US6292537B1 - X-ray diagnostic device including means for determining the dose - Google Patents

X-ray diagnostic device including means for determining the dose Download PDF

Info

Publication number
US6292537B1
US6292537B1 US09/493,963 US49396300A US6292537B1 US 6292537 B1 US6292537 B1 US 6292537B1 US 49396300 A US49396300 A US 49396300A US 6292537 B1 US6292537 B1 US 6292537B1
Authority
US
United States
Prior art keywords
ray
dose
parameters
exposure
diagnostic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/493,963
Inventor
Robert Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Assigned to U.S. PHILIPS CORPORATION reassignment U.S. PHILIPS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZIMMERMANN, ROBERT
Application granted granted Critical
Publication of US6292537B1 publication Critical patent/US6292537B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/06Diaphragms

Abstract

The invention relates to an X-ray diagnostic device in which the dose applied to a patient is determined and in which the effective dose which is of relevance for the radiation load is calculated from this dose as well as from a weighting factor which is fetched in dependence on the relevant anatomical region to be examined.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an X-ray diagnostic device which includes an X-ray generator for feeding an X-ray source and means for determining the dose applied during an X-ray examination of a patient.
2. Description of Related Art
An X-ray diagnostic device of this kind is known from DE-OS 2 124 035 (page 2, second paragraph). The dose is measured therein by means of an ionization chamber which is attached to an ionization chamber connected to the X-ray source. The ionization chamber has such a large surface area that it intercepts all X-rays emanating from the primary diaphragm even in the case of the maximum radiation field size that can be adjusted by means of the primary diaphragm. The output signal of the ionization chamber thus corresponds to the dose surface product measured in μGy*m2.
The dose surface product is a purely physical quantity which corresponds to the surface integral of KERMA (Kinetic Energy Released in MAtter) in air. This physical quantity only conditionally provides information about the radiation load for the patient being examined or about the effective dose which takes into account the various risks of the individual organs or tissues in respect of stochastic irradiation. When exposed to the same applied dose surface product, for example, the X-rays will damage the bladder of a patient significantly more than the skull of the patient.
Citation of a reference herein, or throughout this specification, is not to construed as an admission that such reference is prior art to the Applicant's invention of the invention subsequently claimed.
SUMMARY OF THE INVENTION
Therefore, it is an object of the invention to construct an X-ray diagnostic device of the kind set forth in such a manner that the radiation load for a patient can be more accurately indicated during an X-ray examination. This object is achieved according to the invention in that there is provided a storage device in which a respective set of exposure and/or fluoroscopy parameters is stored for a number of organs, that each set includes, in addition to exposure or fluoroscopy parameters for the X-ray generator, a weighting factor which corresponds to the biological effect of the radiation on the relevant organ, and that there is provided an arithmetic unit for calculating the effective dose from the dose and the weighting factor.
A memory in which a respective set of exposure or fluoroscopy parameters is stored for a number of organs is customarily used in contemporary X-ray generators and is referred to as APR (Anatomically Programmed Radiography). For an X-ray exposure, the user enters the organ to be examined or the anatomical region (for example “lung p.a.”), the optimum exposure parameters (inter alia the voltage applied to the X-ray source) for an X-ray exposure of this organ then being fetched from the memory so as to be automatically adjusted.
The invention is based on the recognition of the fact that to each organ there can be assigned a weighting factor which is a measure of the biological effect of the dose during an X-ray examination of the relevant organ. The effective dose which is a measure of the biological effect of the X-rays in the patient can be calculated by multiplying said weighting factor by the dose determined during the X-ray examination (i.e. the KERMA in air).
The invention can be used not only for X-ray apparatus in which only X-ray images can be formed, such as the so-called Bucky devices, but also in X-ray apparatus with an exposure mode as well as a fluoroscopy mode. In contemporary apparatus of this kind the fluoroscopy parameters for different organs or anatomical regions can also be stored; in the case of a change-over to the X-ray exposure mode, the exposure parameters are then either derived from the fluoroscopy parameters or fetched from a separate memory containing the exposure parameters for the relevant organ.
The dose, or the dose surface product, can be measured by means of a suitable measuring chamber. The further embodiment additionally comprising means for measuring the geometrical parameters of the X-ray examination and means for calculating the dose from the geometrical parameters and the exposure or fluoroscopy parameters does not require such a measuring chamber; the dose is derived on the one hand from the exposure or fluoroscopy parameters (voltage applied to the X-ray source or the time integral of the current through the X-ray source, filtering etc.) and on the other hand from geometrical parameters of the X-ray examination (for example, the aperture of the X-ray beam).
A preferred embodiment of the means for measuring the geometrical parameters includes a measuring device for measuring the aperture of a primary beam diaphragm connected to the X-ray source.
BRIEF DESCRIPTION OF THE DRAWING
The invention will be described in detail hereinafter with reference to a drawing which is a purely diagrammatic representation of an X-ray device according to the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
An X-ray generator 1 supplies the high voltage for an X-ray source 2 as well as the current through the X-ray source. A primary beam diaphragm 3 is connected to the X-ray source 2 and includes a first collimator pair 31 with collimator edges which extend perpendicularly to the plane of drawing and define the aperture in the plane of drawing of the radiation beam 4 emitted by the X-ray source. A second collimator pair (not shown) with collimator edges extending parallel to the plane of drawing defines the aperture of the radiation beam 4 in the direction perpendicular to the plane of drawing. The radiation beam 4 traverses a patient 5 accommodated on a patient table 6. The X-ray image produced by the irradiation is picked up by a suitable image converter 7.
The high voltage for and the current through the, X-ray source 2, produced by the X-ray generator, and the temporal variation of these quantities are preselected by a control unit 8, for example a microprocessor which co-operates with a memory 9. The control unit 8 is coupled to a display unit or monitor 10 and also to an input unit 11 (keyboard, mouse or trackball) via which a user can predetermine the execution of the subsequent X-ray examination and whereby the user can notably select the organ or anatomical region to be examined during a subsequent X-ray exposure.
The effective dose Deff is calculated as:
D eff =c·γ·Q·A·w
Therein, c is a constant and γ is a factor which is dependent on the high voltage U across the X-ray tube as well as on the filter 35 which is active in the beam path and incorporated in the primary diaphragm 3. Q corresponds to the time integral of the current through the X-ray tube (generally speaking, this is the tube current multiplied by the duration of an X-ray exposure), and A represents the aperture of the radiation beam or the cross-sectional area of the radiation beam limited by the collimator pair 31. The product c·γ·Q·A corresponds to the dose D. w is a weighting factor which describes the biological effect of the X-rays in the relevant anatomical region being examined.
For an X-ray exposure the examiner selects the region to be examined, for example “lung p.a.” via the input unit 11. The control unit 8 then fetches the exposure parameters, stored in the storage device 9, for optimum exposure of this region, that is to say the tube voltage U, the mAs product, corresponding to the factor Q, as well as a weighting factor w associated with the relevant anatomical region. On the, basis of the tube voltage thus fetched and the filtering taking place in the beam path, conveyed to the control unit 8 by the signal F, the control unit then calculates the factor γ. The cross-sectional area A of the radiation beam is provided by a sensor device 33 which may include, for example potentiometers which are coupled to the collimator pairs in the primary beam diaphragm. The control unit 8 can determine the effective dose for the exposures of the anatomical region from the selected parameters or the parameters determined in the control unit 8.
The effective dose Deff can be determined analogously during X-ray fluoroscopy; the weighting factor w and the tube voltage U are then fetched from the storage device 9 in dependence on the selected anatomical region. The control unit then forms the quantity Q by forming the time integral over the tube current flowing through the X-ray tube during fluoroscopy.
When the collimator pairs 31 are opened wide, parts of other organs for which the X-rays have a different biological effect could also be present in the beam path. This may mean that in the case of an exposure with a large radiation field a weighting factor must be used other than that used in the case of an exposure with a small radiation field. This can be realized by making the weighting factor w also dependent on the cross-sectional area A of the collimator device. The foregoing can be achieved, for example by storing a plurality of weighting factors in the storage device 9 for one anatomical region, one of said weighting factors being selected in dependence on the relevant value A in order to calculate the effective dose on the basis thereof.
As has already been described, the dose D can be determined by measurement instead of calculation. The effective dose is then obtained by multiplication of the measured value by a weighting factor w.
All references cited herein, as well as the priority document German Patent Application 19903749.3 filed Jan. 30, 1999, are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

Claims (3)

What is claimed is:
1. An X-ray diagnostic device comprising:
an X-ray source,
an X-ray generator for feeding the X-ray source,
a storage device in which a respective set of exposure and/or fluoroscopy parameters is stored for a number of organs, wherein each set includes exposure or fluoroscopy parameters for the X-ray generator, and a weighting factor which corresponds to the biological effect of the radiation on the relevant organ, and
means for determining the dose applied during an X-ray examination of a patient which includes an arithmetic unit for calculating the effective dose from the dose and the weighting factor.
2. An X-ray diagnostic device as claimed in claim 1 further comprising means for measuring the geometrical parameters of the X-ray examination, and means for calculating the dose from the geometrical parameters and the exposure or fluoroscopy parameters.
3. An X-ray diagnostic device as claimed in claim 1 wherein the means for measuring the geometrical parameters include a measuring device for measuring the aperture of a primary beam diaphragm connected to the X-ray source.
US09/493,963 1999-01-30 2000-01-28 X-ray diagnostic device including means for determining the dose Expired - Fee Related US6292537B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19903749 1999-01-30
DE19903749A DE19903749A1 (en) 1999-01-30 1999-01-30 X-ray diagnostic device with means for determining the dose

Publications (1)

Publication Number Publication Date
US6292537B1 true US6292537B1 (en) 2001-09-18

Family

ID=7895917

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/493,963 Expired - Fee Related US6292537B1 (en) 1999-01-30 2000-01-28 X-ray diagnostic device including means for determining the dose

Country Status (4)

Country Link
US (1) US6292537B1 (en)
EP (1) EP1024681A3 (en)
JP (1) JP2000225113A (en)
DE (1) DE19903749A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118154A1 (en) * 2001-12-15 2003-06-26 Hanns-Ingo Maack X-ray device with a storage for X-ray exposure parameters
US20030138079A1 (en) * 2002-01-18 2003-07-24 Siemens Aktiengesellschaft X-ray apparatus with interchangeable filter and area dose measurng device
US20050053199A1 (en) * 2003-09-04 2005-03-10 Miles Dale A. Portable x-ray device and method
US20050084067A1 (en) * 2003-10-21 2005-04-21 Kazuhiro Matsumoto Fluoroscopic apparatus and method
US20060104420A1 (en) * 2003-02-11 2006-05-18 Sabine Mollus X-ray device having a collimator, and method of setting the latter
US20090119028A1 (en) * 2007-11-07 2009-05-07 Dornier Medtech Systems Gmbh Apparatus and method for determining air-kerma rate
US20090262896A1 (en) * 2008-04-22 2009-10-22 Siemens Aktiengesellschaft User interface of an x-ray system and method for manufacturing such an user interface
US20100054398A1 (en) * 2008-09-02 2010-03-04 Fujifilm Corporation Radiographic apparatus and radiographic method
US20100290591A1 (en) * 2009-05-14 2010-11-18 Martin Spahn Method for monitoring the X-ray dosage administered to a patient by a radiation source when using an X-ray device, and X-ray device
US20120027174A1 (en) * 2009-04-07 2012-02-02 Shimadzu Corporation X-ray imaging device
US20150085971A1 (en) * 2013-09-25 2015-03-26 Siemens Aktiengesellschaft Method and system for the automatic selection of a scanning protocol
CN105326514A (en) * 2014-06-10 2016-02-17 上海西门子医疗器械有限公司 X-ray apparatus
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading
EP3354200A1 (en) * 2017-01-25 2018-08-01 Samsung Electronics Co., Ltd. X-ray imaging apparatus and control method thereof
US10524758B2 (en) * 2016-10-28 2020-01-07 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C Automatic exposure control system for a digital X-ray imaging device and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205246A1 (en) * 2012-03-30 2013-10-02 Siemens Aktiengesellschaft Radiation image receiving device e.g. angiographic X-ray diagnostic device for receiving radiation image of e.g. organ, has sensor device that is mounted in or on cylindrical instrument and is inserted into hollow body organs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2124035A1 (en) 1971-05-14 1972-11-23 Siemens AG, 1000 Berlin u. 8000 München X-ray examination device with a measuring device for patient dosimetry
US5625662A (en) * 1995-11-20 1997-04-29 General Electric Company Modulating x-ray tube current in a CT system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1685272A3 (en) * 1989-05-04 1991-10-15 С.Г.Жут ев, Б.Я.Мишкинис, Р.В.Ставицкий и И.Ш.Хасидашвили X-ray diagnosis apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2124035A1 (en) 1971-05-14 1972-11-23 Siemens AG, 1000 Berlin u. 8000 München X-ray examination device with a measuring device for patient dosimetry
US5625662A (en) * 1995-11-20 1997-04-29 General Electric Company Modulating x-ray tube current in a CT system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118154A1 (en) * 2001-12-15 2003-06-26 Hanns-Ingo Maack X-ray device with a storage for X-ray exposure parameters
US6920201B2 (en) * 2001-12-15 2005-07-19 Koninklijke Philips Electronics N.V. X-ray device with a storage for X-ray exposure parameters
US20030138079A1 (en) * 2002-01-18 2003-07-24 Siemens Aktiengesellschaft X-ray apparatus with interchangeable filter and area dose measurng device
US6851854B2 (en) * 2002-01-18 2005-02-08 Siemens Aktiengesellschaft X-ray apparatus with interchangeable filter and area dose measuring device
US20060104420A1 (en) * 2003-02-11 2006-05-18 Sabine Mollus X-ray device having a collimator, and method of setting the latter
US7356123B2 (en) 2003-02-11 2008-04-08 Koninklijke Philips Electronics N.V. X-ray device having a collimator, and method of setting the latter
US20050053199A1 (en) * 2003-09-04 2005-03-10 Miles Dale A. Portable x-ray device and method
US20050084067A1 (en) * 2003-10-21 2005-04-21 Kazuhiro Matsumoto Fluoroscopic apparatus and method
EP1525849A1 (en) * 2003-10-21 2005-04-27 Canon Kabushiki Kaisha Fluoroscopic apparatus and method
US7076027B2 (en) * 2003-10-21 2006-07-11 Canon Kabushiki Kaisha Fluoroscopic apparatus and method
US20090119028A1 (en) * 2007-11-07 2009-05-07 Dornier Medtech Systems Gmbh Apparatus and method for determining air-kerma rate
US7597476B2 (en) * 2007-11-07 2009-10-06 Dornier Medtech Systems Gmbh Apparatus and method for determining air-kerma rate
US20090262896A1 (en) * 2008-04-22 2009-10-22 Siemens Aktiengesellschaft User interface of an x-ray system and method for manufacturing such an user interface
US7835496B2 (en) * 2008-04-22 2010-11-16 Siemens Aktiengesellschaft User interface of an X-ray system and method for manufacturing such an user interface
US8050383B2 (en) * 2008-09-02 2011-11-01 Fujifilm Corporation Radiographic apparatus and radiographic method
US20100054398A1 (en) * 2008-09-02 2010-03-04 Fujifilm Corporation Radiographic apparatus and radiographic method
US8755490B2 (en) * 2009-04-07 2014-06-17 Shimadzu Corporation X-ray imaging device
US20120027174A1 (en) * 2009-04-07 2012-02-02 Shimadzu Corporation X-ray imaging device
US8611499B2 (en) 2009-05-14 2013-12-17 Siemens Aktiengesellschaft Method for monitoring the X-ray dosage administered to a patient by a radiation source when using an X-ray device, and X-ray device
US20100290591A1 (en) * 2009-05-14 2010-11-18 Martin Spahn Method for monitoring the X-ray dosage administered to a patient by a radiation source when using an X-ray device, and X-ray device
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading
US20150085971A1 (en) * 2013-09-25 2015-03-26 Siemens Aktiengesellschaft Method and system for the automatic selection of a scanning protocol
US9636077B2 (en) * 2013-09-25 2017-05-02 Siemens Aktiengesellschaft Method and system for the automatic selection of a scanning protocol
CN105326514A (en) * 2014-06-10 2016-02-17 上海西门子医疗器械有限公司 X-ray apparatus
US10524758B2 (en) * 2016-10-28 2020-01-07 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C Automatic exposure control system for a digital X-ray imaging device and method thereof
EP3354200A1 (en) * 2017-01-25 2018-08-01 Samsung Electronics Co., Ltd. X-ray imaging apparatus and control method thereof
US11064958B2 (en) 2017-01-25 2021-07-20 Samsung Electronics Co., Ltd. X-ray imaging apparatus and control method thereof

Also Published As

Publication number Publication date
JP2000225113A (en) 2000-08-15
EP1024681A2 (en) 2000-08-02
EP1024681A3 (en) 2003-09-10
DE19903749A1 (en) 2000-08-03

Similar Documents

Publication Publication Date Title
US6292537B1 (en) X-ray diagnostic device including means for determining the dose
US8634517B2 (en) Portable X-ray detector with grid sensing unit and X-ray imaging system for automatic exposure setting for the portable X-ray detector
Gosling et al. Cardiac CT: are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume
Kaplan et al. Female gonadal shielding with automatic exposure control increases radiation risks
US7970098B2 (en) Medical imaging method and apparatus allowing localized image quality specification
US6422751B1 (en) Method and system for prediction of exposure and dose area product for radiographic x-ray imaging
US9992854B2 (en) Automatic stipulation of a spectral distribution of x-ray radiation of a number of x-ray sources
US9044197B2 (en) Method for x-ray dose tracking
Gkanatsios et al. Computation of energy imparted in diagnostic radiology
Matsubara et al. Assessment of an organ‐based tube current modulation in thoracic computed tomography
US6438197B2 (en) X-ray computed tomography apparatus with correction for beam hardening
Morant et al. Validation of a Monte Carlo simulation for dose assessment in dental cone beam CT examinations
Theocharopoulos et al. Comparison of four methods for assessing patient effective dose from radiological examinations
Doyle et al. Calibrating automatic exposure control devices for digital radiography
JP4858701B2 (en) X-ray high voltage apparatus and X-ray diagnostic apparatus including X-ray high voltage apparatus
Neitzel Management of pediatric radiation dose using Philips digital radiography
Ardran et al. Observations on the dose from dental X-ray procedures with a note on radiography of the nasal bones
US20070081628A1 (en) Dual pulse imaging
JP3787661B2 (en) Measuring device for bone mineral content in bone
Thwaites et al. A patient dose survey for femoral arteriogram diagnostic radiographic examinations using a dose-area product meter
Gorson et al. A limited survey of radiation exposure from dental x-ray units
Culp et al. Shield placement: effect on exposure
KR101623512B1 (en) Dose calculation method, Recording medium recorded Dose calculation program
Servomaa et al. Patient doses in paediatric fluoroscopic examinations in Finland
KR101786483B1 (en) Patient dose Management system in dental

Legal Events

Date Code Title Description
AS Assignment

Owner name: U.S. PHILIPS CORPORATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZIMMERMANN, ROBERT;REEL/FRAME:010771/0859

Effective date: 20000218

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20090918