WO2013015351A1 - Radiograph detection device and method for controlling same - Google Patents

Radiograph detection device and method for controlling same Download PDF

Info

Publication number
WO2013015351A1
WO2013015351A1 PCT/JP2012/068941 JP2012068941W WO2013015351A1 WO 2013015351 A1 WO2013015351 A1 WO 2013015351A1 JP 2012068941 W JP2012068941 W JP 2012068941W WO 2013015351 A1 WO2013015351 A1 WO 2013015351A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
ray
irradiation
pulse
image detection
Prior art date
Application number
PCT/JP2012/068941
Other languages
French (fr)
Japanese (ja)
Inventor
北野 浩一
西納 直行
大田 恭義
岩切 直人
中津川 晴康
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013015351A1 publication Critical patent/WO2013015351A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/171Compensation of dead-time counting losses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis

Definitions

  • the present invention relates to a radiological image detection apparatus that detects a radiographic image of a subject and a control method thereof.
  • An X-ray imaging system includes an X-ray generation apparatus having an X-ray tube that generates X-rays, and X-ray image detection that detects an X-ray image representing image information of a subject when irradiated with X-rays transmitted through the subject Device.
  • the X-ray generator is given a tube current that determines the dose per unit time of X-rays and a tube voltage that determines the X-ray quality (energy spectrum) as imaging conditions. It is determined for each imaging according to the imaging region and age of the examinee.
  • the X-ray generator irradiates X-rays according to given imaging conditions.
  • the FPD is a detection having an imaging region arranged in a matrix and provided with a plurality of pixels for accumulating signal charges according to the amount of X-ray irradiation and a signal line connected to each pixel for reading out signal charges.
  • a panel and a signal processing circuit that reads out signal charges accumulated in each pixel as a voltage signal and converts the read voltage signal into digital image data.
  • each pixel in the imaging region is composed of a photodiode, which is a photoelectric conversion element, and a TFT (Thin Film Transistor).
  • a scintillator (phosphor) that converts X-rays into visible light is provided so as to be positioned on the imaging region.
  • the TFT is a switching element that switches the operation of the pixel by turning on and off the electrical connection between the photodiode and the signal line.
  • the TFT is turned off, the photodiode and the signal line are brought out of conduction, and an accumulation operation in which signal charges are accumulated in the photodiode is started.
  • the TFT is turned on, the photodiode and the signal line become conductive, and a read operation for reading signal charges from the photodiode through the TFT and the signal line is started.
  • the FPD requires synchronous control that starts the accumulation operation and the readout operation in synchronization with the X-ray irradiation timing.
  • a method of synchronization control a method of communicating a synchronization signal between the X-ray generation device and the X-ray image detection device, an X-ray irradiation amount measured by the X-ray image detection device, and the measured X-ray irradiation amount
  • the X-ray image detection apparatus self-detects each timing of the start and end of X-ray irradiation by monitoring the fluctuation of the X-ray.
  • an X-ray image detection apparatus can perform moving image shooting such as fluoroscopic shooting by causing an FPD to alternately perform a storage operation and a read operation at a predetermined frame rate. it can.
  • the X-ray generator continuously irradiates X-rays with a substantially constant X-ray intensity (irradiation amount per unit time) during moving image shooting, or as described in Patent Document 2. As shown, X-rays are pulse-irradiated at a predetermined cycle.
  • the synchronization control is generally a communication system that receives a synchronization signal from the X-ray generation apparatus. If the X-ray generation apparatus does not have a communication function, the synchronization control by the communication system is performed. Can not do.
  • the X-ray image detection apparatus described in Patent Document 2 monitors a change in the intensity of an X-ray pulse and detects the rise and fall of the X-ray pulse, thereby self-detecting the irradiation timing of the X-ray pulse. Detection means is provided, and the X-ray image detection apparatus performs self-detection type synchronous control that synchronizes the operation of the FPD with the irradiation timing detected by the pulse detection means. With such an X-ray image detection apparatus having a self-detection type synchronization control function, even when communication with the X-ray generation apparatus is not possible, moving image shooting by pulse irradiation can be performed.
  • FIG. 11 and FIG. 12 show irradiation profiles representing changes with time in the intensity of X-rays when moving images are shot by pulse irradiation. As shown in FIG. 11, when an X-ray tube receives a start command, voltage application is started, and when voltage application is started, the intensity of X-rays rises. Then, the intensity of the X-ray rises to a peak corresponding to the tube current and maintains a substantially steady state.
  • the voltage application When a stop command is received, the voltage application is stopped and falls. Thereby, one X-ray pulse is generated, and a plurality of X-ray pulses are irradiated with a constant pulse period by repeating this at a constant interval.
  • the rise (irradiation start) and fall (irradiation end) of one X-ray pulse is detected by comparing a voltage signal representing the X-ray intensity with a threshold voltage Vth.
  • the X-ray intensity changes in a state exceeding the threshold voltage Vth due to the overlap of X-ray pulses, so that the X-ray intensity is substantially close to a state where X-rays are continuously irradiated.
  • the rise and fall of the X-ray pulse cannot be detected by the pulse detection means described in Patent Document 2, synchronization control by the self-detection method cannot be performed.
  • an X-ray tube having a function of quickly attenuating the wave tail of an X-ray pulse such as a triode tube or a tetrode tube
  • a plurality of X-rays generated sequentially A method for eliminating the overlap of pulses is conceivable. If there is no overlap, the rise and fall of the X-ray pulse can be detected, so that synchronous control by the self-detection method is possible.
  • an X-ray tube having a high response speed is very expensive, and there is a problem that the replacement cost of the X-ray tube increases. Moreover, even if it is replaced with an X-ray tube with a fast response speed, self-detection may not be possible if the frame rate at the time of video recording is extremely short. not.
  • the operator obtains the overlapping state of two X-ray pulses that are sequentially generated by calculation to determine whether or not the self-detection type synchronous control is possible.
  • the length of the wave tail of the X-ray pulse varies depending on the capacity when the X-ray tube is viewed as a resistance, and the tube current and tube voltage set for each imaging. Therefore, if the specification information corresponding to the type of the X-ray tube and the tube current and tube voltage set for each imaging are known, it can be obtained by calculation. If the pulse period set in accordance with the calculated wave tail length of the X-ray pulse and the frame rate of moving image capturing is known, the overlapping state of two X-ray pulses that are sequentially generated can be calculated.
  • Patent Document 1 nor 2 discloses or suggests such problems and solutions.
  • the present invention enables proper operation control according to the irradiation profile of the radiation generation device while suppressing an increase in cost and complication of work even when performing moving image shooting in combination with a radiation generation device that cannot communicate. It is an object of the present invention to provide a possible radiological image detection apparatus and a control method thereof.
  • the radiological image detection apparatus of the present invention is a radiological image detection apparatus used in combination with a radiation generation apparatus that sequentially generates pulsed radiation and performs pulse irradiation of radiation for moving image capturing.
  • the apparatus includes an image detection unit, a radiation detection unit, a determination unit, a mode setting unit, and a control unit.
  • the image detection unit has an imaging region in which a plurality of pixels that receive irradiation of radiation and accumulate signal charges corresponding to the amount of radiation irradiation are arranged in a matrix, and detect a radiation image of the subject.
  • the radiation detection unit detects radiation and outputs a detection signal corresponding to the radiation dose.
  • the determination unit determines whether it is possible to detect rising and falling of a plurality of radiation pulses sequentially generated by the radiation generation device based on the detection signal.
  • the mode setting unit is a mode setting unit that sets the operation mode of the image detection unit based on the determination result of the determination unit, and rises and falls of the radiation pulse based on the detection signal while the pulse irradiation is performed. And the start timing of the accumulation operation for accumulating the signal charge is determined based on the timing at which the rise is detected, and the start timing of the signal charge read operation is determined based on the timing at which the fall is detected.
  • Either a pulse irradiation compatible mode or a continuous irradiation compatible mode in which the accumulation operation and the readout operation are alternately repeated at a predetermined time interval without detecting the rising and falling of the radiation pulse is set.
  • the control unit controls the operation of the image detection unit according to the set mode.
  • the determination unit is configured to indicate an irradiation profile representing a change over time in radiation intensity, which is an irradiation amount per unit time, based on a detection signal of the radiation detection unit, and an irradiation amount per unit time It is preferable to make a determination by creating at least one detection profile that represents a change over time in the integrated detection amount obtained by integrating.
  • the determination unit performs the determination by examining the overlapping state of the rising and falling portions of two X-ray pulses that are sequentially generated based on at least one of the irradiation profile and the detection profile.
  • the determination unit examines the overlap state by measuring the length of the period in which the integrated detection amount is constant in the detection profile.
  • the determination unit determines that the rising and rising of the radiation pulse cannot be detected, and sets the operation mode of the image detection unit.
  • the continuous irradiation mode is set and the length of the period is equal to or greater than the threshold, it is determined that the rising and falling of the radiation pulse can be detected, and the operation mode of the image detection unit is set to the pulse irradiation mode. It is preferable.
  • the mode setting unit calculates the accumulation operation time in the continuous irradiation mode.
  • the mode setting unit measures the pulse period of the radiation pulse based on at least one of the irradiation profile and the detection profile, and calculates the accumulation operation time based on the measured pulse period.
  • the mode setting unit may calculate the accumulation operation time so that the three operations of the accumulation operation, the subsequent readout operation, and the reset operation for discharging the signal charge accumulated in the pixel are within the pulse period. preferable.
  • control unit determines the start timing of the accumulation operation so that the reset operation is executed between the two radiation pulses in the irradiation profile.
  • control unit starts the accumulation operation at the timing when the rising edge of the radiation pulse is detected.
  • control unit specifies a section where the radiation intensity is maximum in the radiation pulse based on at least one of the irradiation profile and the detection profile, and determines the valley of the radiation pulse based on the specified section.
  • the controller starts the accumulation operation at the timing when the rising edge of the radiation pulse is detected in the pulse irradiation compatible mode.
  • control unit terminates the accumulation operation and starts the reading operation at the timing when the falling edge of the radiation pulse is detected in the pulse irradiation compatible mode.
  • the radiation detection unit is a short-circuited pixel in which a pixel and a signal line for reading out signal charges from the pixel are always short-circuited, and the short-circuited pixel can always output a signal charge corresponding to the radiation dose to the signal line. preferable.
  • the method for controlling a radiological image detection apparatus of the present invention is a radiological image detection apparatus that is used in combination with a radiation generation apparatus that sequentially generates pulsed radiation and performs pulse irradiation of radiation in order to perform moving image shooting.
  • a control method of a radiological image detection apparatus for detecting a radiographic image of a subject the image detection unit having an image detection unit in which a plurality of pixels that accumulate signal charges according to the amount of radiation irradiated by the generator is arranged in a matrix, a determination step; , Including a mode setting step and a control step.
  • the mode setting step is a mode setting step for setting the operation mode of the image detection unit based on the determination result of the determination unit.
  • the pulse irradiation the rising and falling of the radiation pulse are detected based on the detection signal.
  • the start timing of the accumulation operation for accumulating the signal charge is determined based on the timing at which the rise is detected, and the start timing of the signal charge read operation is determined based on the timing at which the fall is detected.
  • a mode setting step for setting to either a pulse irradiation compatible mode or a continuous irradiation compatible mode in which accumulation operation and readout operation are alternately repeated at a predetermined time interval without detecting rising and falling of the radiation pulse. is there.
  • the control step controls the operation of the image detection unit in accordance with the set mode.
  • the X-ray imaging system 10 includes an X-ray generation device 11 and an X-ray imaging device 12.
  • the X-ray generator 11 is an existing X-ray generator used in, for example, a film cassette or an IP cassette, and does not have a communication function with the X-ray imaging apparatus 12.
  • the X-ray generator 11 includes an X-ray source 13, a radiation source controller 14 that controls the X-ray source 13, and an irradiation switch 15.
  • the X-ray source 13 includes an X-ray tube 13a that emits X-rays, and an irradiation field limiter (collimator) 13b that limits an X-ray irradiation field emitted by the X-ray tube 13a.
  • the X-ray tube 13a has a cathode made of a filament that emits thermoelectrons and an anode (target) that emits X-rays when the thermoelectrons emitted from the cathode collide.
  • the irradiation field limiter 13b has, for example, four lead plates that shield X-rays, and a rectangular irradiation opening that transmits X-rays is formed by the four lead plates. By moving the position, the size of the irradiation aperture is changed to limit the irradiation field.
  • Four lead plates are made into one set, and each set of lead plates is arranged opposite to each other. By arranging each set in two orthogonal directions, a rectangular irradiation opening is formed.
  • the radiation source control device 14 includes a high voltage generator 14a that supplies a high voltage to the X-ray source 13, a tube voltage that determines the quality (energy spectrum) of the X-rays irradiated by the X-ray source 13, and per unit time. And a radiation source controller 14b for controlling the X-ray irradiation time.
  • the high voltage generator 14a boosts the input voltage with a transformer to generate a high voltage tube voltage, and supplies driving power to the X-ray source 13 through the high voltage cable 14c.
  • Imaging conditions such as tube voltage, tube current, X-ray irradiation time, and imaging purpose are manually set in the radiation source controller 14 b by an operator such as a radiologist through the operation panel of the radiation source controller 14.
  • the shooting purpose included in the shooting conditions is, for example, the type of shooting such as still image shooting and moving image shooting.
  • the irradiation switch 15 is connected to the radiation source control device 14 by a signal cable.
  • the irradiation switch 15 is a two-stage push switch that can be operated by a radiologist, generates a warm-up start signal for starting the warm-up of the X-ray source 13 by one-step push, and presses the X-ray source by two-stage push. 13 generates an irradiation start signal for starting irradiation. These signals are input to the radiation source controller 14 through a signal cable.
  • the radiation source control unit 14 b controls the operation of the X-ray source 13 based on a control signal from the irradiation switch 15.
  • the radiation source control unit 14b issues a start command to the X-ray source 13 and starts supplying power. Thereby, the X-ray source 13 starts irradiation.
  • the radiation source control unit 14b starts measuring the X-ray irradiation time by starting a power supply and operating a timer.
  • the radiation source control unit 14b issues a stop command to the X-ray source 13 to stop power supply.
  • the X-ray source 13 stops the X-ray irradiation.
  • the radiation source control unit 14b receives an irradiation start signal generated by pressing the irradiation switch 15 in two steps, it starts and stops the X-ray source 13 with a set pulse cycle. By alternately issuing commands, the X-ray source 13 is sequentially irradiated with a plurality of X-ray pulses at a constant pulse period.
  • the imaging table 22 has a slot in which a film cassette and an IP cassette are detachably attached, and is arranged so that an incident surface on which X-rays are incident faces the X-ray source 13.
  • photographs the subject H with a standing posture is illustrated as the imaging stand 22, the standing position imaging stand which image
  • the X-ray imaging apparatus 12 includes an X-ray image detection apparatus 21, an imaging control apparatus 23, and a console 24.
  • the X-ray image detection device 21 includes an FPD 36 (see FIG. 3) and a portable housing that accommodates the FPD 36.
  • the X-ray image detection device 21 emits X-rays that are irradiated from the X-ray source 13 and pass through the subject (subject) H. It is a portable radiographic image detection device that receives and detects an X-ray image of the subject H.
  • the X-ray image detection device 21 has a flat housing with a substantially rectangular planar shape, and the planar size is substantially the same size as a film cassette or an IP cassette, so that the X-ray image detection device 21 can be attached to the imaging table 22. is there.
  • the imaging control device 23 controls the X-ray image detection device 21 via the communication unit that communicates with the X-ray generation device 11, the X-ray image detection device 21, and the console 24 by a wired method or a wireless method. And a control unit.
  • the imaging control device 23 transmits imaging conditions to the X-ray image detection device 21 to set the signal processing conditions of the FPD 36. Further, the imaging control device 23 sets an operation mode of the X-ray image detection device 21 such as still image shooting or moving image shooting. Further, the imaging control device 23 receives the image data output from the X-ray image detection device 21 and transmits it to the console 24.
  • the console 24 receives an input of an examination order including information such as the patient's sex, age, imaging region, and imaging purpose, and displays the examination order on the display.
  • the examination order is input from an external system that manages patient information such as HIS (Hospital Information System) and RIS (Radiation Information System) and examination information related to radiation examination, or manually input by an operator such as a radiographer.
  • HIS Hospital Information System
  • RIS Ration Information System
  • the console 24 transmits imaging conditions to the imaging control device 23 and performs various image processing such as gamma correction and frequency processing on the X-ray image data transmitted from the imaging control device 23.
  • image processing such as gamma correction and frequency processing
  • the processed X-ray image is stored in a data storage device such as a hard disk or memory in the console 24 or an image storage server connected to the console 24 via a network.
  • the X-ray image detection apparatus 21 includes a housing 25 whose rectangular upper surface is a radiation irradiation surface.
  • the case 25 includes a top plate 26 provided with an irradiation surface and a case main body 27 that constitutes other than the top plate 26.
  • the top plate 26 is made of carbon and the case main body 27 is made of metal. And resin. Thereby, the intensity
  • an indicator 28 which is a notification means for notifying the operation state of the X-ray image detection device 21 and the like is provided.
  • the indicator 28 includes, for example, a plurality of light emitting units, and displays the operation state of the X-ray image detection device 21, the remaining battery capacity, and the like depending on the combination of the light emitting states of the light emitting units.
  • the operation state includes, for example, a “ready state” indicating a photographing standby state and “data transmitting” indicating that image data after photographing is being transmitted.
  • a display device such as an LCD may be used for the indicator 28.
  • an FPD 36 that is an image detection means for detecting an X-ray image is disposed so as to face the irradiation surface.
  • the FPD 36 is an indirect conversion type that includes a scintillator 29 that converts X-rays into visible light and a detection panel 30 that photoelectrically converts visible light converted by the scintillator 29, and is detected on the X-ray irradiation surface side of the scintillator 29. It is a “surface reading method (ISS: Irradiation Side Sampling)” in which the panel 30 is arranged.
  • the FPD 36 may be a “backside scanning method (PSS: Penetration Side Sampling)” in which the arrangement of the scintillator 29 and the detection panel 30 is reversed.
  • various electronic circuits 31, a battery 32, and a communication unit 33 are arranged on one end side along the short side of the irradiation surface.
  • the various electronic circuits 31 are electronic circuits for controlling the FPD 36, and are protected by materials having X-ray shielding properties so that various electronic components are not damaged by X-ray irradiation.
  • the battery 32 is incorporated in the housing 25 so as to be rechargeable and detachable, and supplies power to the FPD 36, various electronic circuits 31, and the communication unit 33.
  • the communication unit 33 communicates with the imaging control device 23 by a wired method or a wireless method.
  • the FPD 36 has a TFT active matrix substrate, and a detection panel 30 having an imaging region 38 in which a plurality of pixels 37 for accumulating signal charges corresponding to the amount of X-ray irradiation are arranged on the substrate.
  • a gate driver 39 for driving the pixel 37 to control reading of the signal charge a signal processing circuit 40 for converting the signal charge read from the pixel 37 into digital data and outputting it, a gate driver 39 and a signal processing circuit 40, and a control unit 41 that controls the operation of the FPD 36.
  • the control unit 41 is connected to a communication unit 45 that communicates with the imaging control device 23 by a wired method or a wireless method.
  • the plurality of pixels 37 are two-dimensionally arranged in a matrix of n rows (x direction) ⁇ m columns (y direction) at a predetermined pitch.
  • the FPD 36 has a scintillator (not shown) that converts X-rays into visible light, and is an indirect conversion type in which visible light converted by the scintillator is photoelectrically converted by the pixels 37.
  • the scintillator is disposed so as to face the entire surface of the imaging region 38 in which the pixels 37 are arranged.
  • the scintillator is made of a phosphor such as CsI (cesium iodide) or GOS (gadolinium oxysulfide).
  • CsI cesium iodide
  • GOS gadolinium oxysulfide
  • the pixel 37 includes a photodiode 42 that is a photoelectric conversion element that generates charges (electron-hole pairs) upon incidence of visible light, a capacitor (not shown) that accumulates charges generated by the photodiode 42, and a switching element.
  • a thin film transistor (TFT) 43 is provided.
  • the photodiode 42 has a semiconductor layer (for example, PIN type) such as a-Si (amorphous silicon), and an upper electrode and a lower electrode are arranged above and below the semiconductor layer.
  • the TFT 43 is connected to the lower electrode, and a bias line (not shown) is connected to the upper electrode.
  • a bias voltage is applied to the upper electrode of the photodiode 42 with respect to all the pixels 37 in the imaging region 38 through the bias line.
  • An electric field is generated in the semiconductor layer of the photodiode 42 by application of the bias voltage, and the charge (electron-hole pair) generated in the semiconductor layer by photoelectric conversion is an upper electrode having a positive polarity on one side and a negative polarity on the other side. It moves to the lower electrode and charges are accumulated in the capacitor.
  • the TFT 43 has a gate electrode connected to the scanning line 47, a source electrode connected to the signal line 48, and a drain electrode connected to the photodiode 42.
  • the scanning lines 47 and the signal lines 48 are wired in a grid pattern.
  • the scanning lines 47 are provided for the number of rows (n rows) of the pixels 37 in the imaging region 38, and each scanning line 47 is a common wiring connected to the plurality of pixels 37 in each row.
  • the signal lines 48 are provided for the number of columns of the pixels 37 (m columns), and each signal line 48 is a common wiring connected to a plurality of pixels 37 in each column.
  • Each scanning line 47 is connected to the gate driver 39, and each signal line 48 is connected to the signal processing circuit 40.
  • the gate driver 39 drives the TFT 43 to accumulate a signal charge corresponding to the X-ray irradiation amount in the pixel 37, a read operation for reading the signal charge from the pixel 37, and a charge accumulated in the pixel 37. And reset operation to reset.
  • the control unit 41 controls the start timing of each of the operations executed by the gate driver 39.
  • the TFT 43 is turned off, and signal charges are accumulated in the pixel 37 during that time.
  • gate pulses G1 to Gn for simultaneously driving the TFTs 43 in the same row are generated in sequence from the gate driver 39, the scanning lines 47 are sequentially activated one by one, and the TFTs 43 connected to the scanning lines 47 are provided for each row. Turn on.
  • the signal charges accumulated in the pixels 37 for one row are input to the signal processing circuit 40 through the signal lines 48.
  • signal charges for one row are converted into voltages and output, and output voltages corresponding to the signal charges are read as voltage signals D1 to Dm.
  • the analog voltage signals D1 to Dm are converted into digital data, and image data that is digital pixel values representing the density of each pixel for one row is generated.
  • the image data is output to the memory 56 built in the housing of the X-ray image detection apparatus 21.
  • a dark current is generated in the semiconductor layer of the photodiode 42 regardless of whether X-rays are incident.
  • Dark charges which are charges corresponding to the dark current, are accumulated in the capacitor because a bias voltage is applied. Since the dark charge becomes a noise component for the image data, a reset operation is performed to remove the dark charge.
  • the reset operation is an operation of sweeping out dark charges generated in the pixel 37 from the pixel 37 through the signal line 48.
  • the reset operation is performed by, for example, a sequential reset method in which the pixels 37 are reset row by row.
  • the sequential reset method similarly to the signal charge reading operation, gate pulses G1 to Gn are sequentially generated from the gate driver 39 to the scanning line 47, and the TFTs 43 of the pixels 37 are turned on line by line. While the TFT 43 is on, dark charges are input from the pixel 37 to the signal processing circuit 40 through the signal line 48.
  • the signal processing circuit 40 does not read the output voltage corresponding to the dark charge.
  • the reset pulse RST is output from the control unit 41 to the signal processing circuit 40 in synchronization with the generation of the gate pulses G1 to Gn.
  • a reset pulse RST is input in the signal processing circuit 40, a reset switch 49a of an integration amplifier 49 described later is turned on, and the input dark charge is reset.
  • the sequential reset method instead of the sequential reset method, multiple rows of array pixels are grouped as a group, and the reset is performed sequentially within the group, and the dark charge of the number of rows in the group is simultaneously discharged.
  • An all-pixel reset method that simultaneously sweeps out the dark charges may be used.
  • the reset operation can be speeded up by a parallel reset method or an all-pixel reset method.
  • the signal processing circuit 40 includes an integrating amplifier 49, a MUX 50, an A / D converter 51, and the like.
  • the integrating amplifier 49 is individually connected to each signal line 48.
  • the integrating amplifier 49 includes an operational amplifier and a capacitor connected between the input and output terminals of the operational amplifier, and the signal line 48 is connected to one input terminal of the operational amplifier.
  • the other input terminal (not shown) of the integrating amplifier 49 is connected to the ground (GND).
  • the integrating amplifier 49 integrates the signal charges input from the signal line 48, converts them into voltage signals D1 to Dm, and outputs them.
  • the output terminal of the integrating amplifier 49 in each column is connected to the MUX 50 via an amplifier (not shown) that amplifies the voltage signals D1 to Dm and a sample hold unit (not shown) that holds the voltage signals D1 to Dm.
  • the MUX 50 selects one of a plurality of integration amplifiers 49 connected in parallel, and inputs the voltage signals D1 to Dm output from the selected integration amplifier 49 to the A / D converter 51 serially.
  • the A / D converter 51 converts the analog voltage signals D1 to Dm into digital pixel values corresponding to the respective signal levels.
  • the TFTs 43 are turned on row by row by the gate pulse, and the signal charges accumulated in the capacitors of the pixels 37 in each column in the row are integrated via the signal line 48. 49.
  • the control unit 41 When the voltage signals D1 to Dm for one row are output from the integration amplifier 49, the control unit 41 outputs a reset pulse (reset signal) RST to the integration amplifier 49 and turns on the reset switch 49a of the integration amplifier 49. . As a result, the signal charge for one row accumulated in the integrating amplifier 49 is reset.
  • the gate pulse of the next row is output from the gate driver 39 to start reading the signal charge of the pixel 37 of the next row.
  • image data representing an X-ray image for one screen is recorded in the memory 56.
  • offset correction for removing offset components which are fixed pattern noises caused by individual differences in the FPD 36 and the environment, variations in sensitivity of the photodiodes 42 of the pixels 37
  • Image correction processing such as sensitivity correction for correcting variations in output characteristics of the signal processing circuit 40 is performed.
  • the image data is read from the memory 56, output to the imaging control device 23, and transmitted to the console 24.
  • an X-ray image of the subject H is detected.
  • the FPD 36 self-detects the irradiation timing of the X-ray source 13 without exchanging a synchronization signal with the X-ray generator 11 and synchronizes the operation of the FPD 36 with the detected irradiation timing. It has a synchronization control function.
  • a short-circuit pixel 62 is provided in the imaging region 38 of the FPD 36 as a detection element for detecting each timing of X-ray irradiation start and irradiation end.
  • the pixel 37 is switched on / off of electrical connection with the signal line 48 by turning on / off the TFT 43, whereas the short-circuited pixel 62 is always short-circuited with the signal line 48.
  • the short-circuited pixel 62 has substantially the same structure as the pixel 37, and includes a photodiode 42 and a TFT 43, and the photodiode 42 generates a signal charge corresponding to the amount of X-ray irradiation.
  • the short circuit pixel 62 has a structural difference from the pixel 37 in that the source and drain of the TFT 43 are short-circuited by connection, and the switching function of the TFT 43 of the short circuit pixel 62 is lost.
  • the signal charge generated by the photodiode 42 of the short-circuited pixel 62 always flows out to the signal line 48 and is input to the integrating amplifier 49.
  • the photodiode 42 and the signal line 48 may be directly connected to the short-circuited pixel 62 without providing the TFT 43 itself.
  • the control unit 41 measures the intensity of X-rays (irradiation amount per unit time) emitted from the X-ray source 13 to the FPD 36 based on the output of the short-circuited pixel 62, and monitors changes in the intensity of X-rays.
  • the control unit 41 uses the MUX 50 to select the integration amplifier 49 to which the signal charge from the short circuit pixel 62 is input, and reads the voltage signal of the integration amplifier 49 as the output voltage Vout (detection signal) of the short circuit pixel 62.
  • the controller 41 resets the integrating amplifier 49 when the output voltage Vout is read once.
  • the controller 41 repeats the operation of reading out the output voltage Vout at a very short interval with respect to the X-ray irradiation time during the accumulation operation so that the intensity change of the X-ray during irradiation can be monitored.
  • the control unit 41 converts the value of the output voltage Vout into digital data and records it in the memory 56.
  • the control unit 41 monitors the intensity change of the X-rays emitted from the X-ray source 13 based on the change with time of the output voltage Vout recorded in the memory 56.
  • the control unit 41 detects the rise and fall of the X-ray based on the change with time of the output voltage Vout, thereby starting and stopping the X-ray irradiation. Detect timing.
  • the FPD 36 executes synchronization control by the self-detection method, starts the accumulation operation in accordance with the irradiation start timing, ends the accumulation operation in accordance with the irradiation end timing, and reads out.
  • the FPD 36 has a pulse irradiation mode corresponding to the case where the X-ray source 13 irradiates X-rays as a mode when performing moving image shooting, and the case where the X-ray source 13 continuously irradiates X-rays with substantially constant intensity.
  • the FPD 36 self-detects the timing of the start and end of X-ray irradiation by self-detecting the rising and falling edges of a plurality of sequentially generated X-ray pulses, as in the case of still image shooting. Synchronous control based on the detection method is executed.
  • the pulse irradiation by the X-ray source 13 is performed at a constant pulse cycle, there may be a slight deviation in the rise and fall timings of sequentially generated X-ray pulses, resulting in fluctuations in the pulse cycle.
  • the operation of the FPD 36 can accurately correspond to the X-ray pulse irradiation even when the pulse period varies.
  • the continuous irradiation support mode is a mode corresponding to continuous irradiation of X-rays that are continuously irradiated with a substantially constant X-ray intensity, and is a mode in which an accumulation operation and a reading operation are alternately repeated at predetermined time intervals.
  • the FPD 36 may repeat the accumulation operation and the read operation alternately at predetermined time intervals without considering synchronization.
  • the pulse irradiation compatible mode and the continuous irradiation compatible mode are basically set according to whether the X-ray source 13 performs pulse irradiation or continuous irradiation. As described above, as shown in FIGS. As shown, in the case of pulse irradiation, there are cases where synchronous control by the self-detection method is possible and impossible depending on the X-ray irradiation profile. In the irradiation profiles shown in FIGS. 11 and 12, the width of the X-ray pulse and the length Ts of the wave tail of the X-ray pulse are the same, and only the pulse period is different. When the pulse cycle PP of the X-ray pulse is long (PP1) as in the irradiation profile shown in FIG. 11, there is no overlap between the two X-ray pulses that are sequentially generated, and the valley between the two X-ray pulses is clear. Therefore, synchronous control by the self-detection method is possible.
  • the pulse cycle PP of the X-ray pulse is short (PP2) as in the irradiation profile shown in FIG. 12, the two X-ray pulses that are sequentially generated overlap, and the valley between the two X-ray pulses is not good.
  • synchronous control by the self-detection method is impossible.
  • the X-ray intensity does not fall below the threshold voltage Vth in the valley between the two X-ray pulses, the rise and fall of the X-ray pulse cannot be detected. Synchronous control is not possible.
  • the FPD 36 automatically determines whether synchronization control by the self-detection method is possible based on the irradiation profile of the X-ray source 13 and sets the mode according to the determination result. It has a mode setting function.
  • the FPD 36 is set to the pulse irradiation compatible mode when synchronous control by the self detection method is possible, and is set to the continuous irradiation compatible mode when synchronous control by the self detection method is impossible. In the case of the irradiation profile as shown in FIG.
  • the X-ray source is close to the irradiation profile of continuous irradiation in which the X-ray intensity is irradiated in a substantially constant state due to the overlap of two X-ray pulses that are sequentially generated. Even if 13 performs pulse irradiation, it can be operated in the continuous irradiation mode.
  • the mode setting process of the FPD 36 will be described with reference to FIGS.
  • the FPD 36 determines whether or not synchronization control by the self-detection method is possible in a state where the X-ray source 13 is performing pulse irradiation, and performs mode setting according to the determination result.
  • the control unit 41 performs a dose sampling operation, samples the output voltage Vout of the shorted pixel 62 at predetermined time intervals, and records a digitized value of the sampled output voltage Vout in the memory 56. To do.
  • the output voltage Vout of the short-circuited pixel 62 represents the X-ray intensity that is the irradiation amount per unit time
  • an irradiation profile that represents the temporal change in the X-ray intensity is created by sequentially recording the sampled output voltage Vout.
  • the And the control part 41 produces the detection profile showing the time-dependent change of the integrated detection amount which is an integrated value of the irradiation amount per unit time based on an irradiation profile.
  • the irradiation profile is an irradiation profile in the case of the same pulse period PP1 as the irradiation profile shown in FIG.
  • the integrated detection amount gradually increases as the X-ray pulse rises.
  • the intensity becomes maximum in one X-ray pulse
  • the intensity becomes substantially constant in the irradiation profile until a stop command is received.
  • the increase rate of the integrated detection amount is also maximized, and the integrated detection amount increases almost linearly at the maximum increase rate.
  • the intensity of the X-ray pulse starts to decrease.
  • the response speed of the X-ray source 13 is slow, the X-ray intensity does not instantaneously become “0”. Since the irradiation of the X-ray source 13 is continued while the line intensity is attenuated, a wave tail is generated in the X-ray pulse.
  • the integrated detection amount continues to increase although the increase rate gradually decreases. Then, when the intensity of the X-ray pulse becomes substantially “0”, the increase rate becomes “0”, and the integrated detection amount becomes substantially constant.
  • the period Tf in which the integrated detection amount is substantially constant continues until the next rise of the X-ray pulse. Note that “substantially constant” means, for example, a case where a state where the fluctuation amount of the integrated detection amount is in the range of about 20% in the upper and lower directions continues.
  • the irradiation profile is an irradiation profile in the case of the same pulse period PP2 as the irradiation profile shown in FIG.
  • the integrated detection amount gradually increases at the rising edge of the first X-ray pulse, and the increase rate becomes maximum in the section C, and the integrated detection amount is the increase rate. Increases almost linearly.
  • the X-ray intensity starts decreasing after the stop command, but the next X-ray pulse rises before the intensity of the first X-ray pulse falls below the threshold voltage Vth. It overlaps the wave tail of the X-ray pulse and the rising portion of the second X-ray pulse.
  • the X-ray intensity increases in the valley between two X-ray pulses that are sequentially generated in accordance with the amount of overlap of the X-ray pulses. There is little decrease. Therefore, the integrated detection amount continues to increase in the valleys although the rate of increase is lower than that in the section C. Then, when entering the section X of the next X-ray pulse, the integrated detection amount increases linearly again at the maximum increase rate.
  • the control unit 41 measures the period Tf from the detection profile. In the case of the irradiation profile shown in FIG. 5, the period Tf in which the integrated detection amount is substantially constant is “0”. In this way, by measuring the period Tf in which the integrated detection amount is substantially constant, it is possible to investigate the overlapping state of two X-ray pulses that are sequentially generated.
  • the control unit 41 measures the period Tf from the detection profile, and then compares the period Tf with a predetermined threshold Th. As in the example of FIG. 4, when the period Tf is equal to or greater than the threshold Th, the control unit 41 determines that the synchronous control by the self-detection method is possible and sets the pulse irradiation compatible mode. . On the other hand, when the period Tf is smaller than the threshold Th, it is determined that the synchronous control by the self-detection method is impossible, and the continuous irradiation mode is set.
  • the control unit 41 further measures the pulse period PP from the detection profile when the continuous irradiation mode is set.
  • the measurement of the pulse period PP is performed by the following procedure, for example. From the detection profile, the control unit 41 specifies a section C in which the increase rate of the integrated detection amount is the maximum and the integrated detection amount increases linearly at the increase rate. Then, the start time interval of each section C of two X-ray pulses that are sequentially generated is calculated as a pulse period PP. Of course, the end time interval may be obtained instead of the start time of the section C. Further, the control unit 41 calculates the accumulation operation time based on the measured pulse period PP.
  • the FPD 36 Since it is preferable that a series of operations of accumulation operation, read operation, and reset operation is performed during the pulse period PP, the FPD 36 requires the time for the accumulation operation from, for example, the pulse period PP to the reset operation and the read operation. The remaining time obtained by subtracting this time is calculated as the accumulation operation time.
  • control unit 41 determines whether the rising and falling of the X-ray pulse can be determined. Based on the determination result, either the pulse irradiation compatible mode or the continuous irradiation compatible mode. Functions as a mode setting unit for setting to
  • the above mode setting process is executed, and either the pulse irradiation compatible mode or the continuous irradiation compatible mode is set.
  • the mode setting process is executed, the main shooting of moving image shooting is started.
  • the FPD 36 operates in the pulse irradiation compatible mode
  • the FPD 36 performs self-detection type synchronous control that self-detects the rising (irradiation start) and falling (irradiation end) of X-ray pulses sequentially generated from the X-ray source 13.
  • the FPD 36 operates in the continuous irradiation-compatible mode
  • the time accumulation operation and the read operation calculated according to the pulse cycle PP of the X-ray source 13 are repeatedly executed in the pulse cycle PP.
  • the console 24 is input with an examination order such as a patient's sex, age, imaging region, imaging purpose, and imaging conditions such as tube current and tube voltage.
  • the shooting conditions include the irradiation method (pulse irradiation or continuous irradiation) of the X-ray source 13.
  • the imaging conditions input to the console 24 are transmitted to the X-ray image detection device 21 via the imaging control device 23. Further, the imaging conditions are set for the X-ray source 13 by the operator based on the imaging conditions input to the console 24.
  • an imaging preparation instruction is input from the console 24 to the X-ray image detection device 21 to place the FPD 36 in a standby state.
  • the FPD 36 repeatedly executes the reset operation.
  • the FPD 36 also starts monitoring the output voltage Vout of the shorted pixel 65 and waits for the start of X-ray irradiation.
  • the irradiation switch 15 is operated and X-ray irradiation is started from the X-ray source 13
  • the FPD 36 detects that X-ray irradiation has started when the output voltage Vout of the short-circuited pixel exceeds the threshold voltage Vth. .
  • the FPD 36 When the start of irradiation is detected, moving image shooting is started. In the case of continuous irradiation, X-rays are continuously emitted from the X-ray source 13 at a constant X-ray intensity. Therefore, the FPD 36 performs a storage operation for a predetermined time in accordance with a predetermined frame rate and subsequent readout. Repeat the operation and the reset operation. The read images are sequentially transmitted to the console 24 and displayed.
  • the mode setting process of the X-ray image detection device 21 is executed before moving image shooting.
  • the FPD 36 starts the mode setting process shown in the flowchart of FIG.
  • An X-ray irradiation start signal is input to the X-ray source 13 by operating the irradiation switch 15, and pulse irradiation of the X-ray source 13 is started.
  • the mode setting process as shown in FIGS.
  • the FPD 36 performs an irradiation amount sampling operation for sampling the output voltage Vout of the short-circuited pixel 65, and the irradiation profile and detection based on the sampled output voltage Vout.
  • a profile is created (S001).
  • the FPD 36 measures a period Tf in which the integrated detection amount is constant from the detection profile (S002). As shown in FIG. 4, when the measured period Tf is equal to or greater than the threshold Th (N in S003), the FPD 36 determines that synchronization control by the self-detection method is possible and sets the pulse irradiation compatible mode ( S004).
  • the FPD 36 determines that the synchronous control by the self-detection method is impossible, and the continuous irradiation corresponding mode. (S005).
  • the FPD 36 is set to the continuous irradiation compatible mode, the section C in which the integrated detection amount is constant is specified from the detection profile, and the time interval between the start or end of the section C of the two X-ray pulses is determined.
  • the pulse period PP is measured (S006). Based on the measured pulse period PP, the accumulation operation time is calculated (S007).
  • the pulse irradiation of the X-ray source 13 and the irradiation amount sampling operation of the FPD 36 are temporarily stopped. Then, moving image shooting by pulse irradiation is started in the set operation mode.
  • the FPD 36 executes moving image shooting according to the procedure shown in the flowchart of FIG. 7 and the timing chart of FIG.
  • the FPD 36 is shifted from the stop state to the standby state by the input of the shooting preparation instruction, and the reset operation is started (S101).
  • the reset operation is started (S101).
  • measurement of the X-ray intensity by monitoring the output voltage Vout of the short-circuited pixel 65 is started (S102).
  • the control unit 41 compares the output voltage Vout and the threshold voltage Vth and monitors the change in the X-ray intensity (S103). As shown in FIG. 8, it is detected that X-ray irradiation has started when the X-ray intensity increases and the output voltage Vout exceeds the threshold voltage Vth (S104). When detecting the start of irradiation, the control unit 41 starts an accumulation operation (S105).
  • the FPD 36 compares the output voltage Vout and the threshold voltage Vth during the accumulation operation, and monitors the X-ray intensity change (S106). As shown in FIG. 8, when the X-ray intensity of the X-ray pulse starts to decrease and the FPD 36 detects the end of irradiation when the output voltage Vout becomes equal to or lower than the threshold voltage Vth (S107). The FPD 36 ends the accumulation operation in synchronization with the detection of the end of irradiation (S108). The FPD 36 executes a read operation when the accumulation operation is completed. When the read operation is completed, a reset operation is performed until the next irradiation start is detected (S109). The read X-ray image is recorded in the memory 56.
  • the FPD 36 repeats the above steps S103 to S109 (S110) and executes moving image shooting of the subject.
  • a plurality of images taken for each X-ray pulse are sequentially transmitted from the memory 56 to the console 24 and displayed on the console 24.
  • the FPD 36 performs moving image shooting according to the procedure shown in the flowchart of FIG. 9 and the timing chart of FIG.
  • the FPD 36 shifts from the stop state to the standby state and starts a reset operation (S201).
  • a reset operation Simultaneously with the reset operation, measurement of the X-ray intensity by monitoring the output voltage Vout of the shorted pixel 65 is started (S202).
  • the X-ray source 13 When an irradiation start signal is input to the X-ray source 13 by pressing the irradiation switch 15, as shown in FIG. 10, the X-ray source 13 generates an X-ray pulse in response to an input of a start command and a stop command. Then, pulse irradiation for irradiating the subject H with a plurality of X-ray pulses at regular intervals is started.
  • the control unit 41 compares the output voltage Vout with the threshold voltage Vth and monitors the change in the X-ray intensity (S203). As shown in FIG. 10, when the X-ray intensity increases and the output voltage Vout exceeds the threshold voltage Vth, it is detected that X-ray irradiation has started (Y in S203). The operation so far is the same as in the pulse irradiation compatible mode.
  • the FPD 36 In the continuous irradiation compatible mode, when the FPD 36 detects the start of irradiation, the FPD 36 starts an accumulation operation for the time calculated in the mode setting process described in FIG. 5 (S204). After a predetermined time has elapsed, the FPD 36 ends the accumulation operation, and executes a read operation and a reset operation (S205). When the reset operation is completed, the FPD 36 repeats the accumulation operation, the read operation, and the reset operation at predetermined time intervals. The FPD 36 repeats the above steps S204 and S205 while the X-ray irradiation from the X-ray source 13 continues and the pulse irradiation continues (S206).
  • the accumulation operation time is a time calculated based on the pulse period PP measured in the mode setting process (see FIGS. 5 and 6). Even in such a case, moving image shooting can be performed at a frame rate synchronized with the pulse period PP.
  • the accumulation operation is started in accordance with the detection timing of the first X-ray pulse irradiation start, and thereafter, the accumulation operation is repeated in accordance with the pulse period PP.
  • the timing of the operation and the reset operation can be adjusted to a valley between two X-ray pulses in which the X-ray intensity decreases.
  • an appropriate operation mode is determined based on the irradiation profile of the X-ray generation device 11, and the self-
  • the synchronous control of the detection method when performing moving image shooting by pulse irradiation, it operates in the pulse irradiation compatible mode, and when the synchronous control of the self-detection method is impossible, it operates in the continuous irradiation compatible mode.
  • Appropriate operation control can be performed.
  • the X-ray image detection apparatus 21 of the present invention capable of such a flexible response is highly useful when used in combination with an existing X-ray generation apparatus.
  • the mode setting of the pulse irradiation compatible mode and the continuous irradiation compatible mode is automatically performed according to the irradiation profile, even when the X-ray image detection device 21 is used in combination with the X-ray generation device 11 that cannot communicate. No complicated setting work is required.
  • Whether or not synchronization control by the self-detection method is possible depends on the overlapping state of the X-ray pulses in the irradiation profile, but whether or not the X-ray pulses overlap is determined by various factors as described below. The Therefore, the effect of the present invention by automatically determining whether or not the synchronous control by the self-detection method is possible according to the irradiation profile is particularly useful.
  • the capacity of the X-ray tube is CTube [pF]
  • the capacity of the high-voltage cable connecting the X-ray tube and the high voltage generator is Cline [pF / m]
  • the cable length is L
  • the capacitance C Tube of the X-ray tube 13a is 500 to 1000 [pF]
  • the capacitance C Line of the high voltage cable 14c is 100 to 200 [p. pF / m]
  • the cable length L of the high voltage cable 14c is 10 to 20 [m]
  • the tube voltage V is 50 to 150 [kV]
  • the tube current I is 0.5 to 20 [mA]. It is.
  • the value of the time constant ⁇ obtained from these parameter values is about several ms to several tens of ms.
  • the length of the wave tail Ts of the X-ray pulse varies depending on the capacitance C of the X-ray tube and the high voltage cable, the tube current I and the tube voltage V.
  • the capacitance C is large or the tube current is small. Or it becomes long, so that a tube voltage becomes high.
  • the length of the wave tail Ts of the X-ray pulse changes according to the tube current and tube voltage set for each imaging.
  • synchronous control by the self-detection method may be possible.
  • the self-detection type synchronous control in the X-ray image detection apparatus depends on the performance of the X-ray tube, the pulse cycle (the frame rate of the corresponding moving image capturing), and the X-ray pulse. It is determined by various factors such as imaging conditions (tube current and tube voltage) that determine the wave tail length Ts.
  • the present invention examines the overlapping state of X-ray pulses based on the irradiation profile taking these factors into account, and determines whether or not the self-detection type synchronous control is possible, thereby greatly reducing complicated setting work. It becomes possible to do.
  • the mode setting process shown in FIGS. 4 and 5 After performing the mode setting process shown in FIGS. 4 and 5, the X-ray irradiation is once stopped and then the moving image shooting shown in FIGS. 8 and 10 is started.
  • the mode setting process may be shifted to video shooting without stopping.
  • the timing for starting the accumulation time is determined by the following method.
  • the mode setting process since the section C in which the intensity of the X-ray pulse is maximum is specified from the detection profile, information on the section C is used. If the end of section C is known, the valley of the X-ray pulse can be specified, and the start timing of the accumulation operation is determined so that the read operation and the reset operation are accommodated there.
  • the pulse period PP is measured from the start or end of the section C specified from the detection profile, but an irradiation profile may be used instead of or in addition to the detection profile.
  • the section C can be specified.
  • the determination may be made based on the irradiation profile instead of or in addition to the detection profile. For example, as shown in FIG. 5, also in the irradiation profile, the X-ray intensity between the valleys of two overlapping X-ray pulses is lower than the maximum intensity of the X-ray pulse.
  • the threshold voltage Vth By comparing the X-ray intensity between the valleys of the X-ray pulse and the threshold voltage Vth, if the X-ray intensity between the valleys is lower than the threshold voltage Vth, it is determined whether the rising and falling of two X-ray pulses can be detected. Can be determined.
  • the threshold voltage Vth when the threshold voltage Vth changes, even when the irradiation profile is substantially the same (even if the overlapping state of the two X-ray pulses is the same), the rise and fall of the X-ray pulse may or may not be detected. As a result, the determination result of whether or not the pulse irradiation mode can be set also changes. For example, even in the irradiation profiles shown in FIGS. 5 and 10, when the threshold voltage Vth is higher than the minimum value of the X-ray intensity in the valley between two X-ray pulses, the rise and fall of the X-ray pulse Can be detected.
  • the control unit 41 determines whether or not the self-detection type synchronous control is possible based on the changed threshold voltage Vth, and the pulse irradiation compatible mode. It is preferable to determine whether or not setting is possible.
  • a factor for changing the threshold voltage Vth for example, there is a material of a target (anode) of the X-ray tube 13a.
  • tungsten (W), molybdenum (Mo), or the like is used as tungsten (W), molybdenum (Mo), or the like is used.
  • the threshold voltage Vth is set to about 15 kV in the case of tungsten, and about 5 kV in the case of molybdenum.
  • the control unit 41 is based on information on the type of the X-ray tube 13a representing the target material of the X-ray tube 13a.
  • the threshold voltage Vth may be specified.
  • Information regarding the type of the X-ray tube 13a is input through the console 24, for example.
  • the control unit 41 changes the set value to the specified threshold voltage Vth and makes a determination based on the changed set value.
  • the X-ray source 13 may be regarded as equivalent to the irradiation profile in the case of continuously irradiating X-rays with a constant intensity. is there. In that case, the FPD 36 may start the accumulation operation at an arbitrary timing without performing the process of determining the start timing of the accumulation operation in the continuous irradiation mode.
  • control unit 41 may determine whether or not it is necessary to determine the start timing of the accumulation operation by examining the degree of X-ray intensity drop in the valley of the X-ray pulse based on the irradiation profile. .
  • the accumulation operation is started at the timing when the rising edge of the X-ray pulse is detected, and the reading operation is started at the timing when the falling edge of the X-ray pulse is detected.
  • the accumulation operation and the read operation may be started after a predetermined time has elapsed from the detection of the rise or fall. In other words, the timing at which rising or falling is detected does not have to coincide completely with the timing at which accumulation or reading operation starts, and the timing at which accumulation or reading operation starts is based on the timing at which rising or falling is detected. It only has to be decided.
  • the X-ray intensity is measured by the short-circuited pixel 62 provided in the imaging region 38.
  • the short-circuited pixel 62 has substantially the same structure as the normal pixel 37, and the sensitivity to X-rays is also substantially the same. Therefore, it is possible to accurately measure the X-ray intensity, and it is possible to accurately detect the start and end of irradiation and the total irradiation amount. Moreover, since the structure is almost the same, it is easy to manufacture, and the increase in manufacturing cost is small.
  • the form of the radiation detection unit for measuring the X-ray intensity is not limited to the short-circuited pixel, and there are various forms.
  • a bias voltage is applied to a photodiode that constitutes a pixel
  • the bias current flowing through the bias line also changes according to the amount of signal charge generated in the photodiode.
  • Such a bias current may be detected to measure the X-ray intensity.
  • the radiation detecting unit is configured by the wiring through which the bias current and the leak current are disposed and the ammeter that detects the current flowing through the wiring, which are provided in the FPD 36. If the method detects a bias current or a leak current, the function of the radiation detection unit can be added to the FPD 36 without greatly modifying the structure of the imaging region of the FPD 36. In the case of the method for detecting the leakage current, the image reading circuit of the FPD 36 can be used as the current detection unit. In addition, in the method of detecting the bias current and the leakage current, the signal charge accumulation state representing the image is maintained even if radiation detection is performed during irradiation. Therefore, pixel defects (point defects or line defects) are detected in the read image. ) Does not occur.
  • a part of the plurality of pixels 37 in the FPD 36 may be used as a detection element constituting the radiation detection unit.
  • a radiation detection TFT and a dedicated detection wiring are provided separately from the image readout TFT. Then, when reading an image, the image reading TFT is turned on to read the charge from the signal line, and when used as a detection element, the radiation detection TFT gate is turned on to read the charge from the dedicated detection wiring.
  • two TFTs are selectively used.
  • the leakage current leaking from the TFT to the dedicated wiring may be read with the TFT turned off.
  • the structure of the pixel 37 is a structure in which the photodiode is divided into two, such as an image detection photodiode and a detection element photodiode.
  • each photodiode may be provided with a TFT so that each can be selectively used.
  • a dedicated detection element constituting the radiation detection unit when a dedicated detection element constituting the radiation detection unit is provided separately from the pixel 37, it may be disposed between the plurality of pixels 37.
  • the detection element may be provided outside the imaging area.
  • the TFT type FPD in which the TFT matrix substrate is formed using the glass substrate has been described as an example, but an FPD using a CMOS image sensor or a CCD image sensor using a semiconductor substrate may be used.
  • CMOS image sensor has the following advantages.
  • nondestructive reading is possible in which signal charges accumulated in a pixel are read as a voltage signal through an amplifier provided in each pixel without flowing out to a signal line for reading. According to this, even during the accumulation operation, it is possible to measure the X-ray intensity by selecting an arbitrary pixel in the imaging region and reading the signal charge from the pixel.
  • any one of the normal pixels is used as the radiation for measuring the X-ray intensity without using a dedicated radiation detection unit for measuring the X-ray intensity as in the case of the short-circuited pixel. It can also be used as a detection unit.
  • the X-ray image detection apparatus is not limited to the above-described embodiment, but can of course have various configurations without departing from the gist of the present invention.
  • the X-ray image detection device is used in an X-ray imaging system installed in a hospital radiography room, or may be installed in a round-trip car that can take pictures while visiting a hospital room.
  • the present invention may be applied to a portable system that can be carried to the site where medical care is required or the home of a patient receiving home medical care and can perform X-ray imaging.
  • the X-ray image detection apparatus includes a function of the imaging control apparatus built in the control unit of the X-ray image detection apparatus.
  • the imaging control device may be integrated.
  • the portable X-ray image detection apparatus has been described as an example.
  • the present invention may be applied to a stationary X-ray image detection apparatus.
  • the present invention can be applied not only to X-rays but also to imaging systems that use other radiation such as ⁇ rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

Provided is a radiograph detection device capable of appropriate operation control that is in accordance with the radiation profile of a radiation generation device while suppressing an increase in cost and greater task complexity, even when performing video capture in combination with a radiation generation device that is not capable of communication. On the basis of the output voltage (Vout) of a short circuit pixel (62), an FPD (36) that detects an x-ray image determines whether or not it is possible to detect the fall of a radiation pulse radiated first and the rise of a radiation pulse radiated second in a plurality of radiation pulses that an x-ray generation device (11) sequentially generates. On the basis of the determination result, a control unit (41) sets either: a pulse radiation response mode that detects the rise and fall of an x-ray pulse and synchronizes the timing of an accumulation operation to the detected timing; or a continuous radiation response mode for executing the accumulation operation in a predetermined time interval without detecting the rise or fall of an x-ray pulse.

Description

放射線画像検出装置及びその制御方法Radiation image detection apparatus and control method thereof
 本発明は、被写体の放射線画像を検出する放射線画像検出装置と、その制御方法とに関する。 The present invention relates to a radiological image detection apparatus that detects a radiographic image of a subject and a control method thereof.
 医療分野において、放射線、例えばX線を利用したX線撮影システムが知られている。X線撮影システムは、X線を発生するX線管を有するX線発生装置と、被写体を透過したX線の照射を受けて、被写体の画像情報を表すX線画像を検出するX線画像検出装置とからなる。X線発生装置には、X線の単位時間当たりの線量を決める管電流や、X線の線質(エネルギースペクトル)を決める管電圧が撮影条件として与えられ、撮影条件は、被写体となるX線検査の被検者の撮影部位や年齢などに応じて撮影毎に決められる。X線発生装置は、与えられた撮影条件に応じたX線を照射する。 In the medical field, X-ray imaging systems using radiation, for example, X-rays, are known. An X-ray imaging system includes an X-ray generation apparatus having an X-ray tube that generates X-rays, and X-ray image detection that detects an X-ray image representing image information of a subject when irradiated with X-rays transmitted through the subject Device. The X-ray generator is given a tube current that determines the dose per unit time of X-rays and a tube voltage that determines the X-ray quality (energy spectrum) as imaging conditions. It is determined for each imaging according to the imaging region and age of the examinee. The X-ray generator irradiates X-rays according to given imaging conditions.
 X線画像検出装置としては、従来のX線フイルムやイメージングプレート(IP)の代わりに、X線画像検出器(FPD:Flat Panel Detector)を利用したものが実用化されている(特許文献1参照)。FPDは、マトリクスに配列され、X線の照射量に応じた信号電荷を蓄積する複数の画素と、各画素に接続され信号電荷を読み出すための信号線とが配設された撮像領域を有する検出パネルと、各画素が蓄積した信号電荷を電圧信号として読み出して、読み出した電圧信号をデジタルな画像データに変換する信号処理回路とを備えている。これにより、FPDを用いたX線画像検出装置では、撮影後すぐにX線画像を観察することができる。 As an X-ray image detection apparatus, an apparatus using an X-ray image detector (FPD: Flat Panel Detector) instead of a conventional X-ray film or imaging plate (IP) has been put into practical use (see Patent Document 1). ). The FPD is a detection having an imaging region arranged in a matrix and provided with a plurality of pixels for accumulating signal charges according to the amount of X-ray irradiation and a signal line connected to each pixel for reading out signal charges. A panel and a signal processing circuit that reads out signal charges accumulated in each pixel as a voltage signal and converts the read voltage signal into digital image data. Thereby, in the X-ray image detection apparatus using FPD, an X-ray image can be observed immediately after imaging.
 検出パネルは、撮像領域内の各画素が、光電変換素子であるフォトダイオードとTFT(Thin Film Transistor)とから構成されている。間接変換型のFPDでは、撮像領域上に位置するように、X線を可視光に変換するシンチレータ(蛍光体)が設けられている。TFTは、フォトダイオードと信号線の電気的な接続をオンオフすることで、画素の動作を切り替えるスイッチング素子である。TFTがオフされると、フォトダイオードと信号線が非導通状態となり、フォトダイオードに信号電荷が蓄積される蓄積動作が開始される。他方、TFTがオンされると、フォトダイオードと信号線が導通状態になり、フォトダイオードからTFT及び信号線を通じて信号電荷を読み出す読み出し動作が開始される。 In the detection panel, each pixel in the imaging region is composed of a photodiode, which is a photoelectric conversion element, and a TFT (Thin Film Transistor). In the indirect conversion type FPD, a scintillator (phosphor) that converts X-rays into visible light is provided so as to be positioned on the imaging region. The TFT is a switching element that switches the operation of the pixel by turning on and off the electrical connection between the photodiode and the signal line. When the TFT is turned off, the photodiode and the signal line are brought out of conduction, and an accumulation operation in which signal charges are accumulated in the photodiode is started. On the other hand, when the TFT is turned on, the photodiode and the signal line become conductive, and a read operation for reading signal charges from the photodiode through the TFT and the signal line is started.
 FPDは、X線フイルムやIPプレートと異なり、X線の照射タイミングに同期させて蓄積動作や読み出し動作を開始させる同期制御が必要となる。同期制御の方法としては、X線発生装置とX線画像検出装置の間で同期信号を通信する方法や、X線の照射量をX線画像検出装置で測定し、測定したX線の照射量の変動を監視して、X線の照射開始や照射終了の各タイミングをX線画像検出装置において自己検出する方法がある。 Unlike the X-ray film and the IP plate, the FPD requires synchronous control that starts the accumulation operation and the readout operation in synchronization with the X-ray irradiation timing. As a method of synchronization control, a method of communicating a synchronization signal between the X-ray generation device and the X-ray image detection device, an X-ray irradiation amount measured by the X-ray image detection device, and the measured X-ray irradiation amount There is a method in which the X-ray image detection apparatus self-detects each timing of the start and end of X-ray irradiation by monitoring the fluctuation of the X-ray.
 特許文献1に記載されているように、X線画像検出装置では、FPDに蓄積動作と読み出し動作とを所定のフレームレートで交互に繰り返し行わせることにより、透視撮影等の動画撮影を行うことができる。動画撮影を行う場合は、X線発生装置は、動画撮影中、ほぼ一定のX線の強度(単位時間当たりの照射量)でX線を連続照射するか、あるいは、特許文献2に記載されているように、所定の周期でX線をパルス照射する。 As described in Patent Document 1, an X-ray image detection apparatus can perform moving image shooting such as fluoroscopic shooting by causing an FPD to alternately perform a storage operation and a read operation at a predetermined frame rate. it can. When performing moving image shooting, the X-ray generator continuously irradiates X-rays with a substantially constant X-ray intensity (irradiation amount per unit time) during moving image shooting, or as described in Patent Document 2. As shown, X-rays are pulse-irradiated at a predetermined cycle.
 パルス照射によって動画撮影が行われる場合には、X線が断続的に照射されるため、連続照射と比較して、動画撮影中のX線の総照射量が減る分、X線パルスの強度を上げることも可能になるので、被写体の被曝量を抑制しつつ画質を向上させることが可能である。ただし、パルス照射で動画撮影を行う場合には、X線画像検出装置において、X線パルスの照射タイミングを検出し、検出した照射タイミングとFPDの蓄積動作を同期させる同期制御が必要になる。同期制御は、X線画像検出装置において、X線発生装置からの同期信号を受信する通信方式が一般的であるが、X線発生装置が通信機能を持たない場合には、通信方式による同期制御を行うことができない。 When moving image shooting is performed by pulse irradiation, X-rays are emitted intermittently. Therefore, compared to continuous irradiation, the X-ray pulse intensity is reduced by the amount of X-ray irradiation during moving image shooting. Therefore, it is possible to improve the image quality while suppressing the exposure amount of the subject. However, when performing moving image capturing by pulse irradiation, the X-ray image detection apparatus needs to detect the irradiation timing of the X-ray pulse and synchronize the detected irradiation timing with the FPD accumulation operation. In the X-ray image detection apparatus, the synchronization control is generally a communication system that receives a synchronization signal from the X-ray generation apparatus. If the X-ray generation apparatus does not have a communication function, the synchronization control by the communication system is performed. Can not do.
 特許文献2に記載のX線画像検出装置には、X線パルスの強度変化を監視して、X線パルスの立ち上がりと立ち下がりを検出することにより、X線パルスの照射タイミングを自己検出するパルス検出手段が設けられており、X線画像検出装置は、パルス検出手段が検出した照射タイミングにFPDの動作を同期させる自己検出方式の同期制御を行っている。こうした自己検出方式の同期制御機能を有するX線画像検出装置であれば、X線発生装置との通信ができない場合でも、パルス照射による動画撮影を行うことができる。 The X-ray image detection apparatus described in Patent Document 2 monitors a change in the intensity of an X-ray pulse and detects the rise and fall of the X-ray pulse, thereby self-detecting the irradiation timing of the X-ray pulse. Detection means is provided, and the X-ray image detection apparatus performs self-detection type synchronous control that synchronizes the operation of the FPD with the irradiation timing detected by the pulse detection means. With such an X-ray image detection apparatus having a self-detection type synchronization control function, even when communication with the X-ray generation apparatus is not possible, moving image shooting by pulse irradiation can be performed.
特開2002-301053号公報JP 2002-301053 A 特開2006-122667号公報JP 2006-122667 A
 しかしながら、特許文献2に記載の自己検出方式の同期制御には限界があり、X線パルスの周期や、X線パルスの尾引の長さなどによっては自己検出方式の同期制御を行えない場合もある。図11及び図12は、パルス照射で動画撮影を行う場合における、X線の強度の経時変化を表す照射プロファイルを示す。図11に示すように、X線管は、開始指令を受けると電圧印加が開始されて、電圧印加が開始されると、X線の強度が立ち上がる。そして、X線の強度は、管電流に応じたピークまで上昇してほぼ定常な状態を保ち、停止指令を受けると電圧印加が停止されて、下降する。これにより1個のX線パルスが生成され、これを一定間隔で繰り返すことにより、複数個のX線パルスが一定のパルス周期で照射される。1個のX線パルスの立ち上がり(照射開始)と立ち下がり(照射終了)は、X線強度を表す電圧信号と閾値電圧Vthを比較して検出される。一般的な2極管からなるX線管を使用する場合には、停止指令に対するX線管の応答速度が比較的遅いため、停止指令を受けてからX線強度が「0」になるまでの時間、すなわちX線パルスの波尾の長さTsが長くなってしまう。 However, there is a limit to the self-detection type synchronous control described in Patent Document 2, and there are cases where the self-detection type synchronous control cannot be performed depending on the period of the X-ray pulse, the length of the tail of the X-ray pulse, or the like. is there. FIG. 11 and FIG. 12 show irradiation profiles representing changes with time in the intensity of X-rays when moving images are shot by pulse irradiation. As shown in FIG. 11, when an X-ray tube receives a start command, voltage application is started, and when voltage application is started, the intensity of X-rays rises. Then, the intensity of the X-ray rises to a peak corresponding to the tube current and maintains a substantially steady state. When a stop command is received, the voltage application is stopped and falls. Thereby, one X-ray pulse is generated, and a plurality of X-ray pulses are irradiated with a constant pulse period by repeating this at a constant interval. The rise (irradiation start) and fall (irradiation end) of one X-ray pulse is detected by comparing a voltage signal representing the X-ray intensity with a threshold voltage Vth. When using an X-ray tube composed of a general diode, the response speed of the X-ray tube to the stop command is relatively slow, so the X-ray intensity becomes “0” after receiving the stop command. The time, that is, the length Ts of the wave tail of the X-ray pulse becomes long.
 図11に示すように、パルス周期PPが比較的長い場合(PP1)は、X線パルスの波尾が長くても、先に照射されたX線パルスの波尾と、次に照射されたX線パルスの立ち上がり部分が重なることはない。そのため、順次発生する2つのX線パルスの境界が明瞭であり、2つのX線パルスの谷間では、X線強度は閾値電圧Vthよりも下降するため、特許文献2に記載のパルス検出手段によって、X線パルスの立ち上がりと立ち下がりを確実に検出することができる。 As shown in FIG. 11, when the pulse period PP is relatively long (PP1), even if the wave tail of the X-ray pulse is long, the wave tail of the previously irradiated X-ray pulse and the next irradiated X-ray pulse The rising parts of the line pulses do not overlap. Therefore, the boundary between the two X-ray pulses that are generated sequentially is clear, and the X-ray intensity falls below the threshold voltage Vth in the valley between the two X-ray pulses. The rise and fall of the X-ray pulse can be reliably detected.
 これに対して、図12に示すように、パルス周期PPが比較的短い場合(PP2)は、X線パルスの波尾が長いと、先に照射されたX線パルスの波尾と、その次に照射されたX線パルスの立ち上がり部分とが重なってしまい、X線パルスのピークとX線パルス間の谷間が不明瞭になる。図12において、ハッチングで示す部分は、2つのX線パルスが重なっている部分と、その重なりによって生じるX線強度の増加分とを示す。図12の照射プロファイルでは、X線パルスの重なりによって、X線強度は閾値電圧Vthを上回る状態で推移するので、実質的にX線が連続照射されている状態に近くなる。このような場合には、特許文献2に記載のパルス検出手段によっては、X線パルスの立ち上がりと立ち下がりを検出することができないため、自己検出方式による同期制御を行うことができない。 On the other hand, as shown in FIG. 12, when the pulse period PP is relatively short (PP2), if the wave tail of the X-ray pulse is long, the wave tail of the previously irradiated X-ray pulse and the next The X-ray pulse rising portion of the X-ray pulse is overlapped, and the valley between the peak of the X-ray pulse and the X-ray pulse becomes unclear. In FIG. 12, hatched portions indicate a portion where two X-ray pulses overlap and an increase in X-ray intensity caused by the overlap. In the irradiation profile of FIG. 12, the X-ray intensity changes in a state exceeding the threshold voltage Vth due to the overlap of X-ray pulses, so that the X-ray intensity is substantially close to a state where X-rays are continuously irradiated. In such a case, since the rise and fall of the X-ray pulse cannot be detected by the pulse detection means described in Patent Document 2, synchronization control by the self-detection method cannot be performed.
 こうした問題の解決策としては、例えば3極管やテトロード管等、X線パルスの波尾を直ちに減衰させる機能を備えた応答速度が速いX線管を用いることで、順次発生する複数のX線パルスの重なりを無くす方法が考えられる。重なりが無くなれば、X線パルスの立ち上がりと立ち下がりを検出できるため、自己検出方式による同期制御が可能となる。 As a solution to such a problem, for example, by using an X-ray tube having a function of quickly attenuating the wave tail of an X-ray pulse, such as a triode tube or a tetrode tube, a plurality of X-rays generated sequentially A method for eliminating the overlap of pulses is conceivable. If there is no overlap, the rise and fall of the X-ray pulse can be detected, so that synchronous control by the self-detection method is possible.
 しかし、応答速度が速いX線管は非常に高価であり、X線管の交換コストが嵩むという問題がある。しかも、応答速度が速いX線管に交換したとしても、動画撮影時のフレームレートが極端に短いと自己検出ができない場合があるなど、すべてのケースにおいて自己検出方式の同期制御が可能になるわけでもない。 However, an X-ray tube having a high response speed is very expensive, and there is a problem that the replacement cost of the X-ray tube increases. Moreover, even if it is replaced with an X-ray tube with a fast response speed, self-detection may not be possible if the frame rate at the time of video recording is extremely short. not.
 もう1つの対策としては、順次発生する2つのX線パルスの重なり状態をオペレータが計算で求めて、自己検出方式の同期制御が可能かどうかを判断する方法がある。X線パルスの波尾の長さは、X線管を抵抗として見たときの容量と、撮影毎に設定される管電流及び管電圧によって変化する。したがって、X線管の種類に応じた仕様情報と、撮影毎に設定される管電流及び管電圧が分かれば計算によって求めることができる。算出したX線パルスの波尾の長さと、動画撮影のフレームレートに応じて設定されるパルス周期が分かれば、順次発生する2つのX線パルスの重なり状態を計算で求めることができる。 As another countermeasure, there is a method in which the operator obtains the overlapping state of two X-ray pulses that are sequentially generated by calculation to determine whether or not the self-detection type synchronous control is possible. The length of the wave tail of the X-ray pulse varies depending on the capacity when the X-ray tube is viewed as a resistance, and the tube current and tube voltage set for each imaging. Therefore, if the specification information corresponding to the type of the X-ray tube and the tube current and tube voltage set for each imaging are known, it can be obtained by calculation. If the pulse period set in accordance with the calculated wave tail length of the X-ray pulse and the frame rate of moving image capturing is known, the overlapping state of two X-ray pulses that are sequentially generated can be calculated.
 しかし、X線パルスの重なり状態をオペレータが計算で求める方法は、同じX線管を使用する場合でも、撮影毎に変化する管電流及び管電圧に応じて計算を行わなければならないため、オペレータの作業が非常に煩雑となり、現実的ではない。 However, the method of calculating the overlap state of X-ray pulses by the operator, even when the same X-ray tube is used, must be calculated according to the tube current and tube voltage that change at each imaging. The work becomes very complicated and is not realistic.
 しかも、応答速度が速いX線管を使用する方法でも、X線パルスの重なり状態をオペレータが計算で求める方法でも、自己検出方式の同期制御が不可能な場合には何らかの対処を施す必要がある。 In addition, even if a method using an X-ray tube with a high response speed or a method in which an operator obtains an overlap state of X-ray pulses by calculation, it is necessary to take some measures when the self-detection type synchronous control is impossible. .
 こうした問題及びその解決策について、特許文献1及び2のいずれにも明示も示唆もされていない。 Neither Patent Document 1 nor 2 discloses or suggests such problems and solutions.
 本発明は、通信ができない放射線発生装置との組み合わせで動画撮影を行う場合であっても、コスト増加や作業の煩雑化を抑制しつつ、放射線発生装置の照射プロファイルに応じた適切な動作制御が可能な放射線画像検出装置及びその制御方法を提供することを目的とするものである。 The present invention enables proper operation control according to the irradiation profile of the radiation generation device while suppressing an increase in cost and complication of work even when performing moving image shooting in combination with a radiation generation device that cannot communicate. It is an object of the present invention to provide a possible radiological image detection apparatus and a control method thereof.
 上記目的を達成するために、本発明の放射線画像検出装置は、動画撮影を行うためにパルス状の放射線を順次発生して放射線のパルス照射を行う放射線発生装置と組み合わせて使用される放射線画像検出装置において、画像検出部、放射線検出部、判定部、モード設定部、及び制御部を備えている。画像検出部は、放射線の照射を受けて放射線の照射量に応じた信号電荷を蓄積する複数の画素がマトリクスに配列された撮像領域を有し、被写体の放射線画像を検出する。放射線検出部は、放射線を検出して、放射線の照射量に応じた検出信号を出力する。判定部は、検出信号に基づいて、放射線発生装置が順次発生する複数の放射線パルスの立ち上がりと立ち下がりの検出が可能か否かを判定する。モード設定部は、判定部の判定結果に基づいて画像検出部の動作モードを設定するモード設定部であり、パルス照射が行われている間、検出信号に基づいて放射線パルスの立ち上がりと立ち下がりを検出して、前記立ち上がりを検出したタイミングに基づいて前記信号電荷を蓄積する蓄積動作の開始タイミングを決定し、前記立ち下がりを検出したタイミングに基づいて前記信号電荷の読み出し動作の開始タイミングを決定するパルス照射対応モードと、前記放射線パルスの立ち上がりと立ち下がりを検出することなく、所定の時間間隔で蓄積動作と前記読み出し動作とを交互に繰り返す連続照射対応モードとのいずれかに設定する。制御部は、設定されたモードに応じて画像検出部の動作を制御する。 In order to achieve the above object, the radiological image detection apparatus of the present invention is a radiological image detection apparatus used in combination with a radiation generation apparatus that sequentially generates pulsed radiation and performs pulse irradiation of radiation for moving image capturing. The apparatus includes an image detection unit, a radiation detection unit, a determination unit, a mode setting unit, and a control unit. The image detection unit has an imaging region in which a plurality of pixels that receive irradiation of radiation and accumulate signal charges corresponding to the amount of radiation irradiation are arranged in a matrix, and detect a radiation image of the subject. The radiation detection unit detects radiation and outputs a detection signal corresponding to the radiation dose. The determination unit determines whether it is possible to detect rising and falling of a plurality of radiation pulses sequentially generated by the radiation generation device based on the detection signal. The mode setting unit is a mode setting unit that sets the operation mode of the image detection unit based on the determination result of the determination unit, and rises and falls of the radiation pulse based on the detection signal while the pulse irradiation is performed. And the start timing of the accumulation operation for accumulating the signal charge is determined based on the timing at which the rise is detected, and the start timing of the signal charge read operation is determined based on the timing at which the fall is detected. Either a pulse irradiation compatible mode or a continuous irradiation compatible mode in which the accumulation operation and the readout operation are alternately repeated at a predetermined time interval without detecting the rising and falling of the radiation pulse is set. The control unit controls the operation of the image detection unit according to the set mode.
 判定部は、放射線発生装置からパルス照射される放射線について、放射線検出部の検出信号に基づいて、単位時間当たりの照射量である放射線強度の経時変化を表す照射プロファイル、及び単位時間当たりの照射量を積算した積算検出量の経時変化を表す検出プロファイルの少なくとも1つを作成して、判定を行うことが好ましい。 For the radiation irradiated in pulses from the radiation generating device, the determination unit is configured to indicate an irradiation profile representing a change over time in radiation intensity, which is an irradiation amount per unit time, based on a detection signal of the radiation detection unit, and an irradiation amount per unit time It is preferable to make a determination by creating at least one detection profile that represents a change over time in the integrated detection amount obtained by integrating.
 判定部は、照射プロファイル及び検出プロファイルの少なくとも1つに基づいて、順次発生する2つのX線パルスの立ち上がり部と立ち下がり部の重なり状態を調べて、判定を行うことが好ましい。 It is preferable that the determination unit performs the determination by examining the overlapping state of the rising and falling portions of two X-ray pulses that are sequentially generated based on at least one of the irradiation profile and the detection profile.
 判定部は、検出プロファイルにおいて、積算検出量が一定となる期間の長さを測定することにより重なり状態を調べることが好ましい。 It is preferable that the determination unit examines the overlap state by measuring the length of the period in which the integrated detection amount is constant in the detection profile.
 判定部は、積算検出量が一定となる期間の長さが予め設定した閾値よりも短い場合には、放射線パルスの立ち上がりと立ち上がりの検出が不可能と判定して、画像検出部の動作モードを連続照射対応モードに設定し、期間の長さが閾値以上の場合には、放射線パルスの立ち上がりと立ち下がりの検出が可能と判定して、画像検出部の動作モードをパルス照射対応モードに設定することが好ましい。 When the length of the period during which the integrated detection amount is constant is shorter than a preset threshold, the determination unit determines that the rising and rising of the radiation pulse cannot be detected, and sets the operation mode of the image detection unit. When the continuous irradiation mode is set and the length of the period is equal to or greater than the threshold, it is determined that the rising and falling of the radiation pulse can be detected, and the operation mode of the image detection unit is set to the pulse irradiation mode. It is preferable.
 モード設定部は、連続照射対応モードにおける蓄積動作の時間を算出することが好ましい。 It is preferable that the mode setting unit calculates the accumulation operation time in the continuous irradiation mode.
 モード設定部は、照射プロファイル及び検出プロファイルの少なくとも1つに基づいて放射線パルスのパルス周期を測定し、測定したパルス周期に基づいて蓄積動作の時間を算出することが好ましい。 It is preferable that the mode setting unit measures the pulse period of the radiation pulse based on at least one of the irradiation profile and the detection profile, and calculates the accumulation operation time based on the measured pulse period.
 モード設定部は、パルス周期内に、蓄積動作と、それに続く読み出し動作、及び画素に蓄積された信号電荷を排出するリセット動作の3つの動作が収まるように、蓄積動作の時間を算出することが好ましい。 The mode setting unit may calculate the accumulation operation time so that the three operations of the accumulation operation, the subsequent readout operation, and the reset operation for discharging the signal charge accumulated in the pixel are within the pulse period. preferable.
 制御部は、照射プロファイルにおける2つの放射線パルスの谷間でリセット動作が実行されるように、蓄積動作の開始タイミングを決定することが好ましい。 It is preferable that the control unit determines the start timing of the accumulation operation so that the reset operation is executed between the two radiation pulses in the irradiation profile.
 制御部は、前記放射線パルスの立ち上がりを検出したタイミングで、前記蓄積動作を開始させることが好ましい。 It is preferable that the control unit starts the accumulation operation at the timing when the rising edge of the radiation pulse is detected.
 制御部は、照射プロファイル及び前記検出プロファイルの少なくとも1つに基づいて、放射線パルスにおいて放射線強度が最大となる区間を特定して、特定した区間に基づいて放射線パルスの谷間を判定することが好ましい。 It is preferable that the control unit specifies a section where the radiation intensity is maximum in the radiation pulse based on at least one of the irradiation profile and the detection profile, and determines the valley of the radiation pulse based on the specified section.
 制御部は、パルス照射対応モードにおいて、放射線パルスの立ち上がりを検出したタイミングで、前記蓄積動作を開始させることが好ましい。 It is preferable that the controller starts the accumulation operation at the timing when the rising edge of the radiation pulse is detected in the pulse irradiation compatible mode.
 制御部は、パルス照射対応モードにおいて、放射線パルスの立ち下がりを検出したタイミングで、前記蓄積動作を終了して前記読み出し動作を開始することが好ましい。 It is preferable that the control unit terminates the accumulation operation and starts the reading operation at the timing when the falling edge of the radiation pulse is detected in the pulse irradiation compatible mode.
 放射線検出部は、画素と画素から信号電荷を読み出すための信号線とを常時短絡させた短絡画素であり、短絡画素は、放射線の照射量に応じた信号電荷を信号線に常時出力することが好ましい。 The radiation detection unit is a short-circuited pixel in which a pixel and a signal line for reading out signal charges from the pixel are always short-circuited, and the short-circuited pixel can always output a signal charge corresponding to the radiation dose to the signal line. preferable.
 本発明の放射線画像検出装置の制御方法は、動画撮影を行うためにパルス状の放射線を順次発生して放射線のパルス照射を行う放射線発生装置と組み合わせて使用される放射線画像検出装置であり、放射線発生装置による放射線の照射量に応じた信号電荷を蓄積する複数の画素がマトリクスに配列された画像検出部を有し、被写体の放射線画像を検出する放射線画像検出装置の制御方法において、判定ステップと、モード設定ステップと、制御ステップとを含んでいる。判定ステップは、放射線の照射量を検出する放射線検出部の検出信号に基づいて、放射線発生装置が順次発生する複数の放射線パルスの立ち上がりと立ち下がりの検出が可能か否かを判定する。モード設定ステップは、判定部の判定結果に基づいて画像検出部の動作モードを設定するモード設定ステップであり、パルス照射が行われている間、検出信号に基づいて放射線パルスの立ち上がりと立ち下がりを検出して、前記立ち上がりを検出したタイミングに基づいて前記信号電荷を蓄積する蓄積動作の開始タイミングを決定し、前記立ち下がりを検出したタイミングに基づいて前記信号電荷の読み出し動作の開始タイミングを決定するパルス照射対応モードと、前記放射線パルスの立ち上がりと立ち下がりを検出することなく、所定の時間間隔で蓄積動作と読み出し動作とを交互に繰り返す連続照射対応モードとのいずれかに設定するモード設定ステップである。制御ステップは、設定されたモードに応じて前記画像検出部の動作を制御する。 The method for controlling a radiological image detection apparatus of the present invention is a radiological image detection apparatus that is used in combination with a radiation generation apparatus that sequentially generates pulsed radiation and performs pulse irradiation of radiation in order to perform moving image shooting. In a control method of a radiological image detection apparatus for detecting a radiographic image of a subject, the image detection unit having an image detection unit in which a plurality of pixels that accumulate signal charges according to the amount of radiation irradiated by the generator is arranged in a matrix, a determination step; , Including a mode setting step and a control step. In the determination step, it is determined whether or not the rising and falling of a plurality of radiation pulses sequentially generated by the radiation generating device can be detected based on the detection signal of the radiation detecting unit that detects the radiation dose. The mode setting step is a mode setting step for setting the operation mode of the image detection unit based on the determination result of the determination unit. During the pulse irradiation, the rising and falling of the radiation pulse are detected based on the detection signal. And the start timing of the accumulation operation for accumulating the signal charge is determined based on the timing at which the rise is detected, and the start timing of the signal charge read operation is determined based on the timing at which the fall is detected. A mode setting step for setting to either a pulse irradiation compatible mode or a continuous irradiation compatible mode in which accumulation operation and readout operation are alternately repeated at a predetermined time interval without detecting rising and falling of the radiation pulse. is there. The control step controls the operation of the image detection unit in accordance with the set mode.
 本発明によれば、通信ができない放射線発生装置との組み合わせで動画撮影を行う場合であっても、コスト増加や作業の煩雑化を抑制しつつ、放射線発生装置の照射プロファイルに応じた適切な動作制御が可能な放射線画像検出装置及びその制御方法を提供することができる。 According to the present invention, even when a moving image is taken in combination with a radiation generating apparatus that cannot communicate, an appropriate operation according to the irradiation profile of the radiation generating apparatus is achieved while suppressing an increase in cost and complication of work. It is possible to provide a radiological image detection apparatus that can be controlled and a control method therefor.
X線撮影システムの概略的構成を示す説明図である。It is explanatory drawing which shows schematic structure of a X-ray imaging system. X線画像検出装置の構成を示す外観斜視図である。It is an external appearance perspective view which shows the structure of an X-ray image detection apparatus. FPDの構成を示す説明図である。It is explanatory drawing which shows the structure of FPD. X線パルスに重なりが無い場合の照射プロファイル及び検出プロファイルの説明図である。It is explanatory drawing of an irradiation profile and a detection profile when there is no overlap in an X-ray pulse. X線パルスに重なりが有る場合の照射プロファイル及び検出プロファイルの説明図である。It is explanatory drawing of an irradiation profile in case an X-ray pulse has an overlap, and a detection profile. モード設定手順を示すフローチャートである。It is a flowchart which shows a mode setting procedure. FPDのパルス照射対応モードにおける制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the pulse irradiation corresponding | compatible mode of FPD. パルス照射対応モードにおけるFPDの動作説明図である。It is operation | movement explanatory drawing of FPD in the pulse irradiation corresponding | compatible mode. FPDの連続照射対応モードにおける制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the continuous irradiation corresponding | compatible mode of FPD. 連続照射対応モードにおけるFPDの動作説明図である。It is operation | movement explanatory drawing of FPD in the continuous irradiation corresponding | compatible mode. X線パルスに重なりが無い場合の照射プロファイルの説明図である。It is explanatory drawing of an irradiation profile when there is no overlap in an X-ray pulse. X線パルスに重なりが有る場合の照射プロファイルの説明図である。It is explanatory drawing of an irradiation profile in case an X-ray pulse has an overlap.
 図1において、X線撮影システム10は、X線発生装置11と、X線撮影装置12とを備えている。X線発生装置11は、例えば、フイルム用カセッテやIP用カセッテで使用される既存のX線発生装置であり、X線撮影装置12との通信機能を持たないものである。X線発生装置11は、X線源13と、X線源13を制御する線源制御装置14と、照射スイッチ15とで構成される。X線源13は、X線を放射するX線管13aと、X線管13aが放射するX線の照射野を限定する照射野限定器(コリメータ)13bとを有する。 1, the X-ray imaging system 10 includes an X-ray generation device 11 and an X-ray imaging device 12. The X-ray generator 11 is an existing X-ray generator used in, for example, a film cassette or an IP cassette, and does not have a communication function with the X-ray imaging apparatus 12. The X-ray generator 11 includes an X-ray source 13, a radiation source controller 14 that controls the X-ray source 13, and an irradiation switch 15. The X-ray source 13 includes an X-ray tube 13a that emits X-rays, and an irradiation field limiter (collimator) 13b that limits an X-ray irradiation field emitted by the X-ray tube 13a.
 X線管13aは、熱電子を放出するフィラメントからなる陰極と、陰極から放出された熱電子が衝突してX線を放射する陽極(ターゲット)とを有している。照射野限定器13bは、例えば、X線を遮蔽する4枚の鉛板を有しており、4枚の鉛板によってX線を透過させる矩形状の照射開口を形成したものであり、鉛板の位置を移動することで照射開口の大きさを変化させて、照射野を限定する。4枚の鉛板は2枚1組にされて各組の鉛板はそれぞれの対向配置される。各組を直交する2方向にそれぞれ配置することで、矩形状の照射開口が形成される。 The X-ray tube 13a has a cathode made of a filament that emits thermoelectrons and an anode (target) that emits X-rays when the thermoelectrons emitted from the cathode collide. The irradiation field limiter 13b has, for example, four lead plates that shield X-rays, and a rectangular irradiation opening that transmits X-rays is formed by the four lead plates. By moving the position, the size of the irradiation aperture is changed to limit the irradiation field. Four lead plates are made into one set, and each set of lead plates is arranged opposite to each other. By arranging each set in two orthogonal directions, a rectangular irradiation opening is formed.
 線源制御装置14は、X線源13に対して高電圧を供給する高電圧発生器14aと、X線源13が照射するX線の線質(エネルギースペクトル)を決める管電圧、単位時間当たりの線量を決める管電流、及びX線の照射時間を制御する線源制御部14bとを備えている。高電圧発生器14aは、トランスによって入力電圧を昇圧して高圧の管電圧を発生し、高電圧ケーブル14cを通じてX線源13に駆動電力を供給する。管電圧、管電流、X線の照射時間、及び撮影目的等の撮影条件は、線源制御装置14の操作パネルを通じて放射線技師などのオペレータにより手動で線源制御部14bに設定される。なお、撮影条件に含まれている撮影目的とは、例えば、静止画撮影及び動画撮影等の撮影の種類である。 The radiation source control device 14 includes a high voltage generator 14a that supplies a high voltage to the X-ray source 13, a tube voltage that determines the quality (energy spectrum) of the X-rays irradiated by the X-ray source 13, and per unit time. And a radiation source controller 14b for controlling the X-ray irradiation time. The high voltage generator 14a boosts the input voltage with a transformer to generate a high voltage tube voltage, and supplies driving power to the X-ray source 13 through the high voltage cable 14c. Imaging conditions such as tube voltage, tube current, X-ray irradiation time, and imaging purpose are manually set in the radiation source controller 14 b by an operator such as a radiologist through the operation panel of the radiation source controller 14. Note that the shooting purpose included in the shooting conditions is, for example, the type of shooting such as still image shooting and moving image shooting.
 照射スイッチ15は、線源制御装置14に信号ケーブルによって接続されている。照射スイッチ15は、放射線技師によって操作可能な二段階押しのスイッチであり、一段階押しでX線源13のウォームアップを開始させるためのウォームアップ開始信号を発生し、二段階押しでX線源13に照射を開始させるための照射開始信号を発生する。これらの信号は信号ケーブルを通じて線源制御装置14に入力される。 The irradiation switch 15 is connected to the radiation source control device 14 by a signal cable. The irradiation switch 15 is a two-stage push switch that can be operated by a radiologist, generates a warm-up start signal for starting the warm-up of the X-ray source 13 by one-step push, and presses the X-ray source by two-stage push. 13 generates an irradiation start signal for starting irradiation. These signals are input to the radiation source controller 14 through a signal cable.
 線源制御部14bは、照射スイッチ15からの制御信号に基づいて、X線源13の動作を制御する。照射スイッチ15の二段階押しにより発生する照射開始信号を受けると、線源制御部14bは、X線源13に対して開始指令を発して電力供給を開始する。これによりX線源13は照射を開始する。線源制御部14bは、静止画撮影時には、電力供給の開始とともに、タイマを作動させてX線の照射時間の計測を開始する。そして、撮影条件で設定された照射時間が経過すると、線源制御部14bは、X線源13に対して停止指令を発して電力供給を停止する。X線源13は、停止指令を受けるとX線の照射を停止させる。 The radiation source control unit 14 b controls the operation of the X-ray source 13 based on a control signal from the irradiation switch 15. When receiving the irradiation start signal generated by pressing the irradiation switch 15 in two steps, the radiation source control unit 14b issues a start command to the X-ray source 13 and starts supplying power. Thereby, the X-ray source 13 starts irradiation. At the time of taking a still image, the radiation source control unit 14b starts measuring the X-ray irradiation time by starting a power supply and operating a timer. Then, when the irradiation time set in the imaging conditions has elapsed, the radiation source control unit 14b issues a stop command to the X-ray source 13 to stop power supply. When receiving the stop command, the X-ray source 13 stops the X-ray irradiation.
 また、線源制御部14bは、動画撮影時には、例えば、照射スイッチ15の二段階押しにより発生する照射開始信号を受けると、設定されたパルス周期で、X線源13に対して開始指令と停止指令とを交互に発して、X線源13に複数個のX線パルスを一定のパルス周期で順次照射させる。 Further, at the time of moving image shooting, for example, when the radiation source control unit 14b receives an irradiation start signal generated by pressing the irradiation switch 15 in two steps, it starts and stops the X-ray source 13 with a set pulse cycle. By alternately issuing commands, the X-ray source 13 is sequentially irradiated with a plurality of X-ray pulses at a constant pulse period.
 撮影台22は、フイルム用カセッテやIP用カセッテが着脱自在に取り付けられるスロットを有し、X線が入射する入射面がX線源13と対向するように配置されている。なお、撮影台22として、被検者Hを立位姿勢で撮影する立位撮影台を例示しているが、被検者Hを臥位姿勢で撮影する臥位撮影台でもよい。 The imaging table 22 has a slot in which a film cassette and an IP cassette are detachably attached, and is arranged so that an incident surface on which X-rays are incident faces the X-ray source 13. In addition, although the standing position imaging stand which image | photographs the subject H with a standing posture is illustrated as the imaging stand 22, the standing position imaging stand which image | photographs the subject H with a standing posture may be sufficient.
 X線撮影装置12は、X線画像検出装置21、撮影制御装置23、およびコンソール24から構成される。X線画像検出装置21は、FPD36(図3参照)と、FPD36を収容する可搬型の筐体とからなり、X線源13から照射されて被検者(被写体)Hを透過したX線を受けて被検者HのX線画像を検出する、可搬型の放射線画像検出装置である。X線画像検出装置21は、平面形状が略矩形の偏平な筐体を有し、平面サイズはフイルム用カセッテやIP用カセッテと略同様の大きさであるため、撮影台22にも取り付け可能である。 The X-ray imaging apparatus 12 includes an X-ray image detection apparatus 21, an imaging control apparatus 23, and a console 24. The X-ray image detection device 21 includes an FPD 36 (see FIG. 3) and a portable housing that accommodates the FPD 36. The X-ray image detection device 21 emits X-rays that are irradiated from the X-ray source 13 and pass through the subject (subject) H. It is a portable radiographic image detection device that receives and detects an X-ray image of the subject H. The X-ray image detection device 21 has a flat housing with a substantially rectangular planar shape, and the planar size is substantially the same size as a film cassette or an IP cassette, so that the X-ray image detection device 21 can be attached to the imaging table 22. is there.
 撮影制御装置23は、有線方式や無線方式によりX線発生装置11、X線画像検出装置21及びコンソール24と通信を行う通信部と、通信部を介してX線画像検出装置21を制御する撮影制御部とを有している。撮影制御装置23は、X線画像検出装置21に撮影条件を送信して、FPD36の信号処理の条件を設定させる。また、撮影制御装置23は、静止画撮影か動画撮影かなどのX線画像検出装置21の動作モードを設定する。また、撮影制御装置23は、X線画像検出装置21が出力する画像データを受信してコンソール24に送信する。 The imaging control device 23 controls the X-ray image detection device 21 via the communication unit that communicates with the X-ray generation device 11, the X-ray image detection device 21, and the console 24 by a wired method or a wireless method. And a control unit. The imaging control device 23 transmits imaging conditions to the X-ray image detection device 21 to set the signal processing conditions of the FPD 36. Further, the imaging control device 23 sets an operation mode of the X-ray image detection device 21 such as still image shooting or moving image shooting. Further, the imaging control device 23 receives the image data output from the X-ray image detection device 21 and transmits it to the console 24.
 コンソール24は、患者の性別、年齢、撮影部位、撮影目的といった情報が含まれる検査オーダの入力を受け付けて、検査オーダをディスプレイに表示する。検査オーダは、HIS(病院情報システム)やRIS(放射線情報システム)といった患者情報や放射線検査に係る検査情報を管理する外部システムから入力されるか、放射線技師などのオペレータにより手動入力される。オペレータは、検査オーダの内容をディスプレイで確認し、その内容に応じた撮影条件をコンソール24の操作画面を通じて入力する。 The console 24 receives an input of an examination order including information such as the patient's sex, age, imaging region, and imaging purpose, and displays the examination order on the display. The examination order is input from an external system that manages patient information such as HIS (Hospital Information System) and RIS (Radiation Information System) and examination information related to radiation examination, or manually input by an operator such as a radiographer. The operator confirms the contents of the inspection order on the display, and inputs imaging conditions corresponding to the contents through the operation screen of the console 24.
 コンソール24は、撮影制御装置23に対して撮影条件を送信するとともに、撮影制御装置23から送信されるX線画像のデータに対して、ガンマ補正、周波数処理等の各種画像処理を施す。画像処理済みのX線画像はコンソール24のディスプレイに表示される他、そのデータがコンソール24内のハードディスクやメモリ、あるいはコンソール24とネットワーク接続された画像蓄積サーバといったデータストレージデバイスに格納される。 The console 24 transmits imaging conditions to the imaging control device 23 and performs various image processing such as gamma correction and frequency processing on the X-ray image data transmitted from the imaging control device 23. In addition to being displayed on the display of the console 24, the processed X-ray image is stored in a data storage device such as a hard disk or memory in the console 24 or an image storage server connected to the console 24 via a network.
 図2に示すように、X線画像検出装置21は、矩形状の上面が放射線の照射面とされた筐体25を備えている。筐体25は、照射面が設けられている天板26と、天板26以外を構成する筐体本体27とからなり、例えば、天板26はカーボン等から構成され、筐体本体27は金属や樹脂等から構成されている。これにより、天板26によるX線の吸収を抑制しつつ、筐体本体27の強度が確保される。 As shown in FIG. 2, the X-ray image detection apparatus 21 includes a housing 25 whose rectangular upper surface is a radiation irradiation surface. The case 25 includes a top plate 26 provided with an irradiation surface and a case main body 27 that constitutes other than the top plate 26. For example, the top plate 26 is made of carbon and the case main body 27 is made of metal. And resin. Thereby, the intensity | strength of the housing body 27 is ensured, suppressing the absorption of the X-ray by the top plate 26. FIG.
 筐体25の上面には、X線画像検出装置21の動作状態等を報知する報知手段であるインジケータ28が設けられている。インジケータ28は、例えば複数の発光部からなり、各発光部の発光状態の組み合わせによって、X線画像検出装置21の動作状態やバッテリの残容量等が表示される。動作状態としては、例えば撮影待機状態を表す「レディ状態」や、撮影後の画像データを送信中であることを表す「データ送信中」等がある。インジケータ28には、LCD等の表示装置を用いてもよい。 On the upper surface of the housing 25, an indicator 28 which is a notification means for notifying the operation state of the X-ray image detection device 21 and the like is provided. The indicator 28 includes, for example, a plurality of light emitting units, and displays the operation state of the X-ray image detection device 21, the remaining battery capacity, and the like depending on the combination of the light emitting states of the light emitting units. The operation state includes, for example, a “ready state” indicating a photographing standby state and “data transmitting” indicating that image data after photographing is being transmitted. A display device such as an LCD may be used for the indicator 28.
 X線画像検出装置21の筐体25内には、照射面に対面するように、X線画像を検出する画像検出手段であるFPD36が配置されている。FPD36は、X線を可視光に変換するシンチレータ29と、シンチレータ29によって変換された可視光を光電変換する検出パネル30とを備えた間接変換型であり、シンチレータ29のX線照射面側に検出パネル30を配置した「表面読取方式(ISS:Irradiation Side Sampling)」となっている。なお、FPD36は、シンチレータ29と検出パネル30との配置を逆にした「裏面読取方式(PSS:Penetration Side Sampling)」であってもよい。 In the housing 25 of the X-ray image detection apparatus 21, an FPD 36 that is an image detection means for detecting an X-ray image is disposed so as to face the irradiation surface. The FPD 36 is an indirect conversion type that includes a scintillator 29 that converts X-rays into visible light and a detection panel 30 that photoelectrically converts visible light converted by the scintillator 29, and is detected on the X-ray irradiation surface side of the scintillator 29. It is a “surface reading method (ISS: Irradiation Side Sampling)” in which the panel 30 is arranged. The FPD 36 may be a “backside scanning method (PSS: Penetration Side Sampling)” in which the arrangement of the scintillator 29 and the detection panel 30 is reversed.
 筐体25の内部には、照射面の短手方向に沿った一端側に、各種電子回路31、バッテリ32、通信部33が配置されている。各種電子回路31は、FPD36を制御するための電子回路であり、各種電子部品がX線の照射によって損傷しないようにX線遮蔽性を有する材料によって保護されている。バッテリ32は、充電可能かつ着脱自在なように筐体25に組み込まれており、FPD36、各種電子回路31及び通信部33に電力を供給する。通信部33は、有線方式または無線方式により、撮影制御装置23と通信を行う。 Inside the housing 25, various electronic circuits 31, a battery 32, and a communication unit 33 are arranged on one end side along the short side of the irradiation surface. The various electronic circuits 31 are electronic circuits for controlling the FPD 36, and are protected by materials having X-ray shielding properties so that various electronic components are not damaged by X-ray irradiation. The battery 32 is incorporated in the housing 25 so as to be rechargeable and detachable, and supplies power to the FPD 36, various electronic circuits 31, and the communication unit 33. The communication unit 33 communicates with the imaging control device 23 by a wired method or a wireless method.
 図3において、FPD36は、TFTアクティブマトリクス基板を有し、この基板上にX線の照射量に応じた信号電荷を蓄積する複数の画素37を配列してなる撮像領域38を有する検出パネル30と、画素37を駆動して信号電荷の読み出しを制御するゲートドライバ39と、画素37から読み出された信号電荷をデジタルデータに変換して出力する信号処理回路40と、ゲートドライバ39と信号処理回路40を制御して、FPD36の動作を制御する制御部41とを備えている。制御部41には、有線方式または無線方式によって撮影制御装置23と通信を行う通信部45が接続されている。複数の画素37は、所定のピッチで二次元にn行(x方向)×m列(y方向)のマトリクスに配列されている。 In FIG. 3, the FPD 36 has a TFT active matrix substrate, and a detection panel 30 having an imaging region 38 in which a plurality of pixels 37 for accumulating signal charges corresponding to the amount of X-ray irradiation are arranged on the substrate. , A gate driver 39 for driving the pixel 37 to control reading of the signal charge, a signal processing circuit 40 for converting the signal charge read from the pixel 37 into digital data and outputting it, a gate driver 39 and a signal processing circuit 40, and a control unit 41 that controls the operation of the FPD 36. The control unit 41 is connected to a communication unit 45 that communicates with the imaging control device 23 by a wired method or a wireless method. The plurality of pixels 37 are two-dimensionally arranged in a matrix of n rows (x direction) × m columns (y direction) at a predetermined pitch.
 FPD36は、X線を可視光に変換するシンチレータ(図示せず)を有し、シンチレータによって変換された可視光を画素37で光電変換する間接変換型である。シンチレータは、画素37が配列された撮像領域38の全面と対向するように配置されている。シンチレータは、CsI(ヨウ化セシウム)やGOS(ガドリニウムオキシサルファイド)などの蛍光体からなる。なお、X線を直接電荷に変換する変換層(アモルファスセレン等)を用いた直接変換型のFPDを用いてもよい。 The FPD 36 has a scintillator (not shown) that converts X-rays into visible light, and is an indirect conversion type in which visible light converted by the scintillator is photoelectrically converted by the pixels 37. The scintillator is disposed so as to face the entire surface of the imaging region 38 in which the pixels 37 are arranged. The scintillator is made of a phosphor such as CsI (cesium iodide) or GOS (gadolinium oxysulfide). Note that a direct conversion type FPD using a conversion layer (such as amorphous selenium) that directly converts X-rays into electric charges may be used.
 画素37は、可視光の入射によって電荷(電子-正孔対)を発生する光電変換素子であるフォトダイオード42、フォトダイオード42が発生した電荷を蓄積するキャパシタ(図示せず)、およびスイッチング素子として薄膜トランジスタ(TFT)43を備える。 The pixel 37 includes a photodiode 42 that is a photoelectric conversion element that generates charges (electron-hole pairs) upon incidence of visible light, a capacitor (not shown) that accumulates charges generated by the photodiode 42, and a switching element. A thin film transistor (TFT) 43 is provided.
 フォトダイオード42は、a-Si(アモルファスシリコン)などの半導体層(例えばPIN型)を有し、その上下に上部電極および下部電極が配されている。フォトダイオード42は、下部電極にTFT43が接続され、上部電極にはバイアス線(図示せず)が接続される。 The photodiode 42 has a semiconductor layer (for example, PIN type) such as a-Si (amorphous silicon), and an upper electrode and a lower electrode are arranged above and below the semiconductor layer. In the photodiode 42, the TFT 43 is connected to the lower electrode, and a bias line (not shown) is connected to the upper electrode.
 バイアス線を通じて、撮像領域38内の全画素37に対して、フォトダイオード42の上部電極にバイアス電圧が印加される。バイアス電圧の印加によりフォトダイオード42の半導体層内に電界が生じ、光電変換により半導体層内で発生した電荷(電子-正孔対)は、一方がプラス、他方がマイナスの極性を持つ上部電極と下部電極に移動し、キャパシタに電荷が蓄積される。 A bias voltage is applied to the upper electrode of the photodiode 42 with respect to all the pixels 37 in the imaging region 38 through the bias line. An electric field is generated in the semiconductor layer of the photodiode 42 by application of the bias voltage, and the charge (electron-hole pair) generated in the semiconductor layer by photoelectric conversion is an upper electrode having a positive polarity on one side and a negative polarity on the other side. It moves to the lower electrode and charges are accumulated in the capacitor.
 TFT43は、ゲート電極が走査線47に、ソース電極が信号線48に、ドレイン電極がフォトダイオード42にそれぞれ接続される。走査線47と信号線48は格子状に配線されている。走査線47は撮像領域38内の画素37の行数分(n行分)設けられ、各走査線47は各行の複数の画素37に接続される共通配線である。信号線48は画素37の列数分(m列分)設けられ、各信号線48は各列の複数の画素37に接続される共通配線である。各走査線47はゲートドライバ39に接続され、各信号線48は信号処理回路40に接続される。 The TFT 43 has a gate electrode connected to the scanning line 47, a source electrode connected to the signal line 48, and a drain electrode connected to the photodiode 42. The scanning lines 47 and the signal lines 48 are wired in a grid pattern. The scanning lines 47 are provided for the number of rows (n rows) of the pixels 37 in the imaging region 38, and each scanning line 47 is a common wiring connected to the plurality of pixels 37 in each row. The signal lines 48 are provided for the number of columns of the pixels 37 (m columns), and each signal line 48 is a common wiring connected to a plurality of pixels 37 in each column. Each scanning line 47 is connected to the gate driver 39, and each signal line 48 is connected to the signal processing circuit 40.
 ゲートドライバ39は、TFT43を駆動することにより、X線の照射量に応じた信号電荷を画素37に蓄積する蓄積動作と、画素37から信号電荷を読み出す読み出し動作と、画素37に蓄積される電荷をリセットするリセット動作とを行わせる。制御部41は、ゲートドライバ39によって実行される上記各動作の開始タイミングを制御する。 The gate driver 39 drives the TFT 43 to accumulate a signal charge corresponding to the X-ray irradiation amount in the pixel 37, a read operation for reading the signal charge from the pixel 37, and a charge accumulated in the pixel 37. And reset operation to reset. The control unit 41 controls the start timing of each of the operations executed by the gate driver 39.
 蓄積動作ではTFT43がオフ状態にされ、その間に画素37に信号電荷が蓄積される。読み出し動作では、ゲートドライバ39から同じ行のTFT43を一斉に駆動するゲートパルスG1~Gnを順次発生して、走査線47を一行ずつ順に活性化し、走査線47に接続されたTFT43を一行分ずつオン状態とする。 In the accumulation operation, the TFT 43 is turned off, and signal charges are accumulated in the pixel 37 during that time. In the read operation, gate pulses G1 to Gn for simultaneously driving the TFTs 43 in the same row are generated in sequence from the gate driver 39, the scanning lines 47 are sequentially activated one by one, and the TFTs 43 connected to the scanning lines 47 are provided for each row. Turn on.
 一行分のTFT43がオン状態になると、一行分の画素37のそれぞれに蓄積された信号電荷が、各信号線48を通じて信号処理回路40に入力される。信号処理回路40において、一行分の信号電荷は電圧に変換されて出力され、各信号電荷に応じた出力電圧が、電圧信号D1~Dmとして読み出される。アナログの電圧信号D1~Dmはデジタルデータに変換されて、一行分の各画素の濃度を表すデジタルな画素値である画像データが生成される。画像データは、X線画像検出装置21の筐体に内蔵されるメモリ56に出力される。 When the TFTs 43 for one row are turned on, the signal charges accumulated in the pixels 37 for one row are input to the signal processing circuit 40 through the signal lines 48. In the signal processing circuit 40, signal charges for one row are converted into voltages and output, and output voltages corresponding to the signal charges are read as voltage signals D1 to Dm. The analog voltage signals D1 to Dm are converted into digital data, and image data that is digital pixel values representing the density of each pixel for one row is generated. The image data is output to the memory 56 built in the housing of the X-ray image detection apparatus 21.
 フォトダイオード42の半導体層には、X線の入射の有無に関わらず暗電流が発生する。暗電流に応じた電荷である暗電荷はバイアス電圧が印加されているためにキャパシタに蓄積される。暗電荷は、画像データに対してはノイズ成分となるので、これを除去するためにリセット動作が行われる。リセット動作は、画素37において発生する暗電荷を、画素37から信号線48を通じて掃き出す動作である。 A dark current is generated in the semiconductor layer of the photodiode 42 regardless of whether X-rays are incident. Dark charges, which are charges corresponding to the dark current, are accumulated in the capacitor because a bias voltage is applied. Since the dark charge becomes a noise component for the image data, a reset operation is performed to remove the dark charge. The reset operation is an operation of sweeping out dark charges generated in the pixel 37 from the pixel 37 through the signal line 48.
 リセット動作は、例えば、一行ずつ画素37をリセットする順次リセット方式で行われる。順次リセット方式では、信号電荷の読み出し動作と同様、ゲートドライバ39から走査線47に対してゲートパルスG1~Gnを順次発生して、画素37のTFT43を一行ずつオン状態にする。TFT43がオン状態になっている間、画素37から暗電荷が信号線48を通じて信号処理回路40に入力される。 The reset operation is performed by, for example, a sequential reset method in which the pixels 37 are reset row by row. In the sequential reset method, similarly to the signal charge reading operation, gate pulses G1 to Gn are sequentially generated from the gate driver 39 to the scanning line 47, and the TFTs 43 of the pixels 37 are turned on line by line. While the TFT 43 is on, dark charges are input from the pixel 37 to the signal processing circuit 40 through the signal line 48.
 リセット動作では、読み出し動作と異なり、信号処理回路40において、暗電荷に応じた出力電圧の読み出しは行われない。リセット動作では、各ゲートパルスG1~Gnの発生と同期して、制御部41から信号処理回路40にリセットパルスRSTが出力される。信号処理回路40においてリセットパルスRSTが入力されると、後述する積分アンプ49のリセットスイッチ49aがオンされて、入力された暗電荷がリセットされる。 In the reset operation, unlike the read operation, the signal processing circuit 40 does not read the output voltage corresponding to the dark charge. In the reset operation, the reset pulse RST is output from the control unit 41 to the signal processing circuit 40 in synchronization with the generation of the gate pulses G1 to Gn. When a reset pulse RST is input in the signal processing circuit 40, a reset switch 49a of an integration amplifier 49 described later is turned on, and the input dark charge is reset.
 順次リセット方式に代えて、配列画素の複数行を一グループとしてグループ内で順次リセットを行い、グループ数分の行の暗電荷を同時に掃き出す並列リセット方式や、全行にゲートパルスを入れて全画素の暗電荷を同時に掃き出す全画素リセット方式を用いてもよい。並列リセット方式や全画素リセット方式によりリセット動作を高速化することができる。 Instead of the sequential reset method, multiple rows of array pixels are grouped as a group, and the reset is performed sequentially within the group, and the dark charge of the number of rows in the group is simultaneously discharged. An all-pixel reset method that simultaneously sweeps out the dark charges may be used. The reset operation can be speeded up by a parallel reset method or an all-pixel reset method.
 信号処理回路40は、積分アンプ49、MUX50およびA/D変換器51等からなる。積分アンプ49は、各信号線48に対して個別に接続される。積分アンプ49は、オペアンプとオペアンプの入出力端子間に接続されたキャパシタとからなり、信号線48はオペアンプの一方の入力端子に接続される。積分アンプ49のもう一方の入力端子(図示せず)はグランド(GND)に接続される。積分アンプ49は、信号線48から入力される信号電荷を積算し、電圧信号D1~Dmに変換して出力する。 The signal processing circuit 40 includes an integrating amplifier 49, a MUX 50, an A / D converter 51, and the like. The integrating amplifier 49 is individually connected to each signal line 48. The integrating amplifier 49 includes an operational amplifier and a capacitor connected between the input and output terminals of the operational amplifier, and the signal line 48 is connected to one input terminal of the operational amplifier. The other input terminal (not shown) of the integrating amplifier 49 is connected to the ground (GND). The integrating amplifier 49 integrates the signal charges input from the signal line 48, converts them into voltage signals D1 to Dm, and outputs them.
 各列の積分アンプ49の出力端子は、電圧信号D1~Dmを増幅する増幅器(図示せず)や、電圧信号D1~Dmを保持するサンプルホールド部(図示せず)を介して、MUX50に接続されている。MUX50は、パラレルに接続される複数の積分アンプ49から1つを選択し、選択した積分アンプ49から出力される電圧信号D1~DmをシリアルにA/D変換器51に入力する。A/D変換器51は、アナログの電圧信号D1~Dmをそれぞれの信号レベルに応じたデジタルな画素値に変換する。 The output terminal of the integrating amplifier 49 in each column is connected to the MUX 50 via an amplifier (not shown) that amplifies the voltage signals D1 to Dm and a sample hold unit (not shown) that holds the voltage signals D1 to Dm. Has been. The MUX 50 selects one of a plurality of integration amplifiers 49 connected in parallel, and inputs the voltage signals D1 to Dm output from the selected integration amplifier 49 to the A / D converter 51 serially. The A / D converter 51 converts the analog voltage signals D1 to Dm into digital pixel values corresponding to the respective signal levels.
 蓄積動作後、信号電荷を読み出す読み出し動作においては、ゲートパルスによってTFT43が一行ずつオン状態にされ、一行内の各列の画素37のキャパシタに蓄積された信号電荷が信号線48を介して積分アンプ49に入力される。 In the readout operation for reading out the signal charges after the accumulation operation, the TFTs 43 are turned on row by row by the gate pulse, and the signal charges accumulated in the capacitors of the pixels 37 in each column in the row are integrated via the signal line 48. 49.
 積分アンプ49から一行分の電圧信号D1~Dmが出力されると、制御部41は、積分アンプ49に対してリセットパルス(リセット信号)RSTを出力し、積分アンプ49のリセットスイッチ49aをオンする。これにより、積分アンプ49に蓄積された一行分の信号電荷がリセットされる。積分アンプ49がリセットされると、ゲートドライバ39から次の行のゲートパルスが出力され、次の行の画素37の信号電荷の読み出しを開始させる。これらの動作を順次繰り返して全行の画素37の信号電荷を読み出す。 When the voltage signals D1 to Dm for one row are output from the integration amplifier 49, the control unit 41 outputs a reset pulse (reset signal) RST to the integration amplifier 49 and turns on the reset switch 49a of the integration amplifier 49. . As a result, the signal charge for one row accumulated in the integrating amplifier 49 is reset. When the integration amplifier 49 is reset, the gate pulse of the next row is output from the gate driver 39 to start reading the signal charge of the pixel 37 of the next row. These operations are sequentially repeated to read the signal charges of the pixels 37 in all rows.
 全行の読み出しが完了すると、一画面分のX線画像を表す画像データがメモリ56に記録される。メモリ56に記録された画像データに対しては、FPD36の個体差や環境に起因して生じる固定パターンノイズであるオフセット成分を除去するオフセット補正や、各画素37のフォトダイオード42の感度のばらつきや信号処理回路40の出力特性のばらつきなどを補正するための感度補正といった画像補正処理が施される。画像データは、メモリ56から読み出されて撮影制御装置23に出力され、コンソール24に送信される。こうして被検者HのX線画像が検出される。 When the reading of all lines is completed, image data representing an X-ray image for one screen is recorded in the memory 56. For the image data recorded in the memory 56, offset correction for removing offset components, which are fixed pattern noises caused by individual differences in the FPD 36 and the environment, variations in sensitivity of the photodiodes 42 of the pixels 37, Image correction processing such as sensitivity correction for correcting variations in output characteristics of the signal processing circuit 40 is performed. The image data is read from the memory 56, output to the imaging control device 23, and transmitted to the console 24. Thus, an X-ray image of the subject H is detected.
 また、FPD36は、X線発生装置11との間で同期信号の遣り取りをすることなく、X線源13の照射タイミングを自己検出して、検出した照射タイミングにFPD36の動作を同期させる自己検出方式の同期制御機能を有している。図3においてハッチングで示すように、FPD36の撮像領域38内には、X線の照射開始及び照射終了の各タイミングを検出するための検出素子として短絡画素62が設けられている。画素37は、TFT43のオンオフによって信号線48との電気的な接続のオンオフが切り替えられるのに対して、短絡画素62は、信号線48と常時短絡している。 Further, the FPD 36 self-detects the irradiation timing of the X-ray source 13 without exchanging a synchronization signal with the X-ray generator 11 and synchronizes the operation of the FPD 36 with the detected irradiation timing. It has a synchronization control function. As indicated by hatching in FIG. 3, a short-circuit pixel 62 is provided in the imaging region 38 of the FPD 36 as a detection element for detecting each timing of X-ray irradiation start and irradiation end. The pixel 37 is switched on / off of electrical connection with the signal line 48 by turning on / off the TFT 43, whereas the short-circuited pixel 62 is always short-circuited with the signal line 48.
 短絡画素62は、構造は画素37とほぼ同様であり、フォトダイオード42とTFT43とを有しており、フォトダイオード42はX線の照射量に応じた信号電荷を発生する。短絡画素62において、画素37との構造上の相違点は、TFT43のソースとドレインが結線により短絡している点であり、短絡画素62のTFT43のスイッチング機能は失われている。これにより、短絡画素62のフォトダイオード42が発生する信号電荷が常時信号線48に流出し、積分アンプ49に入力される。なお、短絡画素62のTFT43のソースとドレインを結線する代わりに、短絡画素62についてはTFT43そのものを設けずに、フォトダイオード42と信号線48を直接接続してもよい。 The short-circuited pixel 62 has substantially the same structure as the pixel 37, and includes a photodiode 42 and a TFT 43, and the photodiode 42 generates a signal charge corresponding to the amount of X-ray irradiation. The short circuit pixel 62 has a structural difference from the pixel 37 in that the source and drain of the TFT 43 are short-circuited by connection, and the switching function of the TFT 43 of the short circuit pixel 62 is lost. As a result, the signal charge generated by the photodiode 42 of the short-circuited pixel 62 always flows out to the signal line 48 and is input to the integrating amplifier 49. Instead of connecting the source and drain of the TFT 43 of the short-circuited pixel 62, the photodiode 42 and the signal line 48 may be directly connected to the short-circuited pixel 62 without providing the TFT 43 itself.
 制御部41は、短絡画素62の出力に基づいて、X線源13からFPD36に照射されるX線の強度(単位時間当たりの照射量)を測定して、X線の強度変化を監視する。制御部41は、MUX50によって、短絡画素62からの信号電荷が入力される積分アンプ49を選択して、積分アンプ49の電圧信号を、短絡画素62の出力電圧Vout(検出信号)として読み出す。制御部41は、出力電圧Voutを1回読み出すと、積分アンプ49をリセットする。制御部41は、照射中のX線の強度変化を監視できるように、蓄積動作中において、出力電圧Voutを読み出す動作をX線の照射時間に対して非常に短い間隔で繰り返す。 The control unit 41 measures the intensity of X-rays (irradiation amount per unit time) emitted from the X-ray source 13 to the FPD 36 based on the output of the short-circuited pixel 62, and monitors changes in the intensity of X-rays. The control unit 41 uses the MUX 50 to select the integration amplifier 49 to which the signal charge from the short circuit pixel 62 is input, and reads the voltage signal of the integration amplifier 49 as the output voltage Vout (detection signal) of the short circuit pixel 62. The controller 41 resets the integrating amplifier 49 when the output voltage Vout is read once. The controller 41 repeats the operation of reading out the output voltage Vout at a very short interval with respect to the X-ray irradiation time during the accumulation operation so that the intensity change of the X-ray during irradiation can be monitored.
 制御部41は、出力電圧Voutの値をデジタルデータに変換してメモリ56に記録する。制御部41は、メモリ56に記録された出力電圧Voutの経時変化に基づいて、X線源13から照射されるX線の強度変化を監視する。制御部41は、自己検出方式による同期制御を行う場合には、出力電圧Voutの経時変化に基づいて、X線の立ち上がりと立ち下がりをそれぞれ検出することにより、X線の照射開始及び照射終了のタイミングを検出する。静止画撮影の場合には、FPD36は、自己検出方式による同期制御を実行して、照射開始のタイミングに合わせて蓄積動作を開始し、照射終了のタイミングに合わせて蓄積動作を終了して読み出し動作に移行する。 The control unit 41 converts the value of the output voltage Vout into digital data and records it in the memory 56. The control unit 41 monitors the intensity change of the X-rays emitted from the X-ray source 13 based on the change with time of the output voltage Vout recorded in the memory 56. When performing the synchronous control by the self-detection method, the control unit 41 detects the rise and fall of the X-ray based on the change with time of the output voltage Vout, thereby starting and stopping the X-ray irradiation. Detect timing. In the case of still image shooting, the FPD 36 executes synchronization control by the self-detection method, starts the accumulation operation in accordance with the irradiation start timing, ends the accumulation operation in accordance with the irradiation end timing, and reads out. Migrate to
 FPD36は、動画撮影を行う場合のモードとして、X線源13がX線をパルス照射する場合に対応したパルス照射対応モードと、X線源13がX線をほぼ一定の強度で連続照射する場合に対応した連続照射対応モードの2つの動作モードを有している。FPD36は、パルス照射対応モードでは、静止画撮影の場合と同様に、順次発生する複数のX線パルスの立ち上がりと立ち下がりを自己検出してX線の照射開始及び照射終了のタイミングを検出する自己検出方式による同期制御を実行する。X線源13によるパルス照射は、一定のパルス周期で行われるが、順次発生するX線パルスの立ち上がりや立ち下がりのタイミングに微少なズレが生じてパルス周期に変動が生じる場合もある。自己検出方式による同期制御を行うことで、パルス周期に変動が生じた場合でも、FPD36の動作をX線のパルス照射に正確に対応させることができる。 The FPD 36 has a pulse irradiation mode corresponding to the case where the X-ray source 13 irradiates X-rays as a mode when performing moving image shooting, and the case where the X-ray source 13 continuously irradiates X-rays with substantially constant intensity. There are two operation modes of continuous irradiation corresponding mode. In the pulse irradiation compatible mode, the FPD 36 self-detects the timing of the start and end of X-ray irradiation by self-detecting the rising and falling edges of a plurality of sequentially generated X-ray pulses, as in the case of still image shooting. Synchronous control based on the detection method is executed. Although the pulse irradiation by the X-ray source 13 is performed at a constant pulse cycle, there may be a slight deviation in the rise and fall timings of sequentially generated X-ray pulses, resulting in fluctuations in the pulse cycle. By performing the synchronous control by the self-detection method, the operation of the FPD 36 can accurately correspond to the X-ray pulse irradiation even when the pulse period varies.
 連続照射対応モードでは、ほぼ一定のX線強度で連続して照射されるX線の連続照射に対応するモードであり、所定の時間間隔で蓄積動作と読み出し動作とを交互に繰り返すモードである。連続照射の場合には、X線の強度はほぼ一定であるので、FPD36は、同期を考慮せずに、所定の時間間隔で蓄積動作と読み出し動作とを交互に繰り返せばよい。 The continuous irradiation support mode is a mode corresponding to continuous irradiation of X-rays that are continuously irradiated with a substantially constant X-ray intensity, and is a mode in which an accumulation operation and a reading operation are alternately repeated at predetermined time intervals. In the case of continuous irradiation, since the intensity of X-rays is substantially constant, the FPD 36 may repeat the accumulation operation and the read operation alternately at predetermined time intervals without considering synchronization.
 パルス照射対応モードと連続照射対応モードは、基本的には、X線源13がパルス照射をするか連続照射をするかに応じて設定されるが、上述したように、図11及び図12に示したように、パルス照射の場合には、X線の照射プロファイルによって、自己検出方式による同期制御が可能な場合と不可能な場合がある。図11及び図12に示す照射プロファイルは、X線パルスの幅及びX線パルスの波尾の長さTsが同じで、パルス周期のみが異なっている。図11に示す照射プロファイルのように、X線パルスのパルス周期PPが長い場合(PP1)には、順次発生する2つのX線パルスの重なりが無く、2つのX線パルスの谷間が明瞭であるため、自己検出方式による同期制御が可能である。 The pulse irradiation compatible mode and the continuous irradiation compatible mode are basically set according to whether the X-ray source 13 performs pulse irradiation or continuous irradiation. As described above, as shown in FIGS. As shown, in the case of pulse irradiation, there are cases where synchronous control by the self-detection method is possible and impossible depending on the X-ray irradiation profile. In the irradiation profiles shown in FIGS. 11 and 12, the width of the X-ray pulse and the length Ts of the wave tail of the X-ray pulse are the same, and only the pulse period is different. When the pulse cycle PP of the X-ray pulse is long (PP1) as in the irradiation profile shown in FIG. 11, there is no overlap between the two X-ray pulses that are sequentially generated, and the valley between the two X-ray pulses is clear. Therefore, synchronous control by the self-detection method is possible.
 一方、図12に示す照射プロファイルのように、X線パルスのパルス周期PPが短い場合(PP2)には、順次発生する2つのX線パルスの重なりが生じ、2つのX線パルスの谷間が不明瞭な場合には、自己検出方式による同期制御が不可能である。具体的には、照射プロファイルにおいて、2つのX線パルスの谷間が、X線の強度が閾値電圧Vth以下にならない場合には、X線パルスの立ち上がりと立ち下がりを検出できないため、自己検出方式による同期制御は不可能である。 On the other hand, when the pulse cycle PP of the X-ray pulse is short (PP2) as in the irradiation profile shown in FIG. 12, the two X-ray pulses that are sequentially generated overlap, and the valley between the two X-ray pulses is not good. In a clear case, synchronous control by the self-detection method is impossible. Specifically, in the irradiation profile, when the X-ray intensity does not fall below the threshold voltage Vth in the valley between the two X-ray pulses, the rise and fall of the X-ray pulse cannot be detected. Synchronous control is not possible.
 FPD36は、X線源13がパルス照射を行う場合において、X線源13の照射プロファイルに基づいて自己検出方式による同期制御が可能か否かを自動判定して、判定結果に応じてモード設定を行うモード設定機能を有している。FPD36は、自己検出方式による同期制御が可能な場合には、パルス照射対応モードに設定し、自己検出方式による同期制御が不可能な場合には、連続照射対応モードに設定する。図11に示すような照射プロファイルの場合には、順次発生する2つのX線パルスの重なりにより、X線強度がほぼ一定の状態で照射される連続照射の照射プロファイルに近くなるため、X線源13がパルス照射を行う場合であっても、連続照射対応モードで動作させることができる。 When the X-ray source 13 performs pulse irradiation, the FPD 36 automatically determines whether synchronization control by the self-detection method is possible based on the irradiation profile of the X-ray source 13 and sets the mode according to the determination result. It has a mode setting function. The FPD 36 is set to the pulse irradiation compatible mode when synchronous control by the self detection method is possible, and is set to the continuous irradiation compatible mode when synchronous control by the self detection method is impossible. In the case of the irradiation profile as shown in FIG. 11, the X-ray source is close to the irradiation profile of continuous irradiation in which the X-ray intensity is irradiated in a substantially constant state due to the overlap of two X-ray pulses that are sequentially generated. Even if 13 performs pulse irradiation, it can be operated in the continuous irradiation mode.
 図4及び図5を参照しながら、FPD36のモード設定処理について説明する。FPD36は、X線源13がパルス照射を実行している状態で、自己検出方式による同期制御が可能か否かを判定して、判定結果に応じてモード設定を行う。モード設定処理において、制御部41は、照射量サンプリング動作を実行して、短絡画素62の出力電圧Voutを所定時間間隔でサンプリングして、サンプリングした出力電圧Voutをデジタル化した値をメモリ56に記録する。短絡画素62の出力電圧Voutは単位時間当たりの照射量であるX線強度を表すので、サンプリングした出力電圧Voutを順次記録していくことで、X線強度の経時変化を表す照射プロファイルが作成される。そして、制御部41は、照射プロファイルに基づいて、単位時間当たりの照射量の積算値である積算検出量の経時変化を表す検出プロファイルを作成する。 The mode setting process of the FPD 36 will be described with reference to FIGS. The FPD 36 determines whether or not synchronization control by the self-detection method is possible in a state where the X-ray source 13 is performing pulse irradiation, and performs mode setting according to the determination result. In the mode setting process, the control unit 41 performs a dose sampling operation, samples the output voltage Vout of the shorted pixel 62 at predetermined time intervals, and records a digitized value of the sampled output voltage Vout in the memory 56. To do. Since the output voltage Vout of the short-circuited pixel 62 represents the X-ray intensity that is the irradiation amount per unit time, an irradiation profile that represents the temporal change in the X-ray intensity is created by sequentially recording the sampled output voltage Vout. The And the control part 41 produces the detection profile showing the time-dependent change of the integrated detection amount which is an integrated value of the irradiation amount per unit time based on an irradiation profile.
 図4において、照射プロファイルは、図11に示す照射プロファイルと同じパルス周期PP1の場合の照射プロファイルである。この場合の検出プロファイルは、X線パルスの立ち上がりによって積算検出量も徐々に増加する。1個のX線パルスにおいて強度が最大となると、照射プロファイルでは、停止指令を受けるまで強度がほぼ一定となる。この区間Cの検出プロファイルにおいて、積算検出量の増加率も最大となり、積算検出量は最大の増加率でほぼ直線的に増加する。照射プロファイルにおいて、停止指令を受けるとX線パルスの強度は下降を開始するが、X線源13の応答速度が遅い場合には、X線強度は瞬時に「0」になることはなく、X線強度は減衰しながらもX線源13の照射は継続されるので、X線パルスには波尾が発生する。 In FIG. 4, the irradiation profile is an irradiation profile in the case of the same pulse period PP1 as the irradiation profile shown in FIG. In the detection profile in this case, the integrated detection amount gradually increases as the X-ray pulse rises. When the intensity becomes maximum in one X-ray pulse, the intensity becomes substantially constant in the irradiation profile until a stop command is received. In the detection profile of section C, the increase rate of the integrated detection amount is also maximized, and the integrated detection amount increases almost linearly at the maximum increase rate. In the irradiation profile, when the stop command is received, the intensity of the X-ray pulse starts to decrease. However, when the response speed of the X-ray source 13 is slow, the X-ray intensity does not instantaneously become “0”. Since the irradiation of the X-ray source 13 is continued while the line intensity is attenuated, a wave tail is generated in the X-ray pulse.
 図4に示す検出プロファイルにおいて、X線パルスの波尾の期間では、積算検出量は、増加率が徐々に減少するものの増加を続ける。そして、X線パルスの強度がほぼ「0」になった時点で増加率が「0」になり、積算検出量はほぼ一定になる。積算検出量がほぼ一定となる期間Tfは、次のX線パルスの立ち上がりまで続く。なお、ほぼ一定とは、例えば、積算検出量の変動量が上下20%程度の範囲である状態が継続する場合をいう。 In the detection profile shown in FIG. 4, during the wave tail period of the X-ray pulse, the integrated detection amount continues to increase although the increase rate gradually decreases. Then, when the intensity of the X-ray pulse becomes substantially “0”, the increase rate becomes “0”, and the integrated detection amount becomes substantially constant. The period Tf in which the integrated detection amount is substantially constant continues until the next rise of the X-ray pulse. Note that “substantially constant” means, for example, a case where a state where the fluctuation amount of the integrated detection amount is in the range of about 20% in the upper and lower directions continues.
 一方、図5において、照射プロファイルは、図12に示す照射プロファイルと同じパルス周期PP2の場合の照射プロファイルである。この場合の検出プロファイルは、図4の場合と同様に、1個目のX線パルスの立ち上がりによって積算検出量が徐々に増加し、区間Cにおいて増加率が最大となり、積算検出量はその増加率でほぼ直線的に増加する。照射プロファイルにおいて、停止指令後、X線強度は下降を開始するが、1個目のX線パルスの強度が閾値電圧Vth以下にならないうちに、次のX線パルスが立ち上がるため、1個目のX線パルスの波尾と2個目のX線パルスの立ち上がり部分と重なる。 On the other hand, in FIG. 5, the irradiation profile is an irradiation profile in the case of the same pulse period PP2 as the irradiation profile shown in FIG. In the detection profile in this case, as in the case of FIG. 4, the integrated detection amount gradually increases at the rising edge of the first X-ray pulse, and the increase rate becomes maximum in the section C, and the integrated detection amount is the increase rate. Increases almost linearly. In the irradiation profile, the X-ray intensity starts decreasing after the stop command, but the next X-ray pulse rises before the intensity of the first X-ray pulse falls below the threshold voltage Vth. It overlaps the wave tail of the X-ray pulse and the rising portion of the second X-ray pulse.
 図5に示す照射プロファイルにおいては、順次発生する2つのX線パルスの谷間は、X線パルスの重なり量に応じて、X線強度が増加するため、図4の場合と比べてX線強度の減少が少ない。そのため、積算検出量は、谷間においては、区間Cと比較して増加率は下がるものの増加を続ける。そして、次のX線パルスの区間Cに入ると、積算検出量は、再び最大の増加率で直線的に増加する。制御部41は、検出プロファイルから期間Tfを測定する。図5に示す照射プロファイルの場合には、積算検出量がほぼ一定となる期間Tfが「0」となる。このように、積算検出量がほぼ一定となる期間Tfを測定することで、順次発生する2つのX線パルスの重なり状態を調べることができる。 In the irradiation profile shown in FIG. 5, the X-ray intensity increases in the valley between two X-ray pulses that are sequentially generated in accordance with the amount of overlap of the X-ray pulses. There is little decrease. Therefore, the integrated detection amount continues to increase in the valleys although the rate of increase is lower than that in the section C. Then, when entering the section X of the next X-ray pulse, the integrated detection amount increases linearly again at the maximum increase rate. The control unit 41 measures the period Tf from the detection profile. In the case of the irradiation profile shown in FIG. 5, the period Tf in which the integrated detection amount is substantially constant is “0”. In this way, by measuring the period Tf in which the integrated detection amount is substantially constant, it is possible to investigate the overlapping state of two X-ray pulses that are sequentially generated.
 制御部41は、検出プロファイルから期間Tfを測定した後、期間Tfと予め定めた閾値Thと比較する。図4の例のように、制御部41は、期間Tfが閾値Th以上の場合には、制御部41は、自己検出方式による同期制御が可能であると判定し、パルス照射対応モードに設定する。一方、期間Tfが閾値Thよりも小さい場合には、自己検出方式による同期制御が不可能であると判定して、連続照射対応モードに設定する。 The control unit 41 measures the period Tf from the detection profile, and then compares the period Tf with a predetermined threshold Th. As in the example of FIG. 4, when the period Tf is equal to or greater than the threshold Th, the control unit 41 determines that the synchronous control by the self-detection method is possible and sets the pulse irradiation compatible mode. . On the other hand, when the period Tf is smaller than the threshold Th, it is determined that the synchronous control by the self-detection method is impossible, and the continuous irradiation mode is set.
 制御部41は、連続照射対応モードに設定した場合には、さらに、検出プロファイルからパルス周期PPを測定する。パルス周期PPの測定は、例えば、次のような手順で行われる。制御部41は、検出プロファイルから、積算検出量の増加率が最大となり、その増加率で積算検出量が直線的に増加する区間Cを特定する。そして、順次発生する2つのX線パルスのそれぞれの区間Cの始期の時間間隔を、パルス周期PPとして算出する。もちろん、区間Cの始期に代えて終期の時間間隔を求めてもよい。さらに、制御部41は、測定したパルス周期PPに基づいて蓄積動作の時間を算出する。パルス周期PPの間に、蓄積動作、読み出し動作、リセット動作の一連の動作が行われることが好ましいので、FPD36は、蓄積動作の時間は、例えば、パルス周期PPから、リセット動作及び読み出し動作に必要な時間を控除した残りの時間を蓄積動作の時間として算出する。 The control unit 41 further measures the pulse period PP from the detection profile when the continuous irradiation mode is set. The measurement of the pulse period PP is performed by the following procedure, for example. From the detection profile, the control unit 41 specifies a section C in which the increase rate of the integrated detection amount is the maximum and the integrated detection amount increases linearly at the increase rate. Then, the start time interval of each section C of two X-ray pulses that are sequentially generated is calculated as a pulse period PP. Of course, the end time interval may be obtained instead of the start time of the section C. Further, the control unit 41 calculates the accumulation operation time based on the measured pulse period PP. Since it is preferable that a series of operations of accumulation operation, read operation, and reset operation is performed during the pulse period PP, the FPD 36 requires the time for the accumulation operation from, for example, the pulse period PP to the reset operation and the read operation. The remaining time obtained by subtracting this time is calculated as the accumulation operation time.
 上記説明のとおり、制御部41は、X線パルスの立ち上がり及び立ち下がりの判定が可能か否かを判定する判定部、判定結果に基づいてパルス照射対応モードか連続照射対応モードのいずれかのモードに設定するモード設定部として機能する。 As described above, the control unit 41 determines whether the rising and falling of the X-ray pulse can be determined. Based on the determination result, either the pulse irradiation compatible mode or the continuous irradiation compatible mode. Functions as a mode setting unit for setting to
 パルス照射による動画撮影を行う場合においては、以上のモード設定処理が実行されて、パルス照射対応モードか連続照射対応モードのいずれかに設定される。モード設定処理が実行された後、動画撮影の本撮影が開始される。FPD36は、パルス照射対応モードで動作する場合には、X線源13から順次発生するX線パルスの立ち上がり(照射開始)と立ち下がり(照射終了)を自己検出する自己検出方式の同期制御を行う。FPD36は、連続照射対応モードで動作する場合は、X線源13のパルス周期PPに応じて算出した時間の蓄積動作と読み出し動作を、パルス周期PPで繰り返し実行する。 When performing moving image shooting by pulse irradiation, the above mode setting process is executed, and either the pulse irradiation compatible mode or the continuous irradiation compatible mode is set. After the mode setting process is executed, the main shooting of moving image shooting is started. When the FPD 36 operates in the pulse irradiation compatible mode, the FPD 36 performs self-detection type synchronous control that self-detects the rising (irradiation start) and falling (irradiation end) of X-ray pulses sequentially generated from the X-ray source 13. . When the FPD 36 operates in the continuous irradiation-compatible mode, the time accumulation operation and the read operation calculated according to the pulse cycle PP of the X-ray source 13 are repeatedly executed in the pulse cycle PP.
 以下、上記構成による作用について、図6、図7、図9のフローチャート、及び図8、図10のタイミングチャートを参照しながら説明する。X線撮影システム10で動画撮影を行う場合には、まず、X線画像検出装置21がセットされた撮影台22に対して、被検者Hの撮影部位とX線源13の照射位置の位置合わが行われる。コンソール24には、患者の性別、年齢、撮影部位、撮影目的等の検査オーダと、これに基づいて、管電流や管電圧等の撮影条件が入力される。動画撮影の場合には、撮影条件には、X線源13の照射方法(パルス照射か連続照射か)が含まれている。コンソール24に入力された撮影条件は撮影制御装置23を介してX線画像検出装置21に送信される。また、コンソール24に入力された撮影条件に基づいて、オペレータによって、X線源13に対しても撮影条件が設定される。 Hereinafter, the operation of the above configuration will be described with reference to the flowcharts of FIGS. 6, 7, and 9, and the timing charts of FIGS. When performing video imaging with the X-ray imaging system 10, first, the position of the imaging region of the subject H and the irradiation position of the X-ray source 13 with respect to the imaging table 22 on which the X-ray image detection device 21 is set. Matching is done. The console 24 is input with an examination order such as a patient's sex, age, imaging region, imaging purpose, and imaging conditions such as tube current and tube voltage. In the case of moving image shooting, the shooting conditions include the irradiation method (pulse irradiation or continuous irradiation) of the X-ray source 13. The imaging conditions input to the console 24 are transmitted to the X-ray image detection device 21 via the imaging control device 23. Further, the imaging conditions are set for the X-ray source 13 by the operator based on the imaging conditions input to the console 24.
 X線源13の照射方法が連続照射の場合には、コンソール24からX線画像検出装置21に対して撮影準備指示が入力されて、FPD36を待機状態にさせる。待機状態では、FPD36はリセット動作を繰り返し実行する。待機状態では、FPD36は、短絡画素65の出力電圧Voutの監視も開始して、X線の照射が開始されるのを待機する。照射スイッチ15が操作されてX線源13からX線の照射が開始されると、FPD36は短絡画素の出力電圧Voutが閾値電圧Vthを超えると、X線の照射が開始されたことを検出する。照射開始を検出すると、動画撮影を開始する。連続照射の場合には、X線源13からは一定のX線強度で連続してX線が照射されているので、FPD36は所定のフレームレートに合わせて一定時間の蓄積動作と、それに続く読み出し動作及びリセット動作を繰り返し実行する。読み出された画像は順次コンソール24に送信されて表示される。 When the irradiation method of the X-ray source 13 is continuous irradiation, an imaging preparation instruction is input from the console 24 to the X-ray image detection device 21 to place the FPD 36 in a standby state. In the standby state, the FPD 36 repeatedly executes the reset operation. In the standby state, the FPD 36 also starts monitoring the output voltage Vout of the shorted pixel 65 and waits for the start of X-ray irradiation. When the irradiation switch 15 is operated and X-ray irradiation is started from the X-ray source 13, the FPD 36 detects that X-ray irradiation has started when the output voltage Vout of the short-circuited pixel exceeds the threshold voltage Vth. . When the start of irradiation is detected, moving image shooting is started. In the case of continuous irradiation, X-rays are continuously emitted from the X-ray source 13 at a constant X-ray intensity. Therefore, the FPD 36 performs a storage operation for a predetermined time in accordance with a predetermined frame rate and subsequent readout. Repeat the operation and the reset operation. The read images are sequentially transmitted to the console 24 and displayed.
 X線源13の照射方法がパルス照射の場合には、動画撮影の前に、X線画像検出装置21のモード設定処理が実行される。コンソール24からX線画像検出装置21に対してモード設定指示が入力されると、FPD36は、図6のフローチャートに示すモード設定処理を開始する。X線源13に対しては照射スイッチ15の操作によりX線の照射開始信号が入力され、X線源13のパルス照射が開始される。モード設定処理では、図4及び図5に示したように、FPD36は、短絡画素65の出力電圧Voutをサンプリングする照射量サンプリング動作を実行して、サンプリングした出力電圧Voutに基づいて照射プロファイル及び検出プロファイルを作成する(S001)。 When the irradiation method of the X-ray source 13 is pulse irradiation, the mode setting process of the X-ray image detection device 21 is executed before moving image shooting. When a mode setting instruction is input from the console 24 to the X-ray image detection apparatus 21, the FPD 36 starts the mode setting process shown in the flowchart of FIG. An X-ray irradiation start signal is input to the X-ray source 13 by operating the irradiation switch 15, and pulse irradiation of the X-ray source 13 is started. In the mode setting process, as shown in FIGS. 4 and 5, the FPD 36 performs an irradiation amount sampling operation for sampling the output voltage Vout of the short-circuited pixel 65, and the irradiation profile and detection based on the sampled output voltage Vout. A profile is created (S001).
 そして、FPD36は、検出プロファイルから、積算検出量が一定となる期間Tfを測定する(S002)。FPD36は、図4に示したように、測定した期間Tfが閾値Th以上の場合(S003でN)には、自己検出方式による同期制御が可能と判定して、パルス照射対応モードに設定する(S004)。 Then, the FPD 36 measures a period Tf in which the integrated detection amount is constant from the detection profile (S002). As shown in FIG. 4, when the measured period Tf is equal to or greater than the threshold Th (N in S003), the FPD 36 determines that synchronization control by the self-detection method is possible and sets the pulse irradiation compatible mode ( S004).
 一方、FPD36は、図5に示したように、測定した期間Tfが閾値Thよりも小さい場合(S003でY)には、自己検出方式による同期制御が不可能と判定して、連続照射対応モードに設定する(S005)。FPD36は、連続照射対応モードに設定した場合には、検出プロファイルから、積算検出量が一定となる区間Cを特定して、2つのX線パルスの区間Cの始期又は終期の間の時間間隔からパルス周期PPを測定する(S006)。そして、測定したパルス周期PPに基づいて、蓄積動作の時間を算出する(S007)。 On the other hand, as shown in FIG. 5, when the measured period Tf is smaller than the threshold value Th (Y in S003), the FPD 36 determines that the synchronous control by the self-detection method is impossible, and the continuous irradiation corresponding mode. (S005). When the FPD 36 is set to the continuous irradiation compatible mode, the section C in which the integrated detection amount is constant is specified from the detection profile, and the time interval between the start or end of the section C of the two X-ray pulses is determined. The pulse period PP is measured (S006). Based on the measured pulse period PP, the accumulation operation time is calculated (S007).
 こうしたモード設定処理が終了した後、X線源13のパルス照射及びFPD36の照射量サンプリング動作が一旦停止される。そして、設定した動作モードでパルス照射による動画撮影が開始される。 After the mode setting process is completed, the pulse irradiation of the X-ray source 13 and the irradiation amount sampling operation of the FPD 36 are temporarily stopped. Then, moving image shooting by pulse irradiation is started in the set operation mode.
 パルス照射対応モードでは、FPD36は、図7のフローチャート及び図8のタイミングチャートに示す手順で動画撮影を実行する。FPD36は、撮影準備指示が入力されることにより、停止状態から待機状態に移行してリセット動作が開始される(S101)。リセット動作とともに、短絡画素65の出力電圧Voutの監視による、X線強度の測定を開始する(S102)。 In the pulse irradiation compatible mode, the FPD 36 executes moving image shooting according to the procedure shown in the flowchart of FIG. 7 and the timing chart of FIG. The FPD 36 is shifted from the stop state to the standby state by the input of the shooting preparation instruction, and the reset operation is started (S101). Simultaneously with the reset operation, measurement of the X-ray intensity by monitoring the output voltage Vout of the short-circuited pixel 65 is started (S102).
 照射スイッチ15の押下によってX線源13に対して照射開始信号が入力されると、図8に示すように、X線源13は、開始指令と停止指令の入力に応じてX線パルスを発生し、被検者Hに向けて複数のX線パルスを一定間隔で照射するパルス照射を開始する。制御部41は、出力電圧Voutと閾値電圧Vthを比較して、X線強度の変化を監視する(S103)。図8に示すように、X線強度が上昇して、出力電圧Voutが閾値電圧Vthを超えたときにX線の照射が開始されたことを検出する(S104)。制御部41は、照射開始を検出すると、蓄積動作を開始する(S105)。 When an irradiation start signal is input to the X-ray source 13 by pressing the irradiation switch 15, as shown in FIG. 8, the X-ray source 13 generates an X-ray pulse in response to an input of a start command and a stop command. Then, pulse irradiation for irradiating the subject H with a plurality of X-ray pulses at regular intervals is started. The control unit 41 compares the output voltage Vout and the threshold voltage Vth and monitors the change in the X-ray intensity (S103). As shown in FIG. 8, it is detected that X-ray irradiation has started when the X-ray intensity increases and the output voltage Vout exceeds the threshold voltage Vth (S104). When detecting the start of irradiation, the control unit 41 starts an accumulation operation (S105).
 FPD36は、蓄積動作中も出力電圧Voutと閾値電圧Vthを比較して、X線の強度変化を監視する(S106)。図8に示すように、X線パルスのX線強度が下降を開始して、FPD36は、出力電圧Voutが閾値電圧Vth以下になったときに、照射終了を検出する(S107)。FPD36は、照射終了の検出に同期して蓄積動作を終了させる(S108)。FPD36は、蓄積動作を終了すると読み出し動作を実行する。そして、読み出し動作が終了すると、次の照射開始が検出されるまでの間リセット動作を実行する(S109)。読み出されたX線画像は、メモリ56に記録される。FPD36は、X線源13からのパルス照射が継続している間、上記S103~S109のステップを繰り返し(S110)、被写体の動画撮影を実行する。1個のX線パルス毎に撮影された複数枚の画像は、メモリ56からコンソール24に順次送信されて、コンソール24に表示される。 The FPD 36 compares the output voltage Vout and the threshold voltage Vth during the accumulation operation, and monitors the X-ray intensity change (S106). As shown in FIG. 8, when the X-ray intensity of the X-ray pulse starts to decrease and the FPD 36 detects the end of irradiation when the output voltage Vout becomes equal to or lower than the threshold voltage Vth (S107). The FPD 36 ends the accumulation operation in synchronization with the detection of the end of irradiation (S108). The FPD 36 executes a read operation when the accumulation operation is completed. When the read operation is completed, a reset operation is performed until the next irradiation start is detected (S109). The read X-ray image is recorded in the memory 56. While the pulse irradiation from the X-ray source 13 continues, the FPD 36 repeats the above steps S103 to S109 (S110) and executes moving image shooting of the subject. A plurality of images taken for each X-ray pulse are sequentially transmitted from the memory 56 to the console 24 and displayed on the console 24.
 一方、連続照射対応モードでは、FPD36は、図9のフローチャート及び図10のタイミングチャートに示す手順で動画撮影を実行する。FPD36は、撮影準備指示が入力されることにより、停止状態から待機状態に移行してリセット動作が開始される(S201)。リセット動作とともに、短絡画素65の出力電圧Voutの監視による、X線強度の測定を開始する(S202)。 On the other hand, in the continuous irradiation compatible mode, the FPD 36 performs moving image shooting according to the procedure shown in the flowchart of FIG. 9 and the timing chart of FIG. When the imaging preparation instruction is input, the FPD 36 shifts from the stop state to the standby state and starts a reset operation (S201). Simultaneously with the reset operation, measurement of the X-ray intensity by monitoring the output voltage Vout of the shorted pixel 65 is started (S202).
 照射スイッチ15の押下によってX線源13に対して照射開始信号が入力されると、図10に示すように、X線源13は、開始指令と停止指令の入力に応じてX線パルスを発生し、被検者Hに向けて複数のX線パルスを一定間隔で照射するパルス照射を開始する。制御部41は、出力電圧Voutと閾値電圧Vthを比較して、X線強度の変化を監視する(S203)。図10に示すように、X線強度が上昇して、出力電圧Voutが閾値電圧Vthを超えたときにX線の照射が開始されたことを検出する(S203でY)。ここまでの動作は、パルス照射対応モードと同様である。 When an irradiation start signal is input to the X-ray source 13 by pressing the irradiation switch 15, as shown in FIG. 10, the X-ray source 13 generates an X-ray pulse in response to an input of a start command and a stop command. Then, pulse irradiation for irradiating the subject H with a plurality of X-ray pulses at regular intervals is started. The control unit 41 compares the output voltage Vout with the threshold voltage Vth and monitors the change in the X-ray intensity (S203). As shown in FIG. 10, when the X-ray intensity increases and the output voltage Vout exceeds the threshold voltage Vth, it is detected that X-ray irradiation has started (Y in S203). The operation so far is the same as in the pulse irradiation compatible mode.
 連続照射対応モードでは、FPD36は、照射開始を検出すると、図5で説明したモード設定処理において算出された時間の蓄積動作を開始する(S204)。FPD36は所定時間が経過後、蓄積動作を終了して、読み出し動作及びリセット動作を実行する(S205)。リセット動作が終了すると、FPD36は、所定の時間間隔で、蓄積動作、読み出し動作、リセット動作を繰り返す。FPD36は、X線源13からのX線の照射が継続している間、パルス照射が継続している間、上記S204及びS205のステップを繰り返す(S206)。 In the continuous irradiation compatible mode, when the FPD 36 detects the start of irradiation, the FPD 36 starts an accumulation operation for the time calculated in the mode setting process described in FIG. 5 (S204). After a predetermined time has elapsed, the FPD 36 ends the accumulation operation, and executes a read operation and a reset operation (S205). When the reset operation is completed, the FPD 36 repeats the accumulation operation, the read operation, and the reset operation at predetermined time intervals. The FPD 36 repeats the above steps S204 and S205 while the X-ray irradiation from the X-ray source 13 continues and the pulse irradiation continues (S206).
 連続照射対応モードにおいて、蓄積動作の時間は、モード設定処理(図5及び図6参照)において測定されたパルス周期PPに基づいて算出された時間であるので、自己検出方式の同期制御が不可能な場合でも、パルス周期PPに同期させたフレームレートで動画撮影を行うことができる。 In the continuous irradiation mode, the accumulation operation time is a time calculated based on the pulse period PP measured in the mode setting process (see FIGS. 5 and 6). Even in such a case, moving image shooting can be performed at a frame rate synchronized with the pulse period PP.
 また、本例では、1個目のX線パルスの照射開始の検出タイミングに合わせて蓄積動作を開始させ、それ以後、パルス周期PPに合わせて蓄積動作を繰り返しているので、蓄積動作後の読み出し動作やリセット動作のタイミングを、X線強度が低下する、2つのX線パルスの谷間に合わせることができる。 In this example, the accumulation operation is started in accordance with the detection timing of the first X-ray pulse irradiation start, and thereafter, the accumulation operation is repeated in accordance with the pulse period PP. The timing of the operation and the reset operation can be adjusted to a valley between two X-ray pulses in which the X-ray intensity decreases.
 以上説明したように、本発明のX線画像検出装置21によれば、パルス照射による動画撮影を行う場合において、X線発生装置11の照射プロファイルに基づいて適切な動作モードを判定して、自己検出方式の同期制御が可能である場合には、パルス照射対応モードで動作し、自己検出方式の同期制御が不可能である場合には、連続照射対応モードで動作するので、照射プロファイルに応じた適切な動作制御を行うことができる。 As described above, according to the X-ray image detection device 21 of the present invention, when performing moving image shooting by pulse irradiation, an appropriate operation mode is determined based on the irradiation profile of the X-ray generation device 11, and the self- When the synchronous control of the detection method is possible, it operates in the pulse irradiation compatible mode, and when the synchronous control of the self-detection method is impossible, it operates in the continuous irradiation compatible mode. Appropriate operation control can be performed.
 従来の特許文献2に記載の装置のように、自己検出方式の同期制御しか行えないX線画像検出装置の場合には、X線源13の照射プロファイルによっては動画撮影ができない場合がある。そのため、特許文献2に記載のX線画像検出装置を使用するためには、X線パルスの立ち下がりの応答速度が早い高価なX線管を使用する必要がある。これに対して、本発明のX線画像検出装置21によれば、照射プロファイルに応じてパルス照射対応モードと連続照射対応モードの使い分けを行い、自己検出方式の同期制御が不可能な場合には連続照射対応モードで対応するので、高価なX線管を使用することなく、一般的なX線管を使用して動画撮影を行うことができる。そのため、X線管の交換費用といったコストの増加も無い。このような柔軟な対応が可能な本発明のX線画像検出装置21は、既存のX線発生装置と組み合わせて使用する場合に有用性が高い。 In the case of an X-ray image detection device that can only perform self-detection type synchronous control, such as the device described in the conventional patent document 2, there may be cases where moving image shooting cannot be performed depending on the irradiation profile of the X-ray source 13. Therefore, in order to use the X-ray image detection apparatus described in Patent Document 2, it is necessary to use an expensive X-ray tube having a fast response speed of the falling edge of the X-ray pulse. On the other hand, according to the X-ray image detection apparatus 21 of the present invention, the pulse irradiation compatible mode and the continuous irradiation compatible mode are selectively used according to the irradiation profile, and the synchronous control of the self-detection method is impossible. Since it corresponds by the continuous irradiation corresponding | compatible mode, it can image | video using a general X-ray tube, without using an expensive X-ray tube. Therefore, there is no increase in cost such as the replacement cost of the X-ray tube. The X-ray image detection apparatus 21 of the present invention capable of such a flexible response is highly useful when used in combination with an existing X-ray generation apparatus.
 また、パルス照射対応モードと連続照射対応モードのモード設定は、照射プロファイルに応じて自動的に行われるため、X線画像検出装置21を通信ができないX線発生装置11と組み合わせて使用する場合でも、煩雑な設定作業は不要である。 In addition, since the mode setting of the pulse irradiation compatible mode and the continuous irradiation compatible mode is automatically performed according to the irradiation profile, even when the X-ray image detection device 21 is used in combination with the X-ray generation device 11 that cannot communicate. No complicated setting work is required.
 自己検出方式による同期制御が可能か否かは、照射プロファイルにおけるX線パルスの重なり状態に応じて決まるが、X線パルスの重なりの有無は、以下に説明するように、様々な要因によって決定される。そのため、照射プロファイルに応じて自己検出方式による同期制御が可能か否かを自動判定することによる本発明の効果は、特に有用性が高い。 Whether or not synchronization control by the self-detection method is possible depends on the overlapping state of the X-ray pulses in the irradiation profile, but whether or not the X-ray pulses overlap is determined by various factors as described below. The Therefore, the effect of the present invention by automatically determining whether or not the synchronous control by the self-detection method is possible according to the irradiation profile is particularly useful.
 本例においては、図4及び図5に示す照射プロファイルのように、X線パルスの幅やX線パルスの波尾の長さTsが同じで、パルス周期のみが異なる2つの例を用いて、X線パルスの重なりが有る場合と無い場合を説明したが、パルス周期が同じであっても、管電流や管電圧によってX線パルスの波尾Tsの長さが変化する場合にも、2つのX線パルスの重なりが生じる場合がある。 In this example, as in the irradiation profiles shown in FIG. 4 and FIG. 5, using two examples in which the width of the X-ray pulse and the length Ts of the wave tail of the X-ray pulse are the same and only the pulse period is different. Although the case where X-ray pulses are overlapped and the case where there is no overlap has been described, there are two cases in which the length of the wave tail Ts of the X-ray pulse changes depending on the tube current or tube voltage even if the pulse period is the same. X-ray pulse overlap may occur.
 すなわち、停止指令後のX線パルスの強度は、管電流及び管電圧に応じて求められる時定数τで指数関数的に下降し、強度が「0」になるには、時定数τの3~5倍の時間がかかることが知られている。例えば、X線管を抵抗Rとして見たとき、管電流Iと管電圧Vとの間で、R=V/Iの関係が成り立つ。また、X線管の容量をCTube[pF]、X線管と高電圧発生器とを接続する高電圧ケーブルの容量をCLine[pF/m]、ケーブル長をLとしたとき、X線管と高電圧ケーブルとを合わせた容量Cは、C=CTube+CLine×Lにより求められる。よって、X線管の時定数τは、τ=RC=V/I(CTube+CLine×L)により求めることができる。 That is, the intensity of the X-ray pulse after the stop command falls exponentially with a time constant τ determined according to the tube current and the tube voltage, and 3 to 5 times the time constant τ for the intensity to become “0”. It is known to take a long time. For example, when the X-ray tube is viewed as a resistance R, a relationship of R = V / I is established between the tube current I and the tube voltage V. Further, when the capacity of the X-ray tube is CTube [pF], the capacity of the high-voltage cable connecting the X-ray tube and the high voltage generator is Cline [pF / m], and the cable length is L, the X-ray tube The capacity C combined with the high voltage cable is obtained by C = CTube + Cline × L. Therefore, the time constant τ of the X-ray tube can be obtained by τ = RC = V / I (CTube + Cline × L).
 時定数τを求めるためのパラメータの具体的な値は、1例として、X線管13aの容量CTubeは500~1000[pF]であり、高電圧ケーブル14cの容量CLineは100~200[pF/m]であり、高電圧ケーブル14cのケーブル長Lは10~20[m]であり、管電圧Vは50~150[kV]であり、管電流Iは0.5~20[mA]である。こうしたパラメータの値から求められる時定数τの値は、数ms~数十ms程度である。 Specific values of the parameters for obtaining the time constant τ are, for example, the capacitance C Tube of the X-ray tube 13a is 500 to 1000 [pF], and the capacitance C Line of the high voltage cable 14c is 100 to 200 [p. pF / m], the cable length L of the high voltage cable 14c is 10 to 20 [m], the tube voltage V is 50 to 150 [kV], and the tube current I is 0.5 to 20 [mA]. It is. The value of the time constant τ obtained from these parameter values is about several ms to several tens of ms.
 以上から、X線パルスの波尾Tsの長さは、X線管及び高電圧ケーブルの容量Cと、管電流I及び管電圧Vによって変化し、例えば容量Cが大きく、または管電流が小さく、あるいは管電圧が高くなるほど長くなる。このように、同じX線管で、同じパルス周期でパルス照射を行った場合でも、撮影毎に設定される管電流及び管電圧に応じてX線パルスの波尾Tsの長さが変化するため、波尾Tsの長さによってX線パルスの重なりが有る場合と無い場合が生じる。 From the above, the length of the wave tail Ts of the X-ray pulse varies depending on the capacitance C of the X-ray tube and the high voltage cable, the tube current I and the tube voltage V. For example, the capacitance C is large or the tube current is small. Or it becomes long, so that a tube voltage becomes high. Thus, even when pulse irradiation is performed with the same X-ray tube at the same pulse period, the length of the wave tail Ts of the X-ray pulse changes according to the tube current and tube voltage set for each imaging. Depending on the length of the wave tail Ts, there may or may not be overlap of X-ray pulses.
 さらに、X線パルスの重なりが有っても、重なる部分が少なければ、自己検出方式による同期制御が可能な場合もある。このように、パルス照射において、X線画像検出装置における自己検出方式の同期制御が可能か否かは、X線管の性能、パルス周期(それに対応する動画撮影のフレームレート)、X線パルスの波尾の長さTsを決める撮影条件(管電流及び管電圧)といった様々な要因で決定される。本発明は、これらの要因が加味された照射プロファイルに基づいてX線パルスの重なり状態を調べて、自己検出方式の同期制御が可能か否かを判定するので、煩雑な設定作業を大幅に軽減することが可能となる。 Furthermore, even if there are overlapping X-ray pulses, if there are few overlapping parts, synchronous control by the self-detection method may be possible. As described above, in pulse irradiation, whether or not the self-detection type synchronous control in the X-ray image detection apparatus is possible depends on the performance of the X-ray tube, the pulse cycle (the frame rate of the corresponding moving image capturing), and the X-ray pulse. It is determined by various factors such as imaging conditions (tube current and tube voltage) that determine the wave tail length Ts. The present invention examines the overlapping state of X-ray pulses based on the irradiation profile taking these factors into account, and determines whether or not the self-detection type synchronous control is possible, thereby greatly reducing complicated setting work. It becomes possible to do.
 上記例において、図4及び図5で示すモード設定処理を行った後、一旦X線照射を停止した後、図8及び図10で示す動画撮影を開始する例を説明したが、X線照射を停止することなく、モード設定処理から動画撮影に移行してもよい。 In the above example, after performing the mode setting process shown in FIGS. 4 and 5, the X-ray irradiation is once stopped and then the moving image shooting shown in FIGS. 8 and 10 is started. The mode setting process may be shifted to video shooting without stopping.
 ただし、この場合には、連続照射対応モードにおいて、蓄積時間を開始させるタイミングの決定を、上記例とは別の方法で行う必要がある。というのは、上記例では、連続照射対応モードにおいて、蓄積動作を開始させるタイミングを1個目のX線パルスの立ち上がりに同期させているが、X線照射を停止せずにモード設定処理から動画撮影に移行する場合には、照射プロファイルにおいてX線強度が閾値電圧Vth以下に落ちないため、上記例の方法は採用できない。そこで、例えば、次のような方法で蓄積動作の開始タイミングを決定する。モード設定処理において、検出プロファイルからX線パルスの強度が最大となる区間Cを特定しているので、その区間Cの情報を利用する。区間Cの終期が分かれば、X線パルスの谷間を特定できるので、そこに読み出し動作やリセット動作が収まるように、蓄積動作の開始タイミングを決定する。 However, in this case, it is necessary to determine the timing for starting the accumulation time by a method different from the above example in the continuous irradiation mode. This is because in the above example, in the continuous irradiation mode, the timing for starting the accumulation operation is synchronized with the rising edge of the first X-ray pulse. When shifting to imaging, the X-ray intensity does not fall below the threshold voltage Vth in the irradiation profile, so the method of the above example cannot be adopted. Therefore, for example, the start timing of the accumulation operation is determined by the following method. In the mode setting process, since the section C in which the intensity of the X-ray pulse is maximum is specified from the detection profile, information on the section C is used. If the end of section C is known, the valley of the X-ray pulse can be specified, and the start timing of the accumulation operation is determined so that the read operation and the reset operation are accommodated there.
 また、上記例において、パルス周期PPを、検出プロファイルから特定した区間Cの始期や終期から測定しているが、検出プロファイルの代わりに又はそれに加えて照射プロファイルを利用してもよい。照射プロファイルにおいてX線強度が最大強度となる区間を調べることにより区間Cを特定することができる。 In the above example, the pulse period PP is measured from the start or end of the section C specified from the detection profile, but an irradiation profile may be used instead of or in addition to the detection profile. By examining the section where the X-ray intensity becomes the maximum in the irradiation profile, the section C can be specified.
 また、上記例において、検出プロファイルに基づいて、順次発生する2つのX線パルスの重なり状態を測定することにより、2つのX線パルスの立ち上がりと立ち下がりの検出が可能か否か、すなわち、自己検出方式による同期制御が可能か否かを判定しているが、検出プロファイルの代わりに又はそれに加えて照射プロファイルに基づいて判定してもよい。例えば、図5に示すように、照射プロファイルにおいても、重なっている2つのX線パルスの谷間のX線強度は、X線パルスの最大強度と比較して低い。X線パルスの谷間のX線強度と閾値電圧Vthを比較して、谷間のX線強度が閾値電圧Vthよりも低ければ、2つのX線パルスの立ち上がりと立ち下がりの検出が可能か否かを判定することができる。 In the above example, whether or not the rising and falling of the two X-ray pulses can be detected by measuring the overlapping state of two X-ray pulses that are sequentially generated based on the detection profile, that is, self Although it is determined whether or not the synchronous control by the detection method is possible, the determination may be made based on the irradiation profile instead of or in addition to the detection profile. For example, as shown in FIG. 5, also in the irradiation profile, the X-ray intensity between the valleys of two overlapping X-ray pulses is lower than the maximum intensity of the X-ray pulse. By comparing the X-ray intensity between the valleys of the X-ray pulse and the threshold voltage Vth, if the X-ray intensity between the valleys is lower than the threshold voltage Vth, it is determined whether the rising and falling of two X-ray pulses can be detected. Can be determined.
 また、閾値電圧Vthが変わると、ほぼ同様な照射プロファイルであっても(2つのX線パルスの重なり状態が同じでも)、X線パルスの立ち上がりと立ち下がりの検出ができる場合と、できない場合が生じて、パルス照射対応モードの設定可否の判定結果も変わる。例えば、図5や図10に示す照射プロファイルであっても、閾値電圧Vthが、2つのX線パルスの谷間におけるX線強度の最小値よりも高い場合には、X線パルスの立ち上がりと立ち下がりの検出が可能となる。 In addition, when the threshold voltage Vth changes, even when the irradiation profile is substantially the same (even if the overlapping state of the two X-ray pulses is the same), the rise and fall of the X-ray pulse may or may not be detected. As a result, the determination result of whether or not the pulse irradiation mode can be set also changes. For example, even in the irradiation profiles shown in FIGS. 5 and 10, when the threshold voltage Vth is higher than the minimum value of the X-ray intensity in the valley between two X-ray pulses, the rise and fall of the X-ray pulse Can be detected.
 そのため、制御部41は、閾値電圧Vthが変更される場合には、変更された閾値電圧Vthの値に基づいて、自己検出方式の同期制御が可能か否かを判定して、パルス照射対応モードの設定可否を判定することが好ましい。閾値電圧Vthが変更される要因としては、例えば、X線管13aのターゲット(陽極)の材料がある。X線管13aのターゲットの材料としては、タングステン(W)やモリブデン(Mo)などが用いられる。閾値電圧Vthは、例えば、タングステンの場合は約15kVに、モリブデンの場合は約5kVというように設定される。閾値電圧VthとX線管13aのターゲットの材料が1対1で対応している場合には、制御部41は、X線管13aのターゲットの材料を表すX線管13aの種類に関する情報に基づいて閾値電圧Vthを特定してもよい。X線管13aの種類に関する情報は、例えば、コンソール24を通じて入力される。制御部41は、特定した閾値電圧Vthに設定値を変更し、変更した設定値に基づいて判定を行う。 Therefore, when the threshold voltage Vth is changed, the control unit 41 determines whether or not the self-detection type synchronous control is possible based on the changed threshold voltage Vth, and the pulse irradiation compatible mode. It is preferable to determine whether or not setting is possible. As a factor for changing the threshold voltage Vth, for example, there is a material of a target (anode) of the X-ray tube 13a. As a target material of the X-ray tube 13a, tungsten (W), molybdenum (Mo), or the like is used. For example, the threshold voltage Vth is set to about 15 kV in the case of tungsten, and about 5 kV in the case of molybdenum. When the threshold voltage Vth and the target material of the X-ray tube 13a have a one-to-one correspondence, the control unit 41 is based on information on the type of the X-ray tube 13a representing the target material of the X-ray tube 13a. Thus, the threshold voltage Vth may be specified. Information regarding the type of the X-ray tube 13a is input through the console 24, for example. The control unit 41 changes the set value to the specified threshold voltage Vth and makes a determination based on the changed set value.
 なお、照射プロファイルにおいて、X線パルスの谷間のX線強度の落ち込みが非常に少ない場合には、X線源13がX線を一定の強度で連続照射する場合の照射プロファイルと等価と見なせる場合もある。その場合には、連続照射対応モードにおいて、蓄積動作の開始タイミングを決定する処理をせずに、FPD36が任意のタイミングで蓄積動作を開始してもよい。 In the irradiation profile, when the drop in the X-ray intensity between the valleys of the X-ray pulse is very small, the X-ray source 13 may be regarded as equivalent to the irradiation profile in the case of continuously irradiating X-rays with a constant intensity. is there. In that case, the FPD 36 may start the accumulation operation at an arbitrary timing without performing the process of determining the start timing of the accumulation operation in the continuous irradiation mode.
 また、制御部41が、照射プロファイルに基づいて、X線パルスの谷間のX線強度の落ち込みの程度を調べて、蓄積動作の開始タイミングを決定する必要があるか否かを決定してもよい。 Further, the control unit 41 may determine whether or not it is necessary to determine the start timing of the accumulation operation by examining the degree of X-ray intensity drop in the valley of the X-ray pulse based on the irradiation profile. .
 なお、上記例では、パルス照射対応モードにおいて、X線パルスの立ち上がりを検出したタイミングで蓄積動作を開始させ、X線パルスの立ち下がりを検出したタイミングで読み出し動作を開始させているが、例えば、立ち上がりや立ち下がりを検出して、そのタイミングから所定時間経過した後、蓄積動作や読み出し動作を開始してもよい。つまり、立ち上がりや立ち下がりを検出したタイミングと蓄積動作や読み出し動作の開始タイミングが完全に一致していなくてもよく、立ち上がりや立ち下がりを検出したタイミングに基づいて蓄積動作や読み出し動作の開始タイミングが決定されていればよい。 In the above example, in the pulse irradiation compatible mode, the accumulation operation is started at the timing when the rising edge of the X-ray pulse is detected, and the reading operation is started at the timing when the falling edge of the X-ray pulse is detected. The accumulation operation and the read operation may be started after a predetermined time has elapsed from the detection of the rise or fall. In other words, the timing at which rising or falling is detected does not have to coincide completely with the timing at which accumulation or reading operation starts, and the timing at which accumulation or reading operation starts is based on the timing at which rising or falling is detected. It only has to be decided.
 なお、撮像領域38内に設けられた短絡画素62によって、X線強度を測定しているが、短絡画素62は、通常の画素37とほぼ同一構造であり、X線に対する感度もほぼ同一であるため、X線強度を正確に測定することが可能であり、照射開始及び照射終了、総照射量を精度良く検出することができる。また、構造がほぼ同一であるので、製造もしやすく、製造コストの増加も少ない。 The X-ray intensity is measured by the short-circuited pixel 62 provided in the imaging region 38. However, the short-circuited pixel 62 has substantially the same structure as the normal pixel 37, and the sensitivity to X-rays is also substantially the same. Therefore, it is possible to accurately measure the X-ray intensity, and it is possible to accurately detect the start and end of irradiation and the total irradiation amount. Moreover, since the structure is almost the same, it is easy to manufacture, and the increase in manufacturing cost is small.
 また、X線強度測定用の放射線検出部の形態は、短絡画素に限らず、各種の形態がある。例えば、画素を構成するフォトダイオードにはバイアス電圧が印加されるが、フォトダイオードで発生する信号電荷の量に応じてバイアス線に流れるバイアス電流も変化する。こうしたバイアス電流を検出して、X線強度を測定してもよい。また、画素のTFTをオフした状態でも、フォトダイオードで発生する信号電荷の量に応じて、僅かであるが信号線にリーク電流が流れる。このリーク電流を検出して、X線強度を測定してもよい。 Further, the form of the radiation detection unit for measuring the X-ray intensity is not limited to the short-circuited pixel, and there are various forms. For example, although a bias voltage is applied to a photodiode that constitutes a pixel, the bias current flowing through the bias line also changes according to the amount of signal charge generated in the photodiode. Such a bias current may be detected to measure the X-ray intensity. Even when the TFT of the pixel is turned off, a slight leak current flows through the signal line depending on the amount of signal charge generated in the photodiode. This leakage current may be detected to measure the X-ray intensity.
 バイアス電流やリーク電流を検出する方法では、FPD36に配設される、バイアス電流やリーク電流が流れる配線と、配線に流れる電流を検出する電流計が放射線検出部を構成する。バイアス電流やリーク電流を検出する方法であれば、FPD36の撮像領域の構造に大きな改造を加えることなく、FPD36に対して、放射線検出部の機能を追加することができる。リーク電流を検出する方法の場合には、FPD36の画像読み出し用の回路を電流検出部として利用することができる。また、バイアス電流やリーク電流を検出する方法では、照射中に放射線検出を行っても、画像を表す信号電荷の蓄積状態は維持されるので、読み出した画像において画素の欠損(点欠陥や線欠陥)が生じないという利点がある。 In the method of detecting the bias current and the leak current, the radiation detecting unit is configured by the wiring through which the bias current and the leak current are disposed and the ammeter that detects the current flowing through the wiring, which are provided in the FPD 36. If the method detects a bias current or a leak current, the function of the radiation detection unit can be added to the FPD 36 without greatly modifying the structure of the imaging region of the FPD 36. In the case of the method for detecting the leakage current, the image reading circuit of the FPD 36 can be used as the current detection unit. In addition, in the method of detecting the bias current and the leakage current, the signal charge accumulation state representing the image is maintained even if radiation detection is performed during irradiation. Therefore, pixel defects (point defects or line defects) are detected in the read image. ) Does not occur.
 また、短絡画素を設ける代わりに、FPD36内の複数の画素37の一部を、放射線検出部を構成する検出素子として兼用できるようにしてもよい。例えば、検出素子と兼用する画素に対しては、画像読み出し用のTFTとは別に、放射線検出用のTFTと検出用の専用配線を設ける。そして、画像読み出し時には画像読み出し用のTFTをオンにして信号線から電荷を読み出し、検出素子として利用する場合には放射線検出用のTFTのゲートをオンにして検出用の専用配線から電荷を読み出すというように2つのTFTを選択的に利用する。もちろん、TFTをオフにした状態で、TFTから専用配線にリークするリーク電流を読み出してもよい。あるいは、画素37の一部を検出素子として利用する場合には、画素37の構造を、例えば、画像検出用フォトダイオードと検出素子用フォトダイオードのようにフォトダイオードを2つに分割した構造にした上で、各フォトダイオードにTFTを設けて、それぞれを選択的に利用できるようにしてもよい。 Further, instead of providing the short-circuited pixel, a part of the plurality of pixels 37 in the FPD 36 may be used as a detection element constituting the radiation detection unit. For example, for a pixel that also serves as a detection element, a radiation detection TFT and a dedicated detection wiring are provided separately from the image readout TFT. Then, when reading an image, the image reading TFT is turned on to read the charge from the signal line, and when used as a detection element, the radiation detection TFT gate is turned on to read the charge from the dedicated detection wiring. Thus, two TFTs are selectively used. Of course, the leakage current leaking from the TFT to the dedicated wiring may be read with the TFT turned off. Alternatively, when a part of the pixel 37 is used as a detection element, the structure of the pixel 37 is a structure in which the photodiode is divided into two, such as an image detection photodiode and a detection element photodiode. In the above, each photodiode may be provided with a TFT so that each can be selectively used.
 また、画素37とは別に、放射線検出部を構成する専用の検出素子を設ける場合には、複数の画素37の間に配置してもよい。また、検出素子は撮像領域外に設けてもよい。また、放射線検出部として、イオンチャンバなどの周知の放射線検出部を用いてもよい。 In addition, when a dedicated detection element constituting the radiation detection unit is provided separately from the pixel 37, it may be disposed between the plurality of pixels 37. The detection element may be provided outside the imaging area. Moreover, you may use well-known radiation detection parts, such as an ion chamber, as a radiation detection part.
 また、ガラス基板を使用してTFTマトリックス基板を形成したTFT型のFPDを例に説明したが、半導体基板を使用したCMOSイメージセンサやCCDイメージセンサを使用したFPDでもよい。このうちCMOSイメージセンサを使用すると、次のようなメリットがある。CMOSイメージセンサの場合、画素に蓄積される信号電荷を読み出し用の信号線に流出させることなく、各画素に設けられたアンプを通じて電圧信号として読み出す、いわゆる非破壊読み出しが可能である。これによれば、蓄積動作中においても、撮像領域内の任意の画素を選択して、その画素から信号電荷を読み出すことによりX線の強度測定が可能である。したがって、CMOSイメージセンサを使用する場合には、上記短絡画素のように、X線強度測定用の専用の放射線検出部を用いることなく、通常の画素のいずれかを、X線強度測定用の放射線検出部として兼用させることが可能となる。 Further, the TFT type FPD in which the TFT matrix substrate is formed using the glass substrate has been described as an example, but an FPD using a CMOS image sensor or a CCD image sensor using a semiconductor substrate may be used. Of these, the use of a CMOS image sensor has the following advantages. In the case of a CMOS image sensor, so-called nondestructive reading is possible in which signal charges accumulated in a pixel are read as a voltage signal through an amplifier provided in each pixel without flowing out to a signal line for reading. According to this, even during the accumulation operation, it is possible to measure the X-ray intensity by selecting an arbitrary pixel in the imaging region and reading the signal charge from the pixel. Therefore, when a CMOS image sensor is used, any one of the normal pixels is used as the radiation for measuring the X-ray intensity without using a dedicated radiation detection unit for measuring the X-ray intensity as in the case of the short-circuited pixel. It can also be used as a detection unit.
 さらに、本発明に係るX線画像検出装置は、上記実施形態に限らず、本発明の要旨を逸脱しない限り種々の構成を採り得ることはもちろんである。 Furthermore, the X-ray image detection apparatus according to the present invention is not limited to the above-described embodiment, but can of course have various configurations without departing from the gist of the present invention.
 X線画像検出装置は、病院の撮影室に据え置かれるX線撮影システムに用いられる他、病室を巡回して撮影が可能な回診車に搭載してもよいし、事故、災害等の緊急医療対応が必要な現場や在宅診療を受ける患者の自宅に持ち運んでX線撮影を行うことが可能な可搬型のシステムに適用してもよい。 The X-ray image detection device is used in an X-ray imaging system installed in a hospital radiography room, or may be installed in a round-trip car that can take pictures while visiting a hospital room. The present invention may be applied to a portable system that can be carried to the site where medical care is required or the home of a patient receiving home medical care and can perform X-ray imaging.
 上記例では、X線画像検出装置と、撮影制御装置を別体で構成した例で説明したが、撮影制御装置の機能をX線画像検出装置の制御部に内蔵する等、X線画像検出装置と撮影制御装置を一体化してもよい。 In the above example, the X-ray image detection apparatus and the imaging control apparatus have been described separately. However, the X-ray image detection apparatus includes a function of the imaging control apparatus built in the control unit of the X-ray image detection apparatus. And the imaging control device may be integrated.
 上記実施形態では、可搬型のX線画像検出装置を例に説明したが、据え置き型のX線画像検出装置に本発明を適用してもよい。 In the above embodiment, the portable X-ray image detection apparatus has been described as an example. However, the present invention may be applied to a stationary X-ray image detection apparatus.
 本発明は、X線に限らず、γ線等の他の放射線を使用する撮影システムにも適用することができる。 The present invention can be applied not only to X-rays but also to imaging systems that use other radiation such as γ rays.
 10 X線撮影システム
 11 X線発生装置
 12 X線撮影装置
 13 X線源
 13a X線管
 14 線源制御装置
 21 X線画像検出装置
 23 撮影制御装置
 24 コンソール
 28 インジケータ
 36 FPD
 37 画素
 62 短絡画素
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 11 X-ray generator 12 X-ray imaging apparatus 13 X-ray source 13a X-ray tube 14 Radiation source control apparatus 21 X-ray image detection apparatus 23 Imaging control apparatus 24 Console 28 Indicator 36 FPD
37 pixels 62 shorted pixels

Claims (15)

  1.  動画撮影を行うためにパルス状の放射線を順次発生して放射線のパルス照射を行う放射線発生装置と組み合わせて使用される放射線画像検出装置において、
     前記放射線の照射を受けて放射線の照射量に応じた信号電荷を蓄積する複数の画素がマトリクスに配列された撮像領域を有し、被写体の放射線画像を検出する画像検出部と、
     前記放射線を検出して、放射線の照射量に応じた検出信号を出力する放射線検出部と、
     前記検出信号に基づいて、前記放射線発生装置が順次発生する複数の放射線パルスの立ち上がりと立ち下がりの検出が可能か否かを判定する判定部と、
     前記判定部の判定結果に基づいて前記画像検出部の動作モードを設定するモード設定部であり、前記パルス照射が行われている間、前記検出信号に基づいて前記放射線パルスの立ち上がりと立ち下がりを検出して、立ち上がりを検出したタイミングに基づいて前記信号電荷を蓄積する蓄積動作の開始タイミングを決定し、立ち下がりを検出したタイミングに基づいて前記信号電荷の読み出し動作の開始タイミングを決定するパルス照射対応モードと、前記放射線パルスの立ち上がりと立ち下がりを検出することなく、所定の時間間隔で前記蓄積動作と前記読み出し動作とを交互に繰り返す連続照射対応モードとのいずれかに設定するモード設定部と、
     設定されたモードに応じて前記画像検出部の動作を制御する制御部と、
     を備えたことを特徴とする放射線画像検出装置。
    In a radiological image detection apparatus used in combination with a radiation generation apparatus that sequentially generates pulsed radiation and performs pulse irradiation of radiation to perform moving image shooting,
    An image detection unit that has an imaging region in which a plurality of pixels that accumulates signal charges corresponding to the radiation dose upon receiving the radiation is arranged in a matrix, and detects a radiographic image of the subject;
    A radiation detector that detects the radiation and outputs a detection signal corresponding to the radiation dose;
    A determination unit that determines whether it is possible to detect the rising and falling of a plurality of radiation pulses that are sequentially generated by the radiation generating device based on the detection signal;
    A mode setting unit configured to set an operation mode of the image detection unit based on a determination result of the determination unit, and during the pulse irradiation, rise and fall of the radiation pulse based on the detection signal Detecting and determining the start timing of the accumulation operation for accumulating the signal charge based on the timing when the rising edge is detected, and determining the start timing of the signal charge reading operation based on the timing when the falling edge is detected A mode setting unit configured to set one of a corresponding mode and a continuous irradiation corresponding mode in which the accumulation operation and the reading operation are alternately repeated at a predetermined time interval without detecting the rising and falling of the radiation pulse; ,
    A control unit for controlling the operation of the image detection unit according to the set mode;
    A radiological image detection apparatus comprising:
  2.  前記判定部は、前記放射線発生装置からパルス照射される放射線について、前記放射線検出部の検出信号に基づいて、単位時間当たりの照射量である放射線強度の経時変化を表す照射プロファイル、及び単位時間当たりの照射量を積算した積算検出量の経時変化を表す検出プロファイルの少なくとも1つを作成して、前記判定を行う請求の範囲第1項に記載の放射線画像検出装置。 The determination unit includes an irradiation profile representing a change over time in radiation intensity, which is an irradiation amount per unit time, based on a detection signal of the radiation detection unit, and per unit time for the radiation irradiated by the radiation from the radiation generation apparatus. The radiological image detection apparatus according to claim 1, wherein the determination is performed by creating at least one detection profile representing a change over time in the integrated detection amount obtained by integrating the irradiation amounts of the two.
  3.  前記判定部は、前記照射プロファイル及び前記検出プロファイルの少なくとも1つに基づいて、順次発生する2つのX線パルスの立ち上がり部と立ち下がり部の重なり状態を調べて、前記判定を行う請求の範囲第2項に記載の放射線画像検出装置。 The determination unit performs the determination by examining an overlapping state of rising portions and falling portions of two X-ray pulses that are sequentially generated based on at least one of the irradiation profile and the detection profile. 3. A radiological image detection apparatus according to item 2.
  4.  前記判定部は、前記検出プロファイルにおいて、前記積算検出量が一定となる期間の長さを測定することにより前記重なり状態を調べる請求の範囲第3項に記載の放射線画像検出装置。 The radiological image detection apparatus according to claim 3, wherein the determination unit examines the overlapping state by measuring a length of a period in which the integrated detection amount is constant in the detection profile.
  5.  前記判定部は、前記積算検出量が一定となる期間の長さが予め設定した閾値よりも短い場合には、前記放射線パルスの立ち上がりと立ち上がりの検出が不可能と判定して、前記画像検出部の動作モードを前記連続照射対応モードに設定し、前記期間の長さが前記閾値以上の場合には、前記放射線パルスの立ち上がりと立ち下がりの検出が可能と判定して、前記画像検出部の動作モードを前記パルス照射対応モードに設定する請求の範囲第4項に記載の放射線画像検出装置。 The determination unit determines that the rising and rising of the radiation pulse cannot be detected when the length of the period during which the integrated detection amount is constant is shorter than a preset threshold, and the image detection unit When the operation mode is set to the continuous irradiation mode and the length of the period is equal to or greater than the threshold, it is determined that the rising and falling of the radiation pulse can be detected, and the operation of the image detection unit The radiographic image detection apparatus according to claim 4, wherein the mode is set to the pulse irradiation compatible mode.
  6.  前記モード設定部は、前記連続照射対応モードにおける前記蓄積動作の時間を算出する請求の範囲第2項~第5項のいずれか1項に記載の放射線画像検出装置。 The radiological image detection device according to any one of claims 2 to 5, wherein the mode setting unit calculates a time of the accumulation operation in the continuous irradiation-supporting mode.
  7.  前記モード設定部は、前記照射プロファイル及び前記検出プロファイルの少なくとも1つに基づいて、前記放射線パルスのパルス周期を測定し、測定した前記パルス周期に基づいて前記蓄積動作の時間を算出する請求の範囲第6項に記載の放射線画像検出装置。 The mode setting unit measures a pulse period of the radiation pulse based on at least one of the irradiation profile and the detection profile, and calculates a time of the accumulation operation based on the measured pulse period. 7. A radiological image detection apparatus according to item 6.
  8.  前記モード設定部は、前記パルス周期内に、前記蓄積動作と、それに続く前記読み出し動作、及び前記画素に蓄積された前記信号電荷を排出するリセット動作の3つの動作が収まるように、前記蓄積動作の時間を算出する請求の範囲第7項に記載の放射線画像検出装置。 The mode setting unit performs the accumulation operation so that the three operations of the accumulation operation, the subsequent readout operation, and the reset operation for discharging the signal charge accumulated in the pixel are accommodated within the pulse period. The radiological image detection apparatus according to claim 7, wherein the time is calculated.
  9.  前記制御部は、前記照射プロファイルにおける2つの放射線パルスの谷間で前記リセット動作が実行されるように、前記蓄積動作の開始タイミングを決定する請求の範囲第8項に記載の放射線画像検出装置。 The radiological image detection apparatus according to claim 8, wherein the control unit determines a start timing of the accumulation operation so that the reset operation is executed between two radiation pulse valleys in the irradiation profile.
  10.  前記制御部は、前記放射線パルスの立ち上がりを検出したタイミングで、前記蓄積動作を開始させる請求の範囲第9項に記載の放射線画像検出装置。 The radiological image detection apparatus according to claim 9, wherein the control unit starts the accumulation operation at a timing when the rising of the radiation pulse is detected.
  11.  前記制御部は、前記照射プロファイル及び前記検出プロファイルの少なくとも1つに基づいて、前記放射線パルスにおいて放射線強度が最大となる区間を特定して、特定した区間に基づいて前記放射線パルスの谷間を判定する請求の範囲第9項に記載の放射線画像検出装置。 The control unit identifies a section where the radiation intensity is maximum in the radiation pulse based on at least one of the irradiation profile and the detection profile, and determines a valley of the radiation pulse based on the identified section. The radiographic image detection apparatus according to claim 9.
  12.  前記制御部は、前記パルス照射対応モードにおいて、前記放射線パルスの立ち上がりを検出したタイミングで、前記蓄積動作を開始させる請求の範囲第1項~第11項のいずれか1項に記載の放射線画像検出装置。 The radiological image detection according to any one of claims 1 to 11, wherein the control unit starts the accumulation operation at a timing when a rising edge of the radiation pulse is detected in the pulse irradiation compatible mode. apparatus.
  13.  前記制御部は、前記パルス照射対応モードにおいて、前記放射線パルスの立ち下がりを検出したタイミングで、前記蓄積動作を終了して前記読み出し動作を開始する請求の範囲第12項に記載の放射線画像検出装置。 13. The radiological image detection apparatus according to claim 12, wherein the control unit ends the accumulation operation and starts the reading operation at a timing when the falling of the radiation pulse is detected in the pulse irradiation compatible mode. .
  14.  前記放射線検出部は、前記画素と前記画素から前記信号電荷を読み出すための信号線とを常時短絡させた短絡画素であり、前記短絡画素は、前記放射線の照射量に応じた信号電荷を前記信号線に常時出力する請求の範囲第1項~第13項のいずれか1項に記載の放射線画像検出装置。 The radiation detection unit is a short-circuited pixel in which the pixel and a signal line for reading out the signal charge from the pixel are always short-circuited, and the short-circuited pixel outputs a signal charge corresponding to the radiation dose to the signal. The radiological image detection apparatus according to any one of claims 1 to 13, wherein the radiation image detection apparatus constantly outputs to a line.
  15.  動画撮影を行うためにパルス状の放射線を順次発生して放射線のパルス照射を行う放射線発生装置と組み合わせて使用される放射線画像検出装置であり、前記放射線発生装置による放射線の照射量に応じた信号電荷を蓄積する複数の画素がマトリクスに配列された画像検出部を有し、被写体の放射線画像を検出する放射線画像検出装置の制御方法において、
     放射線の照射量を検出する放射線検出部の検出信号に基づいて、前記放射線発生装置が順次発生する複数の放射線パルスの立ち上がりと立ち下がりの検出が可能か否かを判定する判定ステップと、
     前記判定部の判定結果に基づいて前記画像検出部の動作モードを設定するモード設定ステップであり、前記パルス照射が行われている間、前記検出信号に基づいて前記放射線パルスの立ち上がりと立ち下がりを検出して、立ち上がりを検出したタイミングに基づいて前記信号電荷を蓄積する蓄積動作の開始タイミングを決定し、立ち下がりを検出したタイミングに基づいて前記信号電荷の読み出し動作の開始タイミングを決定するパルス照射対応モードと、前記放射線パルスの立ち上がりと立ち下がりを検出することなく、所定の時間間隔で前記蓄積動作と前記読み出し動作とを交互に繰り返す連続照射対応モードとのいずれかに設定するモード設定ステップと、
     設定されたモードに応じて前記画像検出部の動作を制御する制御ステップと、
     を含むことを特徴とする放射線画像検出装置の制御方法。
    A radiographic image detection apparatus used in combination with a radiation generation apparatus that sequentially generates pulsed radiation and performs pulse irradiation of radiation in order to perform movie shooting, and a signal corresponding to the radiation dose by the radiation generation apparatus In a control method of a radiological image detection apparatus that has an image detection unit in which a plurality of pixels that accumulate electric charges are arranged in a matrix and detects a radiographic image of a subject,
    A determination step for determining whether or not it is possible to detect the rising and falling of a plurality of radiation pulses sequentially generated by the radiation generating device, based on a detection signal of a radiation detecting unit that detects an irradiation amount of radiation;
    A mode setting step for setting an operation mode of the image detection unit based on a determination result of the determination unit, and during the pulse irradiation, rising and falling of the radiation pulse are performed based on the detection signal. Detecting and determining the start timing of the accumulation operation for accumulating the signal charge based on the timing when the rising edge is detected, and determining the start timing of the signal charge reading operation based on the timing when the falling edge is detected A mode setting step for setting one of a corresponding mode and a continuous irradiation corresponding mode in which the accumulation operation and the readout operation are alternately repeated at predetermined time intervals without detecting the rising and falling of the radiation pulse; ,
    A control step for controlling the operation of the image detection unit according to a set mode;
    The control method of the radiographic image detection apparatus characterized by including this.
PCT/JP2012/068941 2011-07-26 2012-07-26 Radiograph detection device and method for controlling same WO2013015351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-163479 2011-07-26
JP2011163479A JP2014195480A (en) 2011-07-26 2011-07-26 Radiation image detection device, and radiation image detection device control method

Publications (1)

Publication Number Publication Date
WO2013015351A1 true WO2013015351A1 (en) 2013-01-31

Family

ID=47601189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068941 WO2013015351A1 (en) 2011-07-26 2012-07-26 Radiograph detection device and method for controlling same

Country Status (2)

Country Link
JP (1) JP2014195480A (en)
WO (1) WO2013015351A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104068882A (en) * 2013-03-29 2014-10-01 富士胶片株式会社 Radiation image detecting device and operating method thereof, and radiation imaging system
CN105662443A (en) * 2015-12-31 2016-06-15 上海奕瑞光电子科技有限公司 Inner trigger circuit and X-ray synchronization method suitable for pulse fluoroscopy
JP2016201749A (en) * 2015-04-13 2016-12-01 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP2017196009A (en) * 2016-04-26 2017-11-02 コニカミノルタ株式会社 Radiographic apparatus and radiographic system
CN111493904A (en) * 2019-01-30 2020-08-07 群创光电股份有限公司 Radiation sensing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017104200A (en) * 2015-12-08 2017-06-15 コニカミノルタ株式会社 Radiation imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014907A (en) * 1996-07-08 1998-01-20 Hitachi Medical Corp Medical x-ray tv apparatus
JPH11151233A (en) * 1997-11-20 1999-06-08 Canon Inc Radiographic imaging device and image pickup method
JP2002181942A (en) * 2000-12-14 2002-06-26 Canon Inc Radiation image pickup device and system
JP2003307569A (en) * 2002-04-16 2003-10-31 Canon Inc Radiographic device, radiographic method, computer program, and computer-readable recording medium
JP2006122667A (en) * 2004-10-01 2006-05-18 Canon Inc Radiographic imaging apparatus, and method thereor and program thereof
JP2011139851A (en) * 2010-01-08 2011-07-21 Fujifilm Corp Radiographic image capturing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014907A (en) * 1996-07-08 1998-01-20 Hitachi Medical Corp Medical x-ray tv apparatus
JPH11151233A (en) * 1997-11-20 1999-06-08 Canon Inc Radiographic imaging device and image pickup method
JP2002181942A (en) * 2000-12-14 2002-06-26 Canon Inc Radiation image pickup device and system
JP2003307569A (en) * 2002-04-16 2003-10-31 Canon Inc Radiographic device, radiographic method, computer program, and computer-readable recording medium
JP2006122667A (en) * 2004-10-01 2006-05-18 Canon Inc Radiographic imaging apparatus, and method thereor and program thereof
JP2011139851A (en) * 2010-01-08 2011-07-21 Fujifilm Corp Radiographic image capturing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104068882A (en) * 2013-03-29 2014-10-01 富士胶片株式会社 Radiation image detecting device and operating method thereof, and radiation imaging system
JP2014209105A (en) * 2013-03-29 2014-11-06 富士フイルム株式会社 Radiation image detector and operation method for the same, and radiation imaging device
JP2016201749A (en) * 2015-04-13 2016-12-01 キヤノン株式会社 Radiation imaging device and radiation imaging system
CN105662443A (en) * 2015-12-31 2016-06-15 上海奕瑞光电子科技有限公司 Inner trigger circuit and X-ray synchronization method suitable for pulse fluoroscopy
JP2017196009A (en) * 2016-04-26 2017-11-02 コニカミノルタ株式会社 Radiographic apparatus and radiographic system
CN111493904A (en) * 2019-01-30 2020-08-07 群创光电股份有限公司 Radiation sensing device
CN111493904B (en) * 2019-01-30 2023-03-10 群创光电股份有限公司 Radiation sensing device

Also Published As

Publication number Publication date
JP2014195480A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP6243504B2 (en) Radiation imaging apparatus, control method therefor, and radiation image detection apparatus
JP6008430B2 (en) Radiation image detection apparatus and control method thereof
JP5925777B2 (en) Radiation image detection apparatus and control method thereof
JP5975733B2 (en) Radiation image detection apparatus, drive control method thereof, and radiation imaging system
JP5508340B2 (en) Radiation image detection apparatus and method for controlling radiation image detection apparatus
US9848845B2 (en) Radiation image detecting device
JP5283718B2 (en) Radiation image detection apparatus and gain setting method used for radiation image detection apparatus
JP5460674B2 (en) Radiation imaging apparatus, control method therefor, and radiation imaging system
JP5544383B2 (en) Radiation image detection apparatus and radiography system
JP5744949B2 (en) Radiation image detection apparatus and operation method thereof
JP5675682B2 (en) Radiation image detection apparatus, control method therefor, and radiation imaging system
JP5816316B2 (en) RADIOGRAPHIC IMAGE DETECTION DEVICE, ITS OPERATION METHOD, AND RADIOGRAPHY DEVICE
US20150164461A1 (en) Electronic radiography system and signal relay device
JP5840947B2 (en) Radiation image detection apparatus and driving method thereof
JP2013176544A (en) Radiographing apparatus, control method of the same, and radiographing system
WO2013015351A1 (en) Radiograph detection device and method for controlling same
JP6093069B2 (en) Radiation irradiation start determination device, operation method thereof, and radiation irradiation start determination system
JP5925937B2 (en) Radiation irradiation start determination device, operation method thereof, and radiation irradiation start determination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP