and one of methods for producing this transparent conductive film is a sputtering method. In order to form a transparent conductive film by this sputtering method, it is formed by sputtering in an argon atmosphere containing oxygen using an alloy target such as an In—Sn alloy target, a Zn—Al alloy target, or a Zn—Ga alloy target. The In—Sn alloy target contains Sn: 0.1 to 30% by mass, and the balance is the Zn-Al alloy target contains 0.1 to 30% by mass of Al, the balance is composed of Zn, and the Zn-Ga alloy target is Ga: 0.1 to 30% by mass. It is known that it has a composition that contains Zn and the balance is made of Zn.
When sputtering is performed using these alloy targets, the composition ratio of the transparent conductive film obtained varies depending on the sputtering rate of each component constituting the alloy target. It is necessary to take a long pre-sputtering time to reach. Furthermore, in order to obtain a transparent conductive film having a predetermined oxygen content stably using these alloy targets, it is necessary to strictly control the oxygen amount in the sputtering atmosphere, so that stable film formation is possible. It was difficult.

そのために、現在では、雰囲気をアルゴン雰囲気中または酸素制御を行なう必要のない酸素を含むアルゴン雰囲気中でITO複合酸化物、AZO複合酸化物、GZO複合酸化物などの複合酸化物ターゲットを用いてスパッタリングする方法が主流となっている。そして、前記ITO複合酸化物ターゲットは、SnO2:0.1〜20モル%を含有し、残部がIn23からなる組成を有し、前記AZO複合酸化物ターゲットは、Al23:0.1〜20モル%を含有し、残部がZnOからなる組成を有し、さらに、前記GZO複合酸化物ターゲットはGa23:0.1〜20モル%を含有し、残部がZnOからなる組成を有することが知られている(特許文献1、2、3参照)。
特開平5−179439号公報 特開平6−2130号公報 特開平7−138745号公報
Therefore, at present, sputtering is performed using a complex oxide target such as an ITO complex oxide, an AZO complex oxide, or a GZO complex oxide in an argon atmosphere or an argon atmosphere that does not require oxygen control. The way to do it has become mainstream. Then, the ITO composite oxide target is, SnO 2: containing 0.1 to 20 mol%, having the balance consisting of an In 2 O 3, the AZO composite oxide target is, Al 2 O 3: containing 0.1 to 20 mol%, having the balance consisting of ZnO, further the GZO composite oxide target is Ga 2 O 3: contains 0.1 to 20 mol%, and the balance of ZnO It is known to have a composition (see Patent Documents 1, 2, and 3).
Japanese Patent Laid-Open No. 5-179439 JP-A-6-2130 JP-A-7-138745

しかし、近年、スパッタリング雰囲気中の酸素制御技術は以前に比べて格段に進歩し、スパッタリング雰囲気中の酸素量の制御は簡単になってきた。さらに合金ターゲットを用いるスパッタリング法の成膜速度は、複合酸化物ターゲットを用いる成膜速度よりも速いことから、コスト削減の目的で合金ターゲットを用いるスパッタリング法が再び注目され始めている。しかし、合金ターゲットを用いるスパッタリング法では形成される透明導電膜の成分組成が一定になるまでに時間がかかり過ぎ、そのためにプレスパッタ時間を長く取らなければならないという欠点は未だ解消されていない。   However, in recent years, the oxygen control technology in the sputtering atmosphere has greatly advanced compared to before, and the control of the oxygen amount in the sputtering atmosphere has become easier. Furthermore, since the film formation rate of the sputtering method using an alloy target is faster than the film formation rate using a complex oxide target, the sputtering method using an alloy target has begun to attract attention again for the purpose of cost reduction. However, in the sputtering method using an alloy target, it takes too much time for the component composition of the transparent conductive film to be formed to be constant, and thus the drawback of having to take a long pre-sputtering time has not yet been solved.

そこで、本発明者らは上述の合金ターゲットを用いるスパッタリング法の前記欠点を解消すべく研究を行った。その結果、
In−Sn合金結晶粒の周囲をITO複合酸化物膜で包囲した組織を有するターゲット、
Zn−Al合金結晶粒の周囲をAZOの複合酸化物膜で包囲した組織を有するターゲット、
Zn−Ga合金粉末の周囲をGZOの複合酸化物膜で包囲した組織を有するターゲット、
を用いてスパッタリングすると、得られた透明導電膜の成分組成が安定するまでの時間(すなわち、プレスパッタ時間)が格段に短くなり、したがって、透明導電膜の成膜時間が大幅に短縮される、などの研究結果が得られたのである。
Therefore, the present inventors have studied to eliminate the above-described drawbacks of the sputtering method using the above-described alloy target. as a result,
A target having a structure in which an In-Sn alloy crystal grain is surrounded by an ITO composite oxide film,
A target having a structure in which the periphery of Zn-Al alloy crystal grains is surrounded by a composite oxide film of AZO,
A target having a structure in which the periphery of the Zn-Ga alloy powder is surrounded by a composite oxide film of GZO,
When the sputtering is performed, the time until the component composition of the obtained transparent conductive film is stabilized (that is, the pre-sputtering time) is remarkably shortened. Therefore, the film formation time of the transparent conductive film is greatly reduced. The research results were obtained.

この発明は、かかる研究結果に基づいて成されたものであって、
(1)Sn:0.1〜30質量%を含有し、残部がInからなる組成を有するIn−Sn合金結晶粒をIn−Sn複合酸化物が包囲している組織を有する透明導電膜形成用スパッタリングターゲット、
(2)Al:0.1〜30質量%を含有し、残部がZnからなる組成を有するZn−Al合金結晶粒をZn−Al複合酸化物が包囲している組織を有する透明導電膜形成用スパッタリングターゲット、
(3)Ga:0.1〜30質量%を含有し、残部がZnからなる組成を有するZn−Ga合金結晶粒をZn−Ga複合酸化物が包囲している組織を有する透明導電膜形成用スパッタリングターゲット、に特徴を有するものである。
前記In、Sn、Zn、AlおよびGaの含有量は、従来から知られているIn−Sn合金ターゲット、Zn−Al合金ターゲット、Zn−Ga合金ターゲットに含まれる含有量と同じであり、すでに知られている範囲であるのでその限定理由の説明は省略する。
The present invention has been made based on such research results,
(1) For forming a transparent conductive film having a structure in which an In—Sn composite oxide surrounds In—Sn alloy crystal grains containing Sn: 0.1 to 30% by mass and the balance being composed of In Sputtering target,
(2) For forming a transparent conductive film having a structure in which Zn—Al composite oxide surrounds Zn—Al alloy crystal grains containing Al: 0.1 to 30% by mass and the balance being composed of Zn Sputtering target,
(3) Ga: For forming a transparent conductive film having a structure in which Zn—Ga composite oxide surrounds Zn—Ga alloy crystal grains having a composition of 0.1 to 30% by mass and the balance being made of Zn The sputtering target is characterized.
The contents of the In, Sn, Zn, Al, and Ga are the same as the contents of the conventionally known In—Sn alloy target, Zn—Al alloy target, and Zn—Ga alloy target. Therefore, the explanation of the reason for limitation is omitted.

この発明の透明導電膜形成用スパッタリングターゲットを作製するには、まず、いずれも平均粒径:0.1〜250μmを有するIn−Sn合金粉末、Zn−Al合金粉末、Zn−Ga合金粉末などの合金粉末を用意する。これら合金粉末は、ガスアトマイズ粉末であってもよく、また機械粉砕粉末であってもよい。つぎに、これら合金粉末を酸素雰囲気中で加熱処理することにより、In−Sn合金粉末の表面にITO複合酸化物膜を形成したITO被覆In−Sn合金粉末、Zn−Al合金粉末の表面にAZO複合酸化物膜を形成したAZO被覆Zn−Al合金粉末、Zn−Ga合金粉末の表面にGZO複合酸化物膜を形成したGZO被覆Zn−Ga合金粉末を作製する。また、ガスアトマイズにより粉末を作製する際、ガスとしてAr+10%O等の酸化性ガスを用いてガスアトマイズすることにより作製することができる。このとき合金粉末の表面に形成される酸化膜は厚さ:20〜1000nmの範囲内にあることが好ましい。酸化膜の厚さが20nm未満ではターゲット製造プロセスにおける成形過程で初期の粉末形状を保った状態で成形することが困難となるので好ましくなく、一方、1000nmを越えるようになると極端にスパッタ速度が低下し、量産に不向きとなるので好ましくないからである。このようにして得られたITO被覆In−Sn合金粉末、AZO被覆Zn−Al合金粉末、GZO被覆Zn−Ga合金粉末をそれぞれホットプレス、熱間静水圧プレスまたは冷間静水圧プレスを行なうことにより作製する。 In order to produce the sputtering target for forming a transparent conductive film of the present invention, first, all of In-Sn alloy powder, Zn-Al alloy powder, Zn-Ga alloy powder having an average particle size of 0.1 to 250 μm, etc. Prepare alloy powder. These alloy powders may be gas atomized powders or mechanically pulverized powders. Next, by heat-treating these alloy powders in an oxygen atmosphere, an ITO-coated In-Sn alloy powder in which an ITO composite oxide film is formed on the surface of the In-Sn alloy powder, and an AZO on the surface of the Zn-Al alloy powder. AZO-coated Zn-Al alloy powder having a complex oxide film formed thereon and a GZO-coated Zn-Ga alloy powder having a GZO complex oxide film formed on the surface of the Zn-Ga alloy powder are prepared. Also, making the powder by gas atomization can be produced by gas atomization using an Ar + 10% O 2 and the like oxidizing gas as a gas. At this time, the oxide film formed on the surface of the alloy powder is preferably in the range of thickness: 20 to 1000 nm. If the thickness of the oxide film is less than 20 nm, it is not preferable because it is difficult to mold the powder in the initial manufacturing process in the target manufacturing process. On the other hand, if the thickness exceeds 1000 nm, the sputtering rate is extremely reduced. However, it is not preferable for mass production. The ITO-coated In-Sn alloy powder, AZO-coated Zn-Al alloy powder, and GZO-coated Zn-Ga alloy powder thus obtained were subjected to hot pressing, hot isostatic pressing, or cold isostatic pressing, respectively. Make it.

この発明の組織を有する透明導電膜形成用ターゲットは、プレスパッタ時間を大幅に短縮することができ、透明導電膜の製造コストを大幅に下げることができるなど優れた効果を奏するものである。   The target for forming a transparent conductive film having the structure of the present invention has excellent effects such that the pre-sputtering time can be greatly shortened and the manufacturing cost of the transparent conductive film can be greatly reduced.

発明を実施するための最良の態様Best Mode for Carrying Out the Invention

つぎに、この発明の透明導電膜形成用ターゲットを具体的に説明する。まず、原料粉末として、いずれもガスアトマイズして得られたSn:5質量%を含有し、残部がInからなる成分組成のIn−Sn合金ガスアトマイズ粉末、Al:4質量%を含有し、残部がZnからなる成分組成のZn−Al合金ガスアトマイズ粉末、およびGa:10質量%を含有し、残部がZnからなる成分組成のZn−Ga合金ガスアトマイズ粉末を用意する。これらIn−Sn合金ガスアトマイズ粉末を大気中:温度:120℃、3時間保持の条件で加熱し、Zn−Al合金ガスアトマイズ粉末を大気中:温度:200℃、3時間保持の条件で加熱し、さらにZn−Ga合金ガスアトマイズ粉末をそれぞれ大気中:温度:100℃、3時間保持の条件で加熱することにより、
In−Sn合金ガスアトマイズ粉末の表面にITO複合酸化物膜を形成したITO被覆In−Sn合金粉末、
Zn−Al合金ガスアトマイズ粉末の表面にAZO複合酸化物膜を形成したAZO被覆Zn−Al合金粉末、および、
Zn−Ga合金ガスアトマイズ粉末の表面にGZO複合酸化物膜を形成したGZO被覆Zn−Ga合金粉末を作製し用意した。
Next, the transparent conductive film forming target of the present invention will be specifically described. First, as a raw material powder, all contain Sn: 5 mass% obtained by gas atomization, the remainder contains an In—Sn alloy gas atomized powder of a component composition composed of In, Al: 4 mass%, and the balance is Zn A Zn—Al alloy gas atomized powder having a component composition consisting of Ga and 10% by mass of Ga: Zn—Ga alloy gas atomized powder having a component composition consisting of Zn is prepared. These In—Sn alloy gas atomized powders are heated in the atmosphere: temperature: 120 ° C. for 3 hours, the Zn—Al alloy gas atomized powders are heated in the atmosphere: temperature: 200 ° C. for 3 hours, and further By heating the Zn—Ga alloy gas atomized powder in the air: temperature: 100 ° C. for 3 hours,
ITO-coated In-Sn alloy powder in which an ITO composite oxide film is formed on the surface of an In-Sn alloy gas atomized powder,
An AZO-coated Zn-Al alloy powder in which an AZO composite oxide film is formed on the surface of a Zn-Al alloy gas atomized powder; and
A GZO-coated Zn—Ga alloy powder having a GZO composite oxide film formed on the surface of a Zn—Ga alloy gas atomized powder was prepared and prepared.

