JP2008102078A - Method and device for manufacturing radioactive molybdenum and radioactive molybdenum manufactured by this method and this device - Google Patents

Method and device for manufacturing radioactive molybdenum and radioactive molybdenum manufactured by this method and this device Download PDF

Info

Publication number
JP2008102078A
JP2008102078A JP2006286159A JP2006286159A JP2008102078A JP 2008102078 A JP2008102078 A JP 2008102078A JP 2006286159 A JP2006286159 A JP 2006286159A JP 2006286159 A JP2006286159 A JP 2006286159A JP 2008102078 A JP2008102078 A JP 2008102078A
Authority
JP
Japan
Prior art keywords
aqueous solution
solution
water
aqueous
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006286159A
Other languages
Japanese (ja)
Other versions
JP4618732B2 (en
Inventor
Etsuo Ishizuka
悦男 石塚
Katsuyoshi Tadenuma
克嘉 蓼沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Co Ltd
Japan Atomic Energy Agency
Original Assignee
Kaken Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Co Ltd, Japan Atomic Energy Agency filed Critical Kaken Co Ltd
Priority to JP2006286159A priority Critical patent/JP4618732B2/en
Priority to EP07830597A priority patent/EP2104113B1/en
Priority to PCT/JP2007/070863 priority patent/WO2008047946A1/en
Priority to AT07830597T priority patent/ATE541297T1/en
Priority to CA2666570A priority patent/CA2666570C/en
Publication of JP2008102078A publication Critical patent/JP2008102078A/en
Application granted granted Critical
Publication of JP4618732B2 publication Critical patent/JP4618732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/02Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes in nuclear reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0036Molybdenum

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient manufacturing method using no uranium for a material in a method for manufacturing radioactive molybdenum<SP>99</SP>Mo as the parent nuclide of radioactive technetium (<SP>99m</SP>Tc), a radioactive diagnostic reagent. <P>SOLUTION: The efficient manufacture of<SP>99</SP>Mo is conducted by generating<SP>99</SP>Mo through the<SP>98</SP>Mo(n, γ) reaction by irradiating an Mo water solution where an Mo compound is dissolved in water with neutrons in an irradiation capsule placed in the core of a nuclear reactor and recovering the Mo water solution sequentially or batch by batch. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射性診断薬である放射性テクネチウム(99mTc)の親核種である放射性モリブデン99Moの効率的な放射性モリブデンの製造方法と装置及びその方法と装置で製造された放射性モリブデンに関する。 TECHNICAL FIELD The present invention relates to a method and apparatus for efficiently producing radioactive molybdenum 99 Mo, which is a parent nuclide of radioactive technetium ( 99m Tc) which is a radiodiagnostic agent, and radioactive molybdenum produced by the method and apparatus.

ガンや内臓疾患あるいは内臓の機能検査などの診断に世界中で広く大量に用いられている放射性テクネチウム(99mTc)はその寿命(半減期)が6.0時間と短いため、通常その親核種である放射性モリブデン99Moが製造され、その99Mo(半減期:66時間)から99mTcを抽出して医療診断などに利用している。 Radiotechnetium ( 99m Tc), which is widely used all over the world for the diagnosis of cancer, visceral diseases, or functional tests of internal organs, has a short life span (half-life) of 6.0 hours. A certain radioactive molybdenum 99 Mo is manufactured, and 99m Tc is extracted from the 99 Mo (half-life: 66 hours) and used for medical diagnosis.

その99Moは、従来235Uを95%程度濃縮した高濃縮ウランを原料として、それを原子炉で中性子照射して核分裂反応させ、その核分裂生成物の中の99Moを抽出して製造されている。この濃縮ウランを用いる方法は、特に核不拡散の観点から国際原子力機関IAEAがそのウラン(235U)濃縮度が20%以下の低濃縮ウランを用いる技術に切替えるための働きかけを世界各国に行っており、その技術開発が世界中で進められている。しかし、ウラン濃縮度を20%以下にした低濃縮ウランを99Mo製造用の原料に用いると、核分裂反応に伴って生成する多量の放射性廃棄物が発生し、特にプルトニウムの生成量が約25倍に増えてしまう問題が新たに提起されている。そのため、99Mo製造のためにウランを原料に用いる核分裂法自体が見直されている。 The 99 Mo is manufactured by using highly enriched uranium enriched by about 95% of 235 U as a raw material and irradiating it with a neutron in a nuclear reactor to cause fission reaction and extracting 99 Mo in the fission product. Yes. This method of using enriched uranium has been promoted around the world by the International Atomic Energy Agency (IAEA) to switch to a technology that uses low-enriched uranium with a uranium ( 235U ) enrichment of 20% or less, particularly from the viewpoint of non-proliferation. The technology is being developed all over the world. However, when low-enriched uranium with a uranium enrichment of 20% or less is used as a raw material for 99 Mo production, a large amount of radioactive waste is generated along with the fission reaction, especially about 25 times the amount of plutonium produced. New problems have been raised. Therefore, the fission method itself using uranium as a raw material for 99 Mo production has been reviewed.

99Mo製造のためのウランを原料とする方法で上記の問題があるが、一方99Mo製造のための原料としてウランを用いない方法として天然Mo化合物あるいは98Moが濃縮されたMo化合物の固体物質を原子炉中で中性子線を照射する(n,γ)法による99Moの製造が実用化されている。この場合、天然同位体のMo化合物である酸化モリブデン(MoO3)を粉末状あるいはペレット状のいずれも固体状態で原子炉中で中性子を照射して98Mo(n,γ)99Moの核反応(この核反応を、以下(n,γ)反応あるいは(n,γ)法と示す)により行う。この方法は、ウランを原料にする核分裂法に対し、比放射能が非常に低い99Moしか製造できないが、ウラン法のように核分裂に伴う放射性廃棄物を発生せずしかも低コストの製造ができる利点を有する方法として以前から検討され、現在ゲル法99mTcジェネレータとして実用化されている。しかし(n,γ)法のゲル法99mTcジェネレータの場合は、特にその製造上の再現性と品質面の問題があり、広く普及するに至っていない。(n,γ)法で製造した99Moの比放射能が低いため、従来の小型なカラム型で99mTcを回収する技術を実用化することができなかったが、最近高性能のMo吸着材の開発として下記の特許文献1と特許文献2によって、この比放射能の低い(n,γ)法99Moから99mTcを回収できるようになり、そのためMo化合物を原料とする(n,γ)法によって99Moを製造する方法の実用化に期待が寄せられている。
特開平8‐309182号公報 特開平10‐30027号公報
The method of using uranium as a raw material for 99 Mo production has the above-mentioned problems. On the other hand, as a method not using uranium as a raw material for 99 Mo production, a solid material of natural Mo compound or Mo compound enriched with 98 Mo is used. The production of 99 Mo by the (n, γ) method in which neutrons are irradiated in a nuclear reactor has been put into practical use. In this case, molybdenum oxide (MoO 3 ), which is a natural isotope Mo compound, is irradiated with neutrons in a nuclear reactor in either a powder or pellet form, resulting in a nuclear reaction of 98 Mo (n, γ) 99 Mo. (This nuclear reaction is hereinafter referred to as (n, γ) reaction or (n, γ) method). This method can only produce 99 Mo, which has a very low specific activity compared to the fission method using uranium as a raw material. However, unlike the uranium method, it does not generate radioactive waste associated with fission and can be produced at low cost. It has been studied for a long time as a method having advantages, and is currently put into practical use as a gel method 99m Tc generator. However, the gel method 99m Tc generator of the (n, γ) method has problems in terms of reproducibility and quality, especially in production, and has not been widely used. Since the specific activity of 99 Mo produced by the (n, γ) method is low, the conventional technique for recovering 99m Tc with a small column type could not be put into practical use. According to the following Patent Document 1 and Patent Document 2, 99m Tc can be recovered from the (n, γ) method 99 Mo having a low specific activity, so that the Mo compound is used as a raw material (n, γ). There is an expectation for practical application of a method for producing 99 Mo by this method.
JP-A-8-309182 Japanese Patent Laid-Open No. 10-30027

以上の通り、固体のMo化合物を原子炉で中性子照射し(n,γ)反応で99Moを生成させ、それから99mTcを抽出する方法の実用性が見出された。本発明は、原子炉で照射するMo化合物を固体状態から水溶液状態に替えることによって、99Moの製造能力を増大してしかも連続的に低コストで製造する方法に関するものである。 As described above, the solid Mo compound irradiated with neutrons in a nuclear reactor (n, gamma) to produce a 99 Mo in the reaction, then the utility of the method for extracting the 99m Tc was found. The present invention relates to a method for continuously increasing the production of 99 Mo at a low cost by changing the Mo compound irradiated in a nuclear reactor from a solid state to an aqueous solution state.

これまでの(n,γ)法による99Moは、一般に酸化モリブデン(MoO3)の粉末状かペレット状に加工した固体物質を原料として、それを密封容器に封入し、原子炉の材料照射設備で原子炉内に送入し一定時間(一般に5〜7日間)中性子を照射した後で回収し、さらに回収した密封容器を開封しその中の内容物(MoO3中に99Moが生成し混在)をアルカリ性溶液の例えば苛性ソーダやアンモニア水と反応させ溶解させる方法によって製造される。しかし、原料としての酸化モリブデンの調整や品質管理が煩雑であること、一定時間の照射中は同じ照射体を継続して照射する必要があり、そのため原料が入った照射体の入替えができないために99Moの製造能力が低いことなどの課題があった。 99 Mo by the (n, γ) method so far is generally a solid material processed into powder or pellets of molybdenum oxide (MoO 3 ), and it is sealed in a sealed container, and the material irradiation equipment of the reactor In the reactor, it is collected after being irradiated with neutrons for a certain period of time (generally 5-7 days), then the recovered sealed container is opened and the contents in it ( 99 Mo is generated and mixed in MoO 3) ) Is reacted with an alkaline solution such as caustic soda or aqueous ammonia and dissolved. However, the adjustment and quality control of molybdenum oxide as a raw material is complicated, and it is necessary to continuously irradiate the same irradiator during irradiation for a certain period of time, so it is not possible to replace the irradiator containing the raw material There were problems such as low production capacity of 99 Mo.

従来の固体のMoO3原料を照射する設備は、その設置に膨大なコストがかかる上、製造能力が低くしかもMoO3原料を封入した照射用容器(金属製)を照射する都度新品の容器を用いる必要があり、しかも使用後(照射後)はその容器自体が放射化され放射性汚染廃棄物になってしまうため、99Moの製造量が増大するとともに放射性汚染廃棄物が増大する問題がある。 A conventional facility for irradiating a solid MoO 3 raw material requires a huge cost for installation, has a low production capacity, and uses a new container each time an irradiation container (made of metal) filled with the MoO 3 raw material is irradiated. In addition, after use (after irradiation), the container itself is activated and becomes radioactively contaminated waste, which increases the amount of 99 Mo produced and increases the radioactively contaminated waste.

本発明は第一に、天然同位体比の98Moを含有するMo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液を用いて、原子炉中で中性子を照射して98Moを放射化することによってMo水溶液中に99Moを生成させMo水溶液を回収することによって99Moを得ること、あるいはそのMo水溶液を流通あるいは循環させて98Moを放射化することによってMo水溶液中に99Moを生成させ連続的またはバッチ的にMo水溶液を回収することによって99Moを得ること、以上を特徴とする放射性モリブデンの製造方法である。 The present invention first uses a Mo aqueous solution in which a Mo compound containing 98 Mo in a natural isotope ratio is dissolved in water, or a Mo aqueous solution in which a Mo compound in which 98 Mo is concentrated to a natural isotope ratio or more is dissolved in water. Irradiating neutrons in the reactor to activate 98 Mo to produce 99 Mo in the Mo aqueous solution and recovering the Mo aqueous solution to obtain 99 Mo, or circulating or circulating the Mo aqueous solution. the 98 Mo to obtain a 99 Mo by collecting continuous or batchwise Mo solution to produce a 99 Mo in Mo solution by activation Te, a method for producing a radioactive molybdenum, wherein more.

本発明は第二に、天然同位体比の98Moを含有するMo化合物あるいは天然同位体比以上に98Moを濃縮したMo化合物、それらを水に溶解したMo水溶液を原子炉中で中性子を照射して99Moを製造する方法として、当該Mo化合物としてモリブデン酸アンモニウムであることを特長とするMo水溶液を原子炉中で中性子を照射して99Moを製造することを特徴とする放射性モリブデンの製造方法である。 The present invention secondly irradiates a Mo compound containing 98 Mo with a natural isotope ratio or a Mo compound enriched with 98 Mo more than the natural isotope ratio, and an aqueous Mo solution in which they are dissolved in water in a nuclear reactor. 99 Mo is produced by irradiating an aqueous Mo solution characterized by ammonium molybdate as the Mo compound with neutrons in a nuclear reactor to produce 99 Mo. Is the method.

本発明は第三に天然同位体比の98Moを含有するMo化合物あるいは天然同位体比以上に98Moを濃縮したMo化合物、それらを水に溶解したMo水溶液を原子炉中で中性子を照射して99Moを製造する前記の第一または第二の方法において、原子炉中で水溶液が照射された際に水の放射線分解によって生成する水素及び酸素の気体を連続的あるいは定期的に抽出し、その抽出ガス中の水素と酸素を不活性気体でパージして廃棄する機能、あるいは抽出ガス中の水素と酸素を触媒で再結合させて水に戻し回収する機能、これらの水の放射線分解によって生成する水素及び酸素の除去回収機能を有することを特長とするMo水溶液を原子炉中で中性子を照射して99Moを製造することを特徴とする放射性モリブデンの製造方法である。 The present invention thirdly irradiates a Mo compound containing 98 Mo with a natural isotope ratio or a Mo compound enriched with 98 Mo above the natural isotope ratio, or an aqueous Mo solution in which they are dissolved in water in a nuclear reactor. In the first or second method for producing 99 Mo, hydrogen and oxygen gases produced by radiolysis of water when an aqueous solution is irradiated in a nuclear reactor are extracted continuously or periodically, A function of purging and discarding hydrogen and oxygen in the extraction gas with an inert gas, or a function of recombining hydrogen and oxygen in the extraction gas with a catalyst and recovering them back to water, generated by radiolysis of these waters This is a method for producing radioactive molybdenum, characterized in that 99 Mo is produced by irradiating an aqueous Mo solution characterized by having a function of removing and recovering hydrogen and oxygen with neutrons in a nuclear reactor.

本発明は第四に、天然同位体比の98Moを含有する天然Mo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液について、原子炉中で中性子を照射するためにそのMo水溶液を原子炉中に流通させて98Moを放射化することによってMo水溶液中に99Moを生成させた後、連続的またはバッチ的にMo水溶液を回収することによって99Moを得る99Moの製造方法において、炉心に流通型の照射キャプセルを設置し、そのキャプセル中にMo水溶液を流通させることによって連続的あるいはバッチ的に99Moを生成させ回収できる機能を有することを特徴とするMo水溶液通液型の放射性モリブデンの製造装置である。 Fourthly, the present invention relates to a Mo aqueous solution in which a natural Mo compound containing 98 Mo in a natural isotope ratio is dissolved in water, or a Mo aqueous solution in which a Mo compound in which 98 Mo is concentrated to a natural isotope ratio or more is dissolved in water. In order to irradiate neutrons in a nuclear reactor, the aqueous Mo solution is circulated in the nuclear reactor to activate 98 Mo, thereby generating 99 Mo in the aqueous Mo solution, and then the aqueous Mo solution continuously or batchwise. 99 Mo is obtained by recovering 99 Mo In the 99 Mo manufacturing method, a circulation type irradiation capsule is installed in the reactor core, and 99 Mo is produced and recovered continuously or batchwise by circulating Mo aqueous solution in the capsule. This is an apparatus for producing a Mo aqueous solution liquid-containing type radioactive molybdenum having a function capable of being produced.

本発明は第五に、天然同位体比の98Moを含有する天然Mo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液について、炉心に設置した流通型の照射キャプセル中にMo水溶液を流通させることによって連続的あるいはバッチ的に99Moを生成させ回収できる機能を有するMo水溶液通液型の99Mo製造装置において、一定量のMo水溶液を連続的あるいはバッチ的に注入する設備、生成した99Moを連続的あるいはバッチ的に回収する設備、照射キャプセル中に生成した水の放射線分解反応によって生成した気体の水素と酸素を抽出除去する設備、その抽出した気体の水素と酸素を再結合反応で水に戻す機能を有する触媒を充填した設備、照射キャプセル内の除熱を行うための熱交換器を附属させたMo水溶液の循環設備、生成した99Moを連続的あるいはバッチ的に取出して回収する設備、99Moの生成量及び回収量を測定する設備、さらに生成し回収した99Mo及び共存する娘核種の99mTcから発生するγ線などの放射線を遮蔽するための設備、これら99Moを製造する設備ならびに回収する設備から構成されることを特徴とするMo水溶液を注入し通液し回収するための放射性モリブデンの製造装置である。 Fifth, the present invention relates to a Mo aqueous solution in which a natural Mo compound containing 98 Mo in a natural isotope ratio is dissolved in water, or a Mo aqueous solution in which a Mo compound in which 98 Mo is concentrated to a natural isotope ratio or more is dissolved in water. In the Mo aqueous solution flow-through type 99 Mo manufacturing apparatus having a function capable of generating and recovering 99 Mo continuously or batchwise by circulating Mo aqueous solution in a flow-type irradiation capsule installed in the core, a certain amount of Equipment for injecting Mo aqueous solution continuously or batchwise, equipment for recovering produced 99 Mo continuously or batchwise, extraction and removal of gaseous hydrogen and oxygen generated by radiolysis reaction of water generated in irradiation capsule Equipment that is equipped with a catalyst that has the function of returning the extracted gaseous hydrogen and oxygen to water through a recombination reaction, and removing heat from the irradiation capsule. Heat exchanger circulation of Mo solution who attached facilities for the generated 99 Mo continuously or batchwise extraction to recover equipment, equipment for measuring the produced amount and the recovery amount of 99 Mo, and further produced was collected 99 Mo and the coexisting daughter nuclide 99m Tc to shield radiation such as gamma rays generated from the radiation, an equipment for producing 99 Mo, and a facility for recovering it are injected with an aqueous Mo solution. It is an apparatus for producing radioactive molybdenum for passing and collecting liquids.

本発明は第六に、天然同位体比の98Moを含有する天然Mo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液について、原子炉中で中性子を照射するためにそのMo水溶液を原子炉中に流通させて98Moを放射化することによってMo水溶液中に99Moを生成させた後、連続的またはバッチ的にMo水溶液を回収することによって99Moを得る99Moの製造方法において、炉心に流通型の照射キャプセルを設置し、そのキャプセル中にMo水溶液を流通させることによって連続的あるいはバッチ的に99Moを生成させ回収できる機能を有するMo水溶液通液型の99Mo製造装置により製造したことを特徴とする放射性モリブデンである。 Sixth, the present invention relates to a Mo aqueous solution in which a natural Mo compound containing 98 Mo in a natural isotope ratio is dissolved in water, or a Mo aqueous solution in which a Mo compound in which 98 Mo is concentrated to a natural isotope ratio or more is dissolved in water. In order to irradiate neutrons in a nuclear reactor, the aqueous Mo solution is circulated in the nuclear reactor to activate 98 Mo, thereby generating 99 Mo in the aqueous Mo solution, and then the aqueous Mo solution continuously or batchwise. 99 Mo is obtained by recovering 99 Mo In the 99 Mo manufacturing method, a circulation type irradiation capsule is installed in the reactor core, and 99 Mo is produced and recovered continuously or batchwise by circulating Mo aqueous solution in the capsule. It is a radioactive molybdenum manufactured by a 99 Mo manufacturing apparatus of Mo aqueous solution passage type which has a function which can be performed.

本発明によれば、従来の高コストな照射設備に比べはるかに低コストの照射キャプセルと呼ばれる照射設備を用いる方法であり、そこに連続的あるいはバッチ的にMo水溶液を通液する方法により、99Moの製造能力を増大して連続的に低コストで製造できる。 According to the present invention, a conventional method using the irradiation equipment to be much called low cost irradiated Kyapuseru compared to costly irradiation equipment, by a method of passing liquid continuously or batchwise Mo solution therein, 99 The production capacity of Mo can be increased and continuously produced at low cost.

本発明によれば、溶液を外部から注入し回収できる通液型の照射キャプセルを設置することによって、目的とする99Moを外部からMo水溶液を連続的あるいはバッチ的に注入するだけで製造でき、その99Mo製造に伴って発生する従来法の照射容器のような放射性汚染廃棄物の発生は無い。しかも、生成した99Moを含むMo水溶液は回収した後の処理操作が不要で、その状態のままガラス製バイアル瓶のような専用容器に分取回収し梱包するだけで出荷できるため、原料の仕込みから目的物である99Moの回収に至るプロセス全体を従来法に比べ簡素化できる。 According to the present invention, by installing a liquid-flow type irradiation capsule capable of injecting and collecting a solution from the outside, the intended 99 Mo can be produced simply by injecting an aqueous Mo solution continuously or batchwise from the outside, There is no generation of radioactively contaminated waste as in the case of the irradiation container of the conventional method that is generated with the 99 Mo production. In addition, the generated aqueous Mo solution containing 99 Mo does not require a treatment operation after recovery, and can be shipped by simply collecting it in an exclusive container such as a glass vial and packing it. The entire process from recovery of the target 99 Mo can be simplified compared to the conventional method.

以上のように、本発明によれば、設備費が安価である、製造に伴う放射性汚染廃棄物の発生が無い、製造工程全体がシンプルである、それらの理由から99Mo製造コストが安価であるなどの特徴を有している。 As described above, according to the present invention, the equipment cost is low, there is no generation of radioactive contaminated waste associated with the manufacturing, the entire manufacturing process is simple, and 99 Mo manufacturing cost is low for those reasons. It has the features such as.

従来の固体照射法の場合、MoO3の粉末状あるいはそれをペレット状に加工して使用するが、中性子照射後は99Moが多量に生成するため、照射後に行う水溶液に溶解する操作はなるべくペレット状が望ましい。その理由は、それを溶解する操作の段階で放射性の99Moを多量に含む粉末の場合、その粉末が飛散したりこぼす恐れがあり、そのため放射性物質(99Mo)で作業区域を汚染する恐れがあるためである。さて、原料としてのMoO3をペレット状に調整することは、そのペレット化に複雑な操作を伴いしかもペレット化の操作で不純物が混入し易いためその品質を管理し維持することに困難が伴う。一方、本発明の原料であるMo水溶液の場合は、用いるMo化合物(モリブデン酸アンモニウム)の品質を高純度に保つことによってそれを純度の高い水に溶解するだけで調整することが可能であり、Mo水溶液中に不純物がある場合でもアルミナカラム等に通液するだけで吸着除去できるため、Mo水溶液照射法の場合は固体MoO3照射法に比べその照射体原料の調整が容易であり高い品質を維持することが容易である。 In the case of the conventional solid irradiation method, MoO 3 powder or processed into a pellet is used, but 99 Mo is produced in large quantities after neutron irradiation. The shape is desirable. The reason for this is that if the powder contains a large amount of radioactive 99 Mo at the stage of melting it, the powder may be scattered or spilled, which may contaminate the work area with radioactive material ( 99 Mo). Because there is. Now, adjusting MoO 3 as a raw material into a pellet form involves a complicated operation in the pelletization, and it is difficult to manage and maintain the quality because impurities are easily mixed in the pelletization operation. On the other hand, in the case of the Mo aqueous solution that is the raw material of the present invention, it is possible to adjust the Mo compound (ammonium molybdate) to be used simply by dissolving it in high purity water by keeping the quality of the Mo compound (ammonium molybdate) high. Even if there are impurities in the Mo aqueous solution, it can be adsorbed and removed simply by passing it through an alumina column or the like. Therefore, in the case of the Mo aqueous solution irradiation method, the irradiation material can be easily adjusted and high quality compared to the solid MoO 3 irradiation method. Easy to maintain.

次に、固体照射法の場合は、MoO3照射体が粉末状の場合はまず石英管で密封し、その後さらにそれを金属製(一般にアルミニウム系金属)の照射用容器に密封封入する必要がある。なお、MoO3照射体がペレット状の場合は、直接金属製の照射用容器に密封封入する。しかも、それら照射用容器は、中性子照射によって放射化されるため放射性汚染廃棄物となってしまう。一方、本発明のMo水溶液照射法の場合は、一定量のMo水溶液を連続的あるいはバッチ的にポンプで配管を通して照射キャプセルへ注入するだけの操作であり、照射用容器が不要であるため99Mo製造に伴う放射性汚染廃棄物が発生しない。 Next, in the case of the solid irradiation method, when the MoO 3 irradiator is in powder form, it is first sealed with a quartz tube and then further sealed in a metal (generally aluminum-based metal) irradiation container. . When the MoO 3 irradiated body is in the form of pellets, it is sealed and sealed directly in a metal irradiation container. Moreover, since these irradiation containers are activated by neutron irradiation, they become radioactively contaminated waste. On the other hand, if the Mo solution irradiation method of the present invention is the only operation that injected into irradiated Kyapuseru through the pipe a predetermined amount of Mo solution continuously or batchwise pump, 99 Mo for irradiation vessel is unnecessary No radioactively contaminated waste from production.

固体照射法の場合の99Mo製造能力としては、例えば日本原子力研究開発機構が有する材料試験炉JMTRの場合、既存設備を改造した場合で220Ci(99Mo)/週であり、さらに増設した場合でも合計570Ci(99Mo)/週であり、しかもそれらの改造費や設置費としては7〜15億円程度要するという試算がある。それに比べ本発明の溶液照射用キャプセルの場合は、そのキャプセルサイズが内径55mmφで中性子が照射される700mmの高さのゾーン(有効内容積:1.66L)にモリブデン酸アンモニウムの28%水溶液を277mL/日の割合で通液するだけで上記の施設増設後の固体照射法とほぼ同等の一系統569Ci(99Mo)/週の製造能力があり、しかもその設備設置費は一系統に付き2億円程度と試算されるため、従来法に比べ99Mo製造能力と設備費の点でも本発明の優位性が分かる。 The 99 Mo production capacity in the case of the solid irradiation method is, for example, the material test reactor JMTR possessed by the Japan Atomic Energy Agency, 220 Ci ( 99 Mo) / week when the existing equipment is remodeled, and even when it is further expanded There is a trial calculation that the total cost is 570 Ci ( 99 Mo) / week, and the cost of remodeling and installation is about 700 to 1.5 billion yen. On the other hand, in the case of the capsule for solution irradiation of the present invention, 277 mL of a 28% aqueous solution of ammonium molybdate is placed in a 700 mm high zone (effective internal volume: 1.66 L) where the capsule size is 55 mmφ and the neutron is irradiated. / day there is almost the same one system 569Ci (99 Mo) / week of production capacity and solid irradiation method after the above-mentioned facility expansion by simply passed through the column at a rate of, yet 200 million per the equipment installation cost one system Since it is estimated to be about a circle, the superiority of the present invention can be seen in terms of 99 Mo production capacity and equipment cost compared to the conventional method.

次に、99Mo製造プロセスで比較すると、従来の固体照射法の場合は、照射用容器を原子炉の材料照射設備で原子炉内に送入し一定時間(一般に5〜7日間)中性子を照射した後で回収し、さらに回収した密封容器を開封してからその中の内容物(MoO3中に99Moが生成し混在)をアルカリ性溶液の例えば苛性ソーダやアンモニア水と反応させ溶解させる方法によって製造されるため、照射体の途中入替えができないこと、99Moを含むMoO3照射体を別な施設で開封し溶解させる必要があることなど、99Mo製品として出荷できる状態にするためのプロセスが複雑である。一方、本発明のMo水溶液照射法の場合は、99Mo回収設備のポンプを作動させるだけで99Moを含むMo水溶液を回収でき、しかもその状態のまま容器に分取し梱包するだけで出荷できるため、原料の仕込みから99Mo製品の回収に至るプロセス全体がシンプルである。 Next, when compared with the 99 Mo manufacturing process, in the case of the conventional solid-state irradiation method, the irradiation vessel is sent into the reactor with the material irradiation equipment of the reactor and irradiated with neutrons for a fixed time (generally 5 to 7 days). After that, the sealed container is recovered, and the contents ( 99 Mo is generated and mixed in MoO 3 ) are then reacted with an alkaline solution such as caustic soda or aqueous ammonia and dissolved. Therefore, the process to make it ready for shipment as 99 Mo products is complicated, such as the fact that the irradiation body cannot be replaced in the middle, and the MoO 3 irradiation body containing 99 Mo needs to be opened and dissolved in another facility. It is. On the other hand, in the case of the Mo aqueous solution irradiation method of the present invention, the Mo aqueous solution containing 99 Mo can be recovered simply by operating the pump of the 99 Mo recovery facility, and can be shipped simply by separating and packing in that state. Therefore, the entire process from raw material charging to 99 Mo product recovery is simple.

なお、本発明の溶液照射法による社会的に有用な放射性物質の効率的な製造方法は、他の放射性物質の製造にも利用することができる。その一例として、がん治療に利用できる放射性レニウム(188Re)の場合はその寿命が短いため(188Reの半減期:17.5時間)、188Reの親核種である放射性タングステン188Wを製造し、その188Wから188Reを抽出して治療に用いられる。この場合、本発明により、天然同位体比の186Wを含有するW化合物を水に溶解したW水溶液、あるいは天然同位体比以上に186Wを濃縮したW化合物を水に溶解したW水溶液を用いて、原子炉中で中性子を照射して186W(n,γ)187W→187W(n,γ)188Wの2段階の(n,γ)反応により、W水溶液中に188Wを生成させそのW水溶液を回収することによって188Wを得ること、あるいはそのW水溶液を流通あるいは循環させて186Wを放射化することによってW水溶液中に188Wを生成させ連続的またはバッチ的にW水溶液を回収することによって188Wを得る方法により、目的とする188Wを効率的に製造することが可能となる。 In addition, the efficient manufacturing method of a socially useful radioactive substance by the solution irradiation method of the present invention can also be used for manufacturing other radioactive substances. As an example, for the case of radioactive rhenium available for cancer therapy (188 Re) is shorter its service life (188 Re half life: 17.5 hours), producing radioactive tungsten 188 W is the parent nuclide of 188 Re Then, 188 Re is extracted from the 188 W and used for treatment. In this case, according to the present invention, a W aqueous solution in which a W compound containing a natural isotope ratio of 186 W is dissolved in water or a W aqueous solution in which a W compound in which 186 W is concentrated to a natural isotope ratio or more is dissolved in water is used. Then, 188 W is generated in the aqueous W solution by irradiating neutrons in the nuclear reactor and performing two-step (n, γ) reaction of 186 W (n, γ) 187 W → 187 W (n, γ) 188 W 188 W is obtained by recovering the W aqueous solution, or 186 W is activated by circulating or circulating the W aqueous solution to generate 188 W in the aqueous W solution, continuously or batchwise. The target 188 W can be efficiently produced by the method of obtaining 188 W by collecting

この発明の一実施形態を、図1に示す。原子炉の燃料の部分(炉心)に溶液照射用キャプセル4を設置する。このキャプセルはMo水溶液を導入するパイプ9と回収するパイプ10で外部のMo水溶液注入設備(6、7、8)及び生成99Mo回収容器11と接続される。予めモリブデン酸アンモニウム水溶液を調整しMo水溶液補給系6のタンクに入れておく。そのMo水溶液をポンプ7で注入しパイプ9を介して照射用キャプセルに注入される。このMo水溶液の注入は連続的あるいはバッチ的に行うことで、キャプセル内で中性子に照射される時間を調整できる。Mo水溶液の照射時間は5〜7日間必要になるが、キャプセル内のMo水溶液は外部のバルブ操作と循環ポンプ8で系統を循環させ熱交換器13と水の放射線分解によって生成する水素及び酸素ガスを抽気ガス処理系14で除去することで、炉心で放射線照射によりキャプセル内に溜る熱や水の放射線分解により生成するガスを除去できる。 One embodiment of the present invention is shown in FIG. The solution irradiation capsule 4 is installed in the fuel portion (core) of the nuclear reactor. The capsule is connected to an external Mo aqueous solution injection facility (6, 7, 8) and a generated 99 Mo recovery vessel 11 by a pipe 9 for introducing an Mo aqueous solution and a pipe 10 for recovering. An aqueous ammonium molybdate solution is prepared in advance and placed in a tank of the Mo aqueous solution supply system 6. The aqueous Mo solution is injected by a pump 7 and injected into an irradiation capsule via a pipe 9. By injecting this Mo aqueous solution continuously or batchwise, the time for neutron irradiation in the capsule can be adjusted. Irradiation time of the Mo aqueous solution is required for 5 to 7 days, but the Mo aqueous solution in the capsule is hydrogen and oxygen gas generated by the external valve operation and the circulation pump 8 to circulate the system and by the radiolysis of the heat exchanger 13 and water. Is removed by the extraction gas processing system 14, it is possible to remove the gas generated by radiation decomposition of heat and water accumulated in the capsule due to radiation irradiation in the core.

一定の中性子照射を受けたMo水溶液を99Mo回収容器11に一定量回収することにより、99Moを回収できる。この容器11には高い放射能の99Moが回収されるため、そこから放出されるγ線等の放射線を鉛などで遮蔽し、作業者の放射線被曝を低減する必要がある。99Mo回収操作は、ポンプ8・15の操作だけで行えるため、自動化することも可能である。なお、キャプセル内容積1.66L中のMo水溶液の水の放射線分解によって生成する水素及び酸素はそれぞれ一日当り0.18NLと0.09NLと少ないが、系内に溜る恐れがあるため、Mo水溶液の循環や回収の際に抽気ガス処理系14で抽気して除去する。この水素及び酸素ガスは、例えば窒素ガスやヘリウムガスのような不活性ガスでパージして系外へ排気除去するか、あるいは触媒を用いて水素と酸素を再結合させて水の状態に戻しそれをMo水溶液中に戻す。 99 Mo can be recovered by recovering a certain amount of Mo aqueous solution that has been irradiated with a certain amount of neutrons in a 99 Mo recovery vessel 11. Since high-activity 99 Mo is collected in the container 11, radiation such as γ rays emitted from the container 11 must be shielded with lead or the like to reduce the radiation exposure of the operator. Since the 99 Mo recovery operation can be performed only by operating the pumps 8 and 15, it can be automated. In addition, hydrogen and oxygen produced by water radiolysis of Mo aqueous solution in the capacity of 1.66 L in the capsule are small as 0.18 NL and 0.09 NL per day respectively. The air is extracted and removed by the extraction gas processing system 14 during circulation and recovery. This hydrogen and oxygen gas is purged with an inert gas such as nitrogen gas or helium gas and exhausted to the outside of the system, or hydrogen and oxygen are recombined using a catalyst to return to the water state. Is returned to the aqueous Mo solution.

99Mo回収容器11に回収したMo水溶液を99Mo分取装置17へ移送し、その溶液をガラス製バイアル瓶のような99Mo出荷用容器に直接分取する。この99Mo出荷用容器は放射線遮蔽付きの輸送容器にその容器のまま入れて梱包することによって、99Mo製品として出荷できる。Mo水溶液照射法の場合、99Moの回収から99Mo製品の出荷までを短時間で行えるため、寿命の短い99Mo(半減期:66時間)の自然崩壊による減損を最小限に抑えることが可能になる。 The aqueous Mo solution recovered in the 99 Mo recovery container 11 is transferred to the 99 Mo sorting device 17, and the solution is directly collected into a 99 Mo shipping container such as a glass vial. This 99 Mo shipping container can be shipped as a 99 Mo product by packing it in a transport container with radiation shielding. In the case of Mo aqueous solution irradiation method, 99 Mo recovery and 99 Mo product shipment can be done in a short time, so it is possible to minimize the loss due to the natural decay of 99 Mo (half life: 66 hours) with a short life. become.

本発明により、日本を含む世界中で日常的に大量に医療診断で使用されている99mTcの親核種99Moの効率的な製造が可能となる。99Moは、現在高濃縮ウランを原料とする方法でそのほとんどが製造されている。しかし、従来のウランを原料とする核分裂法の場合は前記0003欄に記載した問題があるため、現在ウランを原料として用いない(n,γ)法の製造法に切替える動きがある。本発明は、(n、γ)法で99Moを大量に製造する場合に、大きな社会貢献が可能となるものである。 The present invention enables efficient production of 99m Tc parent nuclide 99 Mo, which is used in medical diagnosis on a daily basis in large quantities in the world including Japan. Most of 99 Mo is currently produced by a method using highly enriched uranium as a raw material. However, since the conventional fission method using uranium as a raw material has the problems described in the column 0003, there is a movement to switch to a manufacturing method of (n, γ) method that does not currently use uranium as a raw material. The present invention is to be the (n, gamma) in the case of mass production of 99 Mo in method, it enables major social contribution.

本発明の一実施例であるMo水溶液通液方式の99Mo製造装置を示す。1 shows an Mo aqueous solution passing type 99 Mo production apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 原子炉
2 炉心
3 原子炉冷却水
4 照射用キャプセル
5 遮蔽付きグローブボックス
6 Mo水溶液補給系
7 Mo水溶液注入ポンプ
8 Mo水溶液循環ポンプ
9 キャプセルへの溶液導入パイプ
10 キャプセルへの溶液回収パイプ
11 99Mo回収容器(放射線遮蔽付き)
12 99Mo回収量測定装置
13 熱交換器
14 抽気ガス処理系
15 循環ポンプ
16 99Mo分取装置
17 99Mo出荷用容器
18 輸送容器(放射線遮蔽体付き)
19 Mo水溶液注入・99Mo回収設備
1 reactor 2 reactor core 3 reactor water 4 irradiated for Kyapuseru 5 shielded with glovebox 6 Mo solution replenishment system 7 solution recovery pipe 11 99 to solution introducing pipe 10 Kyapuseru to Mo solution infusion pump 8 Mo solution circulating pump 9 Kyapuseru Mo recovery container (with radiation shielding)
12 99 Mo recovery amount measuring device 13 Heat exchanger 14 Extraction gas processing system 15 Circulation pump 16 99 Mo fractionation device 17 99 Mo shipping container 18 Transport container (with radiation shield)
19 Mo aqueous solution injection and 99 Mo recovery equipment

Claims (6)

天然同位体比の98Moを含有するMo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液を用いて、原子炉中で中性子を照射して98Moを放射化することによってMo水溶液中に99Moを生成させMo水溶液を回収することによって99Moを得ること、あるいはそのMo水溶液を流通あるいは循環させて98Moを放射化することによってMo水溶液中に99Moを生成させ連続的またはバッチ的にMo水溶液を回収することによって99Moを得ること、以上を特徴とする放射性モリブデンの製造方法。 Using a Mo aqueous solution in which a Mo compound containing 98 Mo of a natural isotope ratio is dissolved in water or a Mo aqueous solution in which a Mo compound enriched with 98 Mo to a natural isotope ratio or more is dissolved in water, Irradiates 98 Mo to generate 99 Mo in the Mo aqueous solution and recover the Mo aqueous solution to obtain 99 Mo, or circulate or circulate the Mo aqueous solution to activate 98 Mo. A method for producing radioactive molybdenum, characterized in that 99 Mo is produced in an aqueous Mo solution and 99 Mo is obtained by recovering the aqueous Mo solution continuously or batchwise. 前記Mo化合物がモリブデン酸アンモニウムであることを特徴とする請求項1に記載の放射性モリブデンの製造方法。 The method for producing radioactive molybdenum according to claim 1, wherein the Mo compound is ammonium molybdate. 天然同位体比の98Moを含有するMo化合物あるいは天然同位体比以上に98Moを濃縮したMo化合物、それらを水に溶解したMo水溶液を原子炉中で中性子を照射して99Moを製造する請求項1〜2の何れかに記載の方法において、原子炉中で水溶液が照射された際に水の放射線分解によって生成する水素及び酸素の気体を連続的あるいは定期的に抽出し、その抽出ガス中の水素と酸素を不活性気体でパージして廃棄する機能、あるいは抽出ガス中の水素と酸素を触媒で再結合させて水に戻し回収する機能、これらの水の放射線分解によって生成する水素及び酸素の除去回収機能を有することを特長とするMo水溶液を原子炉中で中性子を照射して99Moを製造することを特徴とする放射性モリブデンの製造方法。 99 Mo is produced by irradiating a Mo compound containing 98 Mo with a natural isotope ratio or a Mo compound enriched with 98 Mo to a natural isotope ratio or an aqueous solution of Mo dissolved in water in a nuclear reactor. The method according to any one of claims 1 to 2, wherein hydrogen and oxygen gases generated by water radiolysis when irradiated with an aqueous solution in a nuclear reactor are extracted continuously or periodically, and the extracted gas A function of purging and discarding hydrogen and oxygen in an inert gas, or a function of recombining hydrogen and oxygen in an extraction gas with a catalyst and returning them to water, hydrogen generated by radiolysis of these waters and A method for producing radioactive molybdenum, characterized in that 99 Mo is produced by irradiating an aqueous Mo solution characterized by having an oxygen removal and recovery function with neutrons in a nuclear reactor. 天然同位体比の98Moを含有する天然Mo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液について、原子炉中で中性子を照射するためにそのMo水溶液を原子炉中に流通させて98Moを放射化することによってMo水溶液中に99Moを生成させた後、連続的またはバッチ的にMo水溶液を回収することによって99Moを得る99Moの製造方法において、原子炉の炉心に流通型の照射キャプセルを設置し、そのキャプセル中にMo水溶液を流通させることによって連続的あるいはバッチ的に99Moを生成させ回収できる機能を有することを特徴とするMo水溶液通液型の放射性モリブデンの製造装置。 Neutrons in a nuclear reactor for Mo aqueous solution in which natural Mo compound containing 98 Mo of natural isotope ratio is dissolved in water, or Mo aqueous solution in which 98 Mo is concentrated to a natural isotope ratio or higher is dissolved in water. The Mo aqueous solution is circulated in the reactor for irradiation to generate 99 Mo by activating 98 Mo, and then 99 Mo is recovered continuously or batchwise to recover 99 Mo. In the 99 Mo manufacturing method, a circulation type irradiation capsule is installed in the core of the nuclear reactor, and 99 Mo can be generated and recovered continuously or batchwise by circulating an aqueous Mo solution in the capsule. An apparatus for producing an aqueous Mo solution liquid-permeable type radioactive molybdenum. 天然同位体比の98Moを含有する天然Mo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液について、炉心に設置した流通型の照射キャプセル中にMo水溶液を流通させることによって連続的あるいはバッチ的に99Moを生成させ回収できる機能を有するMo水溶液通液型の99Mo製造装置において、一定量のMo水溶液を連続的あるいはバッチ的に注入する設備、生成した99Moを連続的あるいはバッチ的に回収する設備、照射キャプセル中に生成した水の放射線分解反応によって生成した気体の水素と酸素を抽出除去する設備、その抽出した気体の水素と酸素を再結合反応で水に戻す機能を有する触媒を充填した設備、照射キャプセル内の除熱を行うための熱交換器を附属させたMo水溶液の循環設備、生成した99Moを連続的あるいはバッチ的に取出して回収する設備、99Moの生成量及び回収量を測定する設備、さらに生成し回収した99Mo及び共存する娘核種の99mTcから発生するγ線などの放射線を遮蔽するための設備、これら99Moを製造する設備ならびに回収する設備から構成されることを特徴とするMo水溶液を注入し通液し回収するための放射性モリブデンの製造装置。 Distribution type installed in the core of Mo aqueous solution in which natural Mo compound containing 98 Mo of natural isotope ratio is dissolved in water, or Mo aqueous solution in which 98 Mo is concentrated to a natural isotope ratio or more is dissolved in water In an aqueous Mo solution flow-through type 99 Mo production system that has the function of generating and recovering 99 Mo continuously or batchwise by circulating the Mo aqueous solution in the irradiation capsule, a certain amount of Mo aqueous solution is continuously or batched. Equipment for continuous injection, equipment for recovering the produced 99 Mo continuously or batchwise, equipment for extracting and removing hydrogen and oxygen of the gas generated by the radiolysis reaction of water produced in the irradiation capsule, the extracted gas Equipment filled with a catalyst that has the function of returning hydrogen and oxygen to water through a recombination reaction, and a heat exchanger for heat removal in the irradiation capsule Circulation equipment Mo solution who attached, resulting 99 Mo continuously or batchwise extraction to recover equipment, daughter equipment, which further generated to recover the 99 Mo and coexistence of measuring the produced amount and the recovery amount of 99 Mo In order to inject, pass, and recover Mo aqueous solution, which consists of facilities for shielding radiation such as γ rays generated from 99m Tc of nuclides, facilities for manufacturing these 99 Mo, and facilities for recovery Radioactive molybdenum production equipment. 天然同位体比の98Moを含有する天然Mo化合物を水に溶解したMo水溶液、あるいは天然同位体比以上に98Moを濃縮したMo化合物を水に溶解したMo水溶液について、原子炉中で中性子を照射するためにそのMo水溶液を原子炉中に流通させて98Moを放射化することによってMo水溶液中に99Moを生成させた後、連続的またはバッチ的にMo水溶液を回収することによって99Moを得る99Moの製造方法において、炉心に流通型の照射キャプセルを設置し、そのキャプセル中にMo水溶液を流通させることによって連続的あるいはバッチ的に99Moを生成させ回収できる機能を有するMo水溶液通液型の99Mo製造装置により製造したことを特徴とする放射性モリブデン。 Neutrons in a nuclear reactor for Mo aqueous solution in which natural Mo compound containing 98 Mo of natural isotope ratio is dissolved in water, or Mo aqueous solution in which 98 Mo is concentrated to a natural isotope ratio or higher is dissolved in water. The Mo aqueous solution is circulated in the reactor for irradiation to generate 99 Mo by activating 98 Mo, and then 99 Mo is recovered continuously or batchwise to recover 99 Mo. In the 99 Mo manufacturing method, a flow-type irradiation capsule is installed in the reactor core, and the aqueous Mo solution is passed through the capsule to allow 99 Mo to be produced and recovered continuously or batchwise. A radioactive molybdenum produced by a liquid type 99 Mo production apparatus.
JP2006286159A 2006-10-20 2006-10-20 Method and apparatus for manufacturing radioactive molybdenum Expired - Fee Related JP4618732B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006286159A JP4618732B2 (en) 2006-10-20 2006-10-20 Method and apparatus for manufacturing radioactive molybdenum
EP07830597A EP2104113B1 (en) 2006-10-20 2007-10-19 Process for producing radioactive molybdenum
PCT/JP2007/070863 WO2008047946A1 (en) 2006-10-20 2007-10-19 Process for producing radioactive molybdenum, apparatus therefor and radioactive molybdenum produced by the process
AT07830597T ATE541297T1 (en) 2006-10-20 2007-10-19 PROCESS FOR PRODUCING RADIOACTIVE MOLYBDENUM
CA2666570A CA2666570C (en) 2006-10-20 2007-10-19 Manufacturing method of radioactive molybdenum, manufacturing apparatus and radioactive molybdenum manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286159A JP4618732B2 (en) 2006-10-20 2006-10-20 Method and apparatus for manufacturing radioactive molybdenum

Publications (2)

Publication Number Publication Date
JP2008102078A true JP2008102078A (en) 2008-05-01
JP4618732B2 JP4618732B2 (en) 2011-01-26

Family

ID=39314153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286159A Expired - Fee Related JP4618732B2 (en) 2006-10-20 2006-10-20 Method and apparatus for manufacturing radioactive molybdenum

Country Status (5)

Country Link
EP (1) EP2104113B1 (en)
JP (1) JP4618732B2 (en)
AT (1) ATE541297T1 (en)
CA (1) CA2666570C (en)
WO (1) WO2008047946A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249815A (en) * 2009-04-15 2010-11-04 Ge-Hitachi Nuclear Energy Americas Llc Simultaneous irradiation, elution capsule, and using method therefor
WO2010146722A1 (en) 2009-06-19 2010-12-23 株式会社化研 Method and system for concentrating radioactive technetium as raw material for radioactive drug and labeling compound therefor and collecting the same by elution
JP2011007733A (en) * 2009-06-29 2011-01-13 Japan Atomic Energy Agency Radiation irradiation device
JP2011105567A (en) * 2009-11-20 2011-06-02 Japan Atomic Energy Agency METHOD FOR CONCENTRATING HIGH PURITY 99mTc AND CONCENTRATOR THEREFOR
JP2011522226A (en) * 2008-05-02 2011-07-28 フェニックス ニュークリア ラブズ エルエルシー Apparatus and method for the production of medical isotopes
CN101685680B (en) * 2008-09-27 2011-11-09 中国核动力研究设计院 Uniform inner heat source simulator of medical isotope production solution reactor
WO2012039036A1 (en) * 2010-09-22 2012-03-29 独立行政法人放射線医学総合研究所 Process and device for production of radionuclide using accelerator
KR101138445B1 (en) 2011-03-04 2012-04-26 한국원자력연구원 A method for preparing low enriched and plate shaped uranium target with high density, and low enriched uranium target with high density prepared by the method
JP2013518265A (en) * 2010-02-01 2013-05-20 シーメンス アクティエンゲゼルシャフト Methods and devices for making 99mTc
JP2013134062A (en) * 2011-12-23 2013-07-08 Kaken:Kk Recovery system for 99mtc
JP2013134063A (en) * 2011-12-23 2013-07-08 Kaken:Kk METHOD AND APPARATUS FOR PREPARING PURIFIED HIGH-CONCENTRATION Mo SOLUTION FOR PHARMACEUTICAL PREPARATION
JP2013134061A (en) * 2011-12-23 2013-07-08 Kaken:Kk High-concentration 99mtc recovery method and high-concentration 99mtc recovery device
JP2015537222A (en) * 2012-12-10 2015-12-24 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc System and method for collecting and storing material produced in a nuclear reactor
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
US10978214B2 (en) 2010-01-28 2021-04-13 SHINE Medical Technologies, LLC Segmented reaction chamber for radioisotope production
JP2022069253A (en) * 2020-10-23 2022-05-11 三菱重工業株式会社 Production management device, production management method and production management program of radioisotope
US11361873B2 (en) 2012-04-05 2022-06-14 Shine Technologies, Llc Aqueous assembly and control method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131369A1 (en) * 2008-06-06 2009-12-09 Technische Universiteit Delft A process for the production of no-carrier added 99Mo
JP5569834B2 (en) * 2009-01-30 2014-08-13 独立行政法人日本原子力研究開発機構 Method for producing high density, high purity (n, γ) 99Mo
DE102010006433B4 (en) * 2010-02-01 2012-03-29 Siemens Aktiengesellschaft Method and device for producing two different radioactive isotopes
PL2599087T3 (en) * 2010-07-29 2019-03-29 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Isotope production target
RU2490737C1 (en) * 2012-03-29 2013-08-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Method for obtaining molybdenum-99 radioisotope
RU2578039C1 (en) * 2014-12-18 2016-03-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Method of producing nanostructured target for production of molybdenum-99 radioisotope
RU2588594C1 (en) * 2015-06-15 2016-07-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Method of producing nanostructured target for producing molybdenum-99 radioisotopes
CN106128539B (en) * 2016-08-30 2019-01-22 中广核研究院有限公司 A kind of system producing medical short-lived phase radioactive source using pressurized-water reactor nuclear power plant
RU2666552C1 (en) * 2017-12-19 2018-09-11 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Method of producing nanostructured target for production of molybdenum-99
RU2688196C9 (en) * 2018-07-02 2019-07-09 Акционерное общество "Радиевый институт имени В.Г. Хлопина" The method of producing radioisotope molybdenum-99
RU2690692C1 (en) * 2018-11-21 2019-06-05 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" METHOD OF PRODUCING NANOSTRUCTURED TARGET FOR PRODUCTION OF RADONUCLIDE Mo-99
RU2735646C1 (en) * 2020-05-15 2020-11-05 Акционерное Общество "Производственное Объединение "Электрохимический завод" (АО "ПО ЭХЗ") Method of producing nanostructured target for production of radionuclide molybdenum-99

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522102A (en) * 1978-08-02 1980-02-16 Japan Atomic Energy Res Inst Method of making molybdenumm99 by using molybdenum trioxide pellet
JP2003529517A (en) * 2000-01-21 2003-10-07 ティーシーアイ インコーポレイテッド Inorganic adsorbent for extracting molybdenum-99 from irradiated uranium solution and method of using the same
JP2006133138A (en) * 2004-11-08 2006-05-25 Sumitomo Heavy Ind Ltd Target for manufacturing radioisotope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990787A (en) * 1989-09-29 1991-02-05 Neorx Corporation Radionuclide generator system and method for its preparation and use
US5596611A (en) * 1992-12-08 1997-01-21 The Babcock & Wilcox Company Medical isotope production reactor
JP2857349B2 (en) 1995-05-22 1999-02-17 日本原子力研究所 Mo adsorbent for 99Mo-99mTc generator and method for producing the same
JP2862837B2 (en) 1996-07-16 1999-03-03 日本原子力研究所 Mo adsorbent for 99Mo-99mTc generator and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522102A (en) * 1978-08-02 1980-02-16 Japan Atomic Energy Res Inst Method of making molybdenumm99 by using molybdenum trioxide pellet
JP2003529517A (en) * 2000-01-21 2003-10-07 ティーシーアイ インコーポレイテッド Inorganic adsorbent for extracting molybdenum-99 from irradiated uranium solution and method of using the same
JP2006133138A (en) * 2004-11-08 2006-05-25 Sumitomo Heavy Ind Ltd Target for manufacturing radioisotope

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9734926B2 (en) 2008-05-02 2017-08-15 Shine Medical Technologies, Inc. Device and method for producing medical isotopes
JP2014044214A (en) * 2008-05-02 2014-03-13 Shine Medical Technologies Inc Device and method for producing medical isotopes
JP2011522226A (en) * 2008-05-02 2011-07-28 フェニックス ニュークリア ラブズ エルエルシー Apparatus and method for the production of medical isotopes
US11830637B2 (en) 2008-05-02 2023-11-28 Shine Technologies, Llc Device and method for producing medical isotopes
CN101685680B (en) * 2008-09-27 2011-11-09 中国核动力研究设计院 Uniform inner heat source simulator of medical isotope production solution reactor
JP2010249815A (en) * 2009-04-15 2010-11-04 Ge-Hitachi Nuclear Energy Americas Llc Simultaneous irradiation, elution capsule, and using method therefor
WO2010146722A1 (en) 2009-06-19 2010-12-23 株式会社化研 Method and system for concentrating radioactive technetium as raw material for radioactive drug and labeling compound therefor and collecting the same by elution
US9236153B2 (en) 2009-06-19 2016-01-12 Kaken Co., Ltd. Method of recovering enriched radioactive technetium and system therefor
JP2011007733A (en) * 2009-06-29 2011-01-13 Japan Atomic Energy Agency Radiation irradiation device
JP2011105567A (en) * 2009-11-20 2011-06-02 Japan Atomic Energy Agency METHOD FOR CONCENTRATING HIGH PURITY 99mTc AND CONCENTRATOR THEREFOR
US10978214B2 (en) 2010-01-28 2021-04-13 SHINE Medical Technologies, LLC Segmented reaction chamber for radioisotope production
US11894157B2 (en) 2010-01-28 2024-02-06 Shine Technologies, Llc Segmented reaction chamber for radioisotope production
JP2013518265A (en) * 2010-02-01 2013-05-20 シーメンス アクティエンゲゼルシャフト Methods and devices for making 99mTc
US9576692B2 (en) 2010-02-01 2017-02-21 Siemens Aktiengesellschaft Method and device for producing 99mTc
JP2015038508A (en) * 2010-02-01 2015-02-26 シーメンス アクティエンゲゼルシャフト METHOD AND DEVICE FOR PRODUCING 99mTc
WO2012039036A1 (en) * 2010-09-22 2012-03-29 独立行政法人放射線医学総合研究所 Process and device for production of radionuclide using accelerator
JP5322071B2 (en) * 2010-09-22 2013-10-23 独立行政法人放射線医学総合研究所 Radionuclide production method and apparatus using accelerator
WO2012121466A1 (en) * 2011-03-04 2012-09-13 Korea Atomic Energy Research Institute Method of preparing plate-shaped high-density low-enriched uranium dispersion target and high-density low-enriched uranium target prepared thereby
KR101138445B1 (en) 2011-03-04 2012-04-26 한국원자력연구원 A method for preparing low enriched and plate shaped uranium target with high density, and low enriched uranium target with high density prepared by the method
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
JP2013134061A (en) * 2011-12-23 2013-07-08 Kaken:Kk High-concentration 99mtc recovery method and high-concentration 99mtc recovery device
JP2013134063A (en) * 2011-12-23 2013-07-08 Kaken:Kk METHOD AND APPARATUS FOR PREPARING PURIFIED HIGH-CONCENTRATION Mo SOLUTION FOR PHARMACEUTICAL PREPARATION
JP2013134062A (en) * 2011-12-23 2013-07-08 Kaken:Kk Recovery system for 99mtc
US11361873B2 (en) 2012-04-05 2022-06-14 Shine Technologies, Llc Aqueous assembly and control method
JP2015537222A (en) * 2012-12-10 2015-12-24 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc System and method for collecting and storing material produced in a nuclear reactor
JP2022069253A (en) * 2020-10-23 2022-05-11 三菱重工業株式会社 Production management device, production management method and production management program of radioisotope

Also Published As

Publication number Publication date
EP2104113A1 (en) 2009-09-23
EP2104113A4 (en) 2010-09-15
JP4618732B2 (en) 2011-01-26
EP2104113B1 (en) 2012-01-11
WO2008047946A1 (en) 2008-04-24
CA2666570C (en) 2011-11-15
ATE541297T1 (en) 2012-01-15
CA2666570A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4618732B2 (en) Method and apparatus for manufacturing radioactive molybdenum
JP6279656B2 (en) Method and apparatus for producing radioisotopes
JP5461435B2 (en) Method and apparatus for producing radioisotopes or treating nuclear waste
CN113874960A (en) By226Production of radium225Process for actinium
JP2014525038A (en) Method for generating Tc-99m
EP3413318B1 (en) Method for preparing radioactive substance through muon irradiation, and substance prepared using said method
RU2688196C1 (en) Method for producing radioisotope molybdenum-99
RU2270488C2 (en) Method for radiation treatment of parts and materials by hard gamma-rays
Luo Preparation of Radionuclides
RU2155398C1 (en) Radioisotope strontium-89 production process
Van Abel et al. Design of a Commercial Scale Accelerator Driven Subcritical Aqueous Assembly
KR20070026751A (en) The method for destroy of long-life radionuclides and for synthesis of valuable elements
Johnsen et al. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center
JP2010223941A (en) Method and device for producing radioisotope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees