JP2008104261A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2008104261A
JP2008104261A JP2006282991A JP2006282991A JP2008104261A JP 2008104261 A JP2008104261 A JP 2008104261A JP 2006282991 A JP2006282991 A JP 2006282991A JP 2006282991 A JP2006282991 A JP 2006282991A JP 2008104261 A JP2008104261 A JP 2008104261A
Authority
JP
Japan
Prior art keywords
current
power supply
voltage
supply device
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006282991A
Other languages
English (en)
Inventor
Tetsuya Yamazaki
哲也 山▲崎▼
Yoshiaki Oshima
義敬 尾島
Tomosuke Moriya
友介 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006282991A priority Critical patent/JP2008104261A/ja
Publication of JP2008104261A publication Critical patent/JP2008104261A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】本発明は、構成部品の大きさ等を抑えつつ、一時的に過大な電流を流すことができる、電源装置の提供を目的とする。
【解決手段】基準電源1からの入力電圧を調整して負荷2側に電圧を出力する電源装置であって、電源装置を介して流れる電流を検出する電流検出部50を備え、電流検出部50によって第1の閾値電流以上の電流が検出された後の電流検出部50によって検出された電流の積分値が所定の許容値に到達した場合や電流検出部50によって第1の閾値電流以上の電流が検出された時間が所定の許容時間に到達した場合に、前記第1の閾値電流で又は前記第1の閾値電流より小さい第2の閾値電流で出力電流を制限することを特徴とする、電源装置。
【選択図】図1

Description

本発明は、入力された電圧を調整した電圧を出力する電圧調整手段を備える電源装置に関する。
従来から、1次側の電圧を2次側の電圧に昇圧する昇圧型コンバータが知られている(例えば、特許文献1参照)。この昇圧型コンバータは、2次側に瞬間的なピーク電流が流れた場合でも、所定の2次出力電圧の維持を図ろうとするものである。この昇圧型コンバータのように、電圧調整を行う技術が背景技術として存在している。
特開平7−177735号公報
ところで、上述のような従来技術において電源装置を設計する場合、最悪値を想定してそれに耐え得る設計をすることが一般的である。しかしながら、例えば、平均電流より大きく瞬間的に生ずるピーク電流を連続定格として設計すると、取り扱い可能な電流が実際よりも大きくなりすぎるために、スイッチング素子やインダクタ等の電源装置を構成する部品の大きさ等が大きくなりやすい。逆に、平均電流のみを考慮して設計すると、そのようなピーク電流を流すことができなくなってしまう。
そこで、本発明は、構成部品の大きさ等を抑えつつ、一時的に過大な電流を流すことができる、電源装置の提供を目的とする。
上記目的を達成するため、第1の発明に係る電源装置は、
入力電圧を調整した電圧を出力する電圧調整手段と、
前記電圧調整手段を介して流れる電流を検出する電流検出手段と、
前記電流検出手段によって第1の閾値電流以上の電流が検出された後の前記電流検出手段によって検出された電流の積分値が所定の許容値に到達した場合に、前記第1の閾値電流で又は前記第1の閾値電流より小さい第2の閾値電流で前記電圧調整手段の出力電流を制限する電流制限手段とを備えることを特徴とする。
これによって、検出電流が或る許容できる電流量に到達するまで一時的に過大なピーク電流を流すことができるとともに、検出電流がその許容電流量に到達すれば出力電流をピーク電流の最大値(最悪値)より小さい前記第1の閾値電流で又は前記第2の閾値電流で制限することができるので、そのようなピーク電流を流すことを許容しても電源装置のスイッチング素子等の構成部品の大きさや定格等の仕様が過大になることを抑えることができる。
また、上記目的を達成するため、第2の発明に係る電源装置は、
入力電圧を調整した電圧を出力する電圧調整手段と、
前記電圧調整手段を介して流れる電流を検出する電流検出手段と、
前記電流検出手段によって第1の閾値電流以上の電流が検出された時間が所定の許容時間に到達した場合に、前記第1の閾値電流で又は前記第1の閾値電流より小さい第2の閾値電流で前記電圧調整手段の出力電流を制限する電流制限手段とを備えることを特徴とする。
これによって、検出電流が或る許容できる時間に到達するまで一時的に過大なピーク電流を流すことができるとともに、検出電流がその許容時間に到達すれば出力電流をピーク電流の最大値(最悪値)より小さい前記第1の閾値電流で又は前記第2の閾値電流で制限することができるので、そのようなピーク電流を流すことを許容しても電源装置のスイッチング素子等の構成部品の大きさや定格等の仕様が過大になることを抑えることができる。
また、第3の発明は、第2の発明に係る電源装置であって、
前記第1の閾値電流以上の電流が検出された時間は、前記電流検出手段によって検出された電流が前記第1の閾値電流を超えるか否かによって増減することを特徴とする。これにより、電流値によって変動する電源装置の構成部品の実温度の変動に応じて、前記許容時間に到達するまでの時間を変化させることができる。
また、第4の発明は、第1から3のいずれかの発明に係る電源装置であって、
前記電流制限手段は、更に、前記第1の閾値電流より大きい第3の閾値電流で前記電圧調整手段の出力電流を制限することを特徴とする。
これにより、電源装置の構成部品が破壊するほどの電流に対しては前記第3の閾値電流によって制限する一方で、電源装置の構成部品が破壊しない程度の一時的な過大電流に対しては許容限度を超えた場合に限り前記第1の閾値電流で又は前記第2の閾値電流で制限することができる。したがって、構成部品が破壊することなく、実質的に流れる電流に応じた最適な構成部品を選択して設計することができる。
本発明によれば、構成部品の大きさ等を抑えつつ、一時的に過大な電流を流すことができる。
以下、図面を参照しながら、本発明を実施するための最良の形態の説明を行う。図1は、本発明に係る電源装置を昇圧型の電源装置とした場合の一実施形態を示した図である。本実施形態の昇圧型電源装置は、基準電源1の電力を負荷2に供給する電源装置であって、基準電源1の電圧変動や負荷2の消費電流(負荷電流)の変動に対して、一定の電圧を負荷2側に出力する電源装置(いわゆる、レギュレータ)である。本実施形態の昇圧型電源装置が車両に搭載された場合には、例えば、基準電源1は車載バッテリに相当し、負荷2は車載の電気負荷に相当する。車両に搭載される電気負荷は多種多様であり、各電気負荷の消費電流の違いにより車載バッテリの電圧は変動しやすいため、本実施形態のような昇圧型電源装置を搭載することは効果的である。また、本実施形態の昇圧型電源装置は、複数の電圧系(例えば、12V系と36V系)を有する車両において、両電圧系間の電圧変換を行うコンバータとして用いても、効果的である。
本実施形態の昇圧型電源装置は、基準電源1側の電圧を昇圧変換して変換した電圧を負荷2側に出力する昇圧型スイッチングレギュレータである。出力電圧は、所定の目標電圧となるようにフィードバック制御される。この出力電圧が、負荷2の印加電圧に相当する。制御部40は、出力電圧検出部30によってフィードバックされた出力電圧を所定の目標電圧となるようにゲート駆動部13に対して指令信号を出力する。ゲート駆動部13によってスイッチング素子11はスイッチング動作を行うことによって、基準電源1側の電圧の昇圧がなされる。
本実施形態の昇圧型電源装置の入力側に接続される基準電源1は、例えば車両に搭載される場合には、約12V程度の出力電圧を有する蓄電装置や発電機である。蓄電装置の具体例として、鉛バッテリ、リチウムイオンバッテリ、ニッケル水素電池、あるいは電気二重層キャパシタなどが挙げられ、また、それらのいずれかを組み合わせたものでもよい。また、発電機は、車両の回生ブレーキや車両動力の一つである車両エンジンの回転により発電する。
本実施形態の昇圧型電源装置の出力側に接続される負荷2は、例えば車両に搭載される場合には、その具体例として、ブロワモータ、コンプレッサ、電熱ヒータ、カーオーディオなどの電気負荷が挙げられる。
本実施形態の昇圧型電源装置は、スイッチング素子11、ダイオード12、インダクタ16、入力側コンデンサ17、出力側コンデンサ18などによって昇圧動作を行う昇圧回路を有している。インダクタ16は、昇圧型電源装置の入力側と出力側とを結ぶ線路上に直列に接続されている。入力側コンデンサ17は、インダクタ16の入力側端子と接地端子との間に接続されている。また、出力側コンデンサ18は、インダクタ16の出力側端子に接続されるダイオード12のカソード側端子と接地端子との間に接続されている。入力側コンデンサ17及び出力側コンデンサ18によって、入力電圧と出力電圧が平滑化され得る。
また、スイッチング素子11は、IGBT,MOSFET,バイポーラトランジスタ等の半導体から構成されるスイッチング素子である。スイッチング素子11は、一端がインダクタ16の出力側の端子に接続されかつ他端が接地されたものとなっている。さらに、ダイオード12は、そのアノードがインダクタ16の出力側の端子に接続されかつそのカソードが昇圧型電源装置の出力側に接続されたものとなっている。
制御部40は、ゲート駆動部13を介して、スイッチング素子11のゲートに接続されており、昇圧型電源装置の入力側から出力側への昇圧動作を実現すべく、スイッチング素子11をスイッチング駆動する。スイッチング素子11は、制御部40からの指令信号に従ってスイッチング動作する。
ここで、本実施形態の昇圧型電源装置の昇圧動作について説明する。負荷2の作動が要求されると、本実施形態の昇圧型電源装置の昇圧回路部を介して基準電源1から負荷2に対し電力供給が行われる。この場合に、負荷2の作動が可能になる。
制御部40は、バッファ31と出力抵抗32から構成される出力電圧検出部30によって検出された出力電圧に応じて、出力電圧が所定の目標電圧になるように所定のデューティ比でスイッチング素子11を駆動制御する。すなわち、制御部40は、出力電圧が目標電圧となるように入力電圧を目標電圧まで昇圧させる昇圧制御信号をPWM(パルス幅変調)信号で出力するため、出力電圧検出部30による検出電圧に基づき、積分回路(コンデンサ42,オペアンプ43)とPWM制御部41を介して、目標電圧をPWM信号のDuty比に変換してゲート駆動部13に出力する。制御部40は、一定周期のPWM信号のDuty比と昇圧型電源装置によって出力され得る出力電圧とは一対一に対応しているため、昇圧型電源装置に出力させたい出力電圧の目標電圧に対応するDuty比の信号をゲート駆動部13に出力する。
制御部40は、積分回路(コンデンサ42,オペアンプ43)及びPWM制御部41で設定されたデューティ比に応じてスイッチング素子11をオン・オフする。スイッチング素子11がオン動作すると、インダクタ16に入力側からスイッチング素子11に電流が流れることで、そのインダクタ16に電力が蓄積される。制御部40は、インダクタ16に電力が蓄積された状態で、次に、設定デューティ比に応じてスイッチング素子11をオフする。スイッチング素子11がオフ動作すると、インダクタ16に蓄積されていた電力がダイオード12を介して出力側コンデンサ18に蓄電される。これによって、昇圧型電源回路の入力側よりも高い電圧が平滑された状態でその出力側に出力される。
したがって、本実施形態の昇圧型電源装置によれば、スイッチング素子11を所定のデューティ比でオン・オフ駆動をすることにより昇圧動作をさせて、入力側の電圧を所望のとおり昇圧し、入力側の有する電力を出力側に供給することが可能となっている。
ところで、一般的に、電源装置では自身の保護機能として電流制限機能を備えている。電源装置は、負荷2が所定の電流制限値を超える負荷電流を必要とした場合にその電流制限値で負荷電流(出力電流)を一定にする制御を実施する。従来の電源装置では、電流制限値を超える負荷電流が発生した場合には、出力電流が制限されることにより出力電圧が低下して、その電圧低下による負荷2の機能不良やリセットなどが発生する場合がある。図2は、負荷2の負荷電流の増大により出力電圧が低下した状態を示した図である。(i)は電源装置の出力電圧、(ii)は負荷電流波形、(iii)は電源装置の電流制限値、(iv)は負荷電流の平均値、(v)は負荷電流のピーク電流値を示す。図2に示されるように、負荷電流波形(ii)にピーク電流が生じた場合には、電源装置の出力電圧(i)は低下している。
このように負荷電流が大きく変動する場合において、電源装置を設計する段階では、平均電流を大きく超える一時的なピーク電流が生じても発熱上問題ないように、負荷電流の最悪値としてピーク電流が連続定格もしくはそれと同等の定格となるように部品選定や回路・放熱設計する場合がある。しかしながら、短時間のピーク電流を連続定格として設計を行うと、平均電流を連続定格として設計した場合に比べて、電源装置のサイズが大きくなったりコストが高くなったりする。
そこで、本実施形態の昇圧型電源装置には、構成部品の大きさを抑えつつ、一時的に過大なピーク電流を流すことができるようにするため、負荷2の負荷電流(昇圧型電源装置の出力電流)を制限する閾値である二つの限界値(電流制限値ILIM1,ILIM2)が設けられている。電流制限値ILIM1は、負荷2のピーク電流を連続定格として熱的に許容可能な設計をした場合に設定される電流制限値である。電流制限値ILIM2は、負荷2の平均電流を連続定格として熱的に許容可能な設計をした場合に設定される電流制限値である。したがって、電流制限値ILIM2は、電流制限値ILIM1より小さい値となる。本実施形態の昇圧型電源装置は、以下に詳述するように電流制限値ILIMを可変することによって、構成部品の大きさを抑えつつ、一時的に過大なピーク電流を流すことができるようにする。
それでは、図1を参照しながら、本実施形態の昇圧型電源装置の特徴部について説明する。本実施形態の昇圧型電源装置は、電流制限値ILIMを可変するにあたり、電流検出部50、過電流判定部60、カウント部70、電流制限値変更部90、電流制限部100を備える。
電流検出部50は、昇圧型電源装置の入力側あるいは出力側の給電ライン上に配設されている(図1の場合、入力側に配設)。電流検出部50は、電流プローブやシャント抵抗を用いて、昇圧型電源装置を介して負荷2に流れる電流Iに応じた電圧信号を出力する。電流検出部50の出力信号は、過電流判定部60及び電流制限部100に入力される。
過電流判定部60は、コンパレータとして機能し、基準電圧(電源61の抵抗62と63による分圧値により規定)と電流検出部50の出力電圧とを比較することによって、基準電圧に相当する電流以上の電流(過電流)が流れたか否かを判定する。過電流判定部60は、電流検出部50の出力電圧が基準電圧より大きい場合には電流検出部50によって検出された電流は過電流と判定してLoレベルを出力し、電流検出部50の出力電圧が基準電圧より小さい場合には電流検出部50によって検出された電流は過電流ではないと判定してHiレベルを出力する。なお、過電流判定部60の基準電圧に相当する電流値は、電流制限値ILIM2に相当する。
カウント部70は、電流制限値を切り替えるまでの時間を測定する。過電流判定部60によって過電流が流れていると判定された場合には、トランジスタ71のゲートにはLoレベルが印加されることによって、トランジスタ71はオンする。過電流判定部60によって過電流が流れていないと判定された場合には、トランジスタ71のゲートにはHiレベルが印加されることによって、トランジスタ71はオフする。トランジスタ71がオンした場合には、コンデンサ76に電源72から電荷が充電されることによってコンパレータ80の非反転入力端子Vの電圧は増加する。トランジスタ71がオフした場合には、コンデンサ76の電荷がダイオード75を介して放電されることによってコンパレータ80の非反転入力端子Vの電圧は減少する。カウント部70は、非反転入力端子Vの電圧が増加することによって過電流を流すことを許容できる許容時間(限界時間)に相当する基準電圧(電源77の抵抗78と79による分圧値により規定)を超えた場合には、過電流を許容できる時間が経過したとみなして、電流制限値をILIM1からILIM2に切り替えるために、Hiレベルを出力する。一方、カウント部70は、非反転入力端子Vの電圧が減少することによって過電流を流すことが許容できない休憩時間に相当する基準電圧(電源77の抵抗78と79による分圧値により規定)を下回った場合には、過電流を流すために必要な休憩時間(冷却期間)が経過したとみなして、電流制限値をILIM2からILIM1に切り替えるために、Loレベルを出力する。このようにカウント部70を構成することによって、電流検出部50によって検出された検出電流を過電流判定部60によって過電流が流れていると判定された時点から積分することと同等のことを実現している。
電流制限値変更部90は、カウント部70の判定結果である出力電圧に基づいて、電源装置が最大限流すことができる電流制限値ILIMを切り替える。カウント部70によって過電流を許容できる時間が経過したとみなされた場合には、トランジスタ91のゲートにはHiレベルが印加されることによって、トランジスタ91はオンする。カウント部70によって過電流を流すために必要な休憩時間が経過したとみなされた場合には、トランジスタ91のゲートにはLoレベルが印加されることによって、トランジスタ91はオフする。過電流を許容できる時間が経過したとみなされたことによりトランジスタ91がオンした場合、電流制限部100のオペアンプ101の非反転入力端子Vには電源92の抵抗93と94と95による分圧値Vth2が印加される。過電流を流すために必要な休憩時間が経過したとみなされたことによりトランジスタ91がオフした場合、電流制限部100のオペアンプ101の非反転入力端子Vには電源92の抵抗93と95による分圧値Vth1が印加される。すなわち、分圧値がVth1からVth2に切り替わることによって電流制限値がILIM1からILIM2に切り替わることに相当し、分圧値がVth2からVth1に切り替わることによって電流制限値がILIM2からILIM1に切り替わることに相当する。
電流制限部100は、オペアンプ101の反転入力端子に入力される電流検出部50の出力電圧とオペアンプ101の非反転入力端子に入力されるVth1もしくはVth2とに基づいて、出力電圧検出部30によって検出された電源装置の出力電圧を分圧し、その分圧値を制御部40の積分回路(コンデンサ42,オペアンプ43)の反転入力端子に出力する。これによって、そのときの電流制限値ILIMに従って出力電流の制限が可能となる。
それでは、上述の図1に示した本実施形態の昇圧型電源装置の過電流検出後の動作について図3及び図4を参照しながら説明する。
図3は、本実施形態の昇圧型電源装置が過電流を検出する場合の第1のタイミングチャートである。いま、電源装置の出力電流を制限する電流制限値は電流制限値変更部90によってILIM1に設定されているとする。電流検出部50による検出電流Iが電流制限値ILIM2を超えた時、過電流判定部60の出力電圧VDOUTはLoレベルからHiレベルに切り替わり、カウント部70は電流制限値の切替時間Tcのカウントアップを所定のカウントアップ率で開始する(図3(a)参照)。また、電流検出部50による検出電流Iが電流制限値ILIM2を下回った時、過電流判定部60の出力電圧VDOUTはHiレベルからLoレベルに切り替わり、カウント部70は電流制限値の切替時間Tcのカウントダウンを所定のカウントダウン率で開始する(図3(a)参照)。
そして、図3(b)に示されるようにカウント部70の切替時間Tcが許容時間限界値TLIMに到達しない場合には、図3(c)に示されるように電流制限値変更部90によって電流制限値は変更されずにILIM1のままである。したがって、検出電流Iが電流制限値ILIM2を超えていたとしても、カウント時間Tcが許容時間限界値TLIMに到達しないかぎり、あるいは、電流制限値ILIM1を超えない限り、出力電流は制限されないため、図3(a)に示されるように出力電圧VOUTは一定電圧が保たれることとなる。
図4は、本実施形態の昇圧型電源装置が過電流を検出する場合の第2のタイミングチャートである。いま、電源装置の出力電流を制限する電流制限値は電流制限値変更部90によってILIM1に設定されているとする。電流検出部50による検出電流Iが電流制限値ILIM2を超えた時、過電流判定部60の出力電圧VDOUTはLoレベルからHiレベルに切り替わり、カウント部70は電流制限値の切替時間Tcのカウントアップを所定のカウントアップ率で開始する(図4(a)参照)。また、電流検出部50による検出電流Iが電流制限値ILIM2を下回った時、過電流判定部60の出力電圧VDOUTはHiレベルからLoレベルに切り替わり、カウント部70は電流制限値の切替時間Tcのカウントダウンを所定のカウントダウン率で開始する(図4(a)参照)。
そして、図4(b)に示されるようにカウント部70の切替時間Tcが許容時間限界値TLIMに到達した場合には、図4(c)に示されるように電流制限値変更部90によって電流制限値はILIM1からILIM2に変更される。電流制限値がILIM2に変更されることにより、検出電流Iは図4(a)に示されるように電流制限値ILIM2に等しくなるような波形となり、この場合、電源装置の出力電流は電流制限値ILIM2に制限される。
また、電流制限値がILIM1からILIM2に変更されると、過電流検出部50によって検出される電流は電流制限値ILIM2を超えないように制限されるため、過電流判定部60によって過電流と判定されないため、過電流判定部60の出力電圧VDOUTはLoレベルとなり、カウント部70は切替時間Tcを所定のカウントダウン率でカウントダウンする。カウント部70は切替時間Tcをカウントダウンすることによって、切替時間Tcが上述の休憩時間を経過すると、電流制限値変更部90によって電流制限値はILIM2からILIM1に変更される。
また、電流検出部50による検出電流Iが電流制限値ILIM1を超えた場合には、検出電流Iは図4(a)に示されるように電流制限値ILIM1に等しくなるような波形となり、この場合、電源装置の出力電流は電流制限値ILIM1に制限される。
また、電流検出部50による検出電流Iが電流制限値ILIM1を超え、且つ、カウント部70の切替時間Tcが許容時間限界値TLIMに到達した場合には、図4(c)に示されるように電流制限値変更部90によって電流制限値はILIM1からILIM2に変更される。
本実施形態の昇圧型電源装置によれば、このように電流制限値ILIMを可変することによって、電源装置の構成部品の大きさを抑えつつ、一時的に過大なピーク電流を流すことができる。
ところで、カウント部70での切替時間Tcのカウントアップ率やカウントダウン率は、図1の場合、コンデンサ76の容量と73,74の定電流源によって決められる。図1に示されるカウント部70の回路構成の場合には、図5(a)に示されるように時間の経過とともに略一定の傾きで切替時間Tcのカウントアップがなされ、図5(b)に示されるように時間の経過とともに略一定の傾きで切替時間Tcのカウントダウンがなされる。例えば、出力電流が図5(c)に示されるような出力電流が流れた場合に、図5(a)に示されるような略一定の傾きのカウントアップは有効である。
また、図6(a)に示されるように検出電流Iの違いによって経過時間に対するカウントアップの傾きRを変化させてもよく、図6(b)に示されるように検出電流Iの違いによって経過時間に対するカウントダウンの傾きRを変化させてもよい。図6(a)の場合検出電流IがIの場合にはカウントアップの傾きがRとなるように設定されることになり、図6(b)の場合検出電流IがIの場合にはカウントアップの傾きがRとなるように設定される。すなわち、図6(a)に示されるように、検出電流Iが小さいほど小さく設定されたカウントアップの傾きで切替時間Tcのカウントアップがなされ、図6(b)に示されるように、検出電流Iが小さいほど大きく設定されたカウントダウンの傾きで切替時間Tcのカウントダウンがなされる。
また、図7(a)に示されるように、カウントアップされる切替時間Tcが経過時間の2乗で変化するように、検出電流Iの違いによって経過時間に対するカウントアップ率を変化させてもよく、検出電流Iの値が小さいほど小さく設定されたカウントアップ率で切替時間Tcのカウントアップがなされる。また、図7(b)に示されるように、カウントダウンされる切替時間Tcが経過時間の2乗で変化するように、検出電流Iの違いによって経過時間に対するカウントダウン率を変化させてもよく、検出電流Iの値が小さいほど大きく設定されたカウントダウン率で切替時間Tcのカウントダウンがなされる。例えば電源装置の放熱性能が悪い場合には、図7に示されるようなカウント率とすると効果的である。電流に対し直線的に所定値までカウントアップする場合、電流の値が半分になると当該所定値までカウントアップする時間は2倍となる。しかしながら、実際の損失は電流の2乗に比例するので、電流の値が半分になれば当該所定値までカウントアップする時間は4倍となる。したがって、電源装置の放熱性能が悪い場合には、図7に示されるようなカウント率とした場合、電流に対し直線的なカウント率の場合に比べ、電流制限されるまでの時間を4倍長くすることができる。
また、基板上に素子が実装された状態での温度変化はある温度から温度変化率が小さくなるため、図8(a)に示されるように或る時間まで時間の経過とともに電流の2乗に比例してそれ以降は略一定の傾きで切替時間Tcのカウントアップがなされるようにし、図8(b)に示されるように或る時間まで時間の経過とともに電流の2乗に比例してそれ以降は略一定の傾きで切替時間Tcのカウントダウンがなされるようにしてもよい。例えば電源装置の放熱性能が良い場合には、図8に示されるようなカウント率とすると効果的であり、トランジスタ等の発熱体の影響によりその周囲にある素子等が破壊を起こすおそれがある場合に効果的である。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
例えば、図9は、本発明に係る電源装置を降圧型の電源装置とした場合の一実施形態を示した図である。図9に示される本実施形態の降圧型電源装置は、上述の昇圧型電源装置と同様に、基準電源1の電力を負荷2に供給する電源装置であって、基準電源1の電圧変動や負荷2の消費電流(負荷電流)の変動に対して、一定の電圧を負荷2側に出力する電源装置(いわゆる、レギュレータ)である。
本実施形態の降圧型電源装置は、基準電源1側の電圧を降圧変換して変換した電圧を負荷2側に出力する降圧型スイッチングレギュレータである。出力電圧は、所定の目標電圧となるようにフィードバック制御される。この出力電圧が、負荷2の印加電圧に相当する。制御部40は、出力電圧検出部30によってフィードバックされた出力電圧を所定の目標電圧となるようにゲート駆動部13に対して指令信号を出力する。ゲート駆動部13によってスイッチング素子11はスイッチング動作を行うことによって、基準電源1側の電圧の降圧がなされる。
制御部40は、積分回路(コンデンサ42,オペアンプ43)及びPWM制御部41で設定されたデューティ比に応じてスイッチング素子15をオン・オフする。スイッチング素子15がオン動作すると、インダクタ16に入力側から出力側に向けて電流が流れ、出力側コンデンサ18に蓄電される。制御部40は、次に、設定デューティ比に応じてスイッチング素子13をオフする。スイッチング素子13がオフ動作すると、インダクタ16に流れていた電流を流し続けようと、インダクタ16と出力側コンデンサ18とダイオード14と間で電流が還流する。これによって、降圧型電源回路の入力側よりも低い電圧が平滑された状態でその出力側に出力される。
このような降圧型電源装置であっても、上述の昇圧型電源装置と同様に、電流制限値ILIMを可変することによって、構成部品の大きさを抑えつつ、一時的に過大なピーク電流を流すことができる。
また、上述の実施形態ではスイッチングレギュレータの構成を例に挙げたが、シリーズレギュレータの構成でも、上述のスイッチングレギュレータの実施形態と同様に、電流制限値ILIMを可変することによって、構成部品の大きさを抑えつつ、一時的に過大なピーク電流を流すことができる。
本発明に係る電源装置を昇圧型の電源装置とした場合の一実施形態を示した図である。 負荷2の負荷電流の増大により出力電圧が低下した状態を示した図である。 本実施形態の昇圧型電源装置が過電流を検出する場合の第1のタイミングチャートである。 本実施形態の昇圧型電源装置が過電流を検出する場合の第2のタイミングチャートである。 時間の経過とともに略一定の傾きで切替時間Tcをカウントする場合の図である。 検出電流Iの違いによって経過時間に対するカウントの傾きRを変化させる場合の図である。 時間の経過とともに電流の2乗に比例して切替時間Tcをカウントする場合の図である。 或る時間まで時間の経過とともに電流の2乗に比例してそれ以降は略一定の傾きで切替時間Tcのカウントする場合の図である。 本発明に係る電源装置を降圧型の電源装置とした場合の一実施形態を示した図である。
符号の説明
1 基準電源
2 負荷
11,15 スイッチング素子
12,14 ダイオード
16 インダクタ
17 入力側コンデンサ
18 出力側コンデンサ
30 出力電圧検出部
40 制御部
50 電流検出部
60 過電流判定部
70 カウント部
90 電流制限値変更部
100 電流制限部

Claims (4)

  1. 入力電圧を調整した電圧を出力する電圧調整手段と、
    前記電圧調整手段を介して流れる電流を検出する電流検出手段と、
    前記電流検出手段によって第1の閾値電流以上の電流が検出された後の前記電流検出手段によって検出された電流の積分値が所定の許容値に到達した場合に、前記第1の閾値電流で又は前記第1の閾値電流より小さい第2の閾値電流で前記電圧調整手段の出力電流を制限する電流制限手段とを備える、電源装置。
  2. 入力電圧を調整した電圧を出力する電圧調整手段と、
    前記電圧調整手段を介して流れる電流を検出する電流検出手段と、
    前記電流検出手段によって第1の閾値電流以上の電流が検出された時間が所定の許容時間に到達した場合に、前記第1の閾値電流で又は前記第1の閾値電流より小さい第2の閾値電流で前記電圧調整手段の出力電流を制限する電流制限手段とを備える、電源装置。
  3. 前記第1の閾値電流以上の電流が検出された時間は、前記電流検出手段によって検出された電流が前記第1の閾値電流を超えるか否かによって増減する、請求項2に記載の電源装置。
  4. 前記電流制限手段は、更に、前記第1の閾値電流より大きい第3の閾値電流で前記電圧調整手段の出力電流を制限する、請求項1から3のいずれかに記載の電源装置。
JP2006282991A 2006-10-17 2006-10-17 電源装置 Pending JP2008104261A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282991A JP2008104261A (ja) 2006-10-17 2006-10-17 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282991A JP2008104261A (ja) 2006-10-17 2006-10-17 電源装置

Publications (1)

Publication Number Publication Date
JP2008104261A true JP2008104261A (ja) 2008-05-01

Family

ID=39438155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282991A Pending JP2008104261A (ja) 2006-10-17 2006-10-17 電源装置

Country Status (1)

Country Link
JP (1) JP2008104261A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513016A (ja) * 2014-03-14 2017-05-25 ノースロップ グルマン リテフ ゲーエムベーハーNorthrop Grumman LITEF GmbH コリオリジャイロスコープの起動時間を最適化する方法、および上記方法に適したコリオリジャイロスコープ
JP2020150705A (ja) * 2019-03-14 2020-09-17 本田技研工業株式会社 電源システム
JP2021040445A (ja) * 2019-09-04 2021-03-11 株式会社東芝 スイッチング電源回路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513016A (ja) * 2014-03-14 2017-05-25 ノースロップ グルマン リテフ ゲーエムベーハーNorthrop Grumman LITEF GmbH コリオリジャイロスコープの起動時間を最適化する方法、および上記方法に適したコリオリジャイロスコープ
US10260901B2 (en) 2014-03-14 2019-04-16 Northrop Grumman Litef Gmbh Method for optimizing the switch-on time of a coriolis gyroscope and coriolis gyroscope suitable thereof
JP2020150705A (ja) * 2019-03-14 2020-09-17 本田技研工業株式会社 電源システム
CN111688492A (zh) * 2019-03-14 2020-09-22 本田技研工业株式会社 电源系统
JP7039513B2 (ja) 2019-03-14 2022-03-22 本田技研工業株式会社 電源システム
CN111688492B (zh) * 2019-03-14 2023-04-18 本田技研工业株式会社 电源系统
JP2021040445A (ja) * 2019-09-04 2021-03-11 株式会社東芝 スイッチング電源回路

Similar Documents

Publication Publication Date Title
JP6536466B2 (ja) 電源装置
US8604767B2 (en) Boundary conduction mode switching regulator and driver circuit and control method thereof
US7772822B2 (en) Power supply apparatus
JP4481879B2 (ja) スイッチング電源装置
US7586296B2 (en) Power supply apparatus
US20100194368A1 (en) Current driving method and circuit
JP3922650B1 (ja) キャパシタ蓄電電源用充電装置
US9998009B1 (en) Switch mode power supply supporting both a bi-directional converter of a first configuration and that of a second configuration
JP6030755B2 (ja) 電源保護のためのdc/dc電力コンバータ制御方式
US7816896B2 (en) Circuits and methods for controlling a converter
JP6013036B2 (ja) 電源装置、並びに、これを用いた車載機器及び車両
JP4321467B2 (ja) パワースイッチング装置
JP4049333B1 (ja) 充電制御装置
US7868596B2 (en) Method of controlling a step-up DC-DC converter and related converter
JP2009089451A (ja) Dc・dcコンバータ
JP2014003812A (ja) 電源装置、並びに、これを用いた車載機器及び車両
JP6154584B2 (ja) 電源装置、並びに、これを用いた車載機器及び車両
JP6232133B2 (ja) 電子制御装置
JP2014003770A (ja) 電源装置、並びに、これを用いた車載機器及び車両
JP2008104261A (ja) 電源装置
JP2014003814A (ja) 電源装置、並びに、これを用いた車載機器及び車両
JP6101439B2 (ja) 電源装置、並びに、これを用いた車載機器及び車両
JP4820257B2 (ja) 昇圧コンバータ
US10276084B2 (en) Circuit having a variable output and a converter controller including same
JP2007267582A (ja) 昇降圧チョッパ装置とその駆動方法