実施例1
先に作製したITO被覆In−Sn合金粉末を金型に充填した状態で、ホットプレス装置に装入し、雰囲気:1×10-2Torrの真空雰囲気、温度:120℃、圧力:30MPa、保持時間:3時間保持の条件でホットプレスすることにより、直径:154mm×厚さ:6mmの寸法をもった本発明ターゲット1を作製した。この本発明ターゲット1の断面組織を金属顕微鏡で観察したところ、In−Sn合金結晶粒相互が結合している部分も見られたが、大部分のIn−Sn合金結晶粒はITO複合酸化膜が包囲している組織が見られた。
Example 1
The ITO-coated In—Sn alloy powder prepared earlier was charged into a mold and charged into a hot press apparatus, and the atmosphere was maintained in a vacuum atmosphere of 1 × 10 −2 Torr, temperature: 120 ° C., pressure: 30 MPa, and maintained. The target 1 of the present invention having a size of diameter: 154 mm × thickness: 6 mm was produced by hot pressing under a condition of time: 3 hours. When the cross-sectional structure of the target 1 of the present invention was observed with a metallurgical microscope, a portion where In—Sn alloy crystal grains were bonded to each other was also observed, but most of the In—Sn alloy crystal grains were made of an ITO composite oxide film. The surrounding organization was seen.

一方、先に作製したIn−Sn合金ガスアトマイズ粉末を金型に充填した状態で、ホットプレス装置に装入し、雰囲気:1×10-2Torrの真空雰囲気、温度:120℃、圧力:30MPa、保持時間:3時間保持の条件でホットプレスすることにより、直径:154mm×厚さ:6mmの寸法をもった従来ターゲット1を作製した。この従来ターゲット1の断面を金属顕微鏡で観察したところ、In−Sn合金結晶粒が集合した焼結合金組織が見られた。 On the other hand, the In—Sn alloy gas atomized powder prepared earlier was charged into a mold and charged into a hot press apparatus. Atmosphere: vacuum atmosphere of 1 × 10 −2 Torr, temperature: 120 ° C., pressure: 30 MPa, Holding time: Hot pressing under the condition of holding for 3 hours, a conventional target 1 having a diameter of 154 mm × thickness: 6 mm was produced. When the cross section of this conventional target 1 was observed with a metal microscope, a sintered alloy structure in which In—Sn alloy crystal grains were aggregated was observed.

得られた本発明ターゲット1および従来ターゲット1を無酸素銅製の水冷バッキングプレートにハンダ付けした状態で、直流マグネトロンスパッタリング装置に装着し、まず装置内を真空排気装置にて1×10-6Torr以下に排気したのち、Ar+10%Oガスを導入して装置内雰囲気を1.5×10-3Torrのスパッタガス圧とした。また、厚さ:0.6mmのポリカーボネート基板をターゲットとの間隔:70mmにて配置した。
かかる状態で本発明ターゲット1および従来ターゲット1に、直流電源にてスパッタ電力:0.1kWを印加し、スパッタリング開始から5分ごとに作製した前記ポリカーボネート基板表面に形成された厚さ:50nmを有する透明導電膜サンプルのInおよびSnの成分組成を測定し、この測定結果を表1に示した。
The obtained target 1 of the present invention and the conventional target 1 are soldered to a water-cooled backing plate made of oxygen-free copper and mounted on a DC magnetron sputtering apparatus. First, the inside of the apparatus is 1 × 10 −6 Torr or less with a vacuum exhaust apparatus. Then, Ar + 10% O 2 gas was introduced to set the atmosphere in the apparatus to a sputtering gas pressure of 1.5 × 10 −3 Torr. In addition, a polycarbonate substrate having a thickness of 0.6 mm was disposed at a distance of 70 mm from the target.
In this state, sputtering power: 0.1 kW is applied to the target 1 of the present invention and the conventional target 1 with a DC power source, and the thickness formed on the surface of the polycarbonate substrate produced every 5 minutes from the start of sputtering has a thickness of 50 nm. The component composition of In and Sn of the transparent conductive film sample was measured, and the measurement results are shown in Table 1.

Figure 2008115425
Figure 2008115425

表1に示される結果から、In−Sn合金結晶粒をITO複合酸化膜が包囲している組織を有する本発明ターゲット1で形成された透明導電膜サンプルはスパッタリング時間が10分経過後からはInおよびSnの含有量がほぼ一定となることからプレスパッタ時間は10分必要とすることがわかる。
一方、従来ターゲット1で形成した透明導電膜サンプルはスパッタリング時間が30分経過後からはInおよびSnの含有量がほぼ一定となるのでプレスパッタ時間は30分必要となることがわかる。
したがって、本発明ターゲット1のプレスパッタ時間と従来ターゲット1のプレスパッタ時間を比較すると、本発明ターゲット1のプレスパッタ時間は従来ターゲット1のプレスパッタ時間に比べて格段に短いことがわかる。
From the results shown in Table 1, the transparent conductive film sample formed with the target 1 of the present invention having a structure in which the ITO composite oxide film surrounds the In—Sn alloy crystal grains has been obtained after the sputtering time of 10 minutes has elapsed. It can be seen that the pre-sputtering time is 10 minutes because the Sn and Sn contents are almost constant.
On the other hand, it can be seen that the transparent conductive film sample formed with the conventional target 1 requires a pre-sputtering time of 30 minutes since the In and Sn contents are substantially constant after the sputtering time of 30 minutes has elapsed.
Therefore, when comparing the pre-sputtering time of the target 1 of the present invention and the pre-sputtering time of the conventional target 1, it can be seen that the pre-sputtering time of the target 1 of the present invention is much shorter than the pre-sputtering time of the conventional target 1.

実施例2
先に作製したAZO被覆Zn−Al合金粉末を金型に充填した状態で、ホットプレス装置に装入し、雰囲気:1×10-2Torrの真空雰囲気、温度:200℃、圧力:30MPa、保持時間:3時間保持の条件でホットプレスすることにより、直径:154mm×厚さ:6mmの寸法をもった本発明ターゲット2を作製した。この本発明ターゲット2の断面を金属顕微鏡で観察したところ、Zn−Al合金結晶粒相互が結合している部分も見られたが、大部分のZn−Al合金結晶粒はAZO複合酸化膜が包囲している組織が見られた。
Example 2
The previously prepared AZO-coated Zn-Al alloy powder was charged in a mold and charged into a hot press apparatus. Atmosphere: 1 × 10 −2 Torr vacuum atmosphere, temperature: 200 ° C., pressure: 30 MPa, holding The target 2 of the present invention having a size of diameter: 154 mm × thickness: 6 mm was produced by hot pressing under a condition of time: 3 hours. When the cross section of the target 2 of the present invention was observed with a metal microscope, a portion where Zn—Al alloy crystal grains were bonded to each other was also observed, but most of the Zn—Al alloy crystal grains were surrounded by an AZO composite oxide film. Organization was seen.

一方、先に作製したZn−Al合金ガスアトマイズ粉末を金型に充填した状態で、ホットプレス装置に装入し、雰囲気:1×10-2Torrの真空雰囲気、温度:200℃、圧力:30MPa、保持時間:3時間保持の条件でホットプレスすることにより、直径:154mm×厚さ:6mmの寸法をもった従来ターゲット2を作製した。この従来ターゲット2の断面を金属顕微鏡で観察したところ、Zn−Al合金結晶粒が集合した焼結合金組織が見られた。 On the other hand, in a state where the previously prepared Zn—Al alloy gas atomized powder was filled in the mold, it was charged into a hot press apparatus, atmosphere: 1 × 10 −2 Torr vacuum atmosphere, temperature: 200 ° C., pressure: 30 MPa, Holding time: Hot pressing under the condition of holding for 3 hours, a conventional target 2 having a diameter of 154 mm × thickness: 6 mm was produced. When the cross section of this conventional target 2 was observed with a metal microscope, a sintered alloy structure in which Zn-Al alloy crystal grains were aggregated was observed.

得られた本発明ターゲット2および従来ターゲット2を無酸素銅製の水冷バッキングプレートにハンダ付けした状態で、直流マグネトロンスパッタリング装置に装着し、まず装置内を真空排気装置にて1×10-6Torr以下に排気したのち、Ar+10%Oガスを導入して装置内雰囲気を1.5×10-3Torrのスパッタガス圧とした。また、厚さ:0.6mmのポリカーボネート基板をターゲットとの間隔:70mmにて配置した。
かかる状態で本発明ターゲット2および従来ターゲット2に、直流電源にてスパッタ電力:0.1kWを印加し、スパッタリング開始から5分ごとに作製した前記ポリカーボネート基板表面に形成された厚さ:50nmを有する透明導電膜サンプルのZnおよびAlの成分組成を測定し、この測定結果を表2に示した。
The obtained target 2 of the present invention and the conventional target 2 are soldered to a water-cooled backing plate made of oxygen-free copper and mounted on a DC magnetron sputtering device. First, the inside of the device is 1 × 10 −6 Torr or less by a vacuum exhaust device. Then, Ar + 10% O 2 gas was introduced to set the atmosphere in the apparatus to a sputtering gas pressure of 1.5 × 10 −3 Torr. In addition, a polycarbonate substrate having a thickness of 0.6 mm was disposed at a distance of 70 mm from the target.
In this state, sputtering power: 0.1 kW is applied to the target 2 of the present invention and the conventional target 2 with a DC power source, and the thickness formed on the surface of the polycarbonate substrate produced every 5 minutes from the start of sputtering has a thickness of 50 nm. The component composition of Zn and Al of the transparent conductive film sample was measured, and the measurement results are shown in Table 2.

Figure 2008115425
Figure 2008115425

表2に示される結果から、Zn−Al合金結晶粒をAZO複合酸化膜が包囲している組織を有する本発明ターゲット2を用いて形成された透明導電膜サンプルは、
スパッタリング時間が10分経過後からはZnおよびAlの含有量がほぼ一定となることからプレスパッタ時間は10分必要となることがわかる。
一方、従来ターゲット2で形成した透明導電膜サンプルはスパッタリング時間が30分経過後からはZnおよびAlの含有量がほぼ一定となるのでプレスパッタ時間は30分必要となることがわかる。したがって、本発明ターゲット2のプレスパッタ時間と従来ターゲット2のプレスパッタ時間を比較すると、本発明ターゲット2のプレスパッタ時間は従来ターゲット2のプレスパッタ時間に比べて格段に短いことがわかる。
From the results shown in Table 2, the transparent conductive film sample formed using the target 2 of the present invention having a structure in which Zn-Al alloy crystal grains are surrounded by an AZO composite oxide film,
It can be seen that the pre-sputtering time of 10 minutes is required since the Zn and Al contents are almost constant after the sputtering time of 10 minutes has elapsed.
On the other hand, it can be seen that the transparent conductive film sample formed with the conventional target 2 requires 30 minutes of pre-sputtering time since the Zn and Al contents are substantially constant after the sputtering time of 30 minutes. Therefore, comparing the pre-sputtering time of the target 2 of the present invention with the pre-sputtering time of the conventional target 2, it can be seen that the pre-sputtering time of the target 2 of the present invention is much shorter than the pre-sputtering time of the conventional target 2.

実施例3
先に作製したGZO被覆Zn−Ga合金粉末をゴム型に充填した状態で、冷間静水圧プレス装置に装入し、圧力:100MPa、保持時間:1時間保持の条件で冷間静水圧プレスすることにより、直径:154mm×厚さ:6mmの寸法をもった本発明ターゲット3を作製した。この本発明ターゲット3の断面を金属顕微鏡で観察したところ、Zn−Ga合金結晶粒相互が結合している部分も見られたが、大部分のZn−Ga合金結晶粒はGZO複合酸化膜が包囲している組織が見られた。
Example 3
The GZO-coated Zn—Ga alloy powder prepared above is filled in a rubber mold and charged into a cold isostatic press, and cold isostatic press is performed under the conditions of pressure: 100 MPa, holding time: 1 hour. Thus, the target 3 of the present invention having a size of diameter: 154 mm × thickness: 6 mm was produced. When the cross section of the target 3 of the present invention was observed with a metal microscope, a portion where Zn—Ga alloy crystal grains were bonded to each other was also observed, but most of the Zn—Ga alloy crystal grains were surrounded by a GZO composite oxide film. Organization was seen.

一方、先に作製したZn−Ga合金ガスアトマイズ粉末をゴム型に充填した状態で、冷間静水圧プレス装置に装入し、圧力:100MPa、保持時間:1時間保持の条件で冷間静水圧プレスすることにより、直径:154mm×厚さ:6mmの寸法をもった従来ターゲット3を作製した。この従来ターゲット3の断面を金属顕微鏡で観察したところ、Zn−Ga合金結晶粒が集合した焼結合金組織が見られた。   On the other hand, with the previously prepared Zn-Ga alloy gas atomized powder filled in a rubber mold, it was charged into a cold isostatic press, and the cold isostatic press was performed under the conditions of pressure: 100 MPa, holding time: 1 hour. Thus, a conventional target 3 having a diameter of 154 mm × thickness: 6 mm was produced. When the cross section of this conventional target 3 was observed with a metal microscope, a sintered alloy structure in which Zn—Ga alloy crystal grains were aggregated was observed.

