JP2008132147A - Method and device for determination of exposure dose - Google Patents

Method and device for determination of exposure dose Download PDF

Info

Publication number
JP2008132147A
JP2008132147A JP2006320405A JP2006320405A JP2008132147A JP 2008132147 A JP2008132147 A JP 2008132147A JP 2006320405 A JP2006320405 A JP 2006320405A JP 2006320405 A JP2006320405 A JP 2006320405A JP 2008132147 A JP2008132147 A JP 2008132147A
Authority
JP
Japan
Prior art keywords
ray
dose
ray irradiation
irradiation field
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006320405A
Other languages
Japanese (ja)
Inventor
Akio Tezuka
章夫 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2006320405A priority Critical patent/JP2008132147A/en
Publication of JP2008132147A publication Critical patent/JP2008132147A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly precisely determine total dose distribution of an X-ray radiation field without damaging real-time performance. <P>SOLUTION: Based on X-ray conditions set by an X-ray condition setting part 12, position information from an X-ray generating part 4 to a subject 2, and the X-ray radiation angle to the subject 2, the inside of an X-ray radiation field F is fractionated by a dose distribution operating part 13 to a plurality of fractions of a first stage (1st), a second stage (2st), ..., in order. Every time of fractionation, an X-ray dose is determined for each fraction, and the X-ray radiation doses are totalled to determine total dose distribution as the whole X-ray radiation field F to be displayed in a display 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、NDD(Non Dosimeter Dosimetry)法に係わり、X線を被検体に照射したときの被検体の被曝量を算出する被曝線量算出方法及びその装置に関する。   The present invention relates to an NDD (Non Dosimeter Dosimetry) method, and relates to an exposure dose calculation method and apparatus for calculating an exposure dose of a subject when the subject is irradiated with X-rays.

患者に対してX線を照射するX線管のX線条件とX線管や患者を載置する寝台等の機械的な各位置情報とに基づいて患者に照射されたX線の線量分布を算出する技術がある。このような技術としてのNDD法が例えば非特許文献1乃至5に開示されている。非特許文献1においてNDD法は、X線診断領域における患者の表面入射線量簡易換算式を用いて患者の表面入射線量を推定するために、例えば入射線量を左右する諸因子(管電圧、管電流と撮影時間との積mAs、濾過、焦点と皮膚間距離との差FSD、装置)について一定の値で正規化し、係数化して、表面線量推定式を導いた方法であることが開示されている。すなわち、患者に対するX線の被曝量を高精度に算出するには、患者に対するX線の入射角度やX線強度、X線管と患者との距離などの各情報に基づいて患者の各部位における各X線量をそれぞれコンピュータにより演算し求め、これらX線量を合わせてX線照射野全体の線量分布を求める。   The dose distribution of the X-rays irradiated to the patient based on the X-ray conditions of the X-ray tube that irradiates the patient with X-rays and mechanical position information such as the X-ray tube and the bed on which the patient is placed There is a technology to calculate. For example, Non-Patent Documents 1 to 5 disclose the NDD method as such a technique. In Non-Patent Document 1, the NDD method uses various factors (tube voltage, tube current, etc.) that influence the incident dose, for example, in order to estimate the patient's surface incident dose using the simple conversion formula for the patient's surface incident dose in the X-ray diagnostic region. The product mAs of the image and the imaging time, filtration, the difference between the focal point and the skin distance FSD, the apparatus) is normalized by a constant value, converted into a coefficient, and the surface dose estimation formula is derived. . In other words, in order to calculate the X-ray exposure dose to the patient with high accuracy, the X-ray exposure angle and X-ray intensity with respect to the patient and the distance between the X-ray tube and the patient are used to calculate the dose at each part of the patient. Each X-ray dose is calculated and calculated by a computer, and these X-ray doses are combined to determine the dose distribution of the entire X-ray irradiation field.

しかしながら、高精度にX線照射野全体の線量分布を求めるためには、上記の如く患者に対するX線の入射角度やX線強度、X線管と患者との距離などの各情報を用いるために、大量の情報を演算処理しなければならない。このため、X線照射野全体の線量分布の演算が完了するまでに時間を要し、リアルタイムにX線照射野全体の線量分布を得ることが困難である。
「NDD法について」X線診断領域における患者の表面入射線量簡易換算式(NDD法)、(社)茨城県X線技師会、ホームページアドレスhttp://www.sunshine.ne.jp/~iart/ndd.htm 森剛彦、他「X線診断撮影条件の条件に基づく被曝線量とわが国におけるガイダンスレベルの提案」日本医学X線学会誌Vo1.60:389-395.2000 森剛彦、他「X線診断領域の表面線量測定と簡易換算法に関する研究」茨城県X線技師会・日本X線技術学会茨城支部・被曝低減委員会、1990 森剛彦、他「X線診断領域の線量測定と簡易換算式を導くためのX線装置の基礎的因子の解析に関する研究」基礎データ集、茨城県X線技師会・日本X線技術学会茨城支部・被曝低減委員会、1989 森剛彦、田村正夫、高橋雪夫、岡本治夫、村田勉「X線診断領域の表面線量測定と簡易換算法(第1〜4報)」第40〜41回日本X線技術学会総会、1984.1985
However, in order to obtain the dose distribution of the entire X-ray field with high accuracy, information such as the X-ray incident angle, X-ray intensity, and distance between the X-ray tube and the patient is used as described above. A large amount of information must be processed. For this reason, it takes time to complete the calculation of the dose distribution of the entire X-ray irradiation field, and it is difficult to obtain the dose distribution of the entire X-ray irradiation field in real time.
"About NDD method" Simple conversion formula (NDD method) of patient's surface incident dose in X-ray diagnosis area, Ibaraki X-ray Technician Association, website http://www.sunshine.ne.jp/~iart/ ndd.htm Takehiko Mori, et al. “Exposure doses based on X-ray diagnostic imaging conditions and proposal of guidance level in Japan” Journal of Japanese Medical X-ray Society Vo1.60: 389-395.2000 Takehiko Mori, et al. "Study on surface dose measurement and simple conversion method in X-ray diagnostic area" Ibaraki X-ray Engineers Association, Japan X-ray Technology Society Ibaraki Branch, Exposure Reduction Committee, 1990 Takehiko Mori, et al. “Study on fundamental factors of X-ray apparatus for deriving X-ray diagnostic area and simple conversion formula”, collection of basic data, Ibaraki Prefectural X-ray Engineers Association, Japan X-ray Technical Society Ibaraki Branch・ Exposure Reduction Committee, 1989 Takehiko Mori, Masao Tamura, Yukio Takahashi, Haruo Okamoto, Tsutomu Murata “Surface Dose Measurement and Simplified Conversion Method (1st-4th Report) in the X-ray Diagnosis Region”

本発明の目的は、リアルタイム性を損なわずに、高精度にX線照射野全体の線量分布を求めることができる被曝線量算出方法及びその装置を提供することにある。   An object of the present invention is to provide an exposure dose calculation method and apparatus capable of obtaining a dose distribution of the entire X-ray irradiation field with high accuracy without impairing real-time properties.

本発明の主要な局面に係る被曝線量算出方法は、X線発生源からX線を被検体に照射したときのX線条件と、X線発生源から被検体までの位置情報とに基づいてコンピュータの演算処理により被検体の被曝量を算出する被曝線量算出方法において、X線の照射野を数段階で順次複数の領域に細分化し、X線照射野を細分化する前と細分化する毎とでそれぞれX線照射野内と複数の領域毎内とにおいて各特定部分の各X線照射線量を求め、このX線照射線量を当該各領域全体の各X線照射線量として求め、細分化する前と細分化する毎とでそれぞれX線照射野全体の線量分布を求める。   An exposure dose calculation method according to a main aspect of the present invention is a computer based on X-ray conditions when an X-ray is emitted from an X-ray generation source to the subject and positional information from the X-ray generation source to the subject. In the exposure dose calculation method for calculating the exposure dose of the subject by the calculation processing of X-ray, the X-ray irradiation field is subdivided into a plurality of regions sequentially in several stages, and before the X-ray irradiation field is subdivided and In each of the X-ray irradiation field and each of the plurality of regions, the X-ray irradiation dose of each specific portion is obtained, and the X-ray irradiation dose is obtained as each X-ray irradiation dose of the entire region, and before subdividing. The dose distribution of the entire X-ray irradiation field is obtained for each subdivision.

本発明の他の主要な局面に係る被曝線量算出装置は、X線発生源からX線を被検体に照射したときのX線条件と、X線発生源から被検体までの位置情報とに基づいて被検体の被曝量を算出する被曝線量算出装置において、X線の照射野を数段階で順次複数の領域に細分化し、X線照射野を細分化する前と細分化する毎とでそれぞれX線照射野内と複数の領域内とにおける各特定部分との各X線照射線量を求め、このX線照射線量を当該各領域全体の各X線照射線量として求め、細分化する前と細分化する毎とでそれぞれX線照射野全体の線量分布を求める線量分布演算部とを具備する。   An exposure dose calculation apparatus according to another main aspect of the present invention is based on X-ray conditions when an X-ray is emitted from an X-ray generation source to the subject, and positional information from the X-ray generation source to the subject. In the exposure dose calculation apparatus for calculating the exposure dose of the subject, the X-ray irradiation field is subdivided into a plurality of regions sequentially in several stages, and the X-ray irradiation field is subdivided before and after subdividing, respectively. Each X-ray irradiation dose for each specific part in the irradiation field and in a plurality of regions is obtained, and this X-ray irradiation dose is obtained as each X-ray irradiation dose for the entire region, and is subdivided before being subdivided. And a dose distribution calculation unit for obtaining a dose distribution of the entire X-ray irradiation field.

本発明によれば、リアルタイム性を損なわずに、高精度にX線照射野全体の線量分布を求めることができる被曝線量算出方法及びその装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the exposure dose calculation method and its apparatus which can obtain | require the dose distribution of the whole X-ray irradiation field with high precision, without impairing real-time property can be provided.

以下、本発明の一実施の形態について図面を参照して説明する。
図1はNDD法による被曝線量算出装置を適用したX線診断装置のブロック構成図を示す。この装置は、例えば循環器系診断システムとして用いられる。寝台1上には、患者等の被検体2が載置される。Cアーム3の各端部には、それぞれX線発生部4とX線検出部5とが対向して設けられている。
Cアーム3には、機構部6が設けられている。この機構部6は、例えばCアーム3の回動と、Cアーム3の寝台1の長手方向への移動を行う。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of an X-ray diagnostic apparatus to which an exposure dose calculation apparatus based on the NDD method is applied. This device is used as, for example, a circulatory system diagnosis system. A subject 2 such as a patient is placed on the bed 1. An X-ray generation unit 4 and an X-ray detection unit 5 are provided at each end of the C arm 3 so as to face each other.
The C arm 3 is provided with a mechanism portion 6. For example, the mechanism unit 6 rotates the C arm 3 and moves the C arm 3 in the longitudinal direction of the bed 1.

X線発生部4は、X線を発生するX線管等のX線発生源を有する。このX線発生部4には、高電圧発生部7が接続されている。この高電圧発生部7は、X線発生部4に対して高電圧を印加する。この高電圧発生部7は、システム制御部8からのX線条件指令を受け、当該X線条件指令により指示されたX線強度に対応する高電圧を高電圧発生部5に印加する。これにより、X線発生部4は、X線を発生する。   The X-ray generation unit 4 has an X-ray generation source such as an X-ray tube that generates X-rays. A high voltage generator 7 is connected to the X-ray generator 4. The high voltage generator 7 applies a high voltage to the X-ray generator 4. The high voltage generator 7 receives an X-ray condition command from the system controller 8 and applies a high voltage corresponding to the X-ray intensity instructed by the X-ray condition command to the high voltage generator 5. As a result, the X-ray generation unit 4 generates X-rays.

X線検出部5は、X線管15から放射され、被検体2を透過したX線量を検出する。このX線検出部5は、例えば平面検出器(Flat Panel Detector:FPD)又はI.I.(Image Intensifier)を備える。   The X-ray detection unit 5 detects the X-ray dose emitted from the X-ray tube 15 and transmitted through the subject 2. The X-ray detection unit 5 includes, for example, a flat panel detector (FPD) or an I.I. (Image Intensifier).

画像データ生成部9は、X線検出部5から読み出された各電荷をX線検出量に応じたデジタル画像信号に変換して投影データを求め、この投影データから被検体2のX線画像データを生成する。画像データ生成部9には、複数のモニタ装置を有する表示部10が接続されている。この表示部10は、画像データ生成部9により生成された被検体2の画像データを表示する。   The image data generation unit 9 converts each electric charge read from the X-ray detection unit 5 into a digital image signal corresponding to the detected amount of X-rays to obtain projection data, and the X-ray image of the subject 2 is obtained from the projection data. Generate data. A display unit 10 having a plurality of monitor devices is connected to the image data generation unit 9. The display unit 10 displays the image data of the subject 2 generated by the image data generation unit 9.

システム制御部8は、X線診断装置全体を制御するもので、機構部6に対して移動指令を発し、高電圧発生部7に対してX線強度等を制御するための電圧、電流、X線の放射時間等からなるX線条件指令を発すると共に、X線発生部4に対してX線照射指令を発し、X線検出部5に駆動指令を発し、画像データ生成部9に対して各種演算指令を発し、表示部10に対して表示指令を発する。
システム制御部8には、操作部11が接続されている。この操作部11は、例えばマウス、ジョイステック又はドラックボール等であり、これらマウス等の操作に応じた操作信号を出力する。
システム制御部8は、CPU、RAM、ROM、入出力ポート等を有するコンピュータから成り、NDD法によってX線を被検体に照射したときの被検体の被曝量を算出するもので、X線条件設定部12と線量分布演算部13とを有する。
X線条件設定部12は、例えば、X線発生部4からX線を被検体2に照射したときのX線条件と、X線発生部4から被検体2までの位置情報と、被検体2に照射するX線の照射角度とを設定する。X線条件は、例えばX線発生部4に供給する高電圧、電流、X線の放射時間等である。
The system control unit 8 controls the entire X-ray diagnostic apparatus. The system control unit 8 issues a movement command to the mechanism unit 6 and controls the X-ray intensity and the like for the high voltage generation unit 7. An X-ray condition command including a radiation time of the ray is issued, an X-ray irradiation command is issued to the X-ray generation unit 4, a drive command is issued to the X-ray detection unit 5, and various image data generation unit 9 is instructed. A calculation command is issued, and a display command is issued to the display unit 10.
An operation unit 11 is connected to the system control unit 8. The operation unit 11 is, for example, a mouse, a joystick, a drag ball, or the like, and outputs an operation signal corresponding to the operation of the mouse or the like.
The system control unit 8 includes a computer having a CPU, a RAM, a ROM, an input / output port, and the like. The system control unit 8 calculates the exposure dose of the subject when the subject is irradiated with X-rays by the NDD method. Unit 12 and dose distribution calculation unit 13.
The X-ray condition setting unit 12, for example, X-ray conditions when the subject 2 is irradiated with X-rays from the X-ray generation unit 4, position information from the X-ray generation unit 4 to the subject 2, and the subject 2 And the irradiation angle of the X-rays to be irradiated. The X-ray conditions are, for example, a high voltage supplied to the X-ray generation unit 4, a current, an X-ray emission time, and the like.

線量分布演算部13は、例えばX線条件設定部12に設定されたX線条件と、位置情報と、X線の照射角度とに基づいて演算処理を行って被検体2の被曝量を算出する。
具体的に、線量分布演算部13は、X線発生部4から放出されるX線の照射野を数段階で順次複数の領域に細分化し、このX線照射野を細分化する前と細分化する毎とでそれぞれX線照射野内と複数の領域毎内とにおいて各特定部分の各X線照射線量を求め、このX線照射線量を当該各領域全体の各X線照射線量として求め、細分化する前と細分化する毎とでそれぞれX線照射野全体の線量分布を求める。
The dose distribution calculation unit 13 calculates the exposure dose of the subject 2 by performing a calculation process based on, for example, the X-ray conditions set in the X-ray condition setting unit 12, the position information, and the X-ray irradiation angle. .
Specifically, the dose distribution calculation unit 13 sequentially subdivides the X-ray irradiation field emitted from the X-ray generation unit 4 into a plurality of regions in several stages, and subdivides the X-ray irradiation field before subdividing. Each X-ray irradiation dose of each specific part is obtained in each X-ray irradiation field and in each of the plurality of regions, and this X-ray irradiation dose is obtained as each X-ray irradiation dose for each of the entire regions. The dose distribution of the entire X-ray irradiation field is obtained before and every time it is subdivided.

さらに詳細に、線量分布演算部13は、X線照射野を細分化する前に、X線照射野内における特定部分のX線照射線量を求め、このX線照射線量がX線照射野全体に均一に照射されたとしてX線照射野全体の線量分布を求める。
線量分布演算部13は、X線照射野を細分化する毎に、複数の領域毎に求められる各X線照射線量から細分化の段階に応じたX線照射野全体の線量分布を求める。
線量分布演算部13は、X線照射野内における特定部分をX線照射野の中心部分としてX線照射野全体の線量分布を求める。
線量分布演算部13は、複数の領域内における各特定部分を当該複数の領域の各中心部分として当該各領域全体の各線量分布を求める。
線量分布演算部13は、X線発生部4のX線条件とX線条件設定部12により設定される被検体2に対するX線の照射位置情報とに基づいてX線の線量分布を求める。
More specifically, the dose distribution calculation unit 13 obtains an X-ray irradiation dose of a specific part in the X-ray irradiation field before subdividing the X-ray irradiation field, and this X-ray irradiation dose is uniform over the entire X-ray irradiation field. As a result, the dose distribution of the entire X-ray irradiation field is obtained.
Each time the X-ray irradiation field is subdivided, the dose distribution calculation unit 13 calculates a dose distribution of the entire X-ray irradiation field according to the subdivision stage from each X-ray irradiation dose determined for each of a plurality of regions.
The dose distribution calculation unit 13 obtains the dose distribution of the entire X-ray irradiation field using the specific part in the X-ray irradiation field as the central part of the X-ray irradiation field.
The dose distribution calculation unit 13 obtains each dose distribution of each entire region by using each specific portion in each of the plurality of regions as each central portion of the plurality of regions.
The dose distribution calculation unit 13 obtains an X-ray dose distribution based on the X-ray condition of the X-ray generation unit 4 and the X-ray irradiation position information on the subject 2 set by the X-ray condition setting unit 12.

次に、上記の如く構成された装置におけるNDD法による被曝線量算出について説明する。
循環器系診断システムでは、例えば被検体2の心臓、冠動脈の造影を行う。この造影の前に被検体2に対する被曝線量を事前に算出する。図2は被検体2のモデルMに対するX線照射野Fの一例を示す。
X線条件設定部12は、例えば、X線発生部4からX線を被検体2に照射したときのX線条件、例えばX線発生部4に供給する高電圧、電流、X線の放射時間等を設定する。これと共にX線条件設定部12は、例えばX線発生部4から被検体2までの位置情報と、被検体2に照射するX線の照射角度とを設定する。
Next, exposure dose calculation by the NDD method in the apparatus configured as described above will be described.
In the circulatory system diagnosis system, for example, the heart and coronary artery of the subject 2 are imaged. Prior to this contrast, the exposure dose to the subject 2 is calculated in advance. FIG. 2 shows an example of the X-ray field F for the model M of the subject 2.
The X-ray condition setting unit 12, for example, X-ray conditions when the subject 2 is irradiated with X-rays from the X-ray generation unit 4, for example, high voltage, current, and X-ray emission time supplied to the X-ray generation unit 4. Etc. are set. At the same time, the X-ray condition setting unit 12 sets, for example, position information from the X-ray generation unit 4 to the subject 2 and an irradiation angle of the X-rays irradiated on the subject 2.

線量分布演算部13は、例えばX線条件設定部12に設定されたX線条件と、位置情報と、X線の照射角度とに基づいてNDD法による演算処理を行って被検体2の被曝量を算出する。すなわち、線量分布演算部13は、第1段階(1st)としてX線照射野内における特定部分、例えば図3に示すようにX線照射野の中心部分CのX線照射線量を求め、このX線照射線量がX線照射野Fの全体に均一に照射されたとしてX線照射野F全体の線量分布Dを求める。このとき線量分布演算部13は、NDD法を用いてX線照射野全体の線量分布Dを求める。 The dose distribution calculation unit 13 performs calculation processing by the NDD method based on, for example, the X-ray conditions set in the X-ray condition setting unit 12, the position information, and the X-ray irradiation angle, and the exposure dose of the subject 2 Is calculated. That is, the dose distribution calculation unit 13 obtains the X-ray irradiation dose of a specific portion in the X-ray irradiation field, for example, the central portion C of the X-ray irradiation field as shown in FIG. irradiation dose determining the dose distribution D 1 of the X-ray irradiation field F as a whole is uniformly irradiated to the entire X-ray irradiation field F. In this case the dose distribution calculation unit 13 obtains the dose distribution D 1 of the entire X-ray irradiation field by using the NDD method.

この線量分布演算部13は、求めたX線照射野F全体の線量分布Dを表示部10に送る。この表示部10は、X線照射野F全体の線量分布Dを受け取り、X線照射野F全体の線量分布Dを表示する。これにより、X線照射野F内における代表的なX線照射線量、すなわち被検体2に対する代表的な被曝量が分かる。
次に、線量分布演算部13は、第2段階(2st)としてX線照射野F内を複数の領域、例えばXY方向に均等に9つの各領域e〜eに分割する。線量分布演算部13は、中央の領域eのX線照射線量を第1段階(1st)で求めた線量分布Dとする。これと共に線量分布演算部13は、中央の領域eの周囲に隣接する各領域e〜e毎に、当該各領域e〜e内における各特定部分、例えば各領域e〜eの中心部分C〜Cの各X線照射線量を求め、これらX線照射線量が各領域e〜eの全体に均一に照射されたとして各領域e〜eの各線量分布を求める。なお、図3は各領域e〜eの中心部分C〜C
を図示すると煩雑化するために領域eの中心部分Cのみを示す。
しかるに、線量分布演算部13は、中央の領域eの線量分布Dと、各領域e〜eの各線量分布とを合わせてX線照射野F全体の線量分布Dを求める。この線量分布演算部13は、上記同様に、X線照射野F全体の線量分布Dを表示部10に送る。これにより、表示部10には、例えば9つの各領域e〜eに細分化した場合のX線照射野F全体の線量分布Dが表示される。これにより、例えば9つの各領域e〜eに細分化したときの各領域e〜eにおける代表的な各X線照射線量、すなわち被検体2に対する代表的な各被曝量が分かる。
次に、線量分布演算部13は、第3段階(3st)としてX線照射野F内を、さらに複数の領域、例えば第2段階(2st)で分割した各領域e〜eをさらにXY方向に均等に9つの各領域にそれぞれ分割し、X線照射野Fの全体を例えば81個の各領域f〜f81に細分化する。
The dose distribution calculation unit 13 sends the obtained dose distribution D 1 of the entire X-ray irradiation field F to the display unit 10. The display unit 10 receives the dose distribution D 1 of the entire X-ray irradiation field F, displays the dose distribution D 1 of the entire X-ray irradiation field F. Thereby, a typical X-ray irradiation dose in the X-ray irradiation field F, that is, a typical exposure dose to the subject 2 is known.
Then, the dose distribution calculation unit 13 divides the X-ray irradiation field in F as the second stage (2st) a plurality of regions, for example, equally nine in each area e 1 to e 9 in the XY direction. The dose distribution calculation unit 13 sets the X-ray irradiation dose in the central region e 1 as the dose distribution D 1 obtained in the first stage (1st). Dose distribution calculation unit 13 with which, for each of the regions e 2 to e 9 adjacent the periphery of the central region e 1, each specific portions in the respective regions e 2 to e 9, for instance the areas e 2 to e 9 , X-ray irradiation doses of the central portions C 2 to C 9 are obtained, and the doses of the respective regions e 2 to e 9 are assumed to be uniformly irradiated on the entire regions e 2 to e 9 . Find the distribution. Incidentally, FIG. 3 is the central part C 2 -C 9 in each area e 2 to e 9
To complicated To illustrate the show only the central portion C 2 of the region e 2 in.
However, the dose distribution calculation unit 13 calculates the dose distribution D 1 of the central region e 1, the X-ray irradiation field F overall dose distribution D 2 together with the dose distribution of the areas e 2 to e 9. The dose distribution calculation unit 13, similarly to the above, and sends the X-ray irradiation field F overall dose distribution D 2 on the display unit 10. Thus, the display unit 10, the dose distribution D 2 of the entire X-ray irradiation field F in the case of subdivision is displayed, for example, nine of the regions e 1 to e 9. Thus, each representative X-ray dose in each area e 1 to e 9 when the subdivision, that is, each representative exposure dose to the subject 2 can be seen, for example, nine of the regions e 1 to e 9.
Next, the dose distribution calculation unit 13 further performs XY on the X-ray irradiation field F as the third stage (3st) and further XY each of the areas e 1 to e 9 divided in the second stage (2st), for example. The X-ray irradiation field F is subdivided into, for example, 81 regions f 1 to f 81 , which are divided into nine regions equally in the direction.

線量分布演算部13は、第2段階(2st)で分割した例えば中央の領域eに対応する9つの各領域f31、f32、…、f51における中央の領域f41のX線照射線量をCとする。このX線照射線量Cは、第1段階(1st)で求めたX線照射線量Cと同一である。これと共に線量分布演算部13は、中央の領域f41の周囲に隣接する各領域f31、f32、…、f51毎に、当該各領域f31、f32、…、f51内における各特定部分、例えば各領域f31、f32、…、f51の中心部分の各X線照射線量を求め、これらX線照射線量が各領域f31、f32、…、f51の全体に均一に照射されたとして各領域f31、f32、…、f51の各線量分布を求める。 Dose distribution calculation unit 13, the second stage (2st) 9 one of the regions corresponding to the divided e.g. central area e 1 in f 31, f 32, ..., X -ray dose in the central area f 41 in f 51 Is C. This X-ray irradiation dose C is the same as the X-ray irradiation dose C obtained in the first stage (1st). Dose distribution calculation unit 13 with which, each area f 31 adjacent the periphery of the central area f 41, f 32, ..., for each f 51, the respective regions f 31, f 32, ..., each in the f 51 specific portion, e.g., the regions f 31, f 32, ..., determine the respective X-ray irradiation dose in the center portion of the f 51, these X-ray irradiation dose each area f 31, f 32, ..., uniform whole f 51 , Each dose distribution of each region f 31 , f 32 ,..., F 51 is obtained.

以下、同様に、線量分布演算部13は、第2段階(2st)で分割した各領域e〜eに対応する各領域f、f、…、f81毎にその中心部分の各X線照射線量を求め、これらX線照射線量が各領域f、f、…、f81の全体に均一に照射されたとして各領域f、f、…、f81の各線量分布を求める。
しかるに、線量分布演算部13は、細分化した各領域f、f、…、f81を合わせてX線照射野F全体の線量分布Dを求める。この線量分布演算部13は、上記同様に、X線照射野F全体の線量分布Dを表示部10に送る。これにより、表示部10には、例えば81個の各領域f、f、…、f81に細分化した場合のX線照射野F全体の線量分布Dが表示される。これにより、例えば81個の各領域f、f、…、f81に細分化したときの各領域f、f、…、f81における代表的な各X線照射線量、すなわち被検体2に対する代表的な各被曝量が分かる。
これ以降、線量分布演算部13は、X線照射野F内をさらに複数の領域に細分化し、これら細分化した各領域ごとに各X線照射線量を求め、これらX線照射線量を合わせてX線照射野F全体の線量分布を求める。このX線照射野F全体の線量分布は、表示部10に表示される。
Hereinafter, similarly, the dose distribution calculation unit 13 sets each central portion for each region f 1 , f 2 ,..., F 81 corresponding to each region e 2 to e 9 divided in the second stage (2st). obtains an X-ray irradiation dose, these X-ray irradiation dose each area f 1, f 2, ..., each area f 1 as being uniformly irradiated to the whole of f 81, f 2, ..., each dose distribution f 81 Ask for.
However, the dose distribution calculation unit 13 obtains the dose distribution D 3 of the entire X-ray irradiation field F by combining the subdivided regions f 1 , f 2 ,..., F 81 . The dose distribution calculation unit 13, similarly to the above, and sends the dose distribution D 3 of the entire X-ray irradiation field F on the display unit 10. Thus, the display unit 10, for example, 81 pieces of each area f 1, f 2, ..., X-ray irradiation field F overall dose distribution D 3 in the case of subdivided into f 81 is displayed. Thus, for example, 81 pieces of each area f 1, f 2, ..., each region f 1, f 2 when segmented by f 81, ..., each representative X-ray irradiation dose in f 81, i.e. the subject Each representative exposure dose for 2 is known.
Thereafter, the dose distribution calculation unit 13 further subdivides the X-ray irradiation field F into a plurality of regions, obtains each X-ray irradiation dose for each of the subdivided regions, and combines these X-ray irradiation doses into the X-ray irradiation dose. The dose distribution of the whole irradiation field F is obtained. The dose distribution of the entire X-ray irradiation field F is displayed on the display unit 10.

循環器系診断システムでは、被検体2の診断を行うために例えば被検体2の心臓、冠動脈の造影を行う場合、被検体2に対するX線の照射角度や被検体2とX線管15との距離、被検体2の位置すなわち寝台3の位置などを種々変更する。従って、NDD法により被検体2の被曝量を算出する場合もX線条件と、位置情報と、X線の照射角度とをそれぞれ変更設定して被検体2の被曝量を算出する。   In the circulatory system diagnosis system, for example, when imaging the heart and coronary artery of the subject 2 in order to diagnose the subject 2, the X-ray irradiation angle with respect to the subject 2 and the relationship between the subject 2 and the X-ray tube 15 The distance, the position of the subject 2, that is, the position of the bed 3 are variously changed. Therefore, even when the exposure dose of the subject 2 is calculated by the NDD method, the exposure dose of the subject 2 is calculated by changing and setting the X-ray condition, position information, and X-ray irradiation angle.

すなわち、X線条件設定部12は、例えば、X線発生部4からX線を被検体2に照射したときのX線条件、例えばX線発生部4に供給する高電圧、電流、X線の放射時間等を変更設定する。これと共にX線条件設定部12は、例えばX線発生部4から被検体2までの位置情報と、被検体2に照射するX線の照射角度とを変更設定する。   That is, the X-ray condition setting unit 12, for example, X-ray conditions when the subject 2 is irradiated with X-rays from the X-ray generation unit 4, for example, high voltage, current, and X-rays supplied to the X-ray generation unit 4. Change and set the radiation time. At the same time, the X-ray condition setting unit 12 changes and sets, for example, position information from the X-ray generation unit 4 to the subject 2 and an irradiation angle of the X-rays irradiated to the subject 2.

線量分布演算部13は、例えばX線条件設定部12に変更設定されたX線条件と位置情報とX線の照射角度とに基づいて上記同様にNDD法による演算処理を行って被検体2の被曝量、例えばX線照射野H全体の線量分布を求める。
このように上記一実施の形態によれば、X線照射野F内を第1段階(1st)、第2段階(2st)、…、のように順次複数の領域に細分化し、これら細分化した各領域ごとに各X線照射線量を求め、これらX線照射線量を合わせてX線照射野F全体の線量分布を求めて各モニタ装置26に表示する。これにより、例えば第1段階(1st)で表示されるX線照射野F全体の線量分布Dから被検体2の被曝線量の分布を状態の概略を把握することができ、第2段階(2st)で表示されるX線照射野F全体の線量分布Dからある程度の線量分布の傾向を把握することができる。従って、X線照射野F全体の高精度な線量分布を求める演算処理の完了を待たずに、時間の経過と共にX線照射野F内を細分化する段階数が増加すると、被検体2の被曝線量の分布の詳細を高精度に把握できる。
For example, the dose distribution calculation unit 13 performs the calculation process by the NDD method similarly to the above based on the X-ray condition, position information, and X-ray irradiation angle changed and set in the X-ray condition setting unit 12, and An exposure dose, for example, a dose distribution of the entire X-ray irradiation field H is obtained.
As described above, according to the above-described embodiment, the X-ray irradiation field F is subdivided into a plurality of regions in order, such as the first stage (1st), the second stage (2st),. Each X-ray irradiation dose is obtained for each region, and these X-ray irradiation doses are combined to obtain a dose distribution of the entire X-ray irradiation field F and displayed on each monitor device 26. Thus, it is possible to grasp the example schematic distribution state of the exposure dose of X-ray irradiation field F overall dose distribution D 1 from the subject 2 displayed in the first stage (1st), second stage (2st ) can be grasped some trends dose distribution from the X-ray irradiation field F overall dose distribution D 2 represented by. Accordingly, if the number of stages for subdividing the X-ray field F increases with time without waiting for the completion of the calculation process for obtaining a highly accurate dose distribution of the entire X-ray field F, the exposure of the subject 2 is increased. Details of dose distribution can be grasped with high accuracy.

一方、各段階毎に、X線照射野F又は細分化した各領域内における特定部分、例えばX線照射野や各領域の各中心部分のX線照射線量を求め、このX線照射線量がX線照射野Fや各領域の全体に均一に照射されたとしてX線照射線量を求めるので、各段階において少ないデータ処理量でX線照射野F全体の線量分布、すなわち被検体2の被曝線量の分布を求めることができる。   On the other hand, for each stage, an X-ray irradiation dose is obtained at an X-ray irradiation field F or a specific portion in each subdivided region, for example, an X-ray irradiation field or each central portion of each region. Since the X-ray irradiation dose is obtained on the assumption that the entire irradiation field F and each region are uniformly irradiated, the dose distribution of the entire X-ray irradiation field F, that is, the exposure dose of the subject 2 can be obtained with a small amount of data processing at each stage. Distribution can be obtained.

従って、リアルタイム性を損なわずに、高精度にX線照射野全体の線量分布を求めることが可能である。この被検体2の被曝線量の分布は、従来において算出していた精度と同等の精度で被検体2の被曝線量の分布を求める細分化の段階数に到達しなくても、短時間で被検体2の被曝線量の分布を把握できる。   Therefore, the dose distribution of the entire X-ray irradiation field can be obtained with high accuracy without impairing real-time properties. The distribution of the exposure dose of the subject 2 can be measured in a short time without reaching the number of subdivision stages for obtaining the distribution of the exposure dose of the subject 2 with an accuracy equivalent to the accuracy calculated in the past. The distribution of exposure dose can be grasped.

なお、本発明は、上記一実施の形態に限定されるものではなく、次のように変形してもよい。
例えば、X線照射野F又は細分化した各領域内における特定部分は、例えばX線照射野や各領域の各中心部分としているが、これに限らず、X線照射野F又は細分化した各領域内において最も多いX線照射線量を有する部分を判断し、この部分のX線照射線量がX線照射野F又は各領域の全体に均一に照射されたとしてX線照射野F全体又は各領域の線量分布を求めてもよい。X線照射野F内における特定部分は、被検体2における特定の関心領域(Region Of Interest:ROI)としてもよい。
In addition, this invention is not limited to the said one Embodiment, You may deform | transform as follows.
For example, the specific portion in the X-ray irradiation field F or each subdivided region is, for example, the X-ray irradiation field or each central portion of each region. The part having the highest X-ray irradiation dose in the region is determined, and the X-ray irradiation field F or the entire region is assumed to be uniformly irradiated to the X-ray irradiation field F or the entire region. The dose distribution may be obtained. The specific portion in the X-ray irradiation field F may be a specific region of interest (ROI) in the subject 2.

本発明の被曝線量算出装置は、循環器系診断システムに用いたX線診断装置に適用した場合について説明したが、これに限らず、頭・腹部血管撮影システム、頭部診断用システム、呼吸器系診断用システム等の被検体2の被曝線量の分布を把握するに必要な各種システムに適用可能である。
X線照射野F内を複数の領域に細分化するときの各領域のサイズや細分化数は、任意に設定可能である。
The exposure dose calculation apparatus of the present invention has been described for the case where it is applied to the X-ray diagnosis apparatus used in the circulatory system diagnosis system. However, the present invention is not limited to this, and the head / abdomen angiography system, head diagnosis system, respiratory apparatus The present invention is applicable to various systems necessary for grasping the distribution of exposure dose of the subject 2 such as a system diagnosis system.
The size and the number of subdivisions of each region when subdividing the X-ray irradiation field F into a plurality of regions can be arbitrarily set.

本発明に係る被曝線量算出装置を適用したX線診断装置の第1の実施の形態を示すブロック構成図。The block block diagram which shows 1st Embodiment of the X-ray diagnostic apparatus to which the exposure dose calculation apparatus which concerns on this invention is applied. 被検体のモデルに対するX線照射野の一例を示す図。The figure which shows an example of the X-ray irradiation field with respect to the model of a subject. X線照射野を細分化する毎に求められるX線照射野全体の線量分布を示す模式図。The schematic diagram which shows dose distribution of the whole X-ray irradiation field calculated | required every time an X-ray irradiation field is subdivided.

符号の説明Explanation of symbols

1:寝台、2:被検体、3:Cアーム、4:X線発生部、5:X線検出部、6:機構部、7:高電圧発生部、8:システム制御部、9:画像データ生成部、10:表示部、11:操作部、12:X線条件設定部、13:線量分布演算部。   1: bed, 2: subject, 3: C arm, 4: X-ray generation unit, 5: X-ray detection unit, 6: mechanism unit, 7: high voltage generation unit, 8: system control unit, 9: image data Generation unit, 10: display unit, 11: operation unit, 12: X-ray condition setting unit, 13: dose distribution calculation unit.

Claims (11)

X線発生源からX線を被検体に照射したときのX線条件と、前記X線発生源から前記被検体までの位置情報とに基づいてコンピュータの演算処理により前記被検体の被曝量を算出する被曝線量算出方法において、
前記X線の照射野を数段階で順次複数の領域に細分化し、前記X線照射野を細分化する前と前記細分化する毎とでそれぞれ前記X線照射野内と前記複数の領域毎内とにおいて各特定部分の各X線照射線量を求め、このX線照射線量を当該各領域全体の各X線照射線量として求め、前記細分化する前と前記細分化する毎とでそれぞれ前記X線照射野全体の線量分布を求める、
ことを特徴とする被曝線量算出方法。
Based on the X-ray conditions when the subject is irradiated with X-rays from the X-ray generation source and the positional information from the X-ray generation source to the subject, the amount of exposure of the subject is calculated by computer processing In the exposure dose calculation method to
The X-ray irradiation field is subdivided into a plurality of regions sequentially in several stages, and before the X-ray irradiation field is subdivided and every time it is subdivided, the X-ray irradiation field and the plurality of regions respectively. The X-ray irradiation dose of each specific part is obtained, and this X-ray irradiation dose is obtained as each X-ray irradiation dose of the entire area, and the X-ray irradiation is performed before and after the subdivision. Find the dose distribution of the whole field,
A method for calculating an exposure dose.
前記X線照射野内における前記特定部分のX線照射線量を求め、このX線照射線量が前記X線照射野全体に均一に照射されたとして前記X線照射野全体の線量分布を求める、
前記X線照射野を細分化する毎に、前記複数の領域毎に求められる前記各X線照射線量から前記細分化の段階に応じた前記X線照射野全体の線量分布を求める、
ことを特徴とする請求項1記載の被曝線量算出方法。
The X-ray irradiation dose of the specific portion in the X-ray irradiation field is obtained, and the dose distribution of the entire X-ray irradiation field is obtained assuming that the X-ray irradiation dose is uniformly applied to the entire X-ray irradiation field.
Every time the X-ray irradiation field is subdivided, the dose distribution of the entire X-ray irradiation field according to the subdivision stage is determined from the X-ray irradiation doses determined for each of the plurality of regions.
The exposure dose calculation method according to claim 1.
前記X線照射野内における前記特定部分は、前記X線照射野の中心部分であることを特徴とする請求項1記載の被曝線量算出方法。   2. The exposure dose calculation method according to claim 1, wherein the specific portion in the X-ray irradiation field is a central portion of the X-ray irradiation field. 前記複数の領域内における前記各特定部分は、前記複数の領域の各中心部分であることを特徴とする請求項1記載の被曝線量算出方法。   2. The exposure dose calculation method according to claim 1, wherein each of the specific portions in the plurality of regions is a central portion of the plurality of regions. 前記X線照射線量は、少なくとも前記X線を照射する前記X線条件又は前記被検体に照射される前記X線の照射位置情報の一方又は両方に基づいて求められることを特徴とする請求項1記載の被曝線量算出方法。   2. The X-ray irradiation dose is obtained based on at least one of or both of the X-ray condition for irradiating the X-ray and irradiation position information of the X-ray irradiated to the subject. The exposure dose calculation method described. X線発生源からX線を被検体に照射したときのX線条件と、前記X線発生源から前記被検体までの位置情報とに基づいて前記被検体の被曝量を算出する被曝線量算出装置において、
前記X線の照射野を数段階で順次複数の領域に細分化し、前記X線照射野を細分化する前と前記細分化する毎とでそれぞれ前記X線照射野内と前記複数の領域内とにおける各特定部分との各X線照射線量を求め、このX線照射線量を当該各領域全体の各X線照射線量として求め、前記細分化する前と前記細分化する毎とでそれぞれ前記X線照射野全体の線量分布を求める線量分布演算部、
を具備したことを特徴とする被曝線量算出装置。
An exposure dose calculation device that calculates an exposure dose of the subject based on X-ray conditions when the subject is irradiated with X-rays from the X-ray generation source and position information from the X-ray generation source to the subject In
The X-ray irradiation field is sequentially subdivided into a plurality of regions in several stages, and before the X-ray irradiation field is subdivided and every time it is subdivided, in the X-ray irradiation field and in the plurality of regions, respectively. Each X-ray irradiation dose with each specific portion is obtained, and this X-ray irradiation dose is obtained as each X-ray irradiation dose for the entire region, and the X-ray irradiation is performed before and after the subdivision. A dose distribution calculation unit for determining the dose distribution of the entire field,
An apparatus for calculating an exposure dose.
前記線量分布演算部は、前記X線照射野を細分化する前、前記X線照射野内における前記特定部分のX線照射線量を求め、このX線照射線量が前記X線照射野全体に均一に照射されたとして前記X線照射野全体の線量分布を求め、
前記X線照射野を細分化する毎に、前記複数の領域毎に求められる前記各X線照射線量から前記細分化の段階に応じた前記X線照射野全体の線量分布を求める、
ことを特徴とする請求項6記載の被曝線量算出装置。
The dose distribution calculation unit obtains the X-ray irradiation dose of the specific portion in the X-ray irradiation field before subdividing the X-ray irradiation field, and the X-ray irradiation dose is uniformly distributed over the entire X-ray irradiation field. Obtain the dose distribution of the entire X-ray field as being irradiated,
Every time the X-ray irradiation field is subdivided, the dose distribution of the entire X-ray irradiation field according to the subdivision stage is determined from the X-ray irradiation doses determined for each of the plurality of regions.
The exposure dose calculation apparatus according to claim 6.
前記線量分布演算部は、前記X線照射野内における前記特定部分を前記X線照射野の中心部分として前記X線照射野全体の線量分布を求めることを特徴とする請求項6記載の被曝線量算出装置。   The dose calculation unit according to claim 6, wherein the dose distribution calculation unit obtains a dose distribution of the entire X-ray irradiation field using the specific portion in the X-ray irradiation field as a central portion of the X-ray irradiation field. apparatus. 前記線量分布演算部は、前記複数の領域内における前記各特定部分を当該複数の領域の各中心部分として当該各領域全体の各線量分布を求めることを特徴とする請求項6記載の被曝線量算出装置。   The dose calculation unit according to claim 6, wherein the dose distribution calculation unit obtains each dose distribution of each of the plurality of regions by using the specific portions in the plurality of regions as central portions of the plurality of regions. apparatus. 前記線量分布演算部は、少なくとも前記X線源の前記X線を放出する条件又は前記被検体に照射される前記X線の照射位置情報の一方又は両方に基づいて前記X線照射線量を求めることを特徴とする請求項6記載の被曝線量算出装置。   The dose distribution calculation unit obtains the X-ray irradiation dose based on at least one of or both of a condition for emitting the X-ray from the X-ray source and irradiation position information of the X-ray irradiated to the subject. The exposure dose calculation apparatus according to claim 6. 前記X線源は、X線を放出するX線管を有し、
前記X線管から放出される前記X線を絞るX線絞りと、
前記被検体を載置する寝台と、
前記X線管から放出されて被検体を透過した前記X線量を検出するX線検出器と、
少なくとも前記X線管と前記寝台との各位置情報に基づいて前記被検体に照射される前記X線の照射位置情報を求める照射位置算出部と、
前記線量分布演算部は、前記X線管のX線条件と前記照射位置算出部により算出される前記照射位置情報とに基づいて前記X線の線量分布を求める、
ことを特徴とする請求項6記載の被曝線量算出装置。
The X-ray source has an X-ray tube that emits X-rays;
An X-ray stop for reducing the X-rays emitted from the X-ray tube;
A bed on which the subject is placed;
An X-ray detector for detecting the X-ray dose emitted from the X-ray tube and transmitted through the subject;
An irradiation position calculation unit for obtaining irradiation position information of the X-ray irradiated to the subject based on each position information of at least the X-ray tube and the bed;
The dose distribution calculation unit obtains the X-ray dose distribution based on the X-ray condition of the X-ray tube and the irradiation position information calculated by the irradiation position calculation unit;
The exposure dose calculation apparatus according to claim 6.
JP2006320405A 2006-11-28 2006-11-28 Method and device for determination of exposure dose Withdrawn JP2008132147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320405A JP2008132147A (en) 2006-11-28 2006-11-28 Method and device for determination of exposure dose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320405A JP2008132147A (en) 2006-11-28 2006-11-28 Method and device for determination of exposure dose

Publications (1)

Publication Number Publication Date
JP2008132147A true JP2008132147A (en) 2008-06-12

Family

ID=39557411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320405A Withdrawn JP2008132147A (en) 2006-11-28 2006-11-28 Method and device for determination of exposure dose

Country Status (1)

Country Link
JP (1) JP2008132147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078578A (en) * 2009-10-07 2011-04-21 Shimadzu Corp X-ray image pickup device
JP2011212426A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Radiographic imaging management device and radiation image capturing system
WO2012164932A1 (en) * 2011-05-30 2012-12-06 富士フイルム株式会社 Device and method for acquiring radiation exposure level, and program
WO2013051550A1 (en) * 2011-10-07 2013-04-11 株式会社 東芝 X-ray diagnostic device and dosage administration method
JP2014239838A (en) * 2013-06-12 2014-12-25 株式会社東芝 X-ray diagnostic apparatus and x-ray diagnostic apparatus data processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078578A (en) * 2009-10-07 2011-04-21 Shimadzu Corp X-ray image pickup device
JP2011212426A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Radiographic imaging management device and radiation image capturing system
WO2012164932A1 (en) * 2011-05-30 2012-12-06 富士フイルム株式会社 Device and method for acquiring radiation exposure level, and program
JPWO2012164932A1 (en) * 2011-05-30 2015-02-23 富士フイルム株式会社 Radiation exposure dose acquisition apparatus, method and program
WO2013051550A1 (en) * 2011-10-07 2013-04-11 株式会社 東芝 X-ray diagnostic device and dosage administration method
JP2013081576A (en) * 2011-10-07 2013-05-09 Toshiba Corp X-ray diagnostic device and dose management method
US9538977B2 (en) 2011-10-07 2017-01-10 Toshiba Medical Systems Corporation X-ray diagnosis apparatus and dose distribution data generation method
JP2014239838A (en) * 2013-06-12 2014-12-25 株式会社東芝 X-ray diagnostic apparatus and x-ray diagnostic apparatus data processing method

Similar Documents

Publication Publication Date Title
Lovric et al. A multi-purpose imaging endstation for high-resolution micrometer-scaled sub-second tomography
JP6109650B2 (en) X-ray diagnostic apparatus, exposure management apparatus, scattered radiation dose distribution forming method, and scattered radiation dose distribution forming program
JP2006026417A (en) Selection of phantom for computer type tomographic dose index measurement for dose report
US9420985B2 (en) X-ray diagnostic apparatus and dose distribution generation method
JP5780931B2 (en) Radiation tomography apparatus, dose calculation method and program
JP2009006133A (en) X-ray ct apparatus and method of controlling the same
CN103813754A (en) X-ray diagnostic apparatus
JP2013078635A (en) X-ray image diagnostic apparatus
JP2008132147A (en) Method and device for determination of exposure dose
WO2015005485A1 (en) X-ray ct device, x-ray ct system, and injector
JP2007267783A (en) X-ray ct apparatus
JP2010068978A (en) X-ray image diagnosis apparatus
JP5475830B2 (en) X-ray CT system
JP2007215918A (en) X-ray diagnostic apparatus
JP2013081576A5 (en)
JP2016067590A (en) Radiation image analysis device, method and program
US20210128082A1 (en) Methods and systems for body contour profiles
JP5537520B2 (en) X-ray CT system
JP5942216B2 (en) X-ray CT apparatus and image processing apparatus
JP5536575B2 (en) X-ray diagnostic imaging equipment
JP2005034539A (en) X-ray diagnostic imaging apparatus with measuring function for bone density distribution
JP7225008B2 (en) medical image processor
JP4601571B2 (en) X-ray inspection equipment
JP2021040903A (en) Radiographic apparatus and radiographic system
JP2006262963A (en) Nuclear medicine diagnostic apparatus and diagnostic system used therein

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202