JP4321467B2 - パワースイッチング装置 - Google Patents

パワースイッチング装置 Download PDF

Info

Publication number
JP4321467B2
JP4321467B2 JP2005082164A JP2005082164A JP4321467B2 JP 4321467 B2 JP4321467 B2 JP 4321467B2 JP 2005082164 A JP2005082164 A JP 2005082164A JP 2005082164 A JP2005082164 A JP 2005082164A JP 4321467 B2 JP4321467 B2 JP 4321467B2
Authority
JP
Japan
Prior art keywords
voltage
converter
output
mode
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005082164A
Other languages
English (en)
Other versions
JP2006094690A (ja
Inventor
公計 中村
剛 山下
剛 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005082164A priority Critical patent/JP4321467B2/ja
Publication of JP2006094690A publication Critical patent/JP2006094690A/ja
Application granted granted Critical
Publication of JP4321467B2 publication Critical patent/JP4321467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Description

本発明は、内蔵する半導体パワースイッチング素子のスイッチングにより所望電圧波形をもつ電力を出力するパワースイッチング装置の改良に関する。
車載電源系では電圧が異なる二つのバッテリにより車載電源系を構成する2バッテリ型車両用電源装置がハイブリッド車やアイドルストップ車において公知あるいは実用されている。この2バッテリ型車両用電源装置では、大電力負荷は数十〜数百Vの高電圧バッテリから給電され、通常の低電圧電気負荷は従来の十数Vの低電圧バッテリから給電される。高電圧バッテリは高電圧の発電装置により充電され、高電圧バッテリ又は発電装置は降圧DC−DCコンバータを通じて低電圧バッテリ又はそれに接続された低電圧電気負荷に給電する。
この2バッテリ型車両用電源装置は降圧DC−DCコンバータの半導体パワースイッチング素子のスイッチングにより降圧を行う。降圧DC−DCコンバータは、その出力電圧(低電圧バッテリの端子電圧)を所定の目標値に収束するためにフィードバック電圧制御されるのが通常である。
この種の2バッテリ型車両用電源装置として、たとえば下記の特許文献1が知られている。
特開2003−033015号公報
しかしながら、上述した2バッテリ型車両用電源装置では両バッテリの電圧はその容量状態や劣化状態の変化により電圧変動が存在するため、両バッテリ間の降圧DC−DCコンバータをスイッチング制御するための制御装置に制御電力を供給する定電圧電源回路部を設ける必要があるが、この定電圧電源回路部の電力損失が、この降圧DC−DCコンバータの効率低下と冷却負担の増大を招いていた。また、この種の定電圧制御電力供給用の定電圧電源回路は種々のパワースイッチング装置に装備されるが、同様の問題を内包していた。
本発明は上記問題点に鑑みなされたものであり、回路構成の複雑化を抑止しつつ、パワースイッチング装置の効率向上と冷却負担軽減が可能なパワースイッチング装置を提供することを、その目的としている。
本発明のパワースイッチング装置は、所定の半導体パワースイッチング素子を有し、自己が電圧変換した直流電力をバッテリに出力するバッテリ充電用DC−DCコンバータからなるパワー回路部と、前記半導体パワースイッチング素子を制御するための制御部と、 前記バッテリから給電される電圧変動を伴う入力電圧を定電圧の出力電圧に変換して前記制御部に電源電圧として印加する制御電力出力用DC−DCコンバータと該制御電力出力用DC−DCコンバータを前記入力電圧に基づいて制御する論理回路であるセレクトゲート回路とを有する定電圧電源回路部と、を備え、前記定電圧電源回路部の前記制御電力出力用DC−DCコンバータは、前記出力電圧と所定の目標電圧との偏差に基づいて前記入力電圧をスイッチング動作することにより前記出力電圧を目標電圧に収束させるパワースイッチング装置において、前記定電圧電源回路部の前記セレクトゲート回路は、前記制御電力出力用DC−DCコンバータの前記スイッチング動作を停止した状態にて前記出力電圧が前記目標電圧近傍となるような、前記バッテリの電圧の好適な使用電圧範囲に設定される入力電圧範囲の前記入力電圧が前記制御電力出力用DC−DCコンバータに入力される場合に、前記制御電力出力用DC−DCコンバータの前記スイッチング動作を停止して前記入力電をスイッチングすることなく前記制御部に前記電源電として給電するスルーモード動作とし、前記入力電圧が前記入力電圧範囲より高い場合に前記入力電圧を降圧する降圧モード動作とし、前記入力電圧が前記入力電圧範囲より低い場合に前記入力電圧を昇圧する昇圧モード動作とするように前記制御電力出力用DC−DCコンバータをモード選択することを特徴としている。
すなわち、この発明は、パワー回路部のパワー半導体スイッチング素子を制御する制御部に給電する制御電力出力用DC−DCコンバータを有する定電圧電源回路部の動作を、この定電圧電源回路部としての制御電力出力用DC−DCコンバータのスイッチング動作を停止しても上記制御部によるパワー回路部のパワー半導体スイッチング素子の制御動作に支障が生じない電圧範囲に制御電力出力用DC−DCコンバータの入力電圧がある場合に、制御電力出力用DC−DCコンバータのスイッチング動作を停止する。これにより、制御電力出力用DC−DCコンバータのスイッチング停止による定電圧電源回路部の電力損失低減を実現でき、その結果としてパワー半導体スイッチング素子の効率向上と冷却負担の軽減とを実現することができる。更に、この定電圧電源回路部の制御電力出力用DC−DCコンバータのスイッチング停止は、この制御電力出力用DC−DCコンバータに通常設けられる平滑用コンデンサの温度上昇を抑止してその寿命延長を図ることも可能となり、外部に放射するスイッチングノイズも減少する効果も生じる。
さらにこの発明において、前記パワー回路部は、自己が電圧変換した直流電力を車載バッテリに出力するバッテリ充電用DC−DCコンバータからなり、前記車載バッテリは、前記定電圧電源回路部の前記制御電力出力用DC−DCコンバータに前記入力電力を給電し、前記定電圧電源回路部の前記入力電圧範囲は、前記車載バッテリの電圧の好適な使用電圧範囲に設定される。
そのため、車載バッテリの電圧が好適使用電圧範囲にある場合に、制御電力出力用DC−DCコンバータはスイッチング動作することなく必要な電圧レベルの制御電力を電源電力として制御部に供給することができるため、制御電力出力用DC−DCコンバータのスイッチング停止時間を長く設定することができ、その分だけ、上記した効率向上及び冷却負担軽減の効果を増大することが可能となる。つまり、車載バッテリがこの好適使用電圧範囲を逸脱するのは稀であり、その結果、制御電力出力用DC−DCコンバータのスイッチング損失を大幅に低減することが可能となる。なお、ここで言う車載バッテリの好適使用電圧範囲とは、車載バッテリの最も頻度が高い電圧範囲すなわち常用電圧範囲における車載バッテリの使用電圧の範囲を意味するものとする。
またさらにこの発明において、前記定電圧電源回路部の前記DC−DCコンバータは、このDC−DCコンバータの入力電圧(前記車載バッテリの電圧)に基づいて制御する論理回路であるセレクトゲート回路によって、前記車載バッテリの電圧が前記好適な使用電圧範囲より高い場合に降圧モード動作を行い、前記車載バッテリの電圧が前記好適な使用電圧範囲より低い場合に昇圧モード動作を行うようにモード選択される。更に説明すると、車載バッテリの最も高い頻度で発生する電圧範囲すなわち中間電圧範囲において制御電力出力用DC−DCコンバータのスイッチング動作を停止する一方で、車載バッテリが給電する負荷電力が異常に増大してバッテリ充電用DC−DCコンバータの電力供給が不足する状態と、車載バッテリが給電する負荷電力が異常に減少して車載バッテリが好適使用電圧範囲を超えて充電された状態とが存在する。このように、セレクトゲート回路を接続する前記定電圧電源回路部の前記DC−DCコンバータは、上記した両状態に対応することができ、制御電力の電圧不足や電圧過大を防止しつつ定電圧電源回路部の効率向上及び冷却負担軽減を安定的に実現することができる。
好適態様では、前記昇圧モードにおける前記目標電圧Vot1は、前記降圧モードにおける前記目標電圧Vot2よりも小さく設定される。このようにすれば、昇圧モードにおける制御電力出力用DC−DCコンバータの出力電圧を、降圧モードにおける制御電力出力用DC−DCコンバータの出力電圧とは無関係にそれより小さく決定することができるので、スルーモードから昇圧モードに切り替わる際に定電圧電源回路部の制御電力出力用DC−DCコンバータの出力電圧急変に起因して制御電力出力用DC−DCコンバータへの入力電流の過渡的な突入を抑止することができ、その結果として制御電力出力用DC−DCコンバータのスイッチングトランジスタの定格増大の防止や損失や発熱の増加の防止を図ることができる。 また、定電圧電源回路部としての制御電力出力用DC−DCコンバータの出力電圧がスルーモードと昇圧モードとの境界近傍にて急変するのを抑止することができる。更に、降圧モードにおける制御電力出力用DC−DCコンバータの出力電圧を、昇圧モードにおける制御電力出力用DC−DCコンバータの出力電圧とは無関係にそれより大きく決定することができるので、定電圧電源回路部としての制御電力出力用DC−DCコンバータの出力電圧がスルーモードと降圧モードとの境界近傍にて急変するのを抑止することができる。
好適態様では、前記昇圧モードにおける前記目標電圧Vot1は、前記スルーモードにおける前記制御電力出力用DC−DCコンバータの最低出力電圧近傍に設定される。なお、ここで言う近傍とは、目標電圧Vot1をスルーモードの最低出力電圧の5%の範囲での変動を含むことができるものとする。このようにすれば、スルーモードと昇圧モードとの間での入力電圧遷移に際して、制御電力出力用DC−DCコンバータの出力電圧の変化をほぼ防止することができ、制御電力出力用DC−DCコンバータの出力電圧の急変を防止することができる。
好適態様では、前記降圧モードにおける前記目標電圧Vot2は、前記スルーモードにおける前記制御電力出力用DC−DCコンバータの最高出力電圧近傍に設定される。なお、ここで言う近傍とは、目標電圧Vot2をスルーモードの最高出力電圧の5%の範囲での変動を含むことができるものとする。このようにすれば、スルーモードと降圧モードとの間での入力電圧遷移に際して、制御電力出力用DC−DCコンバータの出力電圧の変化をほぼ防止することができ、制御電力出力用DC−DCコンバータの出力電圧の急変を防止することができる。
好適態様では、前記昇圧モードにおける前記目標電圧Vot1は、前記スルーモードにおける前記最低出力電圧VLよりも低く設定される。このようにすれば、制御電力出力用DC−DCコンバータへの入力電圧Vinがその真のスルーモード時の最低電圧V1より小さくなり、制御電力出力用DC−DCコンバータの出力電圧Voutがその真のスルーモード時の最低出力電圧VLより小さくなって、スルーモードから昇圧モードへの切り替えが生じても、制御電力出力用DC−DCコンバータへの入力電圧Vinはその昇圧モードでの目標電圧Vot1よりも大きいために実質的にPWMデューティ比が0となりスルーモードを持続する。この状態を疑似スルーモード(昇圧モード時)とも言う。制御電力出力用DC−DCコンバータ51への入力電圧Vinが更に低下し、それにより制御電力出力用DC−DCコンバータの出力電圧Voutが昇圧モード時の目標電圧Vot1より小さくなるとPWMデューティ比が0よりも大きくなって昇圧モードが実質的に開始される。このようにすれば、入力電圧Vinが、昇圧モードを実際に開始すべき電圧V1’(図10参照)よりも大きい時点で昇圧モードを開始した状態でスルーモード状態を擬似的に保持できるため、制御電力出力用DC−DCコンバータが昇圧モードの準備を行うための動作遅れがなく円滑にスルーモードと昇圧モードとの切り替えを行うことができ、切り替え時の瞬時的な制御電力出力用DC−DCコンバータ51の出力電圧Voutの急変を防止することができる。
本発明のパワースイッチング装置の好適な実施態様を図面を参照して以下に説明する。ただし、本発明はこの実施態様に限定されるものではなく、本発明の各構成要素の一部又は全部を他の公知の技術又はそれと同等機能を有する技術に置換しても良いことはもちろんである。
(実施例1)
本発明のパワースイッチング装置が適用された2バッテリ型車両用電源装置図1に示す回路図を参照して説明する。
この2バッテリ型車両用電源装置は、ハイブリッド車の走行エネルギー蓄電用の主バッテリ1から、補機及び電子制御装置給電用の補機バッテリ2に電圧変換して給電するためのものであって、3は本発明で言うパワー回路部をなすバッテリ充電用DC−DCコンバータ、4はこのバッテリ充電用DC−DCコンバータ3のスイッチング動作を制御するDC−DCコンバータ制御回路であり、このDC−DCコンバータ制御回路4は本発明で言う制御部と、本発明で言う定電圧電源回路部としての補助電源5とを構成している。
バッテリ充電用DC−DCコンバータ3は、入力平滑コンデンサ31、フルブリッジ型のインバータ回路32、降圧トランス33、同期整流回路34、チョークコイル35、出力平滑コンデンサ36からなる周知の回路構成を採用するが、他の公知のDC−DCコンバータ回路構成を採用しても良い。チョークコイル35、出力平滑コンデンサ36は公知の出力平滑回路を構成している。
DC−DCコンバータ制御回路4は、バッテリ充電用DC−DCコンバータ3の出力電流を検出する電流センサ6が検出した電流検出値と、バッテリ充電用DC−DCコンバータ3の出力電圧とを読み込み、この出力電圧と所定目標電圧値との偏差を0とする制御信号を出力するコントローラ41と、このコントローラ41から入力された制御信号によりPWM制御用のゲート電圧を形成し、これらゲート電圧をインバータ回路32の各MOSトランジスタや同期整流回路34の各MOSトランジスタに出力する駆動回路42とを有している。また、コントローラ41は、読み込んだ電流検出値が所定範囲を逸脱する場合にはバッテリ充電用DC−DCコンバータ3のスイッチング動作を停止してそれを保護する機能も有している。
駆動回路42から入力されるゲート電圧によりインバータ回路32の各MOSトランジスタをスイッチング駆動することにより、インバータ回路32の平均出力電圧は上記したバッテリ充電用DC−DCコンバータ3の出力電圧と所定目標電圧値との偏差を0とするようにPWM制御される。更にインバータ回路32の各MOSトランジスタと同期して同期整流回路34を構成する一対のトランジスタもスイッチング制御されて降圧トランス33の二次電圧を同期整流し、同期整流回路34の出力電圧は出力平滑回路により平滑された後、本発明で言う車載バッテリをなす補機バッテリ2を充電する。
補助電源5は、定電圧電源回路であって、補機バッテリ2から給電された入力電力を定電化して、本発明で言う制御部をなすコントローラ41及び駆動回路42に電源電力を供給する。
バッテリ充電用DC−DCコンバータ3、コントローラ41、駆動回路42の回路構成としては、上記した図1の回路構成以外に種々のバリエーションがあるが、それらはもはや周知であり、かつ、本発明の主旨ではないので説明を省略する。
次に、この実施例の特徴をなす補助電源5の回路構成について図2を参照して以下に説明する。
補助電源5は、補機バッテリ2から給電される入力電力を定電圧化するDC−DCコンバータである制御電力出力用DC−DCコンバータ51と、制御電力出力用DC−DCコンバータ51の出力電圧をフィードバックPWM制御する補助電源用コントローラ52とからなる。
制御電力出力用DC−DCコンバータ51は、入力平滑コンデンサ53、PNPトランジスタT1、ダイオードD1、D2、チョークコイル54、NMOSトランジスタQ2、出力平滑コンデンサ55、抵抗Rからなる周知の昇降圧チョッパ型DC−DCコンバータを採用している。制御電力出力用DC−DCコンバータ51は、トランジスタT1を常時オンし、トランジスタQ2をPWMスイッチング制御することにより入力電圧を昇圧して出力し、トランジスタQ2を常時オフし、トランジスタT1をPWMスイッチング制御することにより入力電圧を降圧して出力する。この種の昇降圧チョッパ型DC−DCコンバータの回路構成及び昇降圧動作自体は周知でありかつ本発明の主旨でもないので、これ以上の説明は省略する。なお、制御電力出力用DC−DCコンバータ51は昇降圧できる回路形式であれば、他の公知の昇降圧可能なDC−DCコンバータ回路構成に置換しても良い。
補助電源用コントローラ52は、制御電力出力用DC−DCコンバータ51の出力電圧と所定の目標電圧Votとの間の偏差を電圧増幅してアナログ直流電圧を出力する誤差増幅器56、この誤差増幅器が出力するアナログ直流電圧に応じたデューティ比と所定周期のキャリヤ周波数をもつPWM電圧を出力するPWMコンパレータ57と、後述のモード選択回路58と、モード選択回路58の出力に基づいてトランジスタT1、Q2の動作を制御するための制御信号S1、S2を形成し、これら制御信号S1、S2をトランジスタT1、Q2に出力する駆動回路59と、モード選択回路58にモード選択信号Mを出力するセレクトゲート回路60とからなる。
モード選択回路58及びセレクトゲート回路60の回路機能について図3に示すモード説明図を参照して以下に具体的に説明する。
セレクトゲート回路60は、補機バッテリ2の電圧の大きさに応じて動作モード(以下、単にモードとも言う)を選択し、選択したモードに応じたモード選択信号Mを出力する論理回路であり、種々の回路構成が容易に考えられ、簡単には2つのコンパレータにより実現することができる。
この実施例で用いるモードとしては、昇圧モード、スルーモード、降圧モードがある。セレクトゲート回路60は、補機バッテリ2の電圧Vinが低電位しきい値電圧V1より小さい場合に昇圧モードを、補機バッテリ2の電圧Vinが高電位しきい値電圧V2より大きい場合に降圧モードを、補機バッテリ2の電圧Vinが低電位しきい値電圧V1以上かつ高電位しきい値電圧V2以下の場合にはスルーモードを示すモード選択信号をモード選択回路58に出力する。
モード選択回路58は、昇圧モードの選択を指示された場合にトランジスタT1の常時オンを駆動回路59に指令するとともに、PWMコンパレータ57から入力されたPWM制御信号をトランジスタQ2に出力するように駆動回路59に指令する。これにより、制御電力出力用DC−DCコンバータ51は昇圧動作を行い、かつ、補助電源用コントローラ52は制御電力出力用DC−DCコンバータ51の出力電圧を上記目標電圧Votに収束させるべくトランジスタQ2をPWMフィードバック制御する。
モード選択回路58は、降圧モードの選択を指示された場合にトランジスタQ2の常時オフを駆動回路59に指令するとともに、PWMコンパレータ57から入力されたPWM制御信号をトランジスタT1に出力するように駆動回路59に指令する。これにより、制御電力出力用DC−DCコンバータ51は降圧動作を行い、かつ、補助電源用コントローラ52は制御電力出力用DC−DCコンバータ51の出力電圧を上記目標電圧Votに収束させるべくトランジスタQ2をPWMフィードバック制御する。
この実施例における補助電源5の制御電力出力用DC−DCコンバータ51の入力電圧Vinと出力電圧Voutとの関係を図4に示す。ただし、この実施例では、昇圧モード時と降圧モード時とで誤差増幅器56の目標電圧Votは同じであり、スルーモードにおける最高出力電圧VHと最低出力電圧VLとのほぼ中間値に設定されているものとする。
モード選択回路58は、スルーモードの選択を指示された場合にトランジスタT1の常時オンとトランジスタQ2の常時オフを駆動回路59に指令する。
すなわち、この実施例によれば、補機バッテリ2の電圧が所定電圧範囲(V1〜V2)において、PWMフィードバック制御を停止する。これにより、補機バッテリ2の電圧からダイオードD2の順方向電圧降下を差し引いた値にほぼ等しい電源電圧(V1−約0.7V〜V2−約0.7V)がコントローラ41及び駆動回路42に印加されることになる。
したがって、電源電圧(V1−約0.7V〜V2−約0.7V)が印加される場合に、コントローラ41及び駆動回路42がバッテリ充電用DC−DCコンバータ3の各トランジスタをスイッチングしてバッテリ充電用DC−DCコンバータ3を支障なく運転できるように、各MOSトランジスタの出力インピーダンスなどを調整しておくことにより、補助電源5の消費電力を低減することが可能となる。
なお、この実施例において、補助電源5に入力される電源電圧の所定電圧範囲(V1〜V2)は、補機バッテリ2の好適な使用電圧範囲とされる。個々で言う好適な使用電圧範囲とは、バッテリ充電用DC−DCコンバータ3を制御するコントローラ41の上記所定目標電圧値Vpを中央値としてその上下に所定小値ΔVだけ離れた電圧範囲(Vp−ΔV〜Vp+ΔV)とすることができる。このようにすれば、補機バッテリ2の電圧は上記所定目標電圧値Vp近傍にある場合が最も多いため、補助電源のスイッチング動作を最も良好に低減することが可能となる。また、この場合には、バッテリ充電用DC−DCコンバータ3の運転状況、発電状況及び電力消費状況により、補機バッテリ2のバッテリ電圧が上記電圧範囲(Vp−ΔV〜Vp+ΔV)を上に逸脱する場合と、下に逸脱する場合とが生じるが、この実施例では、制御電力出力用DC−DCコンバータ51として昇降圧可能なDC−DCコンバータを用いているので、必要に応じて昇圧モードと降圧モードとを選択することができ、支障なくコントローラ41及び駆動回路42を駆動することができる。
(変形態様)
上記実施例では、制御電力出力用DC−DCコンバータ51として昇圧、降圧が可能なものを採用したが、本発明はそれに限定されるものではなく、昇圧又は降圧のどちらかのみを行うものとしても良い。
また、セレクトゲート回路60を、補機バッテリ2の電圧Vinが低電位しきい値電圧V1より小さいかどうかを判定するコンパレータと、補機バッテリ2の電圧Vinが高電位しきい値電圧V2より大きいかどうかを判定するコンパレータにより構成してもよい。この場合、二つのコンパレータの出力の組み合わせとして、補機バッテリ2の電圧Vinが低電位しきい値電圧V1より小さく、かつ、高電位しきい値電圧V2より大きいという判定結果に相当する組み合わせが考えられるが、この出力組み合わせはセレクトゲート回路60の不良として補助電源5がPWMフィードバック制御を常時行うようにすることが好適である。これにより、セレクトゲート回路60が故障しても支障なく、補助電源5は好適電源電圧を出力することができる。
その他、補機バッテリ2の電力消費状況などに応じて、補機バッテリ2の電圧レベル(充電レベル)を変更することも可能であり、それに応じてバッテリ充電用DC−DCコンバータ3の出力電圧を変更することも可能であることはもちろんである。
その他、主バッテリ1と補機バッテリ2の代わりに、高電圧バッテリと低電圧バッテリとの間に介設されるDC−DCコンバータを制御する制御回路の電源電力を出力する補助電源5に上記スルーモードを設けてもよく、汎用のパワースイッチング装置を制御する制御電源としてのDC−DCコンバータに上記スルーモードを設けても良い。
(実施例2)
実施例2を図5を参照して以下に説明する。図5は、補助電源5の制御電力出力用DC−DCコンバータ51の入力電圧Vinと出力電圧Voutとの関係を示す図である。
図5に示すように、この実施例の誤差増幅器56の目標電圧Vot1は、図4で説明した実施例1における誤差増幅器の目標電圧Votよりも低下させてスルーモードにおける制御電力出力用DC−DCコンバータ51の最低出力電圧VLに等しく設定されている。
このようにすれば、制御電力出力用DC−DCコンバータ51への入力電圧Vinが低下してその動作モードがスルーモードから昇圧モードに切り替わる際に実施例1で生じた制御電力出力用DC−DCコンバータ51の入力電流の急増現象を防止することができる。
更に説明すると、実施例1では、図4に示すように誤差増幅器56の目標電圧Votが制御電力出力用DC−DCコンバータ51のスルーモードにおける最高出力電圧VHと最低出力電圧VLとの中間値に設定されているため、スルーモードから昇圧モードに切り替わった直後において制御電力出力用DC−DCコンバータ51の出力電圧の急増とそれに起因する制御電力出力用DC−DCコンバータ51への入力電流Iiの急増が生じる(図6参照)。
これに対して、この実施例2では、誤差増幅器56の目標電圧Vot1を、スルーモードにおける誤差増幅器56の最低出力電圧に等しく設定しているため、スルーモードから昇圧モードへの切り替えに際して制御電力出力用DC−DCコンバータ51の出力電圧Voutの急増は生じることがなく、その結果として、制御電力出力用DC−DCコンバータ51の入力電流Iiの急増を防止することができる(図7参照)。なお、この入力電流急増は、目標電圧Vot1を最高出力電圧VHと最低出力電圧VLとの中間値より小さくすることにより抑止することができ、目標電圧Vot1を最低出力電圧VLより小さくしてもよい。
(実施例3)
実施例3を図8、図9を参照して以下に説明する。図8は、補助電源5の補助電源用コントローラ52が目標電圧切り替え回路61をもつことを示す補助電源3の回路図である。
この目標電圧切り替え回路61は、セレクトゲート60から出力されるモード信号Mが昇圧モードを示す場合に誤差増幅器56の目標電圧Votとして目標電圧Vot1を選択して誤差増幅器56に出力し、セレクトゲート60から出力されるモード信号Mが降圧モードを示す場合に誤差増幅器56の目標電圧Votとして目標電圧Vot2を選択して誤差増幅器56に出力する点をその特徴としている。この種の切り替え回路自体は、周知の回路構造により実現できるため、具体的な回路構成の図示は省略する。ただし、降圧モード時の目標電圧Vot2は、少なくとも昇圧モード時の目標電圧Vot1よりも高く設定される。また、この実施例では、降圧モード時の目標電圧Vot2は、スルーモード時の最高出力電圧VHよりも所定値だけ小さく設定されている。昇圧モード時の目標電圧Vot1は実施例2と同じくスルーモード時の最低出力電圧VLに等しく設定されている。ただし、降圧モード時の目標電圧Vot2はスルーモード時の最高出力電圧VHと最低出力電圧VLとの中間値よりも高く設定されている。
このようにすれば、実施例2よりも、スルーモード時と降圧モード時との切り替えにおいて制御電力出力用DC−DCコンバータ51の出力電圧の急変を抑止することができる。
(実施例4)
実施例4を図10を参照して以下に説明する。図10は、図9に示す実施例3において、昇圧モード時の目標電圧Vot1と、降圧モード時の目標電圧Vot2と、制御電力出力用DC−DCコンバータ51の入力電圧Vinと出力電圧Voutとを示す図である。
この実施例は、実施例3において、昇圧モード時の目標電圧Vot1をスルーモード(ここでは真のスルーモードと言う)における最低出力電圧VLよりも低く設定し、降圧モード時の目標電圧Vot2をスルーモード(ここでは真のスルーモードと言う)における最高出力電圧VHよりも低く設定した点をその特徴としている。この場合の動作を、図10を参照して具体的に説明する。
まずスルーモードから昇圧モードへの遷移を説明する。
制御電力出力用DC−DCコンバータ51への入力電圧Vinが真のスルーモード時の最低電圧V1より小さくなり、制御電力出力用DC−DCコンバータの出力電圧Voutが真のスルーモード時の最低出力電圧VLより小さくなって、真のスルーモードから昇圧モードへの切り替えが生じても、制御電力出力用DC−DCコンバータへの入力電圧Vinはその昇圧モードでの目標電圧Vot1よりも大きいために実質的にPWMデューティ比が0となりスルーモードを実質的に持続する。すなわち、昇圧モード時の疑似スルーモードを行う。
次に、制御電力出力用DC−DCコンバータ51への入力電圧Vinが更に低下し、それにより制御電力出力用DC−DCコンバータの出力電圧Voutが昇圧モード時の目標電圧Vot1より小さくなるとPWMデューティ比が0よりも大きくなって昇圧モードが実質的に開始される。
このようにすれば、入力電圧Vinが、昇圧モードを実際に開始すべき電圧V1’(図10参照)よりも大きい時点で昇圧モードを開始した状態でスルーモード状態を持続できるため、制御電力出力用DC−DCコンバータが昇圧モードの準備を行うための動作遅れがなく円滑にスルーモードと昇圧モードとの切り替えを行うことができ、切り替え時の瞬時的な制御電力出力用DC−DCコンバータ51の出力電圧Voutの急変を防止することができる。
なお、図10において、V1’、V1、V2は予め設定された許容電圧変動範囲内にて適宜設定することができる。
実施例1の2バッテリ型車両用電源装置を示す回路図である。 図1に示す補助電源を詳細図示する回路図である。 図2のセレクトゲート回路が選択する動作モードを示す図である。 実施例1の補助電源の入力電圧Vinと出力電圧Voutとの関係を示す特性図である。 実施例2の補助電源の入力電圧Vinと出力電圧Voutとの関係を示す特性図である。 実施例1の補助電源のスルーモードから昇圧モードへの切り替え時の挙動を示すタイミングチャートである。 実施例2の補助電源のスルーモードから昇圧モードへの切り替え時の挙動を示すタイミングチャートである。 実施例3の補助電源の一例を詳細図示する回路図である。 図8の補助電源の入力電圧Vinと出力電圧Voutとの関係を示す特性図である。 実施例4の補助電源の入力電圧Vinと出力電圧Voutとの関係を示す特性図である。
符号の説明
Q2 トランジスタ
T1 トランジスタ
1 主バッテリ
2 補機バッテリ
3 バッテリ充電用DC−DCコンバータ
4 コンバータ制御回路
5 補助電源
6 電流センサ
31 入力平滑コンデンサ
32 インバータ回路
33 降圧トランス
34 同期整流回路
35 チョークコイル
36 出力平滑コンデンサ
41 コントローラ
42 駆動回路
51 制御電力出力用DC−DCコンバータ
52 補助電源用コントローラ
55 出力平滑コンデンサ
56 誤差増幅器
57 PWMコンパレータ
58 モード選択回路
59 駆動回路
60 セレクトゲート回路
61 目標電圧切替回路

Claims (5)

  1. 所定の半導体パワースイッチング素子を有し、自己が電圧変換した直流電力をバッテリに出力するバッテリ充電用DC−DCコンバータからなるパワー回路部と、
    前記半導体パワースイッチング素子を制御するための制御部と、
    前記バッテリから給電される電圧変動を伴う入力電圧を定電圧の出力電圧に変換して前記制御部に電源電圧として印加する制御電力出力用DC−DCコンバータと該制御電力出力用DC−DCコンバータを前記入力電圧に基づいて制御する論理回路であるセレクトゲート回路とを有する定電圧電源回路部と、
    を備え、
    前記定電圧電源回路部の前記制御電力出力用DC−DCコンバータは、前記出力電圧と所定の目標電圧との偏差に基づいて前記入力電圧をスイッチング動作することにより前記出力電圧を目標電圧に収束させるパワースイッチング装置において、
    前記定電圧電源回路部の前記セレクトゲート回路は、
    前記制御電力出力用DC−DCコンバータの前記スイッチング動作を停止した状態にて前記出力電圧が前記目標電圧近傍となるような、前記バッテリの電圧の好適な使用電圧範囲に設定される入力電圧範囲の前記入力電圧が前記制御電力出力用DC−DCコンバータに入力される場合に、前記制御電力出力用DC−DCコンバータの前記スイッチング動作を停止して前記入力電をスイッチングすることなく前記制御部に前記電源電として給電するスルーモード動作とし、前記入力電圧が前記入力電圧範囲より高い場合に前記入力電圧を降圧する降圧モード動作とし、前記入力電圧が前記入力電圧範囲より低い場合に前記入力電圧を昇圧する昇圧モード動作とするように前記制御電力出力用DC−DCコンバータをモード選択することを特徴とするパワースイッチング装置。
  2. 請求項記載のパワースイッチング装置において、
    前記昇圧モードにおける前記目標電圧Vot1は、前記降圧モードにおける前記目標電圧Vot2よりも低く設定されることを特徴とするパワースイッチング装置。
  3. 請求項記載のパワースイッチング装置において、
    前記昇圧モードにおける前記目標電圧Vot1は、前記スルーモードにおける前記制御電力出力用DC−DCコンバータの最低出力電圧近傍に設定されることを特徴とするパワースイッチング装置。
  4. 請求項記載のパワースイッチング装置において、
    前記降圧モードにおける前記目標電圧Vot2は、前記スルーモードにおける前記制御電力出力用DC−DCコンバータの最高出力電圧近傍に設定されることを特徴とするパワースイッチング装置。
  5. 請求項記載のパワースイッチング装置において、
    前記昇圧モードにおける前記目標電圧Vot1は、前記スルーモードにおける前記最低出力電圧VLよりも低く設定されていることを特徴とするパワースイッチング装置。
JP2005082164A 2004-08-26 2005-03-22 パワースイッチング装置 Active JP4321467B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082164A JP4321467B2 (ja) 2004-08-26 2005-03-22 パワースイッチング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004246923 2004-08-26
JP2005082164A JP4321467B2 (ja) 2004-08-26 2005-03-22 パワースイッチング装置

Publications (2)

Publication Number Publication Date
JP2006094690A JP2006094690A (ja) 2006-04-06
JP4321467B2 true JP4321467B2 (ja) 2009-08-26

Family

ID=36235102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082164A Active JP4321467B2 (ja) 2004-08-26 2005-03-22 パワースイッチング装置

Country Status (1)

Country Link
JP (1) JP4321467B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028961B2 (en) 2006-12-22 2011-10-04 Central Signal, Llc Vital solid state controller
US9026283B2 (en) 2010-05-31 2015-05-05 Central Signal, Llc Train detection
US10270339B2 (en) 2015-02-27 2019-04-23 Samsung Electronics Co., Ltd. DC-DC converter, charger integrated circuit and electronic device having the same and battery charging method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011874B2 (ja) * 2006-07-31 2012-08-29 ミツミ電機株式会社 双方向性コンバータおよび電子装置
JP5171578B2 (ja) * 2008-12-01 2013-03-27 日立オートモティブシステムズ株式会社 車両用バッテリー制御装置
JP6085406B2 (ja) * 2008-12-02 2017-02-22 サイプレス セミコンダクター コーポレーション 出力電圧制御回路、電子機器及び出力電圧制御方法
US9350243B2 (en) * 2012-01-06 2016-05-24 Koninklijke Philips N.V. Power converter with separate buck and boost conversion circuits
JP6166619B2 (ja) * 2013-08-23 2017-07-19 リコー電子デバイス株式会社 スイッチングレギュレータの制御回路及びスイッチングレギュレータ
JP5989629B2 (ja) * 2013-10-22 2016-09-07 東芝三菱電機産業システム株式会社 電力変換装置
WO2019234846A1 (ja) * 2018-06-06 2019-12-12 三菱電機株式会社 電力変換装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028961B2 (en) 2006-12-22 2011-10-04 Central Signal, Llc Vital solid state controller
US8469320B2 (en) 2006-12-22 2013-06-25 Central Signal, Llc Vital solid state controller
US9067609B2 (en) 2006-12-22 2015-06-30 Central Signal, Llc Vital solid state controller
US8157219B2 (en) 2007-01-15 2012-04-17 Central Signal, Llc Vehicle detection system
US8888052B2 (en) 2007-01-15 2014-11-18 Central Signal, Llc Vehicle detection system
US9026283B2 (en) 2010-05-31 2015-05-05 Central Signal, Llc Train detection
US10270339B2 (en) 2015-02-27 2019-04-23 Samsung Electronics Co., Ltd. DC-DC converter, charger integrated circuit and electronic device having the same and battery charging method thereof

Also Published As

Publication number Publication date
JP2006094690A (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4321467B2 (ja) パワースイッチング装置
US7936573B2 (en) Bi-directional DC-DC converter and control method
US7944191B2 (en) Switching regulator with automatic multi mode conversion
US8049481B2 (en) Adaptive multi-mode digital control improving light-load efficiency in switching power converters
EP1905149B1 (en) Dual-input dc-dc converter with integrated ideal diode function
US10461553B2 (en) Power source device
JP4379396B2 (ja) 昇降圧チョッパ式dc−dcコンバータ
US20080212345A1 (en) Dc-dc converter system
US7579817B2 (en) Constant-voltage circuit capable of reducing time required for starting, semiconductor apparatus including constant-voltage circuit, and control method of constant-voltage circuit
KR20120066603A (ko) Dc/dc 컨버터와 그것을 이용한 전원 장치 및 전자 기기
US9868358B2 (en) Power conversion system suppressing reduction in conversion efficiency
JP2010119257A (ja) 電源装置および車両
US9998009B1 (en) Switch mode power supply supporting both a bi-directional converter of a first configuration and that of a second configuration
JP4466866B2 (ja) スイッチング電源装置
JP3559645B2 (ja) スイッチング電源装置
CN111106601B (zh) 直流电压分布系统的控制
JP3206556B2 (ja) 昇降圧チョッパ方式dc−dcコンバータ回路
US20130148386A1 (en) Switching regulator
JP4319613B2 (ja) 車両用dc−dcコンバータ装置
JP4321408B2 (ja) パワースイッチング装置の制御電源装置用dc−dcコンバータ
US11855542B2 (en) Power-supply control device
WO2016190031A1 (ja) 電力変換装置及びこれを用いた電源システム
JP6774891B2 (ja) 電源装置
US20140092644A1 (en) Switching power supply device and method for circuit design of the switching power supply device
JP7312088B2 (ja) 電力変換装置、及び電力変換制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4321467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250