得られた本発明ターゲット3および従来ターゲット3を無酸素銅製の水冷バッキングプレートにハンダ付けした状態で、直流マグネトロンスパッタリング装置に装着し、まず装置内を真空排気装置にて1×10-6Torr以下に排気したのち、Ar+10%Oガスを導入して装置内雰囲気を1.5×10-3Torrのスパッタガス圧とした。また、厚さ:0.6mmのポリカーボネート基板をターゲットとの間隔:70mmにて配置した。
かかる状態で本発明ターゲット3および従来ターゲット3に、直流電源にてスパッタ電力:0.1kWを印加し、スパッタリング開始から5分ごとに作製した前記ポリカーボネート基板表面に形成された厚さ:50nmを有する透明導電膜サンプルのZnおよびGaの成分組成を測定し、この測定結果を表3に示した。
The obtained target 3 of the present invention and the conventional target 3 are soldered to a water-cooled backing plate made of oxygen-free copper and mounted on a DC magnetron sputtering apparatus. First, the inside of the apparatus is 1 × 10 −6 Torr or less with a vacuum exhaust apparatus. Then, Ar + 10% O 2 gas was introduced to set the atmosphere in the apparatus to a sputtering gas pressure of 1.5 × 10 −3 Torr. In addition, a polycarbonate substrate having a thickness of 0.6 mm was disposed at a distance of 70 mm from the target.
In this state, sputtering power: 0.1 kW is applied to the target 3 of the present invention and the conventional target 3 with a DC power source, and the thickness formed on the polycarbonate substrate surface produced every 5 minutes from the start of sputtering has a thickness of 50 nm. The component composition of Zn and Ga of the transparent conductive film sample was measured, and the measurement results are shown in Table 3.

Figure 2008115425
Figure 2008115425

表3に示される結果から、Zn−Ga合金結晶粒をGZO複合酸化膜が包囲している組織を有する本発明ターゲット3を用いて形成された透明導電膜サンプルは、
スパッタリング時間が10分経過後からはZnおよびGaの含有量がほぼ一定となることからプレスパッタ時間は10分必要となることがわかる。一方、従来ターゲット3を用いて形成した透明導電膜サンプルはスパッタリング時間が30分経過後からはZnおよびGaの含有量がほぼ一定となるのでプレスパッタ時間は30分必要となることがわかる。
したがって、本発明ターゲット3のプレスパッタ時間と従来ターゲット3のプレスパッタ時間を比較すると、本発明ターゲット3のプレスパッタ時間は従来ターゲット3のプレスパッタ時間に比べて格段に短いことがわかる。
From the results shown in Table 3, a transparent conductive film sample formed using the present target 3 having a structure in which Zn-Ga alloy crystal grains are surrounded by a GZO composite oxide film,
It can be seen that the pre-sputtering time of 10 minutes is required since the Zn and Ga contents are almost constant after the sputtering time of 10 minutes has elapsed. On the other hand, it can be seen that the transparent conductive film sample formed using the conventional target 3 requires a pre-sputtering time of 30 minutes since the Zn and Ga contents are substantially constant after the sputtering time of 30 minutes has elapsed.
Therefore, comparing the pre-sputtering time of the target 3 of the present invention and the pre-sputtering time of the conventional target 3, it can be seen that the pre-sputtering time of the target 3 of the present invention is much shorter than the pre-sputtering time of the conventional target 3.

Claims (3)

Sn:0.1〜30質量%を含有し、残部がInからなる組成を有するIn−Sn合金結晶粒をIn−Sn複合酸化物が包囲している組織を有することを特徴とする透明導電膜形成用スパッタリングターゲット。 A transparent conductive film characterized by having a structure in which an In-Sn composite oxide surrounds In-Sn alloy crystal grains containing Sn: 0.1 to 30% by mass and the balance being composed of In Sputtering target for formation. Al:0.1〜30質量%を含有し、残部がZnからなる組成を有するZn−Al合金結晶粒をZn−Al複合酸化物が包囲している組織を有することを特徴とする透明導電膜形成用スパッタリングターゲット。 A transparent conductive film characterized by having a structure in which Zn—Al composite oxide surrounds Zn—Al alloy crystal grains having a composition of Al: 0.1 to 30% by mass and the balance being made of Zn. Sputtering target for formation. Ga:0.1〜30質量%を含有し、残部がZnからなる組成を有するZn−Ga合金結晶粒をZn−Ga複合酸化物が包囲している組織を有することを特徴とする透明導電膜形成用スパッタリングターゲット。 A transparent conductive film characterized by having a structure in which Zn—Ga composite oxide surrounds Zn—Ga alloy crystal grains containing Ga: 0.1 to 30% by mass and the balance being composed of Zn Sputtering target for formation.
JP2006299763A 2006-11-06 2006-11-06 Sputtering target for forming transparent conductive film Expired - Fee Related JP5170816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299763A JP5170816B2 (en) 2006-11-06 2006-11-06 Sputtering target for forming transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299763A JP5170816B2 (en) 2006-11-06 2006-11-06 Sputtering target for forming transparent conductive film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012091880A Division JP5424140B2 (en) 2012-04-13 2012-04-13 Sputtering target for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JP2008115425A true JP2008115425A (en) 2008-05-22
JP5170816B2 JP5170816B2 (en) 2013-03-27

Family

ID=39501618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299763A Expired - Fee Related JP5170816B2 (en) 2006-11-06 2006-11-06 Sputtering target for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JP5170816B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPH09170076A (en) * 1995-08-18 1997-06-30 Wc Heraeus Gmbh Target for cathode sputtering and production of the same
JPH10237630A (en) * 1996-04-12 1998-09-08 Asahi Glass Co Ltd Oxide coating, laminated body and heir production
JP2000026168A (en) * 1998-07-06 2000-01-25 Mitsubishi Materials Corp Production of metal oxide sintered body
JP2003151359A (en) * 2001-11-16 2003-05-23 Bridgestone Corp Transparent conductive film and touch panel
JP2008097969A (en) * 2006-10-11 2008-04-24 Bridgestone Corp Zinc oxide based transparent conductive film, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPH09170076A (en) * 1995-08-18 1997-06-30 Wc Heraeus Gmbh Target for cathode sputtering and production of the same
JPH10237630A (en) * 1996-04-12 1998-09-08 Asahi Glass Co Ltd Oxide coating, laminated body and heir production
JP2000026168A (en) * 1998-07-06 2000-01-25 Mitsubishi Materials Corp Production of metal oxide sintered body
JP2003151359A (en) * 2001-11-16 2003-05-23 Bridgestone Corp Transparent conductive film and touch panel
JP2008097969A (en) * 2006-10-11 2008-04-24 Bridgestone Corp Zinc oxide based transparent conductive film, and its manufacturing method

Also Published As

Publication number Publication date
JP5170816B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP3746094B2 (en) Target and manufacturing method thereof
JPWO2011010529A1 (en) Cu-Ga alloy sintered body sputtering target, method for producing the target, light absorption layer produced from Cu-Ga alloy sintered body target, and CIGS solar cell using the light absorption layer
JP2012052227A (en) Method for manufacturing sputtering target, and sputtering target
JP6284004B2 (en) Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
WO2014132872A1 (en) Niobium oxide sputtering target, production method therefor, and niobium oxide film
CN107039097B (en) Sputtering target material is used in electronic component-use wiring multilayer film and coating formation
TW201329267A (en) Method for producing molybdenum alloy sputtering target material and molybdenum alloy sputtering target material
TWI576454B (en) Spraying target for forming wiring film and coating layer for electronic parts
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
JP4904934B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP5424140B2 (en) Sputtering target for forming transparent conductive film
JP4702126B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP5170816B2 (en) Sputtering target for forming transparent conductive film
JP2000129432A (en) Electroconductive metallic oxide sinetred body and its use
JP2009161389A (en) Zinc oxide-based transparent conductive film
JP6233233B2 (en) Sputtering target and manufacturing method thereof
JP3775344B2 (en) Oxide sintered body
JP2002030429A (en) Ito sputtering target and manufacturing method
JP5363742B2 (en) Zinc oxide transparent conductive film
JP2007280756A (en) Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same
JP2001072470A (en) Production of ito sintered compact
TWI812768B (en) Sputtering target
JP2010084177A (en) Zinc oxide-based sintered target and method for producing the same
JP3917671B2 (en) ITO sintered body and sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121223

R150 Certificate of patent or registration of utility model

Ref document number: 5170816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees