JP2008110749A - 船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶 - Google Patents

船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶 Download PDF

Info

Publication number
JP2008110749A
JP2008110749A JP2007254620A JP2007254620A JP2008110749A JP 2008110749 A JP2008110749 A JP 2008110749A JP 2007254620 A JP2007254620 A JP 2007254620A JP 2007254620 A JP2007254620 A JP 2007254620A JP 2008110749 A JP2008110749 A JP 2008110749A
Authority
JP
Japan
Prior art keywords
steering angle
propulsion
target
control
propulsion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007254620A
Other languages
English (en)
Other versions
JP5191199B2 (ja
Inventor
Hirotaka Kaji
洋隆 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2007254620A priority Critical patent/JP5191199B2/ja
Publication of JP2008110749A publication Critical patent/JP2008110749A/ja
Application granted granted Critical
Publication of JP5191199B2 publication Critical patent/JP5191199B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】所望の船舶挙動を実現させるように操舵機構および推進器を制御するための船舶用推進装置の制御装置を提供する。
【解決手段】船外機4,5,7の操舵角が変更されている間に、スケジューリング部33によって、各船外機の推進器の出力が目標推進力より低くなるように制御(抑制)される。これにより、操舵角が目標値に達するまでに船体に操作者の意図しない方向への推進力が与えられることを抑制することができ、所望の船舶挙動を実現することができる。
【選択図】図8

Description

この発明は、操舵機構および推進器を備える船舶用推進装置を制御するための制御装置、ならびにそのような制御装置を備えた航走支援システムおよび船舶に関する。
船舶に推進力を与える船舶用推進装置の一つに電動船外機がある。電動船外機は、主として、湖のように環境保護の観点からエンジン式船外機の使用が禁止されているような場所において用いられる。
電動船外機は、電動モータと、この電動モータの駆動軸に結合されたプロペラとを含む推進器を備えている。電動モータの回転速度を制御することによって推進器が発生する推進力を制御することができる。また、この推進器が発生する推進力の方向(操舵角)を制御することによって、船舶の進行方向を制御することができる。
下記特許文献1に示されている電動船外機は、小型の釣り船、たとえばバスフィッシング用のバスボート等において、主に短距離の移動や船首方位の調整に用いられている。さらに、特許文献1では、いわゆるオートパイロット機能が開示されている。オートパイロット機能とは、船首が常に一定の方位を向く船位姿勢を維持するように、操舵角および電動モータの回転速度を自動制御する機能である。
以下では、電動船外機に限らず、一般的な船外機において、原動機(電動モータおよびエンジンが含まれる。)およびプロペラ(推進力発生部材)を、まとめて「推進器」という。また、推進器が発生する推進力の方向(操舵角)を操る機構を「操舵機構」という。操舵機構において、操舵角を変化させるための動力を発生するものとして、電気エネルギーによって作動する電動モータその他の電動動力源や油圧装置等が挙げられる。また、原動機によって発生された駆動力の一部が、操舵角を変化させるために用いられることもある。そして、推進器および操舵機構をまとめて「船舶用推進装置」という。船外機には、推進器のほかに操舵機構が付設されるのが一般的である。このような船外機は、前記船舶用推進装置の定義に当てはまる。
下記特許文献2に示されている船舶操縦機構では、2つの推進器の間に介装されるシリンダーロッドを、制御モータによって駆動された電動ポンプで伸縮させ、各推進器の操舵角を制御する。
特開平10−59291号公報 特開平2−227395号公報
操舵機構の原動機には、通常、推進器よりも出力の小さい原動機が用いられるので、操舵機構は、一般的に、原動機によって発生された駆動力を減速して伝達する減速器を含んでいる。そのため、目標操舵角に到達するまでに要する時間が比較的長くなる。特に、推進器が大きくなると、それに応じて減速比が大きい減速器が用いられるので、目標操舵角に到達するまでの時間が長くなる。
一方、推進器は、プロペラを電動モータやエンジンで直接あるいは小さな減速比で減速して回転させるので、早く目標推進力に到達する。そのため、各目標値に基づく推進器および操舵機構の制御を同時に開始した場合、推進力が操舵角よりも先に目標値に到達してしまう。その場合、操舵角が変化を開始した直後から目標値に達するまでの期間には、船体に操作者の意図しない方向への推進力が発生するので、所望の船舶挙動を実現することができない虞がある。
この発明の目的は、所望の船舶挙動を実現できるように操舵機構および推進器を制御するための船舶用推進装置の制御装置を提供することである。
また、この発明の他の目的は、前述のような制御装置を備えた航走支援システムおよび船舶を提供することである。
前記目的を達成するための請求項1記載の発明は、推進力を発生する推進器、およびこの推進器の操舵角を変更する操舵機構を備えた船舶用推進装置を制御するための制御装置であって、目標推進力を設定する目標推進力設定手段と、前記操舵角が変更されている間に前記推進器の出力を前記目標推進力より低くなるように制御する推進器制御手段とを含む、船舶用推進装置の制御装置である。
この構成によれば、操舵角が変更されている間に推進器の出力が目標推進力より低くなるように制御(抑制、言い換えれば減少)される。これにより、操舵角が目標値に達するまでに船体に操作者の意図しない方向への推進力が与えられることを抑制することができ、所望の船舶挙動を実現することができる。推進器の出力の抑制は、操舵角が変更されている期間の全てにおいて実施されてもよいし、その期間の一部において実施されてもよい。
請求項2記載の発明は、前記操舵角が所定のしきい値に達したかどうかを判定する操舵角判定手段をさらに含み、前記推進器制御手段は、前記操舵角判定手段によって前記操舵角が前記しきい値に達したと判定されたことに応答して、前記目標推進力が得られるように前記推進器の出力を設定するものである、請求項1記載の船舶用推進装置の制御装置である。
この構成によれば、推進器の操舵角が所定のしきい値に達したときに、目標推進力が得られるように推進器の出力が設定されるので、操舵機構の制御開始時期に対して、推進器の目標推進力発生時期を遅らせることができる。そのため、操作者の意図する方向に推進力を発生させることができ、所望の船舶挙動を実現することができる。
請求項3記載の発明は、前記制御装置は、複数の前記船舶用推進装置を制御するものであり、前記操舵角判定手段は、すべての前記船舶用推進装置の操舵角が所定のしきい値に達したかどうかを判定するものであり、前記推進器制御手段は、前記操舵角判定手段によってすべての前記船舶用推進装置の操舵角が前記所定のしきい値に達したと判定されたことに応答して、前記目標推進力が得られるように複数の前記推進器の出力を設定するものである、請求項2記載の船舶用推進装置の制御装置である。
この構成によれば、複数の船舶用推進装置にそれぞれ備えられたすべての推進器の操舵角が所定のしきい値に達したときに、前記目標推進力が得られるように推進器の出力が設定される。これにより、すべての操舵機構の制御開始時期に対して、推進器の目標推進力発生時期を遅らせることができる。そのため、操作者の意図する方向に推進力を発生させることができ、所望の船舶挙動を確実に実現することができる。目標推進力は、操作者から入力されてもよいし、自律航行の場合には、システムによって自動的に設定されてもよい。
請求項4記載の発明は、前記制御装置は、目標操舵角に基づいて前記操舵機構を制御するものであり、前記所定のしきい値を、前記目標操舵角に所定の比率を乗じることによって定めるしきい値設定手段をさらに含む、請求項2または3記載の船舶用推進装置の制御装置である。
この構成によれば、所定のしきい値は、目標操舵角に所定の比率を乗じることによって定められるので、目標操舵角に応じて、しきい値が適切に定められる。そのため、操舵機構の制御開始時期と推進器の目標推進力発生時期との関係を、目標操舵角によらずに最適化できる。
請求項5記載の発明は、前記推進器制御手段は、前記目標推進力を抑制する目標推進力抑制手段を含む、請求項1〜4のいずれか一項に記載の船舶用推進装置の制御装置である。
この構成によれば、目標推進力抑制手段によって目標推進力が抑制されるので、推進器制御手段は、推進器の出力を目標推進力より低くなるように確実に制御することができる。
請求項6記載の発明は、前記推進器制御手段は、前記目標推進力の抑制量を、前記操舵角が目標操舵角に近付くに従って小さくするものである、請求項1〜5のいずれか一項に記載の船舶用推進装置の制御装置である。
この構成によれば、操舵角が目標操舵角に近い場合には、推進器によって発生する不要なモーメントが小さくなるので、推進器の出力が船舶挙動に与える影響は小さい。むしろ、操舵角が目標操舵角に近付くに従って推進器の出力が目標推進力に近付くことで、船舶の挙動が早くなり、操作性に優れる。
請求項7記載の発明は、前記推進器の出力が前記目標推進力より低くなるように制御されていることを報知する報知手段をさらに含むことを特徴とする、請求項1〜6のいずれか一項に記載の船舶用推進装置の制御装置である。
この構成によれば、推進器の出力が目標推進力より低くなるように制御されていることを操作者が把握することができるので、操作者の違和感を少なくできる。
請求項8記載の発明は、前記船舶用推進装置は、船舶の船首部分に設けられる推進器を少なくとも含む、請求項1〜7のいずれか一項に記載の船舶用推進装置の制御装置である。ここで、船首部分とは、船舶において、その最先端から、船舶の長手方向寸法の約1/3以内の部分をいう。
この構成によれば、船首部分に設けられる推進器は、一般的に小型であるので、軽量である。一方、船尾に設けられる推進器は、一般的に大型であるので、その重さによって船体の重心が船尾側に偏ってしまう。そのため、船首部分に設けられる推進器と船体の重心との距離が比較的長くなる。したがって、船首部分に設けられる推進器の推進力は、船体に重心回りの大きなモーメントを与え、船舶挙動に大きな影響を与える。そこで、この発明の一実施形態では、船首部分に設けられる推進器において、操舵角が変更されている間にその推進器の出力が目標推進力より低くなるように制御される。そのため、不所望なモーメントを抑制でき、所望の船舶挙動を実現することができる。
請求項9記載の発明は、前記操舵機構は、前記操舵角を変化させるための動力を減速する減速器を含む、請求項1〜8のいずれか一項に記載の船舶用推進装置の制御装置である。
この構成によれば、一般的に、操舵機構に対して大型の動力源を用いることはできないが、操舵機構では大きな動力が必要となるので、減速器が用いられることが多い。この場合、減速器が用いられることにより、操舵角が目標値に達するまでに比較的長い時間が掛かる虞がある。しかし、前述したように、操舵角が変更されている間に推進器の出力が目標推進力より低くなるように制御されるので、操舵角が目標値に達するまでに船体に操作者の意図しない方向への大きな推進力が発生することを防止することができる。
請求項10記載の発明は、推進力を発生する推進器、およびこの推進器の操舵角を定める操舵機構を備えた船舶用推進装置と、この船舶用推進装置を制御するための請求項1〜9のいずれか一項に記載の制御装置とを含む、航走支援システムである。
この構成によれば、操舵角が変更されている間に推進器の出力が目標推進力より低くなるように制御される。これにより、操舵角が目標値に達するまでに、船体に操作者の意図しない方向への大きな推進力が発生することを防止することができ、所望の船舶挙動を実現することができる。
請求項11記載の発明は、船体と、推進力を発生する推進器、およびこの推進器の操舵角を定める操舵機構を備え、前記船体に取り付けられた船舶用推進装置と、請求項1〜9のいずれか一項に記載の船舶用推進装置の制御装置とを含む、船舶である。
この構成によれば、操舵角が変更されている間に推進器の出力が目標推進力より低くなるように制御される。これにより、操舵角が目標値に達するまでに、船体に操作者の意図しない方向への大きな推進力が発生することを防止することができ、所望の船舶挙動を実現することができる。
なお、船舶は、クルーザ、釣り船、ウォータージェット、水上滑走艇(watercraft)のような比較的小型のものであってもよい。
また、船舶に備えられる船舶用推進装置は、船外機(アウトボードモータ)、船内外機(スターンドライブ。インボードモータ・アウトボードドライブ)、船内機(インボードモータ)、ウォータージェットドライブのいずれの形態であってもよい。船外機は、原動機(エンジンまたは電動モータ)および推進力発生部材(プロペラ)を含む推進器を船外に有し、さらに、推進器全体を船体に対して水平方向に回動させる操舵機構が付設されたものである。船内外機は、原動機が船内に配置され、推進力発生部材および操舵機構を含むドライブユニットが船外に配置されたものである。船内機は、原動機およびドライブユニットがいずれも船体に内蔵され、ドライブユニットからプロペラシャフトが船外に延び出た形態を有する。この場合、操舵機構は、原動機およびドライブユニットとは別に設けられる。ウォータージェットドライブは、船底から吸い込んだ水をポンプで加速し、船尾の噴射ノズルから噴射することで推進力を得るものである。この場合、操舵機構は、噴射ノズルと、この噴射ノズルを水平面に沿って回動させる機構とで構成される。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、この発明の一実施形態に係る船舶1の構成を説明するための概念図である。この船舶1は、バスボートのような比較的小型の船舶である。この船舶1は、船体2と、船体2の船尾3に取り付けられた一対の船外機4,5と、船首6に取り付けられた船外機7とを備えている。
船尾3に配置された一対の船外機4,5は、船尾3および船首6を通る中心線8に対して、左右対称な位置に取り付けられている。詳しくは、船外機4は、船体2の左舷後部に取り付けられており、船外機5は、船体2の右舷後部に取り付けられている。
また、船首6に配置された船外機7は、中心線8から左右いずれかの方向(本実施形態では右側)にずれた位置に取り付けられている。むろん、船首6の船外機7を中心線8上に配置してもよい。ただし、この位置には、魚群探知機その他の機器が取り付けられていることが多いので、前記のような配置を選択するのが好ましい。
船外機4,5,7は、いずれも船舶用推進装置として機能する。以下では、これらを区別するために、それぞれ、「左舷船外機4」、「右舷船外機5」、「船首船外機7」と呼ぶことがある。
左舷船外機4、右舷船外機5および船首船外機7には、それぞれ、電子制御ユニット(ECU)9,10,11(以下、区別するために「左舷ECU9」、「右舷ECU10」、「船首ECU11」と呼ぶことがある。また、総称するときには「船外機ECU9,10,11」などという。)が備えられている。左舷ECU9、右舷ECU10および船首ECU11には、それぞれ、バッテリー12が接続されており、各バッテリー12から、対応するECUおよび船外機に電力が供給される。
船体2には、操船のために操作される操作部材としてのジョイスティック13が設けられている。ジョイスティック13を操作することで、船舶1の前後進および左右への旋回を制御することができる。ジョイスティック13の操作に係わる情報は、たとえば、船体2内に配置されたCAN(Control Area Network)などの船内LAN14を介して航走制御装置15に入力されるようになっている。
船体2には、たとえばジョイスティック13の近傍に、報知手段としての表示部46が設けられている。表示部46は、船内LAN14を介して航走制御装置15に接続されており、航走制御装置15と一体であってもよい。表示部46は、インジケータランプ41および画面42を備えている。表示部46は、後述するスケジューリング制御が実施されているか否かを、インジケータランプ41および画面42を用いることによって、操作者に対して視覚的に報知するものであるが、音声や振動によって報知してもよい。
航走制御装置15は、マイクロコンピュータを含む電子制御ユニット(ECU)である。この航走制御装置15は、船外機4,5,7(船舶用推進装置)を制御するための制御装置として機能し、推進力の制御および舵取制御を行う。航走制御装置15は、さらに、左舷ECU9、右舷ECU10および船首ECU11との間で、船内LAN14を介して通信を行う。詳しくは、航走制御装置15は、船外機ECU9,10,11から、各船外機4,5,7に備えられたモータ22(図3参照)の回転速度の実測値と、各船外機4,5,7の向きを表す操舵角の実測値とを取得する。その一方で、航走制御装置15は、各船外機ECU9,10,11に対して、各船外機4,5,7のモータ22が発生すべき推進力および操舵角の目標値を与えるようになっている。符号16は、終端器を表す。
図2は、船体2を基準に定義される座標系(船体座標系)における左舷船外機4、右舷船外機5および船首船外機7の座標位置を示している。この船体座標系は、船舶1が位置する水平面に平行な平面内に定義される2次元直交座標系である。より具体的には、この船体座標系は、船体2の中心線8に一致し、船体2の前後方向に平行なx軸と、x軸に直交し、船体2の左右方向に平行なy軸とで定義される。座標原点Oは、旋回時における船体2の瞬間回転中心に採られている。
瞬間回転中心は、船体2および船外機4,5,7の種類に応じて定まる設計上の瞬間回転中心であってもよい。また、テスト航走を行って、瞬間回転中心を予め実測してもよい。
前記の船体座標系において、各船外機4,5,7のx,y座標は、次式(1)で与えられる。
左舷船外機4の座標(x,y)=(xL,yL
右舷船外機5の座標(x,y)=(xR,yR) …(1)
船首船外機7の座標(x,y)=(xF,yF
ただし、xL=xRであり、yL=−yRである。
図3は、各船外機に共通の構成を説明するための図解的な側面図である。
各船外機4,5,7(ここでは、代表として船首船外機7を示している。)は、操舵機構としての電動ステアリング装置17と、推進器18とを有している。
電動ステアリング装置17は、船体2に着脱自在に固定されるケーシング19と、ケーシング19から水面に向かって延びるシャフト20と、ケーシング19に設けられ、シャフト20をその軸線回りに回動させるサーボモータ21とを有している。また、電動ステアリング装置17は、ギヤ等で構成された減速器44を有している。減速器44は、歯数の異なるギア同士の噛み合わせによる減速機構、あるいは、プーリーとベルトとを組み合わせた減速機構等によって構成される。本実施形態では、対応するECU(図3では、船首ECU11。)が、ケーシング19に取り付けられており、サーボモータ21と電気的に接続されている。サーボモータ21は、そのECUを介して、前述したバッテリー12(図1参照)からの電力が供給されて駆動されるようになっている。シャフト20は、鉄や樹脂等で形成されている。サーボモータ21とシャフト20とは、減速器44を介して連結されている。また、ケーシング19は、前述した部品を収容するだけでなく、当該船外機を船体2に取り付けるための取付器具としての機能も兼ねている。
推進器18は、防水処理が施されたモータ22と、モータ22の回転軸に直結されたプロペラ23とを有している。モータ22は、シャフト20の水面側端部に一体的に取り付けられている。シャフト20は、水中に推進器18を配置できる長さを有している。モータ22は、シャフト20内に配設されたケーブル(図示せず)を介して、ケーシング19のECU(図3では、船首ECU11。)と電気的に接続されている。そのECUは、前述したバッテリー12(図1参照)からの電力をモータ22に供給し、このモータ22を回転駆動する。モータ22を回転駆動すると、プロペラ23が回転されるので、船体2を移動させるための推進力を発生することができる。
推進器18は、モータ22の実際の回転速度を検出するための回転速度センサ25を有している。回転速度センサ25は、モータ22の回転に同期するパルスを発生するパルス発生ユニットで構成することができる。ケーシング19内のECUは、このパルス発生ユニットが発生するパルス信号を検出し、パルス信号の時間間隔からモータ22の回転速度を算出する。
一方、サーボモータ21が駆動されると、サーボモータ21の生じる動力が減速器44で減速されてからシャフト20に伝達されることにより、シャフト20および推進器18が、シャフト20の軸線回り(図示矢印参照)に回動される。これにより、船外機4,5,7の操舵角(船体2の中心線8と推進力の方向とがなす方位角)を変化させることができる。電動ステアリング装置17には、実際の操舵角を検出するために、ポテンショメータ等を用いた操舵角センサ24が設けられている。操舵角センサ24は、たとえば、シャフト20の回転角を表す信号を出力するものであってもよい。
図4は、航走制御装置15と各船外機4,5,7との間における命令系統および応答系統を説明するためのブロック図である。ここでは、図3で示した船首船外機7に対応した構成について説明する。
船外機7に対応したECU11は、回転速度制御部26と電動ステアリング制御部27とを含んでいる。航走制御装置15は、船外機7のモータ22が発生すべき推進力の目標値を回転速度制御部26に与え、船外機7の操舵角の目標値を電動ステアリング制御部27に与える。回転速度制御部26は、前記推進力の目標値に対応した目標回転速度を求め、回転速度センサ25によって検出される回転速度の実測値が前記目標回転速度に一致するように、推進器18のモータ22を制御する。一方、電動ステアリング制御部27は、操舵角センサ24によって検出される操舵角を前記目標値に一致させるように、電動ステアリング装置17のサーボモータ21を制御する。
推進器18が発生する推進力Fとモータ22の回転速度nとの関係は、次式(2)および(3)で与えられる。この実施形態では、モータ22の回転速度は、プロペラ23の回転速度と同じである。
F=ρD4T(J)n|n| …(2)
J=u/(nD) …(3)
式(2)および(3)において、ρは水の密度(定数)、Dは、プロペラ23の直径(定数)、KTはスラスト係数、Jは前進率、uはプロペラ23の後流速度の実測値である。プロペラ23の実測後流速度uは、プロペラ23の近傍に設けられた速度センサ(図示せず)で直接検出されてもよいし、船舶1の実際の航行速度に所定の係数を乗じることで算出されてもよい。スラスト係数KTは、前進率J、つまりプロペラ後流速度uおよびモータ22の回転速度nと一定の関係にあり、その関係を示すマップから求められる。
回転速度制御部26は、航走制御装置15から与えられた推進力の目標値Fとプロペラ23の後流速度の実測値uとを、式(2)および(3)に代入することで、船外機7におけるモータ22の目標回転速度nを算出する。
モータ22の回転速度および操舵角の各目標値に基づいて、回転速度制御部26および電動ステアリング制御部27は、モータ22およびサーボモータ21をそれぞれ駆動させる。回転速度センサ25が検出したモータ22の実際の回転速度および操舵角センサ24が検出した実際の操舵角は、実測値としてそれぞれ回転速度制御部26および電動ステアリング制御部27にフィードバックされる。また、モータ22の回転速度および操舵角の実測値は、回転速度制御部26および電動ステアリング制御部27のそれぞれを経由して航走制御装置15にもフィードバックされる。
回転速度制御部26および電動ステアリング制御部27は、フィードバックされたモータ22の回転速度および操舵角の実測値に基づいて、これらの実測値が目標値に一致するようにモータ22およびサーボモータ21の駆動をそれぞれ制御する。
図5は、回転速度制御部26におけるモータ22の駆動制御の流れを説明するためのブロック図である。回転速度制御部26は、PID(比例積分微分)制御器34およびPI(比例積分)制御器35を含んでいる。また、船外機ECU11には、モータ22に駆動電流を供給する駆動回路(図示せず)と、この駆動回路からモータ22に供給される電流を検出するための電流検出回路37とが備えられている。
PID制御器34は、回転速度センサ25によるモータ22の実測回転速度と目標回転速度との偏差に基づき、比例要素、積分要素および微分要素を用いて、当該偏差をなくすためにモータ22に与えるべき電流の目標値を出力する(PID制御)。PI制御器35は、出力された電流の目標値と、電流検出回路37で測定されるモータ22の実測電流値との偏差に基づき、比例要素および積分要素を用いて、当該偏差をなくすためにモータ22のPWM(Pulse Width Modulation)制御に適用すべきデューティー比を出力する(PI制御)。そして、モータ22の回転速度が、回転速度センサ25によって検出され、この値、つまり回転速度の実測値が目標値と一致するように、PID制御およびPI制御が繰り返される。以下では、回転速度制御部26によるこれらのPID制御およびPI制御を、まとめて「推進力制御」と呼ぶ。
図6は、電動ステアリング制御部27におけるサーボモータ21の駆動制御の流れを説明するためのブロック図である。電動ステアリング制御部27は、PD(比例微分)制御器36を含んでいる。PD制御器36は、操舵角センサ24が検出した操舵角の実測値と目標値との偏差に基づき、比例要素および微分要素を用いて、当該偏差をなくすためにサーボモータ21に与えるべき電流を出力する(PD制御)。そして、操舵角センサ24に検出される操舵角の実測値が目標値と一致するように、PD制御が繰り返される。以下では、電動ステアリング制御部27による前記のPD制御を「操舵角制御」と呼ぶ。
図7(a)および図7(b)は、ジョイスティック13の操作を説明するための図である。図7(a)は、傾倒させたジョイスティック13の斜視図であり、図7(b)は、図7(a)の状態にあるジョイスティック13を船体座標平面(船体座標系におけるxy平面)に投影した平面図である。
ジョイスティック13は、図7(a)に示すように、船体2に設けられた操作盤28から任意の方向へ傾倒自在に突設されたロッド29と、ロッド29の遊端部に設けられた略球体状のノブ30とを有している。
ロッド29の中立位置は、操作盤28の表面に対して直立した位置である。操作者は、ノブ30を把持し、ロッド29を所望の方向に向けて中立位置から傾倒させることで、船舶1の進行方向をロッド29の傾倒方向に応じた向きに変更することができる。操作者は、さらに、ロッド29の傾倒の度合いにより、船外機4,5,7から船体2に与えられる推進力を制御することができる。すなわち、ロッド29を大きく傾倒させるほど、大きな推進力が船体2に与えられる。これにより、たとえば、ロッド29を船首側へ向けて大きく傾倒させることによって船舶1の航行速度が上昇する。一方、船舶1が前進している状態で、ロッド29を船尾側へ向けて傾倒させると航行速度を減少させる制動動作を行うことができ、さらには、船舶1を後進させることもできる。
また、ノブ30は、ロッド29に対して、ロッド29の軸線回りに回動自在とされている。操作者は、ノブ30をロッド29の軸線回りに回動させることにより、船舶1を旋回(船体2の瞬間回転中心まわりの旋回)させることができる。とくに、船舶1が停止している状態で、ロッド29を中立位置としてノブ30を回動させると、船舶1の位置を変えずに船舶1を旋回させる定点旋回を行わせることができる。定点旋回は、船舶1を駐船させるときなどに行われる。
ノブ30の回動角度Lz(図示矢印参照)は、操作盤28に備えられた角度センサ38によって検出される。この回動角度Lzに応じた角速度(ヨー角速度)で船舶1が旋回(回頭)することになる。
一方、ロッド29の傾倒方位角である進行角β(図7(b)参照)およびロッド29の傾倒角度(傾倒量)は、操作盤28に備えられた一対の位置センサ39,40によって検出される。図7(b)に示すように、ロッド29の軸方向に沿う一定の大きさのベクトルを想定し、船体座標系のxy平面への当該ベクトルの正射影をLとする。この正射影ベクトルLのx軸方向(x軸に平行な方向)に沿う成分(x成分)Lxが、一方の位置センサ39によって検出される。また、前記正射影ベクトルLのy軸方向(y軸に平行な方向)に沿う成分(y成分)Lyが、他方の位置センサ40によって検出される。すなわち、これらの一対の位置センサ39,40は、ロッド29のx軸方向およびy軸方向への傾倒量をそれぞれ検出し、その検出結果を航走制御装置15へと入力する。航走制御装置15は、x成分Lxおよびy成分Lyから、x軸方向およびy軸方向の推進力FxおよびFyを求めるとともに、進行角βを求める。
図8は、ジョイスティック13の操作に基づく船外機4,5,7の制御系統を説明するためのブロック図である。図9は、各船外機4,5,7において推進力および操舵角の所定の目標値が達成された状態を例示的に示す図である。
航走制御装置15は、目標設定部31、目標推進力設定手段としての推進力配分部32、ならびに、操舵角判定手段、推進器制御手段、しきい値設定手段および目標推進力抑制手段としてのスケジューリング部33を有している。
操作者が、ジョイスティック13を操作し、ロッド29を所望の方向に向けて傾倒させると、前述した位置センサ39,40によって検出されたx成分Lxおよびy成分Lyは、目標設定部31に与えられる。また、操作者がノブ30を回動させると、前述の角度センサ38によって検出された回動角度Lzが目標設定部31に与えられる。
目標設定部31は、与えられたx成分Lx、y成分Lyおよび回動角度Lzに基づいて、操作者が所望する船舶挙動を実現するために船体2に作用させるべき目標推進力Fおよび目標モーメントMzを設定する。
目標設定部31は、目標推進力(スラスト)Fのx軸方向成分(前後スラスト)Fxおよびy軸方向成分(左右スラスト)Fyを、位置センサ39,40によって検出されるx成分Lxおよびy成分Lyに基づいて、次式により求める。また、目標設定部31は、角度センサ38によって検出された回動角度Lzに基づいて、目標モーメントMzを次式により求める。
x=cxx
y=cyy …(4)
z=czz
式(4)において、cx、cyおよびczは、係数である。
また、目標設定部31は、位置センサ39,40によって検出されるx成分Lxおよびy成分Lyに基づいて、操作者が所望する船舶1の進行方向を示す進行角β(x軸方向に対する方位角)を、次式(5)に従って設定する。
Figure 2008110749
式(5)において、εは十分に小さな正の定数であり、sgn(Ly)は、Lyが正か0の場合に1を返し、Lyが負の場合に−1を返す符号関数である。
推進力配分部32は、目標設定部31で設定された前後スラストFx、左右スラストFy、モーメントMzおよび進行角βを次式(6)〜(11)に代入することにより、各船外機4,5,7に配分すべき推進力および操舵角の目標値を算出する。
Figure 2008110749
ここで、前述したモーメントMzは、船体2全体に作用されるモーメントの合計として、次式(12)で与えられるので、式(6)、(9)および(11)を式(12)に代入することで、式(10)が導出される。
Figure 2008110749
また、式(6)から明らかなように、進行角βは、そのまま船首船外機7の目標操舵角δFとなる。また、左舷船外機4および右舷船外機5の目標操舵角δL,δRは、Mz=0の場合を除き、どちらかが0またはπである。左舷船外機4および右舷船外機5の座標がx軸を挟んで左右対称の場合(yL=−yR)、式(11)により、左舷船外機4および右舷船外機5の目標推進力FL,FRは、その向きが反対で、大きさが等しくなる。したがって、左舷船外機4と右舷船外機5との間には偶力が生じる。この偶力により、船舶1を瞬間中心回りに旋回させるためのモーメントMzが生じる。目標モーメントMzが零のときには、δL=δR=0となり、左舷船外機4および右舷船外機5の目標推進力FL,FRは、その向きが平行で、大きさが等しくなる。これにより、船体2に作用するモーメントが零になる。この状態でジョイスティック13のロッド29を傾倒させることにより、船体2を旋回させることなく平行移動させる横移動操船が可能になる。
式(6)〜(11)で算出された各船外機4,5,7の目標操舵角δF,δL,δR(総称するときには「目標操舵角δ」という。)および目標推進力FF,FL,FR(総称するときには「目標推進力F」という。)は、スケジューリング部33に出力される。
図10は、スケジューリング部33が実行するスケジューリング制御を説明するためのフローチャートである。図11(a)および図11(b)は、船外機における操舵角および推進力が各目標値δ,Fに到達するまでの様子を時系列に沿って示した図である。具体的には、図11(a)はスケジューリング制御が実施されない場合、図11(b)はスケジューリング制御が実施される場合をそれぞれ示す。図12(a)および図12(b)は、船首船外機7において操舵角が目標値に到達するまでに発生する推進力を所定時間間隔でベクトル表示したイメージ図である。具体的には、図12(a)はスケジューリング制御が実施されない場合、図12(b)はスケジューリング制御が実施される場合をそれぞれ示す。図13(a)および図13(b)は、船首船外機7において操舵角が目標値に到達するまでにおける船舶1の移動軌跡を表示したイメージ図である。具体的には、図13(a)はスケジューリング制御が実施されない場合、図13(b)はスケジューリング制御が実施される場合をそれぞれ示す。
スケジューリング部33は、推進力配分部32から各船外機4,5,7の目標推進力Fおよび目標操舵角δが出力されると、図10に示されたスケジューリング制御を実施する。詳細は次のとおりである。
すなわち、スケジューリング部33は、船外機4,5,7の目標操舵角δF,δL,δRにそれぞれ所定の比率(本実施形態では0.95としている。)を乗じて所定のしきい値THF,THL,THRを決定する(ステップS11)。このしきい値THF,THL,THRを定めるための前記所定の比率は、作動テストを実施することによって予め定められる。
操舵角に関するしきい値THF,THL,THRが決定されると(ステップS11)、スケジューリング部33は、目標操舵角δF,δL,δRを対応する船外機4,5,7の電動ステアリング制御部27に出力する。これに応答して、電動ステアリング制御部27は、当該目標操舵角δに基づく操舵角制御を開始する(ステップS12)。
操舵角制御の最中には、前述したように、船外機4,5,7の操舵角センサ24が検出した実際の操舵角が航走制御装置15にフィードバックされ、スケジューリング部33は、そのフィードバックされた実際の操舵角をリアルタイムで監視している。
すべての船外機4,5,7における実際の操舵角が各しきい値THF,THL,THRを超えると(ステップS13のYES)、スケジューリング部33は、目標推進力FF,FL,FRを対応する船外機4,5,7の回転速度制御部26へ出力する。これに応答して、回転速度制御部26は、与えられた目標推進力Fが得られるように推進器18の出力を設定する推進力制御を開始する(ステップS14)。言い換えれば、スケジューリング部33は、操舵角が変更されている間、この実施形態では、操舵角が変化を開始してからしきい値に到達するまでの間(出力抑制期間という。図11(b)参照)においては、船外機4,5,7における推進器18の出力を0に、つまり、目標推進力より低くなるように抑制している。なお、推進器18の出力の抑制は、操舵角が変更されている期間の全てにおいて実施されてもよいし、この実施形態のように、その期間の一部において実施されてもよい。
一方、いずれかの船外機4,5,7における実際の操舵角が前述したしきい値以下であれば(ステップS13のNO)、スケジューリング部33は、船外機4,5,7の実際の操舵角を引き続き監視する。
また、ステップS14で推進力制御が開始されるまでの間、航走制御装置15は、図示しないインジケータ等に、たとえば「プロペラ待機中」といったメッセージを表示させる。これにより、スケジューリング制御によってモータ22の駆動が遅延されている旨を操作者に報知することができる。こうして、操作者は、船舶1の作動状態を誤解なく把握することができ、推進力発生の遅延に伴う操作者の不安を抑制できる。
前述したスケジューリング制御が実施されないと、目標操舵角δおよび目標推進力Fが電動ステアリング制御部27および回転速度制御部26のそれぞれに対して同時に出力される。これに伴い、図11(a)に示すように、操舵角制御と推進力制御とが同時に開始される。操舵角制御では、減速器44を有する電動ステアリング装置17によって操舵角が徐々に目標値δに近づけられる。一方、推進器18の推進力は、操舵角がその目標値δに到達するよりもはるかに早い時期に、一気に目標推進力に到達してしまう。そのため、図11(a)および図12(a)のドット領域で示すように、操舵角が目標値に到達する前に、余計な推進力が船体2に作用してしまい、所望の船舶挙動が達成できないおそれがある。より具体的には、図12(a)に示すように、破線矢印方向への船外機(ここでは船首船外機7を例示している。)の回動が開始されてから比較的早い時期に、目標推進力が既に発生していることがわかる。したがって、操作者の意図とは異なる方向に船舶1が動き出すおそれがある。
より具体的に説明すると、図13(a)および図13(b)に示すように、たとえば、船首船外機7の操舵角が90°であるときの船舶1の位置を初期位置Aとする。そして、ジョイスティック13を操作して船舶1を初期位置Aから前進させつつ、船首船外機7の操舵角を0°へ変化させるとする。また、ジョイスティック13の操作者は、船舶1が初期位置Aから、操舵角が0°に到達したときの目標位置Xに向かって、目標軌跡Yに沿って直進することを所望しているとする。図中の太い実線矢印において、長さは船首船外機7の発生する推進力の大きさを示し、向きはその推進力の方向を示している。
スケジューリング制御が実施されない場合には、図13(a)に示すように、初期位置Aで船首船外機7の回動が開始された直後に推進力が立ち上がり、すみやかに目標推進力に達する。つまり、船首船外機7の操舵角が90°に近い状態から船首船外機7から目標推進力が発生するので、船舶1は、目標軌跡Yから外れて前進する(位置B参照)。船首船外機7の操舵角が0°(目標操舵角)に到達するよりもはるか以前から目標推進力が発生するから、船舶1は、目標軌跡Yからどんどん外れてしまう(位置C参照)。その後においても、船首船外機7の操舵角が0°に到達するまでの間、船舶1は、目標軌跡Yからより一層外れる(位置Dおよび位置E参照)。そのため、操船者は、船舶1を位置Eから目標位置Xへ戻すために(図示1点鎖線の矢印参照)、ジョイスティック13を大きく操作せねばならない。
これに対して、スケジューリング制御が実施されると、図11(b)に示すように、電動ステアリング装置17の制御開始時期に対して、推進器18の推進力発生時期を遅らせることができる。これにより、推進力が操舵角よりもはるかに先に目標値に到達することを防止できる。具体的には、操舵角および推進力がそれぞれの目標値に到達する時期をほぼ同時にすることができる。その結果、図11(b)および図12(b)のドット領域で示すように、船体2に作用する余計な推進力がほとんどなくなるので、操作者の意図する方向に推進力を発生させることができ、所望の船舶挙動を実現することができる。また、スケジューリング制御が実施される場合には、図13(b)に示すように、船首船外機7では、操舵角が目標値(ここでは0°)に近付いたところで推進力が発生しはじめ(位置B参照)、操舵角が目標値に到達したところで目標推進力が発生する(位置C参照)。そのため、スケジューリング制御が実施されない場合(図13(a)参照)に比べて、目標軌跡Yからの船舶1の逸脱量は小さく、操舵角が目標値に到達した後の位置Eから目標位置Xへの修正量(図示1点鎖線の矢印参照)も小さく抑えることができる。また、操作者は、船舶1が意図しない方向に動き始めると、この動きを修正するように操船を始める。このとき、船舶1は、ふらふらとした不安定な挙動を示すことになるが、本発明では、このような不安定な挙動を防止することができる。
また、スケジューリング制御では、図10のステップS13で示したように、すべての船外機4,5,7における実際の操舵角が各しきい値THF,THL,THRに達したときに、各推進器18を作動させて推進力を発生させる。そのため、すべての船外機4,5,7の操舵角が目標値に到達するよりもはるかに早くいずれかの推進器18の推進力がその目標値に達することを防止できる。すなわち、すべての船外機4,5,7の操舵角が目標値に到達するのとほぼ同時期に、船体2に対して所要の推進力を与えることができる。これにより、操作者が意図する船舶挙動を確実に実現することができる。たとえば、船体2を旋回させることなく(すなわち、ヨー角速度=0)、船体2を平行移動させる横移動操船の際に、船体2の不所望な旋回や意図しない方向への移動を抑制または防止できる。
スケジューリング制御は、すべての船外機4,5,7について実施されるのが好ましいが、少なくとも船首船外機7については実施される必要がある。図14を参照して、船首船外機7では、一般的に推進器18が小型であるので、軽量である。一方、船尾3に設けられる船外機4,5は、一般的に推進器18が大型であるので、それらの重さによって船体2の重心0が船尾3側に偏ってしまう。そのため、船首船外機7と重心0との距離Lが比較的長くなる。したがって、船首船外機7で生じる推進力は、船体2に重心0回りの大きなモーメントを与え、船舶挙動に大きな影響を与える。そこで、船首船外機7についてスケジューリング制御を実施するようにすれば、不所望なモーメントを抑制でき、所望の船舶挙動を実現することができる。
そして、しきい値THF,THL,THRは、図10のステップS11で示したように、目標操舵角δに所定の比率を乗じることによって定められるので、目標操舵角δを変えると自動的に適正値へと変更される。そのため、目標操舵角δに適応したスケジューリング制御を実現でき、目標操舵角δの値によらずに推進力の発生時期を最適化できる。
また、本実施形態では、前記所定の比率は、0.95で一定としたが、たとえば、0.85〜0.95の範囲において、航行速度が低い場合には大きく定め、航行速度が高い場合には小さく定めてもよい。
また、前記所定の比率を用いる方法とは別に、目標操舵角から所定の角度(以下、「残り角度」という。)を減じた値を、しきい値THF,THL,THRと定めることもできる。つまり、実際の操舵角が、目標操舵角から残り角度を減じた値に到達すると、推進力制御が開始される。そのため、残り角度が大きいほど、電動ステアリング装置17の制御開始時期に対する推進器18の推進力発生時期の遅れ時間が短くなる。一方、残り角度が小さいほど、電動ステアリング装置17の制御開始時期に対する推進器18の推進力発生時期の遅れ時間が長くなる。そして、この残り角度も、船舶1の航行速度に応じて変動させることもできる。たとえば、残り角度は、2°〜10°の範囲において、航行速度が低い場合には小さく定め、航行速度が高い場合には大きく定めればよい。
また、船首船外機7について、前述したスケジューリング制御とは別のスケジューリング制御を実施することができる。図15は、ジョイスティック13の操作に基づく船首船外機7の制御系統を説明するためのブロック図である。図中において、前述した要素については、同じ符号を付し、その説明を省略する。
図15を参照して、スケジューリング部33は、目標推進力抑制手段としての一次遅れフィルタ45を含んでいる。一次遅れフィルタ45は、1/(T・s+1)であらわされる。ここで、Tは時定数であり、sはラプラス演算子である。たとえば、時定数Tは、電動ステアリング装置17の時定数と等しく設定してもよい。電動ステアリング装置17の時定数とは、たとえば、現状の操舵角が0°のときに100°の目標操舵角を電動ステアリング制御部27にステップ状に与えた場合に、実際の操舵角が目標操舵角の約63%(約63°)に到達するまでの時間である。この時間が1秒であるならば、時定数Tは1とすればよい。
推進力配分部32で設定された目標推進力は、スケジューリング制御において、一次遅れフィルタ45を通してから、船首船外機7の回転速度制御部26(図4参照)へ出力される。
詳しくは、図16に示すように、操舵角が変更されている間、詳しくは、操舵角の変化開始直後から、たとえば操舵角がしきい値に到達するまでの間(出力抑制期間)において、目標推進力は、一次遅れフィルタ45を通ることで抑制され(図示1点鎖線参照)、この抑制された目標推進力に基づいて船首船外機7の推進力が制御される。そして、出力抑制期間終了後には、スケジューリング制御が終了し、推進力配分部32で設定された本来の目標推進力が、一次遅れフィルタ45を通らずに、船首船外機7の回転速度制御部26(図4参照)へ直接出力される。つまり、出力抑制期間終了後には、目標推進力の抑制が解除され、本来の(抑制されていない)目標推進力に基づいて船首船外機7の推進力が制御される。
スケジューリング部33によってこのようなスケジューリング制御が実施されることにより、出力抑制期間において船首船外機7の出力(実際の推進力)が目標推進力より低くなるように制御される。そのため、出力抑制期間でスケジューリング制御が実施されない場合(図11(a)参照)に比べて、船体2に作用する余計な推進力を低減することができ、所望の船舶挙動を実現することができる。
このように、出力抑制期間における目標推進力の抑制量は、実際の操舵角が目標値(目標操舵角)に近付くに従って小さくなっている。つまり、実際の操舵角が目標値に近付くに従って、抑制された目標推進力が、推進力配分部32で設定された本来の目標推進力に近付いてもよい。操舵角が目標値に近い場合には、推進器18によって発生する不要なモーメントが小さくなるので、推進力が船舶挙動にほとんど悪影響を与えない。むしろ、操舵角が目標値に近付くに従って推進力が目標値に近付くことで、船舶1の挙動が早くなり、操作性に優れる。
図8および図15に示すように、表示部46が航走制御装置15に接続されている。スケジューリング制御が実施されているか否かが表示部46に表示され、操作者に報知されるようになっている。これにより、操作者は、スケジューリング制御が実施されているか否かを把握することができるので、操作者の違和感を少なくできる。
図17(a)および図17(b)は、表示部46において、スケジューリング制御が実施されているか否かが報知されている状態を示すイメージ図である。具体的には、図17(a)はスケジューリング制御中であることが報知されている状態、図17(b)はスケジューリング制御が終了したことが報知されている状態をそれぞれ示す。
スケジューリング制御中は、図17(a)に示すように、表示部46において、インジケータランプ41が点灯し、画面42には、スケジューリング制御が実施されていることを示すイメージ(第1イメージ43という。)が表示される。
インジケータランプ41は高輝度ランプであることが好ましく、その場合、操作者は、表示部46を凝視しなくても、インジケータランプ41が点灯していることを容易に把握することができる。
第1イメージ43は、船舶1の平面図を模式的に示しており、スケジューリング制御開始時(操舵角の変化開始時)の船首船外機7の姿勢(図17(a)では操舵角が90°の船首船外機7の姿勢)を示している。また、第1イメージ43では、スケジューリング制御開始から終了までの船首船外機7の回動範囲(スケジューリング制御区間)が表示される(図示矢印およびドット領域参照)。ここで、船首船外機7の姿勢については、スケジューリング制御開始時の姿勢だけでなく、スケジューリング制御区間において変化する姿勢を段階的にまたは連続的に示してもよい。
スケジューリング制御が終了すると(操舵角が前述したしきい値に到達すると)、図17(b)に示すように、インジケータランプ41が消灯する。また、画面42の表示は、第1イメージ43から、スケジューリング制御が終了したことを示すイメージ(第2イメージ47という。)に切り替わる。第2イメージ47では、第1イメージ43に対して、船首船外機7の周辺の表示が異なる。詳しくは、第2イメージ47では、操舵角がしきい値と目標値までの間にある船首船外機7の姿勢が表示される。また、船首船外機7で発生している推進力の向きおよび大きさが、図示実線矢印によって模式的に表示される。
前述したように、スケジューリング制御は、少なくとも船首船外機7について実施されるので、第1イメージ43および第2イメージ47には、少なくとも船首船外機7が示されていればよいが、船尾3側の船外機4,5(図14参照)が併せて示されていてもよい。また、インジケータランプ41を点灯または消灯させる代わりに、スケジューリング制御が実施されているか否かを音声によって操作者に報知してもよい。
図18は、表示部46による報知を説明するためのフローチャートである。航走制御装置15は、船首船外機7の操舵角が変化を開始してスケジューリング部33によるスケジューリング制御が開始されると、インジケータランプ41を点灯し、第1イメージ43を画面42に表示する(ステップS21)。これにより、操作者に、スケジューリング制御が実施されていることが報知される。そして、前述したように船首船外機7の操舵角がしきい値に到達してスケジューリング制御が終了すると(ステップS22のYES)、航走制御装置15は、インジケータランプ41を消灯し、第2イメージ47を画面42に表示する(ステップS23)。これにより、操作者に、スケジューリング制御が終了したことが報知される。そして、船首船外機7の操舵角が目標値に到達すると(ステップS24のYES)、第2イメージ47の表示を終了する。これにより、画面42に何も表示されなくなるので、操作者は、船首船外機7の実際の操舵角および推進力がそれぞれの目標値に到達したこと(図16参照)を把握することができる。
この実施形態では、操舵角がしきい値に到達したときに画面42の表示を第1イメージ43から第2イメージ47に切り替えている。しかし、イメージの切り替えは、一次遅れフィルタ45を通ることで抑制されていた目標推進力が本来の目標推進力に到達したとき、または、抑制されていた目標推進力が本来の目標推進力に近付いたとき(たとえば本来の目標推進力の90%まで到達したとき)に行ってもよい。
この発明は、以上に説明した実施形態に限定されるものではなく、他の形態でも実施することができる。
たとえば、前述の実施形態では、船外機が3個備えられる構成を例示したが、船外機が1つだけ備えられる構成であってもよいし、船外機が2個(たとえば船尾に2個の船外機)備えられる構成であってもよく、船外機が4個以上備えられる構成であってもよい。
また、前述の実施形態では、電動式のモータ22を原動機として備える電動船外機4,5,7の推進力および操舵角を制御する構成について説明したが、この発明は、エンジンを原動機とした船外機の推進力および操舵角の制御にも適用できる。たとえば、電動スロットル装置を備えたエンジンを用いる場合に、当該電動スロットルの開度を制御することによってエンジンの回転速度を制御することができ、これにより、推進力を制御できる。
さらにまた、前述の実施形態では、操作者によるジョイスティック13の操作に応答して船外機4,5,7を制御する構成について説明したが、操作者が介入することなく船舶1の操船制御を行う自動操船に対してもこの発明を適用できる。たとえば、自動操船の例は、定点保持制御、経路制御、軌道制御などである。定点保持制御は船舶を一定の位置に保持するための操船制御である。経路制御とは、予め定めた経路に従って船舶を自動航走させるための操船制御である。軌道制御とは、予め定めた軌道に沿って船舶を自動航走させるための操船制御である。これらの自動操船では、航走制御装置15は、所定のプログラム演算によって、目標推進力および目標操舵角を自動的に設定する。この自動設定された目標推進力および目標操舵角に基づいて、船外機4,5,7の制御が行われることになる。
そして、前述の実施形態では、サーボモータ21の駆動によって船外機4,5,7の操舵角を変化させる構成としたが、操舵角を変化させるための動力源として、油圧装置を採用してもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
この発明の一実施形態に係る船舶の構成を説明するための概念図である。 船体を基準に定義される座標系(船体座標系)における左舷船外機、右舷船外機および船首船外機の座標位置を示している。 各船外機に共通の構成を説明するための図解的な側面図である。 航走制御装置と各船外機との間における命令系統および応答系統を説明するためのブロック図である。 回転速度制御部におけるモータの駆動制御の流れを説明するためのブロック図である。 電動ステアリング制御部におけるサーボモータの駆動制御の流れを説明するためのブロック図である。 ジョイスティックの操作を説明するための図であって、図7(a)は、傾倒させたジョイスティックの斜視図であり、図7(b)は、図7(a)の状態にあるジョイスティックを船体座標平面(船体座標系におけるxy平面)に投影した平面図である。 ジョイスティックの操作に基づく各船外機の制御系統を説明するためのブロック図である。 各船外機において推進力および操舵角の所定の目標値が達成された状態を例示的に示す図である。 スケジューリング部が実行するスケジューリング制御を説明するためのフローチャートである。 船外機における操舵角および推進力が各目標値δ,Fに到達するまでの様子を時系列に沿って示した図であって、図11(a)はスケジューリング制御が実施されない場合、図11(b)はスケジューリング制御が実施される場合をそれぞれ示す。 船首船外機において操舵角が目標値に到達するまでに発生する推進力を所定時間間隔でベクトル表示したイメージ図であって、図12(a)はスケジューリング制御が実施されない場合、図12(b)はスケジューリング制御が実施される場合をそれぞれ示す。 船首船外機において操舵角が目標値に到達するまでにおける船舶の移動軌跡を表示したイメージ図であって、図13(a)はスケジューリング制御が実施されない場合、図13(b)はスケジューリング制御が実施される場合をそれぞれ示す。 船体の重心と船首船外機との位置関係を説明するための船舶の概念図である。 ジョイスティックの操作に基づく船首船外機の制御系統を説明するためのブロック図である。 図11(b)において、別のスケジューリング制御が実施される場合を示す。 表示部において、スケジューリング制御が実施されているか否かが報知されている状態を示すイメージ図であって、図17(a)はスケジューリング制御中であることが報知されている状態、図17(b)はスケジューリング制御が終了したことが報知されている状態をそれぞれ示す。 表示部による報知を説明するためのフローチャートである。
符号の説明
1 船舶
2 船体
3 船尾
4 左舷船外機
5 右舷船外機
6 船首
7 船首船外機
8 中心線
9 左舷ECU
10 右舷ECU
11 船首ECU
12 バッテリー
13 ジョイスティック
14 船内LAN
15 航走制御装置
16 終端器
17 電動ステアリング装置
18 推進器
19 ケーシング
20 シャフト
21 サーボモータ
22 モータ
23 プロペラ
24 操舵角センサ
25 回転速度センサ
26 回転速度制御部
27 電動ステアリング制御部
28 操作盤
29 ロッド
30 ノブ
31 目標設定部
32 推進力配分部
33 スケジューリング部
34 PID制御器
35 PI制御器
36 PD制御器
37 電流検出回路
38 角度センサ
39 位置センサ
40 位置センサ
41 インジケータランプ
42 画面
43 第1イメージ
44 減速器
45 一次遅れフィルタ
46 表示部
47 第2イメージ

Claims (11)

  1. 推進力を発生する推進器、およびこの推進器の操舵角を変更する操舵機構を備えた船舶用推進装置を制御するための制御装置であって、
    目標推進力を設定する目標推進力設定手段と、
    前記操舵角が変更されている間に前記推進器の出力を前記目標推進力より低くなるように制御する推進器制御手段とを含む、船舶用推進装置の制御装置。
  2. 前記操舵角が所定のしきい値に達したかどうかを判定する操舵角判定手段をさらに含み、
    前記推進器制御手段は、前記操舵角判定手段によって前記操舵角が前記しきい値に達したと判定されたことに応答して、前記目標推進力が得られるように前記推進器の出力を設定するものである、請求項1記載の船舶用推進装置の制御装置。
  3. 前記制御装置は、複数の前記船舶用推進装置を制御するものであり、
    前記操舵角判定手段は、すべての前記船舶用推進装置の操舵角が所定のしきい値に達したかどうかを判定するものであり、
    前記推進器制御手段は、前記操舵角判定手段によってすべての前記船舶用推進装置の操舵角が前記所定のしきい値に達したと判定されたことに応答して、前記目標推進力が得られるように複数の前記推進器の出力を設定するものである、請求項2記載の船舶用推進装置の制御装置。
  4. 前記制御装置は、目標操舵角に基づいて前記操舵機構を制御するものであり、
    前記所定のしきい値を、前記目標操舵角に所定の比率を乗じることによって定めるしきい値設定手段をさらに含む、請求項2または3記載の船舶用推進装置の制御装置。
  5. 前記推進器制御手段は、前記目標推進力を抑制する目標推進力抑制手段を含む、請求項1〜4のいずれか一項に記載の船舶用推進装置の制御装置。
  6. 前記推進器制御手段は、前記目標推進力の抑制量を、前記操舵角が目標操舵角に近付くに従って小さくするものである、請求項1〜5のいずれか一項に記載の船舶用推進装置の制御装置。
  7. 前記推進器の出力が前記目標推進力より低くなるように制御されていることを報知する報知手段をさらに含むことを特徴とする、請求項1〜6のいずれか一項に記載の船舶用推進装置の制御装置。
  8. 前記船舶用推進装置は、船舶の船首部分に設けられる推進器を少なくとも含む、請求項1〜7のいずれか一項に記載の船舶用推進装置の制御装置。
  9. 前記操舵機構は、前記操舵角を変化させるための動力を減速する減速器を含む、請求項1〜8のいずれか一項に記載の船舶用推進装置の制御装置。
  10. 推進力を発生する推進器、およびこの推進器の操舵角を定める操舵機構を備えた船舶用推進装置と、
    この船舶用推進装置を制御するための請求項1〜9のいずれか一項に記載の制御装置とを含む、航走支援システム。
  11. 船体と、
    推進力を発生する推進器、およびこの推進器の操舵角を定める操舵機構を備え、前記船体に取り付けられた船舶用推進装置と、
    請求項1〜9のいずれか一項に記載の船舶用推進装置の制御装置とを含む、船舶。
JP2007254620A 2006-10-06 2007-09-28 船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶 Active JP5191199B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254620A JP5191199B2 (ja) 2006-10-06 2007-09-28 船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006275108 2006-10-06
JP2006275108 2006-10-06
JP2007254620A JP5191199B2 (ja) 2006-10-06 2007-09-28 船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶

Publications (2)

Publication Number Publication Date
JP2008110749A true JP2008110749A (ja) 2008-05-15
JP5191199B2 JP5191199B2 (ja) 2013-04-24

Family

ID=39443501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254620A Active JP5191199B2 (ja) 2006-10-06 2007-09-28 船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶

Country Status (1)

Country Link
JP (1) JP5191199B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450138Y1 (ko) 2008-05-21 2010-09-07 대우조선해양 주식회사 선박 전기추진시스템의 리던던시 회로
WO2020008775A1 (ja) * 2018-07-02 2020-01-09 古野電気株式会社 速度制御装置、自動航行システム及び速度制御方法
EP3988443A1 (en) * 2020-10-22 2022-04-27 Yamaha Hatsudoki Kabushiki Kaisha Vessel operation system and vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022131140A (ja) * 2021-02-26 2022-09-07 ヤマハ発動機株式会社 船舶推進制御システム及び船舶

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234495A (ja) * 2001-02-08 2002-08-20 Kawasaki Heavy Ind Ltd 操船装置
WO2007010767A1 (ja) * 2005-07-20 2007-01-25 Toyota Jidosha Kabushiki Kaisha 船艇の操船装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234495A (ja) * 2001-02-08 2002-08-20 Kawasaki Heavy Ind Ltd 操船装置
WO2007010767A1 (ja) * 2005-07-20 2007-01-25 Toyota Jidosha Kabushiki Kaisha 船艇の操船装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450138Y1 (ko) 2008-05-21 2010-09-07 대우조선해양 주식회사 선박 전기추진시스템의 리던던시 회로
WO2020008775A1 (ja) * 2018-07-02 2020-01-09 古野電気株式会社 速度制御装置、自動航行システム及び速度制御方法
JPWO2020008775A1 (ja) * 2018-07-02 2021-08-02 古野電気株式会社 速度制御装置、自動航行システム及び速度制御方法
US11472289B2 (en) 2018-07-02 2022-10-18 Furuno Electric Company Limited Speed control device, automatic navigation system and method of controlling speed
JP7361691B2 (ja) 2018-07-02 2023-10-16 古野電気株式会社 速度制御装置、自動航行システム及び速度制御方法
EP3988443A1 (en) * 2020-10-22 2022-04-27 Yamaha Hatsudoki Kabushiki Kaisha Vessel operation system and vessel

Also Published As

Publication number Publication date
JP5191199B2 (ja) 2013-04-24

Similar Documents

Publication Publication Date Title
JP4791340B2 (ja) 船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶
US8190316B2 (en) Control apparatus for marine vessel propulsion system, and marine vessel running supporting system and marine vessel using the same
JP6390762B2 (ja) オブジェクト近傍の船舶の運動を制御する方法
JP5481059B2 (ja) 操船支援装置およびそれを備えた船舶
JP5371401B2 (ja) 操船支援装置およびそれを備えた船舶
JP5337722B2 (ja) 船舶用推進制御装置および船舶
EP3170735B1 (en) Boat maneuvering control method for boat and boat maneuvering control system for boat
JP5151157B2 (ja) バウスラスタを有する2軸2舵船の推力制御方法及び装置
JP2006001432A (ja) 小型船舶用ステアリング装置
JP2009067287A (ja) 船舶
EP3722201A1 (en) Vessel propulsion system and vessel
WO2017168802A1 (ja) 操船装置
JP5191199B2 (ja) 船舶用推進装置の制御装置、ならびにそれを用いた航走支援システムおよび船舶
EP3406516B1 (en) Ship maneuvering device and ship provided therewith
JP2007191138A (ja) 航走制御装置およびそれを用いた船舶
JPWO2019069382A1 (ja) 操船支援装置
JP2021116016A (ja) 船舶の進路制御システム及び船舶
JP4295645B2 (ja) ウォータジェット推進船の自動定点保持装置
US20220297811A1 (en) Vessel operation system and vessel
JP2008184127A (ja) バウスラスタと旋回式スラスタを有する2軸船の推力制御方法及び装置
JP2021075101A (ja) 船体の姿勢制御システム及び船舶
JP5449510B2 (ja) 操船支援装置
EP4357237A1 (en) Watercraft propulsion system, watercraft and watercraft propulsion control method
EP4201806A1 (en) Marine vessel propulsion control system and method and marine vessel
US20240132191A1 (en) Watercraft propulsion system, and watercraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5191199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250