JP2008108440A - X-ray high voltage device and x-ray diagnostic apparatus including x-ray high voltage device - Google Patents

X-ray high voltage device and x-ray diagnostic apparatus including x-ray high voltage device Download PDF

Info

Publication number
JP2008108440A
JP2008108440A JP2006287407A JP2006287407A JP2008108440A JP 2008108440 A JP2008108440 A JP 2008108440A JP 2006287407 A JP2006287407 A JP 2006287407A JP 2006287407 A JP2006287407 A JP 2006287407A JP 2008108440 A JP2008108440 A JP 2008108440A
Authority
JP
Japan
Prior art keywords
dose
ray
tube
high voltage
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006287407A
Other languages
Japanese (ja)
Other versions
JP4858701B2 (en
Inventor
Isao Nakanishi
功 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006287407A priority Critical patent/JP4858701B2/en
Publication of JP2008108440A publication Critical patent/JP2008108440A/en
Application granted granted Critical
Publication of JP4858701B2 publication Critical patent/JP4858701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, the smaller a tube current and an imaging time are, the larger deviation from an actual measurement value is, because a quantity of radiation is calculated using a calculating formula assuming that the quantity of radiation is proportional to the tube current and imaging time in an X-ray high voltage device having capability to calculate the quantity of radiation on the basis of an imaging condition. <P>SOLUTION: As a calculating formula, a dosage characteristic constant DT (V) of a term corresponding to the quantity of radiation of an X-ray irradiated as a wave tail X-ray is added to an existing term in proportion to a tube current and an imaging time, and the DT (V) and the dosage characteristic coefficient Dt (V) of the term in proportion to the tube current and the imaging time is beforehand stored in a DT (V) memory 14 and a Dt (V) memory 15, respectively. Then, a computational part 16 calculates the quantity of radiation from the calculating formula using the imaging condition obtained from an X-ray controller 3 at the setup time of the imaging condition and memory values stored in both the memories. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はX線透視および撮影に用いられるX線高電圧装置およびX線高電圧装置を含むX線診断装置に関する。   The present invention relates to an X-ray high voltage apparatus used for X-ray fluoroscopy and radiography and an X-ray diagnostic apparatus including the X-ray high voltage apparatus.

撮影条件から照射線量を算出する機能を有するX線高電圧装置の一例について図4を用いて説明する。X線高電圧装置1はX線管6からX線を照射するために、高電圧ケーブル5を介してX線管6に高電圧を供給するものであり、主として高電圧トランスにより構成される高電圧発生器2と、例えばマイクロコンピュータおよびそのメモリ等により構成され、操作者(図示しない)の操作に従って高電圧発生器2を制御するX線制御器3により構成される。X線撮影においては撮影ごとに被検者(図示しない)の被爆線量を知り、許容値を超えないように管理することが被検者の健康上極めて重要である。そのために図4に破線で示す、例えば電離箱等により構成される線量計8をX線管6に取り付けられたコリメータ7の前面部に取り付け、照射されるX線の線量を測定することがあるが、このような場合でも照射前にX線の線量を予測して許容値を超えないかどうか判断することはできない。そのため例えばマイクロコンピュータおよびメモリ等により構成される線量計算機4を内蔵して、X線制御器3により高電圧発生器2に設定される撮影条件、すなわち管電圧、管電流および撮影時間からX線照射前に照射線量を算出し、X線制御器3のパネル(図示しない)等に表示する機能を有するX線高電圧装置1がある。(例えば特許文献1参照)   An example of an X-ray high voltage apparatus having a function of calculating an irradiation dose from imaging conditions will be described with reference to FIG. The X-ray high voltage apparatus 1 supplies a high voltage to the X-ray tube 6 via a high voltage cable 5 in order to irradiate X-rays from the X-ray tube 6, and is a high voltage mainly composed of a high voltage transformer. The voltage generator 2 is composed of, for example, a microcomputer and its memory, and is composed of an X-ray controller 3 that controls the high voltage generator 2 in accordance with an operation of an operator (not shown). In X-ray imaging, it is extremely important for the health of the subject to know the exposure dose of the subject (not shown) for each radiographing and manage the dose so as not to exceed an allowable value. For this purpose, a dosimeter 8 constituted by, for example, an ionization chamber or the like shown by a broken line in FIG. 4 may be attached to the front part of the collimator 7 attached to the X-ray tube 6 to measure the dose of X-rays to be irradiated. However, even in such a case, it is impossible to predict whether or not the allowable value is exceeded by predicting the X-ray dose before irradiation. Therefore, for example, a dose calculator 4 composed of a microcomputer and a memory is built in, and X-ray irradiation is performed based on imaging conditions set in the high voltage generator 2 by the X-ray controller 3, that is, tube voltage, tube current, and imaging time. There is an X-ray high voltage apparatus 1 having a function of calculating an irradiation dose before and displaying it on a panel (not shown) of the X-ray controller 3 or the like. (For example, see Patent Document 1)

上述のような線量計算機4によるX線の照射線量の計算は通常(式1)を用いて行われる。
Dose=D(V)×A×B ・・・(式1)
ここでDose:照射線量、A:管電流値、B:撮影時間、D(V):管電圧値Vに依存する線量特性係数である。そして線量特性係数D(V)は事前に以下の方法で取得される。すなわち図4に破線で示すようにコリメータ7の前面部に線量計8を取り付けて、X線制御器3から高電圧発生器2に設定される管電流値Aおよび撮影時間Bをそれぞれ適当な値に固定し、管電圧値Vのみを設定可能なすべての値に変化させて、各管電圧値VごとにX線を照射し、各管電圧値Vにおける照射線量Doseを実測する。演算部12はX線が照射されるごとにX線制御器3から撮影条件を、また線量計8から照射線量Doseを受け取り、(式1)を逆算して各管電圧値Vに対する線量特性係数D(V)を算出し、D(V)記憶部13に記憶させる。
Calculation of the X-ray irradiation dose by the dose calculator 4 as described above is usually performed using (Equation 1).
Dose = D (V) × A × B (Formula 1)
Here, Dose: irradiation dose, A: tube current value, B: imaging time, D (V): dose characteristic coefficient depending on tube voltage value V. The dose characteristic coefficient D (V) is acquired in advance by the following method. That is, as shown by a broken line in FIG. 4, a dosimeter 8 is attached to the front portion of the collimator 7, and the tube current value A and the imaging time B set from the X-ray controller 3 to the high voltage generator 2 are set to appropriate values. The X-ray is irradiated for each tube voltage value V, and the irradiation dose Dose at each tube voltage value V is measured. The calculation unit 12 receives the imaging conditions from the X-ray controller 3 every time X-rays are irradiated and the irradiation dose Dose from the dosimeter 8, and calculates the dose characteristic coefficient for each tube voltage value V by calculating back (Equation 1). D (V) is calculated and stored in the D (V) storage unit 13.

その後撮影が行われる前に撮影条件、すなわち管電圧値V、管電流値Aおよび撮影時間Bが設定されると、演算部12はX線制御器3から受け取った撮影条件、およびその中の管電圧値Vに対してD(V)記憶部13から読み出される線量特性係数D(V)から(式1)により照射線量Doseを算出する。この値はX線制御器3のパネル等に表示されるので、操作者(図示しない)はこれから行う撮影により被検者が被爆許容値を超えないかどうかを撮影前に判断することができる。また高電圧発生器2がX線照射時に撮影条件を実測する機能を有する場合、実測された撮影条件を用いて撮影後に(式1)の計算を行い、より実測値に近い照射線量Doseを算出してX線制御器3のパネル等に表示することもできる。
特開2003−203797号公報
When the imaging conditions, that is, the tube voltage value V, the tube current value A, and the imaging time B are set before imaging is performed thereafter, the arithmetic unit 12 captures the imaging conditions received from the X-ray controller 3 and the tubes in the imaging conditions. The irradiation dose Dose is calculated from the dose characteristic coefficient D (V) read from the D (V) storage unit 13 with respect to the voltage value V by (Equation 1). Since this value is displayed on the panel of the X-ray controller 3 or the like, the operator (not shown) can determine whether or not the subject does not exceed the permissible exposure value by performing the image capturing to be performed. Further, when the high voltage generator 2 has a function of actually measuring imaging conditions during X-ray irradiation, the calculation of (Equation 1) is performed after imaging using the actually measured imaging conditions to calculate an irradiation dose Dose that is closer to the actually measured value. It can also be displayed on the panel of the X-ray controller 3 or the like.
JP 2003-203797 A

X線高電圧装置において撮影条件から照射線量を算出する方法は上記のとおりであるが、(式1)は照射線量が管電流値と撮影時間に比例することを前提としている。しかし実際に照射線量を測定すると、管電流値が小さくなるほど、また撮影時間が短くなるほど比例関係からずれてくる。これは高電圧発生器とX線管を結ぶ高電圧ケーブルに電気的な容量が存在し、高電圧発生器による管電圧の印加が終了しても、図3に波尾期間として示す期間X線管には管電圧印加中にケーブル容量に充電された電荷による高電圧が印加され続ける。管電圧は波尾期間中に電荷が管電流として放電することにより、ケーブル容量と管電流値により決まる時定数に従って低下する。そのためX線照射も高電圧発生器による管電圧の印加の終了とともに停止するのではなく、波尾期間中漸減しながら続くことになるが、この波尾期間中の照射線量は(式1)では想定されていない。ここでケーブル容量はケーブルが変わらない限り一定なので、放電の時定数は管電流値のみに依存し、管電流値が小さいほど大きくなる。そのため(式1)による照射線量は管電流値が小さくなるほど比例関係からずれてくる。また撮影時間が短いほど照射線量に占める波尾部分の割合が大きくなるので比例関係からのずれが大きくなる。   The method of calculating the irradiation dose from the imaging conditions in the X-ray high-voltage apparatus is as described above. However, (Equation 1) assumes that the irradiation dose is proportional to the tube current value and the imaging time. However, when the irradiation dose is actually measured, the proportionality shifts as the tube current value decreases and the imaging time decreases. This is because the electric capacity exists in the high voltage cable connecting the high voltage generator and the X-ray tube, and even if the application of the tube voltage by the high voltage generator is completed, the period X-ray shown as the wave tail period in FIG. The tube continues to be applied with a high voltage due to the charge charged in the cable capacity during tube voltage application. The tube voltage decreases according to a time constant determined by the cable capacity and the tube current value, as electric charges are discharged as a tube current during the wave tail period. Therefore, X-ray irradiation does not stop with the end of the application of the tube voltage by the high voltage generator, but continues while gradually decreasing during the wave tail period. The irradiation dose during this wave tail period is It is not assumed. Since the cable capacity is constant as long as the cable does not change, the discharge time constant depends only on the tube current value, and increases as the tube current value decreases. Therefore, the irradiation dose according to (Equation 1) deviates from the proportional relationship as the tube current value decreases. In addition, the shorter the imaging time, the larger the ratio of the wave tail portion in the irradiation dose, and the larger the deviation from the proportional relationship.

この問題を改善するために管電圧に依存する線量特性係数の代わりに、管電圧に加えて管電流と撮影時間に依存する線量特性係数を使用する方法も提案されているが、事前に管電圧だけでなく管電流値と撮影時間についても多くの値に対して照射線量を実測して線量特性係数を収集しなければならないので多大な手間と時間を要するものである。本発明は管電圧遮断後に存在する管電圧波形の波尾部分に起因する照射線量の計算値の実測値からのずれをより簡易な方法で低減することを目的とする。   In order to improve this problem, a method using a dose characteristic coefficient depending on the tube current and the imaging time in addition to the tube voltage instead of the dose characteristic coefficient depending on the tube voltage has been proposed. In addition to the tube current value and the imaging time, it is necessary to actually measure the irradiation dose with respect to many values and collect the dose characteristic coefficient, which requires a lot of labor and time. An object of the present invention is to reduce a deviation from a measured value of a calculation value of an irradiation dose caused by a wave tail portion of a tube voltage waveform existing after the tube voltage is cut off by a simpler method.

請求項1記載の発明は上記の目的を達成するために、設定または実測される管電圧、管電流、撮影時間から照射線量を算出する線量計算手段を有するX線高電圧装置において、前記線量計算手段が前記管電流と前記撮影時間および前記管電圧に依存する線量特性係数の積に前記管電圧に依存する線量特性定数を加算する計算式により前記照射線量を算出し表示するために、事前に前記各管電圧ごとに線量計測手段により実測された複数個の照射線量とそれぞれの照射線量に対する前記管電流および前記撮影時間を前記計算式に代入して得られる複数組の式を解いて得られる前記管電圧に依存する線量特性係数を記憶する線量特性係数記憶手段と、前記管電圧に依存する線量特性定数を記憶する線量特性定数記憶手段を有するX線高電圧装置を提供する。   In order to achieve the above object, the invention described in claim 1 is an X-ray high voltage apparatus having dose calculation means for calculating an irradiation dose from a set or measured tube voltage, tube current, and imaging time. In order for the means to calculate and display the irradiation dose in advance by a calculation formula that adds a dose characteristic constant depending on the tube voltage to the product of the tube current and the dose characteristic coefficient depending on the imaging time and the tube voltage, It is obtained by solving a plurality of formulas obtained by substituting the plurality of irradiation doses actually measured by the dose measuring means for each tube voltage and the tube current and the imaging time for each irradiation dose into the calculation formula. An X-ray high voltage apparatus having dose characteristic coefficient storage means for storing a dose characteristic coefficient depending on the tube voltage and dose characteristic constant storage means for storing a dose characteristic constant depending on the tube voltage Subjected to.

請求項2記載の発明は上記の目的を達成するために、X線高電圧装置を含むX線診断装置において、前記X線高電圧装置により設定または実測される管電圧、管電流、撮影時間の情報を受け取り、前記管電流と前記撮影時間および前記管電圧に依存する線量特性係数の積に前記管電圧に依存する線量特性定数を加算する計算式で前記照射線量を算出し表示するために、事前に前記各管電圧ごとに線量計測手段により実測された複数個の照射線量とそれぞれの照射線量に対する前記管電流および前記撮影時間を前記計算式に代入して得られる複数組の式を解いて得られる前記管電圧に依存する線量特性係数を記憶する線量特性係数記憶手段と、前記管電圧に依存する線量特性定数を記憶する線量特性定数記憶手段を有する線量計算手段を設けたX線診断装置を提供する。   According to a second aspect of the present invention, in order to achieve the above object, in an X-ray diagnostic apparatus including an X-ray high voltage apparatus, the tube voltage, tube current, and imaging time set or measured by the X-ray high voltage apparatus are adjusted. In order to receive the information and calculate and display the irradiation dose with a calculation formula that adds a dose characteristic constant depending on the tube voltage to a product of the tube current and the dose characteristic coefficient depending on the imaging time and the tube voltage, Solving a plurality of formulas obtained by substituting a plurality of irradiation doses measured in advance by the dose measuring means for each tube voltage in advance and the tube current and the imaging time for each irradiation dose into the calculation formula Dose characteristic coefficient storage means for storing the obtained dose characteristic coefficient depending on the tube voltage and dose calculation means having dose characteristic constant storage means for storing the dose characteristic constant depending on the tube voltage are provided. To provide a line diagnostic equipment.

本発明により従来用いられてきた照射線量が管電流と撮影時間に比例することを前提とした計算式の代わりに、その式に管電圧波形の波尾部分に対応する項を追加した計算式を用いるという簡易な方法で照射線量の計算値の実測値からのずれを大幅に低減することができる。   Instead of a calculation formula based on the premise that the irradiation dose conventionally used according to the present invention is proportional to the tube current and the imaging time, a calculation formula in which a term corresponding to the wave tail portion of the tube voltage waveform is added to the formula. It is possible to greatly reduce the deviation of the calculated value of the irradiation dose from the actual measurement value by a simple method of using.

本発明の実施例を図1、図2および図3を用いて説明する。X線高電圧装置21はX線管6からX線を照射するために、高電圧ケーブル5を介してX線管6に高電圧を供給するものであり、主として高電圧トランスにより構成される高電圧発生器2と、例えばマイクロコンピュータおよびそのメモリ等により構成され、操作者(図示しない)の操作に従って高電圧発生器2を制御するX線制御器3、および例えばマイクロコンピュータおよびメモリ等により構成され、X線制御器3により高電圧発生器2に設定される撮影条件、すなわち管電圧、管電流および撮影時間から照射されるX線の線量を算出する線量計算機24により構成される。そして線量計算機24において算出される照射線量はX線制御器3のパネル(図示しない)等に表示されるので、操作者は被検者(図示しない)がこれから行う撮影により被爆許容値を超えないかどうか判断することができる。また高電圧発生器2がX線照射時に撮影条件を実測する機能を有する場合、撮影後に実測された撮影条件を用いて(式1)の計算を行い、より実測値に近い照射線量を算出してX線制御器3のパネル等に表示することもできる。   An embodiment of the present invention will be described with reference to FIGS. The X-ray high voltage device 21 supplies a high voltage to the X-ray tube 6 via the high voltage cable 5 in order to irradiate the X-ray from the X-ray tube 6, and is a high voltage mainly composed of a high voltage transformer. The voltage generator 2 is composed of, for example, a microcomputer and its memory, etc., and is composed of an X-ray controller 3 for controlling the high voltage generator 2 in accordance with an operation of an operator (not shown), and, for example, a microcomputer and memory. The X-ray controller 3 is configured by a dose calculator 24 that calculates the X-ray dose irradiated from the imaging conditions set in the high voltage generator 2, that is, the tube voltage, the tube current, and the imaging time. Since the irradiation dose calculated by the dose calculator 24 is displayed on a panel (not shown) of the X-ray controller 3, the operator does not exceed the permissible exposure value by the imaging performed by the subject (not shown). Can be determined. In addition, when the high voltage generator 2 has a function of actually measuring the imaging conditions during the X-ray irradiation, the calculation of (Equation 1) is performed using the imaging conditions actually measured after the imaging to calculate an irradiation dose closer to the actual measurement value. Can be displayed on the panel of the X-ray controller 3.

本発明において線量計算機24は(式1)の代わりに(式2)を用いて照射線量の計算を行う。
Doset=Dt(V)×A×B+DT(V)・・・(式2)
ここでDoset:照射線量、A:管電流値、B:撮影時間、Dt(V):管電圧値Vに依存する線量特性係数、DT(V):管電圧値Vに依存する線量特性定数である。
In the present invention, the dose calculator 24 calculates the irradiation dose using (Equation 2) instead of (Equation 1).
Doset = Dt (V) × A × B + DT (V) (Formula 2)
Where Doset: irradiation dose, A: tube current value, B: imaging time, Dt (V): dose characteristic coefficient depending on tube voltage value V, DT (V): dose characteristic constant depending on tube voltage value V is there.

背景技術の項で述べた(式1)が高電圧印加停止と同時にX線照射が停止する理想的な状態を前提としているのに対して、(式2)は高電圧印加時に高電圧ケーブル5のケーブル容量に充電された電荷が高電圧印加終了後にケーブル容量と管電流値により決まる時定数に従って放電する間、すなわち図3に波尾期間として示す期間中、いわゆる波尾X線として照射されるX線による照射線量を、管電流値Aおよび撮影時間Bを変数とする(式2)の定数項の線量特性定数DT(V)として組み込んだものである。そして波尾X線による照射線量は主として管電圧値Vに依存するので、線量特性定数DT(V)を管電圧値Vごとに決まる定数としている。   Whereas (Equation 1) described in the background art presupposes an ideal state in which the X-ray irradiation stops simultaneously with the high voltage application stop, (Equation 2) indicates that the high voltage cable 5 The electric charge charged in the cable capacity is emitted as so-called wave tail X-rays while discharging according to the time constant determined by the cable capacity and the tube current value after the high voltage application is completed, that is, during the period shown as the wave tail period in FIG. The X-ray irradiation dose is incorporated as a dose characteristic constant DT (V) in the constant term of (Equation 2) with the tube current value A and the imaging time B as variables. Since the irradiation dose by the wave tail X-ray mainly depends on the tube voltage value V, the dose characteristic constant DT (V) is a constant determined for each tube voltage value V.

そして線量特性係数Dt(V)および線量特性定数DT(V)の値は事前に以下の方法で取得される。すなわち図1に破線で示すようにコリメータ7の前面部に線量計8を取り付けて、X線制御器3から高電圧発生器2に適当な管電流値A1および撮影時間B1を設定し、さらに任意の管電圧値Vを設定した後X線を照射し、線量計8により照射線量値Doset1を実測する。その後管電圧値はVのままで管電流値をA2に、撮影時間をB2に変更した後X線を照射し、照射線量値Doset2を実測する。線量計算機24の演算部16はこれら2回の撮影により得られた照射線量値およびそれぞれの撮影条件を(式2)に代入して以下の(式3)および(式4)を得る。
Doset1=Dt(V)×A1×B1+DT(V)・・・(式3)
Doset2=Dt(V)×A2×B2+DT(V)・・・(式4)
演算部16はこれら2式を線量特性係数Dt(V)および線量特性定数DT(V)を未知数とする連立方程式として解くことにより線量特性係数Dt(V)および線量特性定数DT(V)の値を得る。
The values of the dose characteristic coefficient Dt (V) and the dose characteristic constant DT (V) are acquired in advance by the following method. That is, as shown by a broken line in FIG. 1, a dosimeter 8 is attached to the front portion of the collimator 7, and an appropriate tube current value A1 and imaging time B1 are set from the X-ray controller 3 to the high voltage generator 2, and further arbitrarily After the tube voltage value V is set, X-rays are irradiated, and the radiation dose value Doset1 is actually measured by the dosimeter 8. Thereafter, the tube voltage value remains V, the tube current value is changed to A2, the imaging time is changed to B2, and X-rays are irradiated to measure the irradiation dose value Doset2. The calculation unit 16 of the dose calculator 24 substitutes the irradiation dose values and the respective imaging conditions obtained by these two imaging operations into (Equation 2) to obtain the following (Equation 3) and (Equation 4).
Doset1 = Dt (V) × A1 × B1 + DT (V) (Formula 3)
Doset2 = Dt (V) × A2 × B2 + DT (V) (Formula 4)
The calculation unit 16 solves these two equations as simultaneous equations having the dose characteristic coefficient Dt (V) and the dose characteristic constant DT (V) as unknowns, thereby obtaining values of the dose characteristic coefficient Dt (V) and the dose characteristic constant DT (V). Get.

上述のX線照射、照射線量の測定、および線量特性係数Dt(V)および線量特性定数DT(V)の算出を設定可能なすべての管電圧値Vについて繰り返し行うことにより得られた各管電圧値Vに対する線量特性係数Dt(V)および線量特性定数DT(V)は演算部12により、それぞれDt(V)記憶部15およびDT(V)記憶部14に記憶される。なお上記の作業はX線管6および高電圧ケーブル5のいずれかが交換されるごとに実行されねばならない。   Each tube voltage obtained by repeatedly performing the above X-ray irradiation, measurement of irradiation dose, and calculation of the dose characteristic coefficient Dt (V) and dose characteristic constant DT (V) for all tube voltage values V that can be set The dose characteristic coefficient Dt (V) and the dose characteristic constant DT (V) for the value V are stored in the Dt (V) storage unit 15 and the DT (V) storage unit 14 by the calculation unit 12, respectively. The above operation must be performed every time one of the X-ray tube 6 and the high voltage cable 5 is replaced.

その後撮影が行われる前に撮影条件、すなわち管電圧値、管電流値および撮影時間が設定されると、演算部16はX線制御器3から受け取った撮影条件、および設定された管電圧値に対してDt(V)記憶部15、およびDT(V)記憶部14からそれぞれ読み出される線量特性係数Dt(V)、および線量特性定数DT(V)から(式2)により照射線量Dosetを算出する。この値はX線制御器3のパネル等に表示されるので、操作者はこれから行う撮影により被検者が被爆許容値を超えないかどうか等を撮影前に判断することができる。また高電圧発生器2がX線照射時に撮影条件を実測する機能を有する場合、実測された撮影条件を用いて撮影後に(式2)の計算を行い、算出された照射線量DosetをX線制御器3のパネル等に表示することもできる。   When the imaging conditions, that is, the tube voltage value, the tube current value, and the imaging time are set before imaging is performed thereafter, the calculation unit 16 sets the imaging conditions received from the X-ray controller 3 and the set tube voltage value. On the other hand, the irradiation dose Doset is calculated by (Equation 2) from the dose characteristic coefficient Dt (V) and the dose characteristic constant DT (V) read from the Dt (V) storage unit 15 and the DT (V) storage unit 14, respectively. . Since this value is displayed on the panel of the X-ray controller 3, etc., the operator can determine whether or not the subject does not exceed the permissible exposure value by performing the imaging to be performed. Further, when the high voltage generator 2 has a function of actually measuring imaging conditions during X-ray irradiation, the calculation of (Equation 2) is performed after imaging using the actually measured imaging conditions, and the calculated irradiation dose Doset is controlled by X-ray control. It can also be displayed on the panel of the device 3 or the like.

以下(式1)および(式2)によりそれぞれ算出される照射線量値を実測値と比較して(式2)の精度の高さを確認する。図2(a)は50kVから110kVの7個の管電圧のそれぞれについて、撮影時間を8msecに固定し、管電流を100mA、200mA、500mAの3個の値に切り替えて、いずれの電流値においても150回づつX線照射を繰り返し行ったときの照射線量の積算値を実測して表にしたものである。また図2(b)は図2(a)の管電流100mA、撮影時間8msecのときの照射線量実測値を用い、(式1)を逆算して得られる各管電圧値に対するD(V)を表にしたものであり、図2(c)は図2(a)の管電流100mA、撮影時間8msecのときの照射線量実測値、および管電流200mA、撮影時間8msecのときの照射線量実測値を(式2)に代入して得られる連立方程式を解いて得られる各管電圧値に対する線量特性係数Dt(V)および線量特性定数DT(V)を表にしたものである。   Hereinafter, the irradiation dose value calculated by (Equation 1) and (Equation 2) is compared with the actual measurement value to confirm the high accuracy of (Equation 2). FIG. 2 (a) shows that for each of the seven tube voltages from 50 kV to 110 kV, the imaging time is fixed at 8 msec, the tube current is switched to three values of 100 mA, 200 mA, and 500 mA, and at any current value. The integrated value of irradiation dose when X-ray irradiation is repeatedly performed 150 times is actually measured and tabulated. FIG. 2 (b) shows the D (V) for each tube voltage value obtained by back-calculating (Equation 1) using the actual measured radiation dose when the tube current is 100 mA and the imaging time is 8 msec in FIG. 2 (a). FIG. 2 (c) shows the irradiation dose actual measurement value when the tube current is 100 mA and the imaging time is 8 msec, and the irradiation dose actual measurement value when the tube current is 200 mA and the imaging time is 8 msec. The dose characteristic coefficient Dt (V) and dose characteristic constant DT (V) with respect to each tube voltage value obtained by solving simultaneous equations obtained by substituting into (Formula 2) are tabulated.

これらの表を用いて例えば80kV、500mA、8msecで150回繰り返しX線照射を行ったときの照射線量の積算値を(式1)および(式2)によりそれぞれ算出すると、(式1)の場合(0.082μGy×500mA×8msec)×150/1000=49.2mGyが得られるのに対して、(式2)の場合{(0.069μGy×500mA×8msec)+10.107μGy}×150/1000=42.9mGyが得られる。これらの結果を図2(a)の表の80kV、500mA、8msecで150回繰り返しX線照射を行ったときの照射線量の実測積算値42.80mGyと比較すると、(式2)により算出する方が(式1)により算出するより相当程度実測値に近いことがわかる。   Using these tables, for example, when the integrated values of the irradiation dose when X-ray irradiation is repeated 150 times at 80 kV, 500 mA, and 8 msec are calculated by (Equation 1) and (Equation 2), respectively, (0.082 μGy × 500 mA × 8 msec) × 150/1000 = 49.2 mGy is obtained, whereas in the case of (Expression 2) {(0.069 μGy × 500 mA × 8 msec) +10.107 μGy} × 150/1000 = 42.9 mGy is obtained. When these results are compared with the measured integrated value 42.80 mGy of the irradiation dose when X-ray irradiation is repeated 150 times at 80 kV, 500 mA, and 8 msec in the table of FIG. It can be seen that is substantially closer to the actually measured value than calculated by (Equation 1).

上記の実施例で算出される照射線量Dosetは線量計8の位置での線量に相当するが、線量がX線管6の焦点からの距離の2乗に反比例することから、この値をもとに任意の位置における線量を得ることができる。   The irradiation dose Doset calculated in the above embodiment corresponds to the dose at the position of the dosimeter 8, but the dose is inversely proportional to the square of the distance from the focal point of the X-ray tube 6. The dose at any position can be obtained.

上記の実施例では事前に線量特性係数Dt(V)および線量特性定数DT(V)の値を取得するとき、線量計8をコリメータ7の前面部に取り付けるようにしたが、線量計8は線量測定可能な任意の位置に取り付けてよい。また線量計8は常時取り付けておいてもよい。   In the above embodiment, when the values of the dose characteristic coefficient Dt (V) and the dose characteristic constant DT (V) are acquired in advance, the dosimeter 8 is attached to the front part of the collimator 7. It may be attached at any measurable position. The dosimeter 8 may be always attached.

上記の実施例では線量計算機24をX線高電圧装置21に内蔵する構成にしたが、線量計算機24をX線制御器3や高電圧発生器2および線量計8と接続可能でX線高電圧装置21から独立した構成にしてもよい。   In the above embodiment, the dose calculator 24 is built in the X-ray high voltage apparatus 21. However, the dose calculator 24 can be connected to the X-ray controller 3, the high voltage generator 2, and the dosimeter 8 so that the X-ray high voltage can be connected. A configuration independent of the device 21 may be adopted.

本発明はX線透視および撮影に用いられるX線高電圧装置およびX線高電圧装置を含むX線診断装置に関する。   The present invention relates to an X-ray high voltage apparatus used for X-ray fluoroscopy and radiography and an X-ray diagnostic apparatus including the X-ray high voltage apparatus.

本発明の実施例を説明するための図である。It is a figure for demonstrating the Example of this invention. 撮影条件と実測照射線量の関係、および式1または式2により得られた線量特性係数D(V)、線量特性係数Dt(V)および線量特性定数DT(V)の表の例を示す図である。FIG. 5 is a diagram showing a relationship between imaging conditions and actually measured irradiation doses and an example of a table of dose characteristic coefficient D (V), dose characteristic coefficient Dt (V) and dose characteristic constant DT (V) obtained by Expression 1 or 2. is there. 波尾X線について説明するための図である。It is a figure for demonstrating a wave tail X-ray. 本発明に対する従来例を説明するための図である。It is a figure for demonstrating the prior art example with respect to this invention.

符号の説明Explanation of symbols

1:X線高電圧装置
2:高電圧発生器
3:X線制御器
4:線量計算機
5:高電圧ケーブル
6:X線管
7:コリメータ
8:線量計
12:演算部
13:D(V)記憶部
14:DT(V)記憶部
15:Dt(V)記憶部
16:演算部
21:X線高電圧装置
24:線量計算機
1: X-ray high voltage device 2: High voltage generator 3: X-ray controller 4: Dose calculator 5: High voltage cable 6: X-ray tube 7: Collimator 8: Dosimeter 12: Calculation unit 13: D (V) Storage unit 14: DT (V) storage unit 15: Dt (V) storage unit 16: Calculation unit 21: X-ray high voltage device 24: Dose calculator

Claims (2)

設定または実測される管電圧、管電流、撮影時間から照射線量を算出する線量計算手段を有するX線高電圧装置において、前記線量計算手段が前記管電流と前記撮影時間および前記管電圧に依存する線量特性係数の積に前記管電圧に依存する線量特性定数を加算する計算式により前記照射線量を算出し表示するために、事前に前記各管電圧ごとに線量計測手段により実測された複数個の照射線量とそれぞれの照射線量に対する前記管電流および前記撮影時間を前記計算式に代入して得られる複数組の式を解いて得られる前記管電圧に依存する線量特性係数を記憶する線量特性係数記憶手段と、前記管電圧に依存する線量特性定数を記憶する線量特性定数記憶手段を有することを特徴とするX線高電圧装置。 In an X-ray high voltage apparatus having a dose calculation means for calculating an irradiation dose from a set or measured tube voltage, tube current, and imaging time, the dose calculation means depends on the tube current, the imaging time, and the tube voltage. In order to calculate and display the irradiation dose by a calculation formula in which a dose characteristic constant depending on the tube voltage is added to the product of the dose characteristic coefficient, a plurality of pieces measured in advance by the dose measuring means for each tube voltage are displayed. Dose characteristic coefficient storage for storing a dose characteristic coefficient depending on the tube voltage obtained by solving a plurality of sets of expressions obtained by substituting the tube current and the imaging time for each irradiation dose into the calculation formula An X-ray high voltage apparatus comprising: means and dose characteristic constant storage means for storing a dose characteristic constant depending on the tube voltage. X線高電圧装置を含むX線診断装置において、前記X線高電圧装置により設定または実測される管電圧、管電流、撮影時間の情報を受け取り、前記管電流と前記撮影時間および前記管電圧に依存する線量特性係数の積に前記管電圧に依存する線量特性定数を加算する計算式で前記照射線量を算出し表示するために、事前に前記各管電圧ごとに線量計測手段により実測された複数個の照射線量とそれぞれの照射線量に対する前記管電流および前記撮影時間を前記計算式に代入して得られる複数組の式を解いて得られる前記管電圧に依存する線量特性係数を記憶する線量特性係数記憶手段と、前記管電圧に依存する線量特性定数を記憶する線量特性定数記憶手段を有する線量計算手段を設けたことを特徴とするX線診断装置。 In an X-ray diagnostic apparatus including an X-ray high voltage apparatus, information on tube voltage, tube current, and imaging time set or measured by the X-ray high voltage apparatus is received, and the tube current, imaging time, and tube voltage are received. In order to calculate and display the irradiation dose with a calculation formula that adds a dose characteristic constant that depends on the tube voltage to the product of the dose characteristic coefficient that depends on, a plurality of values measured in advance by the dose measuring means for each tube voltage Dose characteristics for storing dose characteristic coefficients depending on the tube voltage obtained by solving a plurality of formulas obtained by substituting individual irradiation doses and the tube current and the imaging time for each irradiation dose into the calculation formula An X-ray diagnostic apparatus, comprising: a dose storage means having a coefficient storage means and a dose characteristic constant storage means for storing a dose characteristic constant depending on the tube voltage.
JP2006287407A 2006-10-23 2006-10-23 X-ray high voltage apparatus and X-ray diagnostic apparatus including X-ray high voltage apparatus Expired - Fee Related JP4858701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287407A JP4858701B2 (en) 2006-10-23 2006-10-23 X-ray high voltage apparatus and X-ray diagnostic apparatus including X-ray high voltage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287407A JP4858701B2 (en) 2006-10-23 2006-10-23 X-ray high voltage apparatus and X-ray diagnostic apparatus including X-ray high voltage apparatus

Publications (2)

Publication Number Publication Date
JP2008108440A true JP2008108440A (en) 2008-05-08
JP4858701B2 JP4858701B2 (en) 2012-01-18

Family

ID=39441641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287407A Expired - Fee Related JP4858701B2 (en) 2006-10-23 2006-10-23 X-ray high voltage apparatus and X-ray diagnostic apparatus including X-ray high voltage apparatus

Country Status (1)

Country Link
JP (1) JP4858701B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115576A (en) * 2010-12-02 2012-06-21 Fujifilm Corp Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2013141559A (en) * 2012-01-12 2013-07-22 Fujifilm Corp Radiographic apparatus and radiographic system
WO2017006543A1 (en) * 2015-07-09 2017-01-12 Canon Kabushiki Kaisha Radiation imaging apparatus, radiation imaging system, and method using radiation imaging apparatus
JP2018175249A (en) * 2017-04-10 2018-11-15 株式会社Aze Exposure dose calculation device, exposure dose management system, and their control method and program therefor
CN110831309A (en) * 2019-10-29 2020-02-21 南宁市跃龙科技有限公司 Method for reducing direct-current high-voltage error output by high-frequency high-voltage generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129893A (en) * 1978-03-31 1979-10-08 Toshiba Corp Control unit for x-ray automatic exposure
JPH0866389A (en) * 1994-08-30 1996-03-12 Toshiba Corp X-ray diagnostic device
JPH10189286A (en) * 1996-12-25 1998-07-21 Origin Electric Co Ltd Pulse power supply device for electron tube
JPH11329784A (en) * 1998-05-12 1999-11-30 Shimadzu Corp Inverter type x-ray high-voltage device
JP2000030891A (en) * 1998-07-15 2000-01-28 Shimadzu Corp X-ray automatic exposure control device
JP2003180671A (en) * 2001-12-19 2003-07-02 Hitachi Medical Corp Mobile x-ray apparatus
JP2003203797A (en) * 2002-01-09 2003-07-18 Rumio Yuki X-ray high voltage device, and radiographic apparatus provided with the same
JP2005185648A (en) * 2003-12-26 2005-07-14 Ge Medical Systems Global Technology Co Llc Exposed dose calculation method and radiography system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129893A (en) * 1978-03-31 1979-10-08 Toshiba Corp Control unit for x-ray automatic exposure
JPH0866389A (en) * 1994-08-30 1996-03-12 Toshiba Corp X-ray diagnostic device
JPH10189286A (en) * 1996-12-25 1998-07-21 Origin Electric Co Ltd Pulse power supply device for electron tube
JPH11329784A (en) * 1998-05-12 1999-11-30 Shimadzu Corp Inverter type x-ray high-voltage device
JP2000030891A (en) * 1998-07-15 2000-01-28 Shimadzu Corp X-ray automatic exposure control device
JP2003180671A (en) * 2001-12-19 2003-07-02 Hitachi Medical Corp Mobile x-ray apparatus
JP2003203797A (en) * 2002-01-09 2003-07-18 Rumio Yuki X-ray high voltage device, and radiographic apparatus provided with the same
JP2005185648A (en) * 2003-12-26 2005-07-14 Ge Medical Systems Global Technology Co Llc Exposed dose calculation method and radiography system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115576A (en) * 2010-12-02 2012-06-21 Fujifilm Corp Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2013141559A (en) * 2012-01-12 2013-07-22 Fujifilm Corp Radiographic apparatus and radiographic system
US9050059B2 (en) 2012-01-12 2015-06-09 Fujifilm Corporation Radiation imaging apparatus and system
WO2017006543A1 (en) * 2015-07-09 2017-01-12 Canon Kabushiki Kaisha Radiation imaging apparatus, radiation imaging system, and method using radiation imaging apparatus
JP2018175249A (en) * 2017-04-10 2018-11-15 株式会社Aze Exposure dose calculation device, exposure dose management system, and their control method and program therefor
CN110831309A (en) * 2019-10-29 2020-02-21 南宁市跃龙科技有限公司 Method for reducing direct-current high-voltage error output by high-frequency high-voltage generator

Also Published As

Publication number Publication date
JP4858701B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
CN103156627B (en) Radiation imaging apparatus and operational approach thereof
JP4858701B2 (en) X-ray high voltage apparatus and X-ray diagnostic apparatus including X-ray high voltage apparatus
US8708562B1 (en) Phantom systems and methods for diagnostic x-ray equipment
JP5490454B2 (en) X-ray diagnostic imaging apparatus and X-ray detector
JP2005185648A (en) Exposed dose calculation method and radiography system
Gkanatsios et al. Computation of energy imparted in diagnostic radiology
JP3483157B2 (en) X-ray CT system
US6292537B1 (en) X-ray diagnostic device including means for determining the dose
Morant et al. Validation of a Monte Carlo simulation for dose assessment in dental cone beam CT examinations
JP2010057633A (en) Radiographic apparatus and radiographic method
CN103690187A (en) Device and method for measuring oral BMD (Bone Mineral Density) based on X-ray
WO2013015351A1 (en) Radiograph detection device and method for controlling same
JP4728585B2 (en) X-ray diagnostic apparatus and data processing method of X-ray diagnostic apparatus
JP2004221082A (en) Method of controlling emissivity of radiation from radiation source
WO2001076327A2 (en) Method for operating a radiation examination device
JP2008132147A (en) Method and device for determination of exposure dose
US7597476B2 (en) Apparatus and method for determining air-kerma rate
JP5277861B2 (en) X-ray high voltage device
JP2020518356A (en) Photon scanning device dose modulation
JP2019102348A (en) X-ray equipment
US7587027B2 (en) Method and apparatus for determining and displaying x-ray radiation by a radiographic device
JP5536575B2 (en) X-ray diagnostic imaging equipment
JP5604965B2 (en) Radioscopic imaging equipment
KR20140132829A (en) photon counting unit, radiographic imaging apparatus and method for controlling the photon counting unit
JP5999962B2 (en) X-ray fluoroscopic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R151 Written notification of patent or utility model registration

Ref document number: 4858701